bioRxiv preprint doi: https://doi.org/10.1101/653030; this version posted August 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

1 Humans can efficiently look for but not select multiple visual objects

3 Eduard Ort'?", Johannes J. Fahrenfort'?®, Tuomas ten Cate*, Martin Eimer®, Christian N.L.
4 Olivers'?

6 'Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, 1081 BT
7 Amsterdam, Netherlands

8 ‘Institute for Brain and Behavior Amsterdam, 1081 BT Amsterdam, Netherlands

9 3Depar’[ment of Brain and Cognition, University of Amsterdam, 1001 NK Amsterdam,
10 Netherlands

11 “Experimental Psychology, Utrecht University, 3584 CS Utrecht, Netherlands
12 °Department of Psychological Sciences, Birkbeck College, University of London, WC1E 7HX
13  London, UK

14

15
16
17
18
19 Author Note

20 *Corresponding author: E. Ort, Department of Experimental and Applied Psychology,
21 Institute for Brain and Behaviour, Vrije Universiteit Amsterdam, van der Boechorststraat 7,

22 1081 BT Amsterdam, The Netherlands. E-mail: eduardxort@gmail.com


mailto:e.ort@vu.nl
mailto:e.ort@vu.nl
https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/653030; this version posted August 20, 2019. The copyright holder for this preprint (which was

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

Abstract
The human brain recurrently prioritizes task-relevant over task-irrelevant visual information. A
central, question is whether multiple objects can be prioritized simultaneously. To answer
this, we let observers search for two colored targets among distractors. Crucially, we
independently varied the number of target colors that observers anticipated, and the number
of target colors actually used to distinguish the targets in the display. This enabled us to
dissociate the preparation of selection mechanisms from the actual engagement of such
mechanisms. Multivariate classification of electroencephalographic activity allowed us to
track selection of each target separately across time. The results revealed only small neural
and behavioral costs associated with preparing for selecting two objects, but substantial
costs when engaging in selection. Further analyses suggest this cost is the consequence of
neural competition resulting in limited parallel processing, rather than a serial bottleneck. The
findings bridge diverging theoretical perspectives on capacity limitations of feature-based

attention.

Keywords: feature-based attention, visual search, attentional template, multiple targets, EEG,
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Introduction

Adaptive, goal-driven behavior demands the selection of relevant objects from the visual
environment while irrelevant information is being ignored. This requires the neural activation
of task-relevant representations in memory — often referred to as attentional templates —
which then bias selection towards matching sensory input through top-down recurrent
feedback loops (Duncan and Humphreys, 1989; Desimone and Duncan, 1995; Hamker,
2004; Eimer, 2014; Baldauf and Desimone, 2015). A fundamental yet unresolved question is
whether the brain can enhance multiple task-relevant representations concurrently — a
question that has recently generated considerable controversy, with arguments both for
(Houtkamp and Roelfsema, 2009; Menneer, Cave and Donnelly, 2009; Kristjansson and
Campana, 2010; Dombrowe, Donk and Olivers, 2011; Olivers et al., 2011; van Moorselaar,
Theeuwes and Olivers, 2014; Liu and Jigo, 2017; Ort, Fahrenfort and Olivers, 2017, 2018;
van Driel et al.,, 2019) and against (Beck, Hollingworth and Luck, 2012; Irons, Folk and
Remington, 2012; Grubert and Eimer, 2015; Grubert, Carlisle and Eimer, 2016; Beck and
Hollingworth, 2017; Kristjansson and Kristjansson, 2017) a strong bottleneck.

We provide electrophysiological evidence showing that the real bottleneck is not so
much in the number of different templates that can be concurrently active in anticipation of a
visual task, but in the number of matching sensory representations in the incoming signal
that can subsequently be enhanced by those templates. Crucially, for the selection of

multiple targets to be truly simultaneous, two requirements have to be met. First, attentional
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templates need to be set up in memory for each anticipated target feature (whether in visual
working memory [VWM] or through activating long-term memory [LTM] representations.
Although it is uncontroversial that multiple representations can be active in memory (whether
VWM or LTM; e.g., Cowan, 2001), in order to be able to bias selection, each of these
representations also needs to be in a state in which it can eventually engage, through
recurrent feedback, with matching sensory signals (which is not the same as merely
remembering; see Carlisle et al., 2011; Olivers and Eimer, 2011; Kiyonaga et al., 2012;
Chatham and Badre, 2015; van Driel et al., 2017). Second, to simultaneously select multiple
targets, the visual system must also be able to concurrently use those templates to
strengthen multiple matching representations in the incoming sensory signal. In other words,
multiple neural feedback loops must be able to engage concurrently. It is important to point
out that template activation and template-guided prioritization are distinct (cf., Huang and
Pashler, 2007): It may be that at any moment multiple templates are ready to potentially
engage in the prioritization of visual input, but that only one can actually do so following
visual stimulation. So far, studies of multiple-target selection have only focused on the brain’s
limits in the readiness to engage in selection, and ignored potential limits in the selection
process itself.

