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Abstract

The human brain recurrently prioritizes task-relevant over task-irrelevant visual information. A

central, question is whether multiple objects can be prioritized simultaneously. To answer

this,  we  let  observers  search  for  two  colored  targets  among  distractors.  Crucially,  we

independently varied the number of target colors that observers anticipated, and the number

of target colors actually used to distinguish the targets in the display. This enabled us to

dissociate  the preparation of  selection mechanisms from the actual  engagement  of  such

mechanisms.  Multivariate  classification  of  electroencephalographic  activity  allowed  us  to

track selection of each target separately across time. The results revealed only small neural

and behavioral  costs associated with  preparing for  selecting  two objects,  but  substantial

costs when engaging in selection. Further analyses suggest this cost is the consequence of

neural competition resulting in limited parallel processing, rather than a serial bottleneck. The

findings bridge diverging  theoretical  perspectives  on capacity  limitations  of  feature-based

attention.
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Introduction

Adaptive,  goal-driven behavior  demands the selection of  relevant  objects  from the visual

environment while irrelevant information is being ignored. This requires the neural activation

of  task-relevant  representations in memory – often referred to as  attentional  templates –

which  then  bias  selection  towards  matching  sensory  input  through  top-down  recurrent

feedback  loops  (Duncan  and  Humphreys,  1989;  Desimone and  Duncan,  1995;  Hamker,

2004; Eimer, 2014; Baldauf and Desimone, 2015). A fundamental yet unresolved question is

whether  the  brain  can  enhance  multiple  task-relevant  representations  concurrently  –  a

question  that  has  recently  generated  considerable  controversy,  with  arguments  both  for

(Houtkamp and Roelfsema,  2009;  Menneer,  Cave and Donnelly,  2009;  Kristjánsson and

Campana, 2010; Dombrowe, Donk and Olivers, 2011; Olivers et al., 2011; van Moorselaar,

Theeuwes and Olivers, 2014; Liu and Jigo, 2017; Ort, Fahrenfort and Olivers, 2017, 2018;

van Driel  et  al.,  2019)  and against  (Beck,  Hollingworth  and Luck,  2012;  Irons,  Folk  and

Remington, 2012; Grubert and Eimer, 2015; Grubert, Carlisle and Eimer, 2016; Beck and

Hollingworth, 2017; Kristjánsson and Kristjánsson, 2017) a strong bottleneck.

We provide electrophysiological evidence showing that the real bottleneck is not so

much in the number of different templates that can be concurrently active in anticipation of a

visual task, but in the number of matching sensory representations in the incoming signal

that  can  subsequently  be  enhanced  by  those  templates.  Crucially,  for  the  selection  of

multiple targets to be truly simultaneous, two requirements have to be met. First, attentional
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templates need to be set up in memory for each anticipated target feature (whether in visual

working  memory  [VWM]  or  through  activating  long-term  memory  [LTM]  representations.

Although it is uncontroversial that multiple representations can be active in memory (whether

VWM or  LTM; e.g.,  Cowan,  2001),  in  order  to  be able  to bias  selection,  each of  these

representations  also  needs  to  be  in  a  state  in  which  it  can  eventually  engage,  through

recurrent  feedback,  with  matching  sensory  signals  (which  is  not  the  same  as  merely

remembering;  see Carlisle  et  al.,  2011;  Olivers and Eimer,  2011;  Kiyonaga et  al.,  2012;

Chatham and Badre, 2015; van Driel et al., 2017). Second, to simultaneously select multiple

targets,  the  visual  system  must also  be  able  to  concurrently  use  those  templates  to

strengthen multiple matching representations in the incoming sensory signal. In other words,

multiple neural feedback loops must be able to engage concurrently. It is important to point

out that template activation and template-guided prioritization are distinct (cf.,  Huang and

Pashler,  2007): It  may be that at any moment multiple templates are ready to potentially

engage in the prioritization of visual input,  but that only one can actually do so following

visual stimulation. So far, studies of multiple-target selection have only focused on the brain’s

limits in the readiness to engage in selection, and ignored potential limits in the selection

process itself.

To resolve this, we recorded electroencephalograms (EEG) from the scalp of healthy

human individuals  while  they were presented with heterogeneous visual  search displays,

from which they always had to select two target objects (see Fig. 1A). Crucially, we varied
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the number of unique target features (one or two colors) that the observer had to prepare for,

and the number of unique features that they would need to select from the search display.

This allowed us to disentangle the contribution of multiple template preparation on the one

hand, and multiple template engagement on the other.  A bottleneck could either emerge

when going from one to two unique templates (reflecting a limit in the readiness to engage),

from one to two unique targets (reflecting a limit in the engagement itself), or both.

Traditionally,  visual  target  selection is  assessed using the N2pc,  an event-related

potential (ERP) in the EEG signal that is characterized by increased negativity over posterior

electrodes contralateral  to the hemifield in which the target is located (Luck and Hillyard,

1994; Eimer, 1996). However, because the N2pc can only distinguish between the left versus

right  hemifield,  it  is  not  able  to  simultaneously  track  the  selection  of  multiple  targets  at

different locations in more complex visual search displays. To overcome this limitation, we

used multivariate decoding, which has been proven to successfully track the spatiotemporal

dynamics  of  feature-based  selection  processes  at  any  location  in  a  search  display

(Fahrenfort  et al., 2017). Here this technique allowed us to independently track attentional

selection over time for multiple concurrent targets at once, and also to investigate the parallel

versus serial nature of these selection processes.

Results
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Twenty-four participants performed a visual search task for which they were always required

to find two color-defined target characters presented among an array of distractor characters,

and determine whether these two targets belonged to the same alphanumeric category (see

Fig.  1A,B).  The  task-relevant  colors  were  cued  prior  to  a  block  of  trials.  To  assess  if

prioritization of multiple targets is limited in terms of the number of attentional templates that

can be simultaneously set up, limited in the number of templates that can be simultaneously

engaged  in  the  selection  of  target  features  in  the  display,  or  both,  we  independently

manipulated 1) how many colors were task-relevant and 2) how many of these target colors

actually  appeared in  the search display.  Specifically,  in  1TMP–1TGT (one template,  one

target feature) blocks, only one color was task-relevant, so that both targets had the same

color and thus participants knew beforehand which color  template to prepare. In  2TMP–

1TGT (two templates,  one target  feature)  blocks,  two unique  colors  were cued as  task-

relevant, but per display only one of these was used to distinguish the two targets present

(i.e., both targets had the same color). Because participants could not predict which of the

two target colors would be present, they had to keep both templates active, even though only

one of them was then required for selecting the actual targets. Finally, in 2TMP–2TGT (two

templates, two target features) blocks, again two unique colors were cued as task-relevant,

but now both these colors also had to be used to select the two target objects from the

search display, since one of the targets carried one color, and the other target carried the

other color.  Note again that in all  conditions, subjects had to select two targets, only the
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number of target-defining features would vary across conditions. This controlled for other

task-related factors  such  as  the number  of  characters  that  had to  be identified  and the

alphanumeric comparison that had to be performed on them.
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Figure 1. Design and behavioral results. In all conditions, observers were required to select

two target characters and determine whether they were of the same (i.e., both letters or both

digits) or different category (i.e., letter and digit). (A) The target colors were cued once in the

beginning of a block and stayed constant for the rest of the block (64 trials). A trial started

with a fixation screen for a jittered interval of 850 to 950 ms, followed by the search display,

presented for  50 ms and another  fixation  screen that  lasted for  up to 2000 ms or  until

participants responded. Depending on the response, feedback was presented for 500 ms