To resolve this, we recorded electroencephalograms (EEG) from the scalp of healthy
human individuals while they were presented with heterogeneous visual search displays,

from which they always had to select two target objects (see Fig. 1A). Crucially, we varied
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the number of unique target features (one or two colors) that the observer had to prepare for,
and the number of unique features that they would need to select from the search display.
This allowed us to disentangle the contribution of multiple template preparation on the one
hand, and multiple template engagement on the other. A bottleneck could either emerge
when going from one to two unique templates (reflecting a limit in the readiness to engage),
from one to two unique targets (reflecting a limit in the engagement itself), or both.
Traditionally, visual target selection is assessed using the N2pc, an event-related
potential (ERP) in the EEG signal that is characterized by increased negativity over posterior
electrodes contralateral to the hemifield in which the target is located (Luck and Hillyard,
1994; Eimer, 1996). However, because the N2pc can only distinguish between the left versus
right hemifield, it is not able to simultaneously track the selection of multiple targets at
different locations in more complex visual search displays. To overcome this limitation, we
used multivariate decoding, which has been proven to successfully track the spatiotemporal
dynamics of feature-based selection processes at any location in a search display
(Fahrenfort et al., 2017). Here this technique allowed us to independently track attentional
selection over time for multiple concurrent targets at once, and also to investigate the parallel

versus serial nature of these selection processes.

Results
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99 Twenty-four participants performed a visual search task for which they were always required
100 to find two color-defined target characters presented among an array of distractor characters,
101 and determine whether these two targets belonged to the same alphanumeric category (see
102 Fig. 1A,B). The task-relevant colors were cued prior to a block of trials. To assess if
103  prioritization of multiple targets is limited in terms of the number of attentional templates that
104 can be simultaneously set up, limited in the number of templates that can be simultaneously
105 engaged in the selection of target features in the display, or both, we independently
106 manipulated 1) how many colors were task-relevant and 2) how many of these target colors
107 actually appeared in the search display. Specifically, in 1TTMP—1TGT (one template, one
108 target feature) blocks, only one color was task-relevant, so that both targets had the same
109 color and thus participants knew beforehand which color template to prepare. In 2TMP-
110 1TGT (two templates, one target feature) blocks, two unique colors were cued as task-
111 relevant, but per display only one of these was used to distinguish the two targets present
112 (i.e., both targets had the same color). Because participants could not predict which of the
113  two target colors would be present, they had to keep both templates active, even though only
114 one of them was then required for selecting the actual targets. Finally, in 2TMP-2TGT (two
115 templates, two target features) blocks, again two unique colors were cued as task-relevant,
116 but now both these colors also had to be used to select the two target objects from the
117 search display, since one of the targets carried one color, and the other target carried the

118 other color. Note again that in all conditions, subjects had to select two targets, only the
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119 number of target-defining features would vary across conditions. This controlled for other
120 task-related factors such as the number of characters that had to be identified and the

121 alphanumeric comparison that had to be performed on them.
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123

124  Figure 1. Design and behavioral results. In all conditions, observers were required to select
125 two target characters and determine whether they were of the same (i.e., both letters or both
126 digits) or different category (i.e., letter and digit). (A) The target colors were cued once in the
127  beginning of a block and stayed constant for the rest of the block (64 trials). A trial started
128 with a fixation screen for a jittered interval of 850 to 950 ms, followed by the search display,
129 presented for 50 ms and another fixation screen that lasted for up to 2000 ms or until
130 participants responded. Depending on the response, feedback was presented for 500 ms
131 (“correct”, or “wrong”). If no response was given, a 10 second time out occurred and
132 participants were urged to try responding quicker. (B) Task design. Depending on the
133 condition, either one or two colors were cued to be task-relevant in the beginning of a block
134 (creating one vs. two unique templates). Similarly, whenever two colors were cued, search
135 displays could contain either one of them, or both (one vs. two unique target features). Thus,
136 in the one-template-one-target-feature condition (1TMP-1TGT) one color was cued, and
137 both targets carried this color in the search display, in the two-templates-one-target-feature
138 condition (2TMP-1TGT) two colors were cued but only one of these colors was present in
139 the search display with both targets carrying that color, and in the two-template-two-target-
140 feature condition (2TMP-2TGT) two colors were cued and both colors were present in the
141 search displays. One target always appeared on the horizontal meridian (above or below

142 fixation), and the other target on the vertical meridian (to the left or right of fixation). (C) and
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143 (D) Behavioral results. The violin plots depict the distribution of (C) accuracy (see Figure 1 -
144  source data 1) and (D) response times (see Figure 1 - source data 2) across participants,
145 separately for the 1TTMP-1TGT, 2TMP-1TGT, and 2TMP—-2TGT conditions. The horizontal
146 lines in the box plots represent quartiles. The vertical line represents the minimum (lower
147 quartile - 1.5 * interquartile range) and maximum (upper quartile + 1.5 * interquartile range)
148 while single dots beyond that range indicate individual outliers.

149

150 Behavioral results

151 Fig. 1C and 1D show mean accuracy scores and mean response times (RTs) as a function
152 of experimental condition (1TMP—1TGT, 2TMP-1TGT, and 2TMP-2TGT). Performance
153 differences were assessed using pairwise, Bonferroni-corrected (to a = 0.025) classical t-
154 tests and Bayesian t-tests on both measures. Any performance costs for the 2TMP-1TGT
155 relative to the 1TTMP—1TGT condition reflect the cost of preparing for multiple templates
156 compared to a single template (preparation cost). Any performance cost in the 2TMP-2TGT
157 relative to the 2TMP—-1TGT condition represents the cost of having to engage multiple
158 templates to select targets (engagement cost). We found evidence for both, with
159 engagement costs being most prominent. Specifically, there was an effect of the number of
160 templates on both accuracy and response times, with performance being reliably slower and
161 slightly more error-prone in the 2TMP—-1TGT condition than in the 1 TMP-1TGT condition

162 (RT: 731 ms vs. 679 ms, #(23) = 5.03, p < .001, Cohen’s d = 0.64, BF = 572; accuracy:

10
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163 95.4% vs. 96.5%, t(23) = 2.76, p = .01, Cohen’s d = 0.61, BF = 4.4). Even stronger costs
164 were observed when the number of uniquely colored targets in the display was increased
165 from one to two, with performance being substantially slower and more error-prone) in the
166 2TMP-2TGT condition than in the 2TMP—-1TGT condition (RT: 916 ms vs. 731 ms, #(23) =
167 9.05, p < .001, Cohen’s d = 1.63, BF = 2.5 x 105 accuracy: 91.4% vs. 95.4%, t(23) = 5.90, p
168 < .001, Cohen’s d = 1.48, BF = 3.9). Indeed, when we directly compared these two sources
169 of multiple-target cost to each other, the engagement cost was greater than the preparation
170 cost on both measures (accuracy: 4.0% vs. 1.2%, t(23) = 3.36, p = .03, Cohen’s d = 1.03, BF
171 =14.8; RT: 185 ms vs. 52 ms, #(23) = 5.00, p < .001, Cohen’s d = 1.67, BF = 540).

172 Note further that in the 2TMP-1TGT condition, the actual target color in the display
173 could repeat or switch from trial to trial. Previous work has shown switch costs, in which
174  selection is slower after the target color changes from one trial to the next trial, compared to
175 when the target color stays the same (Maljkovic and Nakayama, 1994; Found and Mduller,
176  1996; Monsell, 2003; Ort, Fahrenfort and Olivers, 2017, 2018). A closer analysis of the
177 current data also revealed that search suffered from switches, in terms of RTs (repeat trials:
178 M = 704 ms, switch trials: M = 754 ms; t(23) = 8.1, p < .001, Cohen’s d = 0.56, BFyichcosts =
179 4.2 x 10°), and accuracy (repeat trials: M = 95.8%, switch trials: M = 94.9%; (23) = 2.7, p
180 =.01, Cohen’s d = 0.40, BFuichcosts = 4.0).

181 The behavioral data thus reveal that multiple target search comes with costs, and that

182 these costs come in two forms. First, keeping two templates in mind results in relatively small

11
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183  but reliable costs compared to keeping only one template. This effect is strongest when the
184 actual target color in the display has switched, suggesting a shift in weights on specific
185 templates from trial to trial. Second, considerably larger costs emerge when the observer not
186 only maintains two different templates, but also has to engage both of them in biasing
187  selection towards the two corresponding targets. Note that this is not the result of the number
188 of target objects per se, as participants had to select and compare two targets in all
189 conditions, but it is caused by the number of unique features defining these targets. Selecting
190 two objects by a single feature is thus more efficient and more accurate than selecting two
191 objects using two different features.

192

193 Decoding of target positions based on the raw EEG

194 Next, to determine whether the behavioral costs indeed reflected deficits in the selection of
195 the different targets, we used EEG to track the strength and dynamics of attentional
196 enhancement of the different target positions. To this end, one target was always placed on
197 the vertical meridian, and the other target always on the horizontal meridian, so that we could
198 train separate linear discriminant classifiers (with electrodes as features) for each of the
199 spatial target dimensions to distinguish left from right targets and top from bottom targets,
200 separately for each condition and time sample (see Methods for details). We reasoned that
201 any inefficiencies associated with setting up multiple unique templates (i.e., 1 TMP vs. 2 TMP

202 conditions) and/or with actually using those templates to select multiple unique targets (i.e.,

12
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203 1TGT vs. 2TGT conditions) should result in decoding to suffer in terms of relative delays,
204 strength, or both. Fig. 2A shows decoding performance for each of the conditions (1TMP—
205 1TGT, 2TMP-1TGT, and 2TMP-2TGT), separately for the horizontal (left versus right) and
206 vertical meridian (top versus bottom). Fig. 2B shows the topographical patterns associated
207 with the forward-transformed classifier weights over time, which are interpretable as neural
208 sources (see Haufe et al., 2014 and Methods). As a general finding, we were able to track
209 attentional selection on both the horizontal and vertical meridian, with comparable decoding
210 performance. Decoding performance was tested against chance for every sample, corrected
211 for multiple comparisons using cluster-based permutation testing (Maris and Oostenveld,
212 2007, also see Methods). After cluster-based permutation, we observed clear significant
213 clusters in each of the three conditions, with significant decoding emerging at different
214 moments in time. For the left-right distinction, the topographical pattern during the early time
215 window (200-350 ms) resembles that of the N2pc, while for later time windows (350-700
216 ms) it resembles SPCN or CDA-like patterns (Vogel and Machizawa, 2004; Mazza et al.,
217 2007; Grubert and Eimer, 2013). As shown in Figure 2 - Figure Supplement 1, more
218 traditional event-related analyses indeed revealed N2pc and SPCN components, which likely
219 contributed to the classifiers’ performance. For vertically positioned targets a gradient from
220 frontal to posterior channels spread along the midline, similar to recent results from our labs
221 (Fahrenfort et al., 2017; Grubert et al., 2017). The fact that the decoding approach picks up

222 on information related to attentional selection also on the vertical midline is testament to its

13
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223 power over conventional ERP methods, and allowed us to simultaneously track attentional
224 selection of both targets over time. However, as there were no main or interaction effects
225 involving the meridian in any of the comparisons, we averaged decoding performance across
226 the spatial dimensions.