(“correct”,  or  “wrong”).  If  no  response  was  given,  a  10  second  time  out  occurred  and

participants  were  urged  to  try  responding  quicker.  (B)  Task  design.  Depending  on  the

condition, either one or two colors were cued to be task-relevant in the beginning of a block

(creating one vs. two unique templates). Similarly, whenever two colors were cued, search

displays could contain either one of them, or both (one vs. two unique target features). Thus,

in  the  one-template-one-target-feature  condition  (1TMP–1TGT)  one color  was  cued,  and

both targets carried this color in the search display, in the two-templates-one-target-feature

condition  (2TMP–1TGT) two colors were cued but only one of these colors was present in

the search display with both targets carrying that color, and in the two-template-two-target-

feature condition (2TMP–2TGT) two colors were cued and both colors were present in the

search displays. One target always appeared on the horizontal meridian (above or below

fixation), and the other target on the vertical meridian (to the left or right of fixation). (C) and
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(D) Behavioral results. The violin plots depict the distribution of (C) accuracy (see Figure 1 -

source data 1) and (D) response times (see Figure 1 - source data 2) across participants,

separately for the 1TMP–1TGT, 2TMP–1TGT, and 2TMP–2TGT conditions. The horizontal

lines in the box plots represent quartiles. The vertical line represents the minimum (lower

quartile - 1.5 * interquartile range) and maximum (upper quartile + 1.5 * interquartile range)

while single dots beyond that range indicate individual outliers.

Behavioral results

Fig. 1C and 1D show mean accuracy scores and mean response times (RTs) as a function

of  experimental  condition  (1TMP–1TGT,  2TMP–1TGT,  and  2TMP–2TGT).  Performance

differences were assessed using pairwise, Bonferroni-corrected (to  α = 0.025) classical  t-

tests and Bayesian  t-tests on both measures. Any performance costs for the 2TMP–1TGT

relative  to the 1TMP–1TGT condition  reflect  the  cost  of  preparing for  multiple  templates

compared to a single template (preparation cost). Any performance cost in the 2TMP–2TGT

relative  to  the  2TMP–1TGT  condition  represents  the  cost  of  having  to  engage  multiple

templates  to  select  targets  (engagement  cost).  We  found  evidence  for  both,  with

engagement costs being most prominent. Specifically, there was an effect of the number of

templates on both accuracy and response times, with performance being reliably slower and

slightly more error-prone  in the 2TMP–1TGT condition than in the 1TMP–1TGT condition

(RT: 731 ms vs. 679 ms,  t(23) = 5.03,  p < .001,  Cohen’s d = 0.64,  BF  = 572; accuracy:
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95.4% vs. 96.5%,  t(23) = 2.76,  p = .01,  Cohen’s d = 0.61,  BF = 4.4). Even stronger costs

were observed when the number of uniquely colored targets in the display was increased

from one to two, with performance being substantially slower and more error-prone) in the

2TMP–2TGT condition than in the 2TMP–1TGT condition (RT: 916 ms vs. 731 ms,  t(23) =

9.05, p < .001, Cohen’s d = 1.63, BF = 2.5 x 106; accuracy: 91.4% vs. 95.4%, t(23) = 5.90, p

< .001, Cohen’s d = 1.48, BF = 3.9). Indeed, when we directly compared these two sources

of multiple-target cost to each other, the engagement cost was greater than the preparation

cost on both measures (accuracy: 4.0% vs. 1.2%, t(23) = 3.36, p = .03, Cohen’s d = 1.03, BF

= 14.8; RT: 185 ms vs. 52 ms, t(23) = 5.00, p < .001, Cohen’s d = 1.67, BF = 540).

Note further that in the 2TMP–1TGT condition, the actual target color in the display

could repeat or switch from trial to trial.  Previous work has shown switch costs, in which

selection is slower after the target color changes from one trial to the next trial, compared to

when the target color stays the same (Maljkovic and Nakayama, 1994; Found and Müller,

1996;  Monsell,  2003;  Ort,  Fahrenfort  and Olivers,  2017,  2018).  A closer  analysis  of  the

current data also revealed that search suffered from switches, in terms of RTs (repeat trials:

M = 704 ms, switch trials: M = 754 ms; t(23) = 8.1, p < .001, Cohen’s d = 0.56, BFswitchcosts =

4.2 x 105), and accuracy (repeat trials: M =  95.8%, switch trials: M = 94.9%; t(23) = 2.7, p

= .01, Cohen’s d = 0.40, BFswitchcosts = 4.0). 

The behavioral data thus reveal that multiple target search comes with costs, and that

these costs come in two forms. First, keeping two templates in mind results in relatively small
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but reliable costs compared to keeping only one template. This effect is strongest when the

actual  target  color  in  the display  has switched,  suggesting  a  shift  in  weights  on specific

templates from trial to trial. Second, considerably larger costs emerge when the observer not

only  maintains  two  different  templates,  but  also  has  to  engage  both  of  them in  biasing

selection towards the two corresponding targets. Note that this is not the result of the number

of  target  objects  per  se,  as  participants  had  to  select  and  compare  two  targets  in  all

conditions, but it is caused by the number of unique features defining these targets. Selecting

two objects by a single feature is thus more efficient and more accurate than selecting two

objects using two different features. 

Decoding of target positions based on the raw EEG

Next, to determine whether the behavioral costs indeed reflected deficits in the selection of

the  different  targets,  we  used  EEG  to  track  the  strength  and  dynamics  of  attentional

enhancement of the different target positions. To this end, one target was always placed on

the vertical meridian, and the other target always on the horizontal meridian, so that we could

train separate linear  discriminant  classifiers (with electrodes as features) for  each of  the

spatial target dimensions  to distinguish left from right targets and top from bottom targets,

separately for each condition and time sample (see Methods for details). We reasoned that

any inefficiencies associated with setting up multiple unique templates (i.e., 1TMP vs. 2 TMP

conditions) and/or with actually using those templates to select multiple unique targets (i.e.,
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1TGT vs. 2TGT conditions) should result in decoding to suffer in terms of relative delays,

strength, or both. Fig. 2A shows decoding performance for each of the conditions (1TMP–

1TGT, 2TMP–1TGT, and 2TMP–2TGT), separately for the horizontal (left versus right) and

vertical meridian (top versus bottom). Fig. 2B shows the topographical patterns associated

with the forward-transformed classifier weights over time, which are interpretable as neural

sources (see Haufe et al., 2014 and Methods). As a general finding, we were able to track

attentional selection on both the horizontal and vertical meridian, with comparable decoding

performance. Decoding performance was tested against chance for every sample, corrected

for  multiple  comparisons using cluster-based permutation  testing  (Maris  and Oostenveld,

2007,  also  see  Methods).  After  cluster-based permutation,  we  observed  clear  significant

clusters  in  each  of  the  three  conditions,  with  significant  decoding  emerging  at  different

moments in time. For the left-right distinction, the topographical pattern during the early time

window (200–350 ms) resembles that of the N2pc, while for later time windows (350–700

ms) it  resembles SPCN or CDA-like patterns (Vogel and Machizawa, 2004; Mazza  et al.,

2007;  Grubert  and  Eimer,  2013).  As  shown  in  Figure  2  -  Figure  Supplement  1,  more

traditional event-related analyses indeed revealed N2pc and SPCN components, which likely

contributed to the classifiers’ performance. For vertically positioned targets a gradient from

frontal to posterior channels spread along the midline, similar to recent results from our labs