227

14
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229 Figure 2. MVPA decoding performance for target position. A) Decoding performance

230 expressed as Area Under the Curve (AUC) for target position on the horizontal (left vs. right)
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231 and on the vertical meridian (top vs. bottom) separately, as a function of number of templates
232 and number of target features. See also Figure 2 - source data 1 B) Topographical activation
233 maps for horizontal and vertical position decoding averaged over the typical N2pc time
234 window (200-350 ms) and the typical SPCN/CDA time window (350-700 ms). C) Decoding
235 performance collapsed across the horizontal and vertical dimensions, comparing the 1TTMP—
236 1TGT and 2TMP-1TGT conditions, with the difference score thus showing the effect of the
237 number of templates. See also Figure 2 - source data 2. D) The same, now comparing the
238 2TMP-1TGT and 2TMP-2TGT conditions, thus showing the effect of multiple different target
239 features in the display. See also Figure 2 - source data 2. The shaded area represents 1
240 SEM above and below the mean for every time point. Thick lines as well as horizontal bars
241 indicate significant clusters (at o = .05) as produced by cluster-based permutation testing
242 (5000 permutations). For visualization purposes only, the classification scores over time were
243 fitted with a cubic spline (A=15, comparable to a 30 Hz low-pass filter) to achieve temporal
244 smoothing. Note the statistical analyses and estimation of the onset latencies were done on
245 unsmoothed data. The marked time points indicate the latency of 50% maximum amplitude
246 as estimated using a jackknife approach, as a measure of the onset of selection (Miller,
247 Patterson and Ulrich, 1998; Luck, 2014; Liesefeld, 2018). The zero points on the x-axis of
248 panels A,C and D represent search display onset.

249

16
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250 If there is a limit on how many templates can be prepared for, we should find reduced
251 and/or delayed classification for the 2TMP-1TGT condition compared to the 1 TMP-1TGT
252  condition (Fig. 2C). If the limitation is on how many templates can be engaged in selection,
253 the cost should emerge in the comparison of the 2TMP-2TGT and 2TMP-1TGT conditions
254 (Fig. 2D). Indeed, we observed reliable differences for both comparisons that directly
255 resembled the behavioral pattern. First, we compared the latencies at which target positions
256 became decodable, thus providing a window on any delays in attentional selection. Because
257 differences in onset of significant clusters cannot be reliably interpreted as reflecting
258 differences in onsets of the underlying neurophysiological processes (Sassenhagen and
259 Draschkow, 2019), we instead used a jackknife-based approach to quantify the latency of the
260 50% maximum amplitude in the decoding window (Miller, Patterson and Ulrich, 1998; Luck,
261 2014; Liesefeld, 2018, see Methods). This revealed a reliable onset difference between the
262 1TMP-1TGT (M = 216 ms) and 2TMP-1TGT (M = 237 ms) conditions (M = 21 ms, t,(23) =
263 2.21, p = .04; Fig. 2C), indicating that attentional selection is delayed as a result of having to
264 prepare for two different target colors compared to having to prepare for only a single target
265  color. Comparing the onsets between the 2TMP-1TGT (M = 237 ms) and 2TMP-2TGT (M =
266 263 ms) conditions yielded a further delay of 25 ms associated with having to engage in
267 selecting two target colors compared to selecting a single target color (t(23) = 2.35, p = .03;

268  Fig. 2D).
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269 Finally, and also similar to the behavioral responses, the onset of the
270 neurophysiological response in the 2TMP-1TGT condition was delayed by 23 ms when the
271 target color switched from one trial to the next, compared to when it repeated (1.(23) = 4.34, p
272 < .001; see Figure 2 - Figure Supplement 2).

273 Next, we assessed the strength of classification over time by testing AUC values of
274  the relevant conditions against each other using paired t-tests and cluster-based permutation
275 testing to correct for multiple comparisons (see Methods). This procedure revealed an early
276 and short-lasting difference of the number of templates (i.e., between 1"TMP-1TGT and
277 2TMP-1TGT conditions; see Fig. 2C), with stronger classification for the single template
278 condition that reflects the onset latency difference reported above. Again, in line with the
279 behavioral results, more substantial cost in decoding performance emerged when the
280 number of target features in the displays increased from one to two (i.e., between the 2TMP—-
281 2TGT and 2TMP—-1TGT conditions; see Fig. 2D). To directly compare the cost of preparing
282 two templates to the cost of engaging them in selection, we also ran a cluster-based
283 permutation test on the difference scores (i.e. [2TMP-1TGT — 2TMP-2TGT] — [1TMP-1TGT
284 —2TMP-1TGT]). This revealed a window of 250 to 500 ms post stimulus in which the cost of
285 engaging was greater than the cost of preparing selection (first cluster: extent: 266 - 378 ms,
286 p = .001; second cluster: extent: 436 - 495 ms, p = .013, results not shown in Figure). This

287 suggests that generally engaging two templates is more costly than preparing two templates.
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288 Thus, both the onset latency and strength of decoding performance show clear
289 deficits in attentional selection when observers need to select two different targets from a
290 display (i.e., engage two templates in selection) compared to when they have to select two
291 targets based on the same target color (i.e., engage one template in selection). In contrast,
292 having to set up two templates instead of one came with only minor onset latency differences
293 and no overall differences in decoding strength. This clearly points to a deficit when multiple
294 templates need to be engaged simultaneously rather than when multiple templates need to
295 be prepared simultaneously.

296

297 Sample-wise correlation of classifier confidence across trials as a measure of inter-
298 target dependency

299  While the previous section showed a clear impairment when two templates need to be
300 engaged in selection, it leaves unanswered whether selection is hindered by limitations in
301 parallel processing or by a serial bottleneck. That is, engaging two templates during search
302 may prioritize both unique targets in parallel but in a mutually competitive manner (Barrett
303 and Zobay, 2014), or the two templates may only be engaged (and thus the corresponding
304 targets prioritized) sequentially, possibly in continuously alternating fashion (e.g., Ort,
305 Fahrenfort and Olivers, 2017).