(Fahrenfort et al., 2017; Grubert et al., 2017). The fact that the decoding approach picks up

on information related to attentional selection also on the vertical midline is testament to its
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power over conventional ERP methods, and allowed us to simultaneously track attentional

selection of both targets over time. However, as there were no main or interaction effects

involving the meridian in any of the comparisons, we averaged decoding performance across

the spatial dimensions. 
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Figure  2. MVPA  decoding  performance  for  target  position.  A)  Decoding  performance

expressed as Area Under the Curve (AUC) for target position on the horizontal (left vs. right)
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and on the vertical meridian (top vs. bottom) separately, as a function of number of templates

and number of target features. See also Figure 2 - source data 1 B) Topographical activation

maps  for  horizontal  and  vertical  position  decoding  averaged  over  the  typical  N2pc  time

window (200-350 ms) and the typical SPCN/CDA time window (350-700 ms). C) Decoding

performance collapsed across the horizontal and vertical dimensions, comparing the 1TMP–

1TGT and 2TMP–1TGT conditions, with the difference score thus showing the effect of the

number of templates. See also Figure 2 - source data 2. D) The same, now comparing the

2TMP–1TGT and 2TMP–2TGT conditions, thus showing the effect of multiple different target

features in the display. See also Figure 2 - source data 2. The shaded area represents 1

SEM above and below the mean for every time point. Thick lines as well as horizontal bars

indicate significant clusters (at α = .05) as produced by cluster-based permutation testing

(5000 permutations). For visualization purposes only, the classification scores over time were

fitted with a cubic spline (λ=15, comparable to a 30 Hz low-pass filter) to achieve temporal

smoothing. Note the statistical analyses and estimation of the onset latencies were done on

unsmoothed data. The marked time points indicate the latency of 50% maximum amplitude

as estimated using a jackknife approach,  as a measure of the onset  of  selection (Miller,

Patterson and Ulrich, 1998; Luck, 2014; Liesefeld, 2018). The zero points on the x-axis of

panels A,C and D represent search display onset.
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If there is a limit on how many templates can be prepared for, we should find reduced

and/or delayed classification for the 2TMP–1TGT condition compared to the 1TMP–1TGT

condition (Fig. 2C). If the limitation is on how many templates can be engaged in selection,

the cost should emerge in the comparison of the 2TMP–2TGT and 2TMP–1TGT conditions

(Fig.  2D).  Indeed,  we  observed  reliable  differences  for  both  comparisons  that  directly

resembled the behavioral pattern. First, we compared the latencies at which target positions

became decodable, thus providing a window on any delays in attentional selection. Because

differences  in  onset  of  significant  clusters  cannot  be  reliably  interpreted  as  reflecting

differences  in  onsets  of  the  underlying  neurophysiological  processes  (Sassenhagen  and

Draschkow, 2019), we instead used a jackknife-based approach to quantify the latency of the

50% maximum amplitude in the decoding window (Miller, Patterson and Ulrich, 1998; Luck,

2014; Liesefeld, 2018, see Methods). This revealed a reliable onset difference between the

1TMP–1TGT (M = 216 ms) and 2TMP–1TGT (M = 237 ms) conditions (M = 21 ms, tc(23) =

2.21, p = .04; Fig. 2C), indicating that attentional selection is delayed as a result of having to

prepare for two different target colors compared to having to prepare for only a single target

color. Comparing the onsets between the 2TMP–1TGT (M = 237 ms) and 2TMP–2TGT (M =

263 ms) conditions yielded a further delay of  25 ms associated with having to engage in

selecting two target colors compared to selecting a single target color (tc(23) = 2.35, p = .03;

Fig. 2D).
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Finally,  and  also  similar  to  the  behavioral  responses,  the  onset  of  the

neurophysiological response in the 2TMP–1TGT condition was delayed by 23 ms when the

target color switched from one trial to the next, compared to when it repeated (tc(23) = 4.34, p

< .001; see Figure 2 - Figure Supplement 2). 

Next, we assessed the strength of classification over time by testing AUC values of

the relevant conditions against each other using paired t-tests and cluster-based permutation

testing to correct for multiple comparisons (see Methods). This procedure revealed an early

and  short-lasting  difference  of  the  number  of  templates  (i.e.,  between  1TMP–1TGT and

2TMP–1TGT conditions;  see Fig.  2C),  with  stronger  classification  for  the single  template

condition that reflects the onset latency difference reported above. Again, in line with the

behavioral  results,  more  substantial  cost  in  decoding  performance  emerged  when  the

number of target features in the displays increased from one to two (i.e., between the 2TMP–

2TGT and 2TMP–1TGT conditions; see Fig. 2D). To directly compare the cost of preparing

two  templates  to  the  cost  of  engaging  them  in  selection,  we  also  ran  a  cluster-based

permutation test on the difference scores (i.e. [2TMP–1TGT – 2TMP–2TGT] – [1TMP–1TGT

– 2TMP–1TGT]). This revealed a window of 250 to 500 ms post stimulus in which the cost of

engaging was greater than the cost of preparing selection (first cluster: extent: 266 - 378 ms,

p = .001; second cluster: extent: 436 - 495 ms, p = .013, results not shown in Figure). This

suggests that generally engaging two templates is more costly than preparing two templates.
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Thus,  both  the  onset  latency  and  strength  of  decoding  performance  show  clear

deficits in attentional selection when observers need to select two different targets from a

display (i.e., engage two templates in selection) compared to when they have to select two

targets based on the same target color (i.e., engage one template in selection). In contrast,

having to set up two templates instead of one came with only minor onset latency differences

and no overall differences in decoding strength. This clearly points to a deficit when multiple

templates need to be engaged simultaneously rather than when multiple templates need to

be prepared simultaneously.

Sample-wise correlation of classifier confidence across trials as a measure of inter-

target dependency

While  the previous  section  showed a  clear  impairment  when  two  templates  need  to  be

engaged in selection, it leaves unanswered whether selection is hindered by limitations in

parallel processing or by a serial bottleneck. That is, engaging two templates during search

may prioritize both unique targets in parallel but in a mutually competitive manner (Barrett

and Zobay, 2014), or the two templates may only be engaged (and thus the corresponding

targets  prioritized)  sequentially,  possibly  in  continuously  alternating  fashion  (e.g.,  Ort,

Fahrenfort and Olivers, 2017). 

To  investigate  these  competing  hypotheses,  we  assessed  performance  for  each

target dimension separately (horizontal and vertical). A serial model predicts that attention to

19

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

a target on one dimension should go at the expense of attention to the target on the other

dimension, and thus decoding performance for the vertical and horizontal axes to correlate

negatively.  In  case  of  parallel,  independent  selection,  there  should  be  no  systematic

relationship  between  classification  confidence  for  one  dimension  and  classification

confidence for the other dimension, as selection of one target is impervious to the selection

of the other target. A positive correlation would arise from a common mechanism driving

selection of two different targets. Note that these possibilities are difficult  to assess at the

group level as individuals may have different serial strategies. For example, one observer

may prefer  to  first  select  targets  from the horizontal  axis,  while  another  may prefer  the

vertical axis first, such that any existing correlation (if present) might cancel out. Hence, we

first plotted average performance over time separately for each individual and separately for

the horizontal and vertical axis. Then, to reveal whether consistent temporal dependencies

existed for any given participant, we correlated classification performance over time in the

150 ms to  700 ms post  stimulus  window.  Although this  revealed  incidental  positive  and

negative  correlations  for  individual  participants,  there  was  no  systematically  positive  or

negative relationship (average correlation Spearman’s ρ = 0.11; min-max range: -0.37-0.63;

see Figure 3 - Figure Supplement 1). 