306 To investigate these competing hypotheses, we assessed performance for each

307 target dimension separately (horizontal and vertical). A serial model predicts that attention to
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308 a target on one dimension should go at the expense of attention to the target on the other
309 dimension, and thus decoding performance for the vertical and horizontal axes to correlate
310 negatively. In case of parallel, independent selection, there should be no systematic
311 relationship between classification confidence for one dimension and classification
312 confidence for the other dimension, as selection of one target is impervious to the selection
313 of the other target. A positive correlation would arise from a common mechanism driving
314 selection of two different targets. Note that these possibilities are difficult to assess at the
315 group level as individuals may have different serial strategies. For example, one observer
316 may prefer to first select targets from the horizontal axis, while another may prefer the
317 vertical axis first, such that any existing correlation (if present) might cancel out. Hence, we
318 first plotted average performance over time separately for each individual and separately for
319 the horizontal and vertical axis. Then, to reveal whether consistent temporal dependencies
320 existed for any given participant, we correlated classification performance over time in the
321 150 ms to 700 ms post stimulus window. Although this revealed incidental positive and
322 negative correlations for individual participants, there was no systematically positive or
323 negative relationship (average correlation Spearman’s p = 0.11; min-max range: -0.37-0.63;
324 see Figure 3 - Figure Supplement 1).

325 However, even individual participants themselves may not behave consistently across
326 trials, and, while selection is still serial, whether patrticipants first prioritize horizontal or

327 vertical targets may also vary from trial to trial. Therefore, selection needs to be assessed at
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328 the trial level. To this end, for every participant, trial and time point, we extracted the
329 classifier confidence scores separately for the horizontal and vertical dimension (see Ritchie
330 and Carlson, 2016; Grootswagers, Cichy and Carlson, 2018 and Methods), and correlated
331 the two dimensions across trials using Spearman’s p. Classifier confidence, expressed as
332 the distance from the decision boundary, reflects the certainty of a classifier in predicting the
333 class membership of a certain instance. In the present design, classifiers predicted based on
334 the specific EEG activity pattern across electrodes on a given trial whether one target
335 appeared on the left or right and whether the other target appeared at the top or bottom
336 position. The confidence scores indicate how certain the classifiers were that a target
337 appeared at a particular position. We reasoned that if prioritization is limited to a single target
338 at a time, a classifier cannot simultaneously have high confidence about both targets, and
339 thus confidence should correlate negatively, that is if the horizontal target position can be
340 predicted with high confidence, then the confidence for the vertical target position should be
341 reduced and vice versa. The correlations between the confidence scores on the two spatial
342 dimensions are plotted in Fig. 3A. As can be seen, there was again no systematic
343 relationship between decoding the locations of the two targets, in any of the conditions. Apart
344 from a short-lasting positive correlation around the 500 ms time point in the 2TMP-2TG
345 condition which is likely to be spurious, correlations for all time points were close to zero,
346 which implies that classifying horizontal and vertical target positions is independent from

347 each other.
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348 However, given that this is a null result, we sought to make sure that our approach is
349 in principle sensitive to existing correlations. To this end, we simulated a data set with the
350 same overall characteristics as the recorded data, but with either positive, negative, or no
351 correlations injected, under various signal to noise ratios (see Methods). The results of this
352 simulation are summarized in Figure 3 - Figure Supplement 2 and demonstrate that with
353 sufficiently high decoding AUC values (> approx. 0.55-0.60), correlations (whether positive or
354 negative) between the horizontal and vertical position classifiers can, in principle, be reliably
355 detected. However, because group classification performance in our dataset did not exceed
356 0.59 (in the 1TTMP-1TGT condition), we instead assessed for each individual observer the
357 correlation between target dimensions for those time points at which classification
358 performance reached its maximum. As Fig. 3B shows, even for individuals with relatively
359 high classification scores, there was no evidence for a correlation between the classification
360 confidence between the two target dimensions. The absence of such a correlation in our data
361 is thus most consistent with a limited parallel independent selection model, rather than a
362 serial model or a parallel model operating under a common mechanism.

363 Nevertheless, there is the possibility that there was actually a relationship between
364 horizontal and vertical classification, but across time, trials, or both it was too short and
365 inconsistent such that the present approach might not have been sensitive enough to detect
366 it. For example, a negative correlation might exist for a short time window of which the timing

367 shifted across trials, causing the resulting average correlation might to be reduced beyond
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detectability. We emphasize that the conclusion that our data are mostly consistent with a

limited parallel model is thus based on a null result and therefore has to be interpreted with

care.
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374 Figure 3. Correlation of classifier confidence scores. A) For each condition, and trial, the
375 classification confidence scores per time point and subject were extracted for horizontal and
376 vertical classifiers and then correlated (Spearman’s p) between these dimensions, across
377 trials. B) To examine whether a non-zero correlation would be present for individuals who
378 show high AUC scores, we plotted the individual correlation scores for those time points at
379 which individual classification was maximal, separately for the horizontal dimension (less
380 saturated dots) and the vertical dimension (more saturated dots). The curves represent the
381 correlation strengths that can be expected for a certain decoding strength (AUC,
382 corresponding to SNR) as based on our simulated data set (the simulated negative
383 correlation being the mirrored version of the positive correlation).