However, even individual participants themselves may not behave consistently across

trials,  and,  while  selection  is  still  serial,  whether  participants  first  prioritize  horizontal  or

vertical targets may also vary from trial to trial. Therefore, selection needs to be assessed at
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the  trial  level.  To  this  end,  for  every  participant,  trial  and  time  point,  we  extracted  the

classifier confidence scores separately for the horizontal and vertical dimension (see Ritchie

and Carlson, 2016; Grootswagers, Cichy and Carlson, 2018 and Methods), and correlated

the two dimensions across trials using Spearman’s  ρ. Classifier confidence, expressed as

the distance from the decision boundary, reflects the certainty of a classifier in predicting the

class membership of a certain instance. In the present design, classifiers predicted based on

the  specific  EEG activity  pattern  across  electrodes  on  a  given  trial  whether  one  target

appeared on the left or right and whether the other target appeared at the top or bottom

position.  The  confidence  scores  indicate  how  certain  the  classifiers  were  that  a  target

appeared at a particular position. We reasoned that if prioritization is limited to a single target

at a time, a classifier cannot simultaneously have high confidence about both targets, and

thus confidence should correlate negatively, that is if the horizontal target position can be

predicted with high confidence, then the confidence for the vertical target position should be

reduced and vice versa. The correlations between the confidence scores on the two spatial

dimensions  are  plotted  in  Fig.  3A.  As  can  be  seen,  there  was  again  no  systematic

relationship between decoding the locations of the two targets, in any of the conditions. Apart

from a short-lasting positive correlation  around the 500 ms time point  in  the 2TMP–2TG

condition which is likely to be spurious, correlations for all time points were close to zero,

which implies  that  classifying horizontal  and vertical  target  positions  is  independent  from

each other. 
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However, given that this is a null result, we sought to make sure that our approach is

in principle sensitive to existing correlations. To this end, we simulated a data set with the

same overall characteristics as the recorded data, but with either positive, negative, or no

correlations injected, under various signal to noise ratios (see Methods). The results of this

simulation are summarized in Figure 3 - Figure Supplement 2 and demonstrate that with

sufficiently high decoding AUC values (> approx. 0.55-0.60), correlations (whether positive or

negative) between the horizontal and vertical position classifiers can, in principle, be reliably

detected. However, because group classification performance in our dataset did not exceed

0.59 (in the 1TMP–1TGT condition), we instead assessed for each individual observer the

correlation  between  target  dimensions  for  those  time  points  at  which  classification

performance reached its maximum. As Fig. 3B shows, even for individuals with relatively

high classification scores, there was no evidence for a correlation between the classification

confidence between the two target dimensions. The absence of such a correlation in our data

is thus most consistent with a limited parallel  independent selection model,  rather than a

serial model or a parallel model operating under a common mechanism.

Nevertheless, there is the possibility that there was actually a relationship between

horizontal  and vertical  classification,  but  across time,  trials,  or  both it  was too short  and

inconsistent such that the present approach might not have been sensitive enough to detect

it. For example, a negative correlation might exist for a short time window of which the timing

shifted across trials, causing the resulting average correlation might to be reduced beyond
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detectability. We emphasize that the conclusion that our data are mostly consistent with a

limited parallel model is thus based on a null result and therefore has to be interpreted with

care. 
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Figure 3. Correlation of classifier confidence scores. A) For each condition, and trial, the

classification confidence scores per time point and subject were extracted for horizontal and

vertical classifiers and then correlated (Spearman’s  ρ) between these dimensions, across

trials. B) To examine whether a non-zero correlation would be present for individuals who

show high AUC scores, we plotted the individual correlation scores for those time points at

which individual  classification  was maximal,  separately  for  the horizontal  dimension (less

saturated dots) and the vertical dimension (more saturated dots). The curves represent the

correlation  strengths  that  can  be  expected  for  a  certain  decoding  strength  (AUC,

corresponding  to  SNR)  as  based  on  our  simulated  data  set  (the  simulated  negative

correlation being the mirrored version of the positive correlation). 

Discussion

Selection of task-relevant  information from complex visual environments is limited,  and a

central  question  in  attention  research  has  been  whether  observers  can  simultaneously

prepare for and select multiple different target objects. The current results provide evidence

that these limitations do not so much reside at the level of template preparation (i.e., the

number  of  target  representations  set  up  prior  to  the  task),  but  at  the  extent  to  which

templates  can  then  be  concurrently  engaged  in  selecting  matching  information  from the

sensory  input.  By  systematically  varying not  only  the number  of  different  target  features

observers had to prepare for,  but also the number of different target features they would

encounter in the displays, we were able to, for the first time, dissociate limitations in template
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preparation  from limitations  in  template  engagement.  Specifically,  we  observed  relatively

small but reliable costs on both behavioral and EEG classification performance when two

templates needed to be activated instead of one, suggesting a reliable but relatively minor

bottleneck  at  this  stage  of  processing.  In  contrast,  substantial  costs  emerged  on  both

behavioral and EEG performance measures when two templates had to be prepared, and

both of these templates (rather than just one) had to be engaged in driving the selection of

two different targets.

We propose a model which extends existing frameworks that assume a crucial role

for top-down biased competition (Duncan and Humphreys, 1989; Desimone and Duncan,

1995;  Hamker,  2004;  Bundesen,  Habekost  and  Kyllingsbæk,  2005).  According  to  these

frameworks,  the  activation  of  target  templates  in  memory  involves  the  pre-activation  or

biasing of associated sensory features. The presence of such features in the input will then

trigger  a  long-range  recurrent  feedback  loop,  leading  the  enhancement  of  the  target

representation in VWM (including its location), and thus making it available for other cognitive

processes  such  as  response  selection  (processes  which  are  themselves  limited,  cf.

Dehaene, Kerszberg and Changeux, 1998; Lamme, 2003; Baars, 2005). Our data indicates

that  while  multiple  top-down feedback connections  may be prepared at  once,  there is  a

limitation in how these feedback loops are engaged by matching input. 

Figure  4  illustrates  how  we  believe  the  existing  framework  should  be  extended.

Specifically,  we  propose  that  multiple  templates  may  hold  each  other  in  a  mutually

25

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

competitive  relationship  in  memory,  most  likely  through laterally  suppressive  connections

(Manohar et al., 2019). Figure 4A depicts the situation when just one of the target features is

then encountered in the sensory input. The corresponding feedback loop is triggered, leading

to  an  enhanced  representation  of  that  target.  If  only  one  target  feature  is  present,  the

corresponding template will automatically win the competition. Although two templates can

be maintained in parallel, the mutual competition between them is slightly disadvantageous.

This will lead to the initial delay in target selection that we observed in the data when two

templates instead of just one were activated. Moreover, the selective enhancement of one

representation over another may carry over to the next trial, thus resulting in the target switch

costs that we also observed both in behavior and EEG performance measures.

The crucial situation occurs when the visual input contains multiple target features

and thus multiple feedback loops are being triggered, as is shown in Figure 4B. Because of

the mutually suppressive relationship, strengthening one feedback loop will automatically go

at  the  expense  of  the  other.  Although  both  loops  are  triggered  in  parallel,  the  mutually

aversive relationship results in slower and weaker accumulation of evidence for either of the

targets, consistent with what we observed in the data. In theory, the system may resolve

such competition in two ways. The first is to keep selection of both targets running in parallel,

and  accept  the  slower  evidence  accumulation.  The  second option  is  to  impose a  serial

strategy in which selection is first biased in favor of one target, and then switched to the other

(or alternate between the two). Our data provides no evidence for the serial model. First, the
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average group data nor the average individual subject data showed any systematic pattern of

switching between the two target positions (i.e., differences in classification performance for

left-right  versus  top-bottom).  Second,  also  a  trial-based  correlation  analysis  of  classifier

confidence  scores  showed  the  absence  of  a  negative  correlation  between  the  target

positions. Our findings are therefore most consistent with a limited-capacity parallel model, in

which observers maintain two templates active during search,  but  with mutually  aversive

consequences. However, we point out that our data do not exclude the possibility of seriality.