384

385 Discussion

386 Selection of task-relevant information from complex visual environments is limited, and a
387 central question in attention research has been whether observers can simultaneously
388 prepare for and select multiple different target objects. The current results provide evidence
389 that these limitations do not so much reside at the level of template preparation (i.e., the
390 number of target representations set up prior to the task), but at the extent to which
391 templates can then be concurrently engaged in selecting matching information from the
392 sensory input. By systematically varying not only the number of different target features
393 observers had to prepare for, but also the number of different target features they would

394 encounter in the displays, we were able to, for the first time, dissociate limitations in template
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395 preparation from limitations in template engagement. Specifically, we observed relatively
396 small but reliable costs on both behavioral and EEG classification performance when two
397 templates needed to be activated instead of one, suggesting a reliable but relatively minor
398 bottleneck at this stage of processing. In contrast, substantial costs emerged on both
399 behavioral and EEG performance measures when two templates had to be prepared, and
400 both of these templates (rather than just one) had to be engaged in driving the selection of
401 two different targets.

402 We propose a model which extends existing frameworks that assume a crucial role
403 for top-down biased competition (Duncan and Humphreys, 1989; Desimone and Duncan,
404 1995; Hamker, 2004; Bundesen, Habekost and Kyllingsbeek, 2005). According to these
405 frameworks, the activation of target templates in memory involves the pre-activation or
406 biasing of associated sensory features. The presence of such features in the input will then
407 trigger a long-range recurrent feedback loop, leading the enhancement of the target
408 representation in VWM (including its location), and thus making it available for other cognitive
409 processes such as response selection (processes which are themselves limited, cf.
410 Dehaene, Kerszberg and Changeux, 1998; Lamme, 2003; Baars, 2005). Our data indicates
411 that while multiple top-down feedback connections may be prepared at once, there is a
412 limitation in how these feedback loops are engaged by matching input.

413 Figure 4 illustrates how we believe the existing framework should be extended.

414 Specifically, we propose that multiple templates may hold each other in a mutually
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415 competitive relationship in memory, most likely through laterally suppressive connections
416 (Manohar et al., 2019). Figure 4A depicts the situation when just one of the target features is
417 then encountered in the sensory input. The corresponding feedback loop is triggered, leading
418 to an enhanced representation of that target. If only one target feature is present, the
419 corresponding template will automatically win the competition. Although two templates can
420 be maintained in parallel, the mutual competition between them is slightly disadvantageous.
421 This will lead to the initial delay in target selection that we observed in the data when two
422 templates instead of just one were activated. Moreover, the selective enhancement of one
423 representation over another may carry over to the next trial, thus resulting in the target switch
424  costs that we also observed both in behavior and EEG performance measures.

425 The crucial situation occurs when the visual input contains multiple target features
426 and thus multiple feedback loops are being triggered, as is shown in Figure 4B. Because of
427 the mutually suppressive relationship, strengthening one feedback loop will automatically go
428 at the expense of the other. Although both loops are triggered in parallel, the mutually
429 aversive relationship results in slower and weaker accumulation of evidence for either of the
430 targets, consistent with what we observed in the data. In theory, the system may resolve
431 such competition in two ways. The first is to keep selection of both targets running in parallel,
432 and accept the slower evidence accumulation. The second option is to impose a serial
433 strategy in which selection is first biased in favor of one target, and then switched to the other

434  (or alternate between the two). Our data provides no evidence for the serial model. First, the
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435 average group data nor the average individual subject data showed any systematic pattern of
436 switching between the two target positions (i.e., differences in classification performance for
437 left-right versus top-bottom). Second, also a trial-based correlation analysis of classifier
438 confidence scores showed the absence of a negative correlation between the target
439 positions. Our findings are therefore most consistent with a limited-capacity parallel model, in
440 which observers maintain two templates active during search, but with mutually aversive
441  consequences. However, we point out that our data do not exclude the possibility of seriality.
442  First, while there may have been little seriality in selecting the targets from the displays on
443 the basis of color, there may have been a serial component in accessing their alphanumeric
444  identity — a component to which our classifier was not sensitive. Moreover, there is still a
445  distinct possibility that imposing seriality is a valid strategy that observers may deploy to
446  resolve competition between different target features, but that such choices depend on tasks,
447  context, or instructions (Cave et al., 2018; Stroud et al., 2019). For example, we previously
448 observed evidence for serial switching in a different paradigm when observers had to select
449  only one of two targets present, and were instructed to switch at least a few times during a
450 block (Ort et al., 2019; van Driel et al., 2019). The current results indicate that the process

451 can occur in parallel, not that it must.
452

453
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Figure 4. A limited parallel model. Attentional templates in memory engage in recurrent
feedback loops with matching sensory representations, resulting in target enhancement.
Multiple templates can be activated in parallel and may be equally active prior to search, but
they compete through mutual suppression, which has consequences during search. (A) The
presence of a single target feature in the sensory input will unequivocally trigger one of the
active templates, eventually resulting in as strong selection as when there is only one

template (not shown), albeit at a short delay. (B) When both templates are activated the
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462 mutual suppression will prevent strong activation of either, resulting in substantially
463 weakened and delayed selection of both targets.

464 Our account has a resemblance to the Boolean Map Theory of Visual Attention
465 (Huang & Pashler, 2007), which proposes a division of attentional selection into two
466 components: (1) The feature-to-location routine, in which task-relevant features are being
467 located in the visual field (referred to by Huang and Pashler as selection, but here analogous
468 to what we call preparation for selection) and (2) the location-to-feature routine in which
469 individuals extract response-relevant features at a target location (access, analogous to what
470 we here call engagement in selection). However, in contrast to the model that we propose, in
471 which only what Huang and Pashler refer to as the access aspect of search is severely
472 limited, the Boolean Map theory poses a capacity limitation of one on both selection and
473 access.

474 We believe the distinction between template preparation and template engagement in
475 selection has great potential for resolving the current debate on whether observers can look
476 for more than a single target at the same time (Menneer, Cave and Donnelly, 2009; Beck,
477  Hollingworth and Luck, 2012; Irons, Folk and Remington, 2012; Grubert and Eimer, 2015;
478 Beck and Hollingworth, 2017; Ort, Fahrenfort and Olivers, 2017, 2018). Studies central to this
479 debate have largely focused on how many templates can be prepared in anticipation for a
480 search, rather than how many of these templates can then be concurrently engaged in

481 selection without costs. From our data, the answer to the question then appears to be yes,

29


https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/653030; this version posted August 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

482 observers may look for multiple targets simultaneously at little cost, but it is selecting those
483 targets that runs into real limitations.

484 Although we found the costs of going from one to two templates to be relatively small,
485 this leaves open the question whether costs will increase more strongly with more templates
486 being added. As there is more opportunity for memory representations to interfere with each
487 other when multiple memory representations need to be maintained, this would be expected.
488 Such interference will depend on the similarity of the to-be-remembered templates, as well
489 as the assumed capacity. Although the capacity of VWM is thought to be around three to four
490 items (at least for the standard colored shapes used in experiments like ours), and VWM is
491 assumed to be central to top-down driven search, there is ample evidence that visual search
492 needs not solely rely on VWM. In fact, given that in our experiment the target template
493 remained the same for a block of trials, observers may have at least partly relied on trained
494 templates in long term memory here (Carlisle et al., 2011; Gunseli, Meeter, & Olivers, 2014).
495 Moreover, work by Wolfe (2012) has shown that observers can successfully search for any
496 one of tens of different target objects if given the opportunity to first commit these objects to
497 long term memory. In fact, given that in our experiment the target template remained the
498 same for a block of trials, observers may have at least partly relied on long term memory
499 here, too (but see Grubert, Carlisle and Eimer, 2016 for evidence that measures of
500 attentional selection, i.e., the N2pc, are not affected by whether targets are stored in long

501 term memory or working memory). In our study, effects of capacity limits and any
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502 interference arising from it may be have been stronger when the targets would have been
503 cued from trial to trial, rather than from block to block. Conversely, the fact that we find
504 limitations even with repeated targets is testament to the mechanistic bottleneck in the
505 engagement of selection that we propose. One reason may be that even LTM
506 representations would need to become activated for effective task-or context-driven guidance
507 (since only one set of trained colors is relevant in a particular block). Our data suggests that
508 the limit may well be in this goal-driven aspect of search — that is, the deployment of a
509 representation for perceptual bias rather than its storage per se. In line with this, Grubert,
510 Carlisle and Eimer (2016) reported evidence that attentional selection per se, as measured
511 by the N2pc (which at least partly underlies the signal also used here), is not affected by
512 whether targets are stored in long term memory or working memory. Future research will
513 need to shed further light which memory systems support search templates.

514 Finally, the question of memory capacity or interference is also important when
515 considering that current limitations were found when both target features were drawn from
516 the same dimension (color). There is evidence that different dimensions may to some extent
517 independently store (e.g., Wang et al., 2017), or guide attention towards (Wolfe, 1994;
518 Jenkins, Grubert and Eimer, 2017), target features. Our methods may therefore prove useful
519 in assessing the exact limitations of selecting targets defined along different dimensions.

520 To sum up, we propose that models of visual selection need to consider the

521 difference between preparing for selection and engaging in selection of multiple visual
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522 targets. We demonstrate that whereas the first process comes at little cost, the true
523 bottleneck of multiple-target selection is in engaging multiple template representations.

524
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527 Materials and Methods

528 Materials Availability All data and material will be made freely accessible at

529 https://ost.io/3bn64

530 Participants. Thirty-two participants naive to the purpose of the experiment were
531 recruited at the Vrije Universiteit Amsterdam and were compensated with money or course
532 credit. Eight were excluded due to poor behavioural performance in at least one experimental
533 condition (a predefined cutoff of accuracy <85% was used, see below) to ensure sufficient
534 numbers of correct trials for the EEG analyses. The remaining twenty-four participants (age:
535 19-30 years, M = 22.0; 17 females, 7 males) had normal or corrected-to-normal visual acuity
536 and color vision. All participants gave written informed consent in line with the Declaration of
537 Helsinki. The study was approved by the Scientific and Ethics Review Board of the Faculty of
538 Behavioural and Movement Sciences at the Vrije Universiteit Amsterdam (Reference
539 number: VCWE-2016-215).

540 Stimuli & Procedure. Displays consisted of eight colored alphanumerical characters
541 evenly spaced on an imaginary annulus with a radius of 2.5 degree visual angle (dva),
542 centered at the middle of the screen (Fig. 1A). The characters were uppercase letters (K, H,
543 M and T) and digits (7, 6, 3 and 4, each spanning approximately 1.2 dva vertically and
544  between 0.8 and 1.0 dva horizontally. In total, eight colors were used in the experiment: Red
545 (RGB-values: 224, 0, 38), green (0, 155, 0), blue (55, 110, 255), and yellow (160, 95, 5) were

546 potential target colors (all approximately isoluminant, ~21 cd/m?, min-max range: 19-25 cd/
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547 m®), whereas purple (145, 30, 180), cyan (70, 240, 240), pink (250, 0, 179) and gray (130,
548 130, 130) were always used as distractor colors (M = 35 cd/m®, min-max range: 16-63 cd/
549 m®). The stimuli were presented on a black background (0, 0, 0).