First, while there may have been little seriality in selecting the targets from the displays on

the basis of color, there may have been a serial component in accessing their alphanumeric

identity – a component to which our classifier was not sensitive. Moreover, there is still  a

distinct  possibility that  imposing seriality  is a valid strategy that observers may deploy to

resolve competition between different target features, but that such choices depend on tasks,

context, or instructions (Cave et al., 2018; Stroud et al., 2019). For example, we previously

observed evidence for serial switching in a different paradigm when observers had to select

only one of two targets present, and were instructed to switch at least a few times during a

block (Ort  et al., 2019; van Driel  et al., 2019). The current results indicate that the process

can occur in parallel, not that it must.
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Figure 4. A  limited parallel  model.  Attentional  templates  in  memory engage in  recurrent

feedback  loops  with  matching  sensory  representations,  resulting  in  target  enhancement.

Multiple templates can be activated in parallel and may be equally active prior to search, but

they compete through mutual suppression, which has consequences during search. (A) The

presence of a single target feature in the sensory input will unequivocally trigger one of the

active  templates,  eventually  resulting  in  as  strong  selection  as  when  there  is  only  one

template (not shown), albeit  at a short delay.  (B) When both templates are activated the
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mutual  suppression  will  prevent  strong  activation  of  either,  resulting  in  substantially

weakened and delayed selection of  both targets. 

Our  account  has  a  resemblance  to  the  Boolean  Map Theory  of  Visual  Attention

(Huang  &  Pashler,  2007),  which  proposes  a  division  of  attentional  selection  into  two

components: (1) The feature-to-location routine, in which task-relevant features are being

located in the visual field (referred to by Huang and Pashler as selection, but here analogous

to what we call  preparation for  selection)  and (2)  the location-to-feature routine in which

individuals extract response-relevant features at a target location (access, analogous to what

we here call engagement in selection). However, in contrast to the model that we propose, in

which only what Huang and Pashler  refer to as the access aspect of  search is severely

limited, the Boolean Map theory poses a capacity limitation of one on both selection  and

access.

We believe the distinction between template preparation and template engagement in

selection has great potential for resolving the current debate on whether observers can look

for more than a single target at the same time (Menneer, Cave and Donnelly, 2009; Beck,

Hollingworth and Luck, 2012; Irons, Folk and Remington, 2012; Grubert and Eimer, 2015;

Beck and Hollingworth, 2017; Ort, Fahrenfort and Olivers, 2017, 2018). Studies central to this

debate have largely focused on how many templates can be prepared in anticipation for a

search,  rather  than  how many  of  these  templates  can then  be  concurrently  engaged  in

selection without costs. From our data, the answer to the question then appears to be yes,
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observers may look for multiple targets simultaneously at little cost, but it is selecting those

targets that runs into real limitations. 

Although we found the costs of going from one to two templates to be relatively small,

this leaves open the question whether costs will increase more strongly with more templates

being added. As there is more opportunity for memory representations to interfere with each

other when multiple memory representations need to be maintained, this would be expected.

Such interference will depend on the similarity of the to-be-remembered templates, as well

as the assumed capacity. Although the capacity of VWM is thought to be around three to four

items (at least for the standard colored shapes used in experiments like ours), and VWM is

assumed to be central to top-down driven search, there is ample evidence that visual search

needs not  solely  rely  on VWM. In fact,  given that  in  our experiment the target  template

remained the same for a block of trials, observers may have at least partly relied on trained

templates in long term memory here (Carlisle et al., 2011; Gunseli, Meeter, & Olivers, 2014).

Moreover, work by Wolfe (2012) has shown that observers can successfully search for any

one of tens of different target objects if given the opportunity to first commit these objects to

long term memory. In fact, given that in our experiment the target template remained the

same for a block of trials, observers may have at least partly relied on long term memory

here,  too  (but  see  Grubert,  Carlisle  and  Eimer,  2016  for  evidence  that  measures  of

attentional selection, i.e., the N2pc, are not affected by whether targets are stored in long

term  memory  or  working  memory).  In  our  study,  effects  of  capacity  limits  and  any
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interference arising from it may be have been stronger when the targets would have been

cued from trial  to trial,  rather than from block to block. Conversely,  the fact that we find

limitations  even  with  repeated  targets  is  testament  to  the  mechanistic  bottleneck  in  the

engagement  of  selection  that  we  propose.  One  reason  may  be  that  even  LTM

representations would need to become activated for effective task-or context-driven guidance

(since only one set of trained colors is relevant in a particular block). Our data suggests that

the limit  may well  be in this goal-driven aspect of search – that is,  the deployment of a

representation for perceptual bias rather than its storage per se. In line with this, Grubert,

Carlisle and Eimer (2016) reported evidence that attentional selection per se, as measured

by the N2pc (which at least partly underlies the signal also used here), is not affected by

whether targets are stored in long term memory or working memory. Future research will

need to shed further light which memory systems support search templates. 

Finally,  the  question  of  memory  capacity  or  interference  is  also  important  when

considering that current limitations were found when both target features were drawn from

the same dimension (color). There is evidence that different dimensions may to some extent

independently  store  (e.g.,  Wang  et  al.,  2017),  or  guide  attention  towards  (Wolfe,  1994;

Jenkins, Grubert and Eimer, 2017), target features. Our methods may therefore prove useful

in assessing the exact limitations of selecting targets defined along different dimensions.

To  sum  up,  we  propose  that  models  of  visual  selection  need  to  consider  the

difference  between  preparing  for  selection  and  engaging  in  selection  of  multiple  visual
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targets.  We  demonstrate  that  whereas  the  first  process  comes  at  little  cost,  the  true

bottleneck of multiple-target selection is in engaging multiple template representations. 
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Materials and Methods

Materials  Availability  All  data  and  material  will  be  made  freely  accessible  at

https://osf.io/3bn64

Participants. Thirty-two participants  naive to the purpose of  the experiment  were

recruited at the Vrije Universiteit Amsterdam and were compensated with money or course

credit. Eight were excluded due to poor behavioural performance in at least one experimental

condition (a predefined cutoff of accuracy <85% was used, see below) to ensure sufficient

numbers of correct trials for the EEG analyses. The remaining twenty-four participants (age:

19-30 years, M = 22.0; 17 females, 7 males) had normal or corrected-to-normal visual acuity

and color vision. All participants gave written informed consent in line with the Declaration of

Helsinki. The study was approved by the Scientific and Ethics Review Board of the Faculty of

Behavioural  and  Movement  Sciences  at  the  Vrije  Universiteit  Amsterdam  (Reference

number: VCWE-2016-215).

Stimuli & Procedure. Displays consisted of eight colored alphanumerical characters

evenly  spaced on an imaginary  annulus  with  a  radius  of  2.5  degree visual  angle  (dva),

centered at the middle of the screen (Fig. 1A). The characters were uppercase letters (K, H,

M and T) and digits  (7,  6,  3 and 4,  each spanning approximately  1.2 dva vertically  and

between 0.8 and 1.0 dva horizontally. In total, eight colors were used in the experiment: Red

(RGB-values: 224, 0, 38), green (0, 155, 0), blue (55, 110, 255), and yellow (160, 95, 5) were

potential target colors (all approximately isoluminant, ~21 cd/m2, min-max range: 19-25 cd/
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m2), whereas purple (145, 30, 180), cyan (70, 240, 240), pink (250, 0, 179) and gray (130,

130, 130) were always used as distractor colors (M = 35 cd/m2, min-max range: 16-63 cd/

m2). The stimuli were presented on a black background (0, 0, 0). 

Participants were instructed to find two color-defined target characters on each trial,

and indicate whether or not these belonged to the same alphanumerical category (i.e., letters

or numbers). Response keys were counterbalanced across participants. In the beginning of a

block, the task-relevant colors were shown to the participants as two target-colored disks

(spanning 1.2 dva each), for 2000 ms. Depending on the experimental condition (see below)

either one colored disk was presented in the middle of the screen, or 1.0 dva to the left and

right of the center, respectively. The target colors were valid for a block of 64 trials after

which new colors were shown. Throughout the trial a white fixation cross remained visible in

the middle of the screen which participants were required to keep fixating. The trial sequence

began with a fixation screen presented for 850 to 950 ms (randomly selected from a uniform

distribution),  followed by  a  search display  for  50 ms and another  fixation  screen until  a

response was given or a 2000 ms timeout. Finally, a written message (“correct” or “wrong”)

presented for 500 ms indicated whether the response was correct or not. In case participants

did  not  respond  before  the  timeout,  the  experiment  was  paused  for  ten  seconds  to

encourage  them to  respond  quicker  henceforth.  After  every  block,  participants  received

feedback on accuracy.  Note that  for  the first  two participants presentation  time was two

display  frames  (~16.67  ms)  shorter  than  for  the  rest  of  the  sample.  To  facilitate  good
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behavioral performance, we increased presentation time from the third participant onwards.

However, as these two participants performed well,  even with 16.7 ms presentation rates

(and thus met our inclusion criteria), we decided to keep them in the sample.

One target color was always presented on the horizontal axis (left or right of fixation),

while  the other was always presented on the vertical  axis (above or below fixation),  with

color-position assignment randomly chosen but  occurring equally  often. Participants were

informed that  targets  would  appear  only  on  the  cardinal  axes  of  the  search  array.  The

irrelevant items on the diagonals were added to the search display to increase competition,

increase color heterogeneity, and to prevent participants from looking for any color duplicates

rather  than for  the specific  target  color,  whenever  both target  objects  of  a search array

shared the same color (as was the case in the one target feature conditions).  To further

prevent  participants  from employing  the strategy of  selecting  color  duplicates  or  groups,

rather than setting up a template for the specific target color, one half of all trials, one of the

additional distractor colors was duplicated and presented at one of the diagonal positions. In

doing so, the mere presence of a duplicated color would not signal these to be the target

items, so that a color-specific would be necessary to perform the task efficiently. One target

color was always presented on the horizontal axis (left or right of fixation), while the other

was  always  presented  on  the  vertical  axis  (above  or  below  fixation),  with  color-position

assignment  randomly  chosen  but  occurring  equally  often.  The alphanumerical  identity  of

each  search  item  was  chosen  randomly  with  the  restriction  that  the  two  target  objects
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belonged as often to the same category (both letters or both digits) as to different categories

(one  letter  and  one  digit).  Consequently,  alphanumerical  category  and  positions  of  both

targets were fully counterbalanced within a block.

Design.  Across blocks, we introduced three experimental conditions that differed in

(1) how many colors were task-relevant (i.e., the number of templates, TMP) and (2) how

many target colors appeared in a single search display (i.e., the number of different target

features, TGT). In 1TMP–1TGT blocks, only one color was task-relevant, so that both target

characters had the same color and participants knew beforehand which color they would

need to select. In the  2TMP–1TGT block type, two colors were cued as task-relevant, but

only one of the two target colors would actually appear in a search display, as was randomly

determined from trial to trial (with equal numbers for each target color). Participants could not

predict which of the two target colors would be present in a specific search display, therefore

they had to keep two templates active, even though only a single color was required for

selecting the actual targets. Finally, in the  2TMP–2TGT block type, again two colors were

cued  as  task-relevant,  but  now both  these  target  colors  also  appeared  in  each  search

display, so that both colors were required for selection. Each condition was repeated eight

consecutive times. 

We  decided  to  use  a  blocked  design  rather  than  intermixing  trials  of  all  three

conditions within blocks because pilot data indicated that behavioral performance is rather

low if conditions are mixed within a block, so that many trials would have to be excluded.
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Furthermore,  intermixing  conditions  would  also  make  it  necessary  to  cue  not  only  the

condition, but also the task-relevant colors before every trial. This would have increased the

duration of a trial, and hence reduced the total number of trials that we could fit in a session,

thus reducing power even more.

When only one color was task-relevant (1TMP–1TGT), each of the four colors would

thus serve as the target color twice, whereas in blocks in which two colors were task-relevant

(2TMP–1TGT and 2TMP–2TGT), observers would look for the combinations red and green

or blue and yellow, each four times. We chose these color combinations as they are not

linearly separable in color space and thus prevented participants from potentially setting up a

single  template  encompassing  both  target  features.  The  order  of  conditions  was

counterbalanced  across  participants.  Prior  to  the  start  of  the  experiment,  participants

received instructions and practiced all  conditions  in  increasing order  of  difficulty  (1TMP–

1TGT, 2TMP–1TGT, 2TMP–2TGT). During practice, participants repeated blocks of 32 trials

for each condition as often as necessary to reach an accuracy of 85%, but at least three

times. Note, even if participants had initially reached this inclusion criterion, they might still

have  performed below  85% during  the experiment.  Therefore,  eight  participants  with  an

accuracy below 85% were excluded from the analysis.

Apparatus & EEG Acquisition. The experiment was designed and run using the

OpenSesame  software  package  (version  3.2.2;  Mathôt,  Schreij  and  Theeuwes,  2012).

Stimuli were presented on a 22-inch Samsung Syncmaster 2233 monitor, with a resolution of
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1680 x 1050 pixels at a refresh rate of 120 Hz. Participants were seated in a dimly lit, sound-

attenuated room in a distance from the screen of approximately 70 cm and the eyes aligned

with the center of the screen. A QWERTY PS/2 keyboard was placed in the lap of each

participant. They were instructed to place left and right index fingers on the z and m keys to

indicate whether targets were of the same or different category. Further, they were asked to

refrain from excessive blinking and motion during the experiment. The experimenter received

real-time feedback on behavioral performance and quality of EEG recording in an adjacent

room. 

We used the BioSemi ActiveTwo system (Biosemi, Amsterdam, The Netherlands) to

record from 64 AG/AgCl EEG channels, four EOG channels and two reference channels at a

sampling rate of 512 Hz. EEG channels were placed according to the 10-20 system. EOG

channels were placed one cm outside the external canthi of each eye to measure horizontal

eye movements and two cm above and below the right eye, respectively to measure vertical

eye movements and blinks. Reference electrodes were placed on the left and right mastoids.

EEG Preprocessing. All EEG preprocessing and analyses were performed offline in

Matlab (2014b, The Mathworks) and Python (2.7, www.python.org), using a combination of

EEGLAB (Delorme and  Makeig,  2004),  the  Amsterdam Decoding  And  Modeling  toolbox

(ADAM, version: 1.07-beta, (Fahrenfort et al., 2018) and custom scripts (freely accessible at

https://osf.io/3bn64). EEG data were first re-referenced to the average of the left and right

mastoids. No offline filters were applied to the data. Next, the continuous signal was split into
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epochs from 300 ms before until 800 ms after search display onset. Epochs were baseline

corrected by removing the average activity in a pre-stimulus window between -100 and 0 ms

from each time point. All epochs in which participants failed to respond correctly, or response

times were lower than 200 ms (anticipatory errors) or greater than three standard deviations

above the block mean were removed from further analyses (mean exclusion: 6.6%, min-max

range  across  participants:  4.4%  -  9.7%).  To  make  sure  that  the  EEG  would  not  be

contaminated by eye movements, we scanned epochs for horizontal eye movements within

the first 500 ms after stimulus onset (amplitude threshold: 30 μV, window length: 100 ms,V, window length: 100 ms,

step size: 50 ms) and removed epochs containing such. This resulted in an exclusion of on

average 2.4% (min-max range: 0.0% - 16.8%) of all epochs. Noise due to muscle activity

was removed using an automatic trial-rejection procedure. To specifically capture EMG, we

used a 110 - 140 Hz band-pass filter, and allowed for variable z-score cut-offs per participant

based on the within-subject variance of z-scores, resulting in the exclusion of on average