550 Participants were instructed to find two color-defined target characters on each trial,
551 and indicate whether or not these belonged to the same alphanumerical category (i.e., letters
552  or numbers). Response keys were counterbalanced across participants. In the beginning of a
553 block, the task-relevant colors were shown to the participants as two target-colored disks
554  (spanning 1.2 dva each), for 2000 ms. Depending on the experimental condition (see below)
555 either one colored disk was presented in the middle of the screen, or 1.0 dva to the left and
556 right of the center, respectively. The target colors were valid for a block of 64 trials after
557 which new colors were shown. Throughout the trial a white fixation cross remained visible in
558 the middle of the screen which participants were required to keep fixating. The trial sequence
559 began with a fixation screen presented for 850 to 950 ms (randomly selected from a uniform
560 distribution), followed by a search display for 50 ms and another fixation screen until a
561 response was given or a 2000 ms timeout. Finally, a written message (“correct” or “wrong”)
562 presented for 500 ms indicated whether the response was correct or not. In case participants
563 did not respond before the timeout, the experiment was paused for ten seconds to
564 encourage them to respond quicker henceforth. After every block, participants received
565 feedback on accuracy. Note that for the first two participants presentation time was two

566 display frames (~16.67 ms) shorter than for the rest of the sample. To facilitate good
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567 behavioral performance, we increased presentation time from the third participant onwards.
568 However, as these two participants performed well, even with 16.7 ms presentation rates
569 (and thus met our inclusion criteria), we decided to keep them in the sample.

570 One target color was always presented on the horizontal axis (left or right of fixation),
571 while the other was always presented on the vertical axis (above or below fixation), with
572  color-position assignment randomly chosen but occurring equally often. Participants were
573 informed that targets would appear only on the cardinal axes of the search array. The
574 irrelevant items on the diagonals were added to the search display to increase competition,
575 increase color heterogeneity, and to prevent participants from looking for any color duplicates
576 rather than for the specific target color, whenever both target objects of a search array
577 shared the same color (as was the case in the one target feature conditions). To further
578 prevent participants from employing the strategy of selecting color duplicates or groups,
579 rather than setting up a template for the specific target color, one half of all trials, one of the
580 additional distractor colors was duplicated and presented at one of the diagonal positions. In
581 doing so, the mere presence of a duplicated color would not signal these to be the target
582 items, so that a color-specific would be necessary to perform the task efficiently. One target
583 color was always presented on the horizontal axis (left or right of fixation), while the other
584 was always presented on the vertical axis (above or below fixation), with color-position
585 assignment randomly chosen but occurring equally often. The alphanumerical identity of

586 each search item was chosen randomly with the restriction that the two target objects
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587 belonged as often to the same category (both letters or both digits) as to different categories
588 (one letter and one digit). Consequently, alphanumerical category and positions of both
589 targets were fully counterbalanced within a block.

590 Design. Across blocks, we introduced three experimental conditions that differed in
591 (1) how many colors were task-relevant (i.e., the number of templates, TMP) and (2) how
592 many target colors appeared in a single search display (i.e., the number of different target
593 features, TGT). In 1TTMP-1TGT blocks, only one color was task-relevant, so that both target
594 characters had the same color and participants knew beforehand which color they would
595 need to select. In the 2TMP-1TGT block type, two colors were cued as task-relevant, but
596 only one of the two target colors would actually appear in a search display, as was randomly
597 determined from trial to trial (with equal numbers for each target color). Participants could not
598 predict which of the two target colors would be present in a specific search display, therefore
599 they had to keep two templates active, even though only a single color was required for
600 selecting the actual targets. Finally, in the 2TMP-2TGT block type, again two colors were
601 cued as task-relevant, but now both these target colors also appeared in each search
602 display, so that both colors were required for selection. Each condition was repeated eight
603 consecutive times.

604 We decided to use a blocked design rather than intermixing trials of all three
605 conditions within blocks because pilot data indicated that behavioral performance is rather

606 low if conditions are mixed within a block, so that many trials would have to be excluded.
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607 Furthermore, intermixing conditions would also make it necessary to cue not only the
608 condition, but also the task-relevant colors before every trial. This would have increased the
609 duration of a trial, and hence reduced the total number of trials that we could fit in a session,
610 thus reducing power even more.

611 When only one color was task-relevant (1TMP-1TGT), each of the four colors would
612 thus serve as the target color twice, whereas in blocks in which two colors were task-relevant
613 (2TMP-1TGT and 2TMP-2TGT), observers would look for the combinations red and green
614 or blue and yellow, each four times. We chose these color combinations as they are not
615 linearly separable in color space and thus prevented participants from potentially setting up a
616 single template encompassing both target features. The order of conditions was
617 counterbalanced across participants. Prior to the start of the experiment, participants
618 received instructions and practiced all conditions in increasing order of difficulty (1TMP—
619 1TGT, 2TMP-1TGT, 2TMP-2TGT). During practice, participants repeated blocks of 32 trials
620 for each condition as often as necessary to reach an accuracy of 85%, but at least three
621 times. Note, even if participants had initially reached this inclusion criterion, they might still
622 have performed below 85% during the experiment. Therefore, eight participants with an
623 accuracy below 85% were excluded from the analysis.

624 Apparatus & EEG Acquisition. The experiment was designed and run using the
625 OpenSesame software package (version 3.2.2; Math6ét, Schreij and Theeuwes, 2012).

626  Stimuli were presented on a 22-inch Samsung Syncmaster 2233 monitor, with a resolution of
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627 1680 x 1050 pixels at a refresh rate of 120 Hz. Participants were seated in a dimly lit, sound-
628 attenuated room in a distance from the screen of approximately 70 cm and the eyes aligned
629 with the center of the screen. A QWERTY PS/2 keyboard was placed in the lap