7.1% (min-max range:  1.8% -  13.1%).  Next,  all  epochs  were  visually  inspected  for  any

obviously  contaminated  trials  that  have  been  missed  by  the  automatic  trial-rejection

procedure (mean exclusion: 0.4%, min-max range: 0.0% - 0.9%). To identify and remove

components related to blinks, we used EEGLAB’s implementation of independent component

analysis (ICA). In total, 15.6% (min-max range: 8.1% - 34.2%) of all epochs were removed

during preprocessing.
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Decoding of Target Locations. The main analyses decoded target positions based

on the raw EEG of all 64 channels, using the ADAM toolbox (Fahrenfort et al., 2018). To that

end, we used a 10-fold cross-validation scheme by splitting the data of individual participants

into  ten  equal-sized  folds  after  randomizing  the  order  in  which  trials  occurred  in  the

experiment. A linear discriminant classifier was then trained on the data of nine folds and

tested on the data of the tenth one. This procedure was repeated ten times until each fold

served  as  a  test  set  once.  Finally,  the  classifier  performance  was  averaged  across  all

individual folds. For each condition, we trained one classifier to differentiate trials on which

one of the targets was presented on the left versus the right position, and another classifier

to differentiate the same trials as to whether the other target was presented on the top versus

the bottom position. Furthermore, to account for minor incidental imbalances with respect to

the trial count per class introduced by the trial rejection procedure, we performed within-class

and between-class balancing. For within-class balancing, we undersampled trials to match

the number of trials in which the target appeared on the irrelevant dimension within each

class.  For  example,  when  training  a  classifier  to  differentiate  trials  in  which  the  target

appeared on the left versus right position, we made sure that each class (e.g., left targets)

contained the same number of trials in which the second target appeared on the top or the

bottom position by removing trials of the more frequent trial type. Between-class balancing

entailed the oversampling of trials (generating synthetic samples based on the existing data;

see He et al., 2008) belonging to the less frequent class, so that the classifier would not
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become biased toward the more frequent class. As performance measure we used the Area

Under the Curve (AUC, Hand and Till, 2001), which is an unbiased measure that is based in

signal  detection  theory  and  describes  the  area  under  the  receiver-operator  curve  when

plotting hit rate over false alarm rate. The decoding performance for single conditions was

statistically tested against chance level (AUC = 0.5) by running two-sided one-sample t-tests

across  participants  for  every  time  point,  or  by  testing  AUCs  against  each  other  when

comparing conditions directly. To correct for multiple comparisons, we used cluster-based

permutation tests (5000 permutations) on adjacent time points with the alpha level set to α

= .05 (Maris and Oostenveld, 2007). Next, to examine the topography of the activations, we

multiplied the classifier weights across all channels with the data covariance matrix, yielding

activation maps that can directly be interpreted as neural sources (Haufe et al., 2014). 

Estimating and Statistically Testing Onset Latency and Amplitude Difference To

estimate the onset latencies at which target location became decodable,  we used an

approach in which we combined computing the fractional peak latency with a jackknife-based

approach (Miller, Patterson and Ulrich, 1998; Luck, 2014; Liesefeld, 2018). Group-averaged

classification  scores  were  repeatedly  computed  over  all  but  one  participant,  until  each

participant was left out once. For each of these averages, we estimated its onset latency by

identifying the peak amplitude in the window of 150 to 700 ms after search display onset and

defined the onset as the first point in that time window in which the classification scores

exceeded 50% of the peak score. To mitigate the influence of high-frequency noise on the
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latency estimation, for every time point we averaged the amplitude of that time point and the

two  adjacent  time  points  for  peak  and  onset  latency  estimation.  To  statistically  test  for

potential differences in onset latencies across experimental conditions, we followed Miller et

al. (1998) and computed t-statistics for the pairwise comparisons between the 1TMP–1TGT

and 2TMP–1TGT condition, and between the 2TMP–1TGT and 2TMP–2TGT condition. The

procedure corrects for the artificially reduced error term due to the jackknifing by effectively

dividing the t-statistic by the degrees of freedom. 

 Finally, the 2TMP–1TGT condition (when two target colors were cued but only one of

them was present  in  any one search display)  allowed us to asses intertrial  switch costs

(Maljkovic  and  Nakayama,  1994;  Olivers  and  Humphreys,  2003;  Wolfe  et  al.,  2004;

Dombrowe,  Donk  and Olivers,  2011;  Ort,  Fahrenfort  and  Olivers,  2017),  by  splitting  the

2TMP–1TGT condition into repeat and switch trials and to run all  analyses separately for

these two trial types.

N2pc analysis  Even though the backward decoding approach would already show

whether and when location-specific information would be present in the raw EEG, for the

sake of  comparison  to  the existing  N2pc literature,  we also  conducted a  more common

event-related  potential  (ERP)  analysis  to  examine  latency  and  amplitude  of  the  N2pc

component. First, to identify N2pc components, we computed ERPs locked to stimulus onset

at electrodes PO7 and PO8. ERPs at the ipsilateral electrode relative to the horizontal target

position (i.e., PO7 for targets on the left, PO8 for targets on the right), were subtracted from
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ERPs at the contralateral electrode, collapsed over the vertical target position, but separately

for each participant and condition. The resulting difference wave forms were then statistically

tested against zero with two-sided one-sample  t-tests at each time point. A cluster-based

permutation test (5000 permutations, α = .05) was performed on contiguous time points to

correct for multiple comparisons (Maris and Oostenveld, 2007). To quantify amplitudes and

onset  latency  the  same  approach  as  for  the  classification  scores  was  used,  with  the

exception that  we did  not  use the entire epoch when looking for  the peak,  but  only  the

window of 200 – 350 ms post stimulus,  as this is the time window in which the N2pc is

typically observed (e.g., Eimer, 1996; Eimer and Grubert, 2014) 

Correlating classification confidence. Another useful feature of the AUC measure

is that it considers the confidence that a classifier has about class membership of a particular

instance at  every time point.  Confidence is expressed as the distance from the decision

boundary  and  can  be  interpreted  as  the  representativeness  of  a  certain  instance  (EEG

activity across all channels for a given time point) of that class (Ritchie and Carlson, 2016;

Grootswagers, Cichy and Carlson, 2018). Applied to the present paradigm, we assumed that

the more strongly prioritized a particular target position, the higher the classifier’s confidence

scores. Based on this logic, we reasoned that if prioritization is limited to a single target at a

time, a classifier cannot simultaneously have high confidence about both targets, and thus

confidence should correlate negatively. To test this hypothesis, we extracted the confidence

scores  of  both  classifiers  (left-right  and  top-bottom)  and  correlated  these  across  trials
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(Spearman’s  ρ), separately for each time point and condition. If prioritization is limited to a

single  item  for  certain  time  points,  we  would  expect  a  moderately  negative  correlation

between  left-right  and  top-bottom  classifiers  for  those  points,  because  whenever  the

classifier has high confidence in one dimension, it will have low or random confidence in the

other dimension, and vice versa. If on the other hand, prioritization occurs in parallel and

selection  strength  is  driven  by  a  common  mechanism,  one  would  expect  a  positive

correlation  at  those  time  points.  Finally,  if  prioritization  occurs  in  parallel  but  selection

strength  is  driven  by  independent  mechanisms,  one  would  expect  zero  correlation.  To

assess these competing hypotheses, correlations were statistically tested against  zero by

running two-sided one-sample  t-tests across participants at every time point, using cluster-

based permutation tests (5000 permutations, α = .05) to correct for multiple comparisons

(Maris and Oostenveld, 2007).

Correlating classification confidence on simulated data with known underlying

correlational  structure When correlating  confidence  scores,  a  lack  of  correlation  could

reflect  parallel processing of the two targets, but could also be caused by the decoding

strength being too weak, due to an insufficient signal-to-noise ratio (SNR) in the data. To

make sure that we had enough statistical power to detect a correlation if it was actually

present,  we  ran  a  simulation  in  which  we  embedded  a  signal  in  systematically

manipulated  noise  levels,  and  determined  at  which  decoding  strength  a  known

correlation could be reliably extracted. The exact same analysis pipeline was applied as
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for the actual data. Specifically, we replaced the data of eight channels with simulated

data in which we injected either a positive, negative or null correlation between horizontal

and  vertical  targets  and  varied  the  overall  noise  level.  The  data  were  created  by

generating half a cycle of a sine wave with an amplitude of 1 μV, extending over 400 ms

(200 – 600 ms post stimulus) and assigned to a subset of channels to reflect attentional

selection. To create location-specific effects (i.e., contra vs. ipsilateral), we injected the

same  ERP  with  a  negative  amplitude  on  an  orthogonal  subset  of  the  channels.

Therefore, attentional selection was simulated with a positive ERP on half the channels

and a negative ERP on the other half. Importantly, attentional selection of vertical and

horizontal  targets  was  simulated  independently,  by  using  an  orthogonal  split  of  the

channels  into  contra-  and ipsilateral.  For  every  correlation pattern  we simulated 512

trials,  the  same  number  as  in  the  real  experiment.  For  the  positive  correlation,  we

injected the ERP for both vertical and horizontal targets on half of the simulated trials,

and  no  ERP  on  the  other  half,  reflecting  either  both  targets  to  be  selected

simultaneously, or none of them (i.e. parallel selection). For the negative correlation, the

ERP was either injected for vertical  targets or for horizontal targets (each half  of  the

trials), but never in both, reflecting the selection of either one or the other target (i.e.

serial selection). For the null correlation, per trial, we randomly chose whether an ERP

was present for one of the targets, both, or none. Next, we added random noise for all

trials.  Critically,  the  SNR  was  parametrically  manipulated,  relative  to  the  (constant)
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amplitude of the ERP. For example, a SNR of 4 means the peak ERP amplitude was four

times as high as the maximum noise amplitude. In total, we used SNRs of 4, 2, 1.33, 1,

0.67, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.13, 0.11, 0.1, 0.07, 0.05, and 0.04. Once the

simulated dataset was created, the same backward decoding model (see Methods) was

used to decode the target location, separately for the vertical and horizontal target, the

injected  correlation  and  the  SNR.  Similarly,  the  classifiers’  confidence  scores  were

correlated between vertical and horizontal targets, as was done for the actual data.
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Supplemental Information

Figure  2  -  Figure  Supplement  1. Average  N2pc  difference  waves  for  targets  on  the

horizontal (left vs. right) meridian as a function of number of templates and number of target

features.  N2pc  components  were  computed  using  the  electrodes  PO7  and  PO8,  by

subtracting ERPs ipsilateral to the visual field of lateral targets from contralateral ERPs. The

shaded area represents 1 SEM above and below the mean for every time point. Thick lines

and horizontal bars indicate significant clusters (at  α = .05) as produced by cluster-based
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permutation  testing  (5000  permutations).  For  visualization  purposes  only,  the  contra-

ipsilateral difference waves over time were fitted with a cubic spline (λ=15, comparable to a

30  Hz  low-pass  filter)  to  achieve  temporal  smoothing.  Note  the  statistical  analyses  and

estimation of the onset latencies were done on unsmoothed data. The marked time points

indicate the latency of 50% maximum amplitude as estimated using a jackknife approach, as

a  measure  of  the  onset  of  selection  (Miller,  Patterson  and  Ulrich,  1998;  Luck,  2014;

Liesefeld,  2018).  Reliable  N2pc  and  sustained  posterior  contralateral  negativity  (SPCN;

Mazza  et al., 2007; Jolicœur, Brisson and Robitaille,  2008; Eimer, 2014; Grubert, Carlisle

and Eimer,  2016)  components were identified in  all  three conditions.  Onset  latency  was

fastest for the 1TMP–1TGT condition (214 ms), followed by the 2TMP-2TGT condition (225

ms), and, surprisingly, the 2TMP–1TGT condition (237 ms, all ts> 2.2, ps < .05). Although

overall  patterns  are  similar,  these  findings  indicate  that  our  main  classification  analyses

reflect  more  information  than  is  present  in  just  the  N2pc,  which  is  subject  to  inherent

electrode selection.  See also Figure 2 - Figure Supplement 1 - source data 1.
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Figure 2 - Figure Supplement 2. MVPA decoding performance for target position separately

for switch and repeat trials in the 2TMP-1TGT condition. The shaded area represents 1 SEM

above  and  below the mean for  every  time point.  Thick  lines  as  well  as  horizontal  bars

indicate significant clusters (at α = .05) as produced by cluster-based permutation testing

(5000 permutations). For visualization purposes only, the classification scores over time were

fitted with a cubic spline (λ=15, comparable to a 30 Hz low-pass filter) to achieve temporal

smoothing. Note the statistical analyses and estimation of the onset latencies were done on
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unsmoothed data. The marked time points indicate the latency of 50% maximum amplitude

as estimated using a jackknife approach (Miller,  Patterson and Ulrich,  1998; Luck, 2014;

Liesefeld, 2018). See also Figure 2 - source data 2.
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Figure  3  -  Figure  Supplement  1. Individual  MVPA  decoding  performance  for  target

positions on the horizontal (left vs. right, less saturated red line) and on the vertical meridian

(top vs. bottom, more saturated red line) in the 2TMP-2TGT condition (which is the condition

where we expected serial processing, if any, to be most prominent). For each individual, we

computed Spearman’s ρ correlation between the classifier performances in the time window

from 150 ms to 700 ms post stimulus (the values of which are shown in each plot).  For

visualization purposes only, the classification scores over time were fitted with a cubic spline

(λ=15, comparable to a 30 Hz low-pass filter) to achieve temporal smoothing. Note that the

correlations were performed on unsmoothed data. See also Figure 3 - Figure Supplement 1 -

source data 1 and Figure 3 - Figure Supplement 1 -source data 2.
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Figure 3 - Figure Supplement 2. Results of location decoding and correlation analysis

of a simulated dataset across several signal-to-noise ratios (SNRs). We simulated ERPs

for  targets  at  all  four  target  positions.  These  artificial  ERPs  were  either  positively,

negatively, or not correlated between vertical and horizontal target position. The SNR of

the simulated dataset was then manipulated by adding random noise of various levels

(relative to the peak amplitude of the ERP) to the data. A) AUC scores (color coded) are

shown for a location decoding analysis, separately for the injected correlation and SNR

across time. B) Spearman’s ρ correlation (color coded) between confidence scores of the
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vertical and horizontal classifiers, separately for the injected correlation and SNR across

time. For both A and B, only those time points were colored that survived cluster-based

permutation testing (α = 0.05, 5000 permutations). Dashed vertical lines indicate the time

window in which the ERP was injected. The figure shows that both location decoding and

the  retrieving  of  the  injected  correlation  declined  with  decreasing  SNR.  Importantly,

reliable correlations disappear before classification itself, indicating that for the average

group classification levels as observed in our data, any correlation present may have

been too low to be detected. 
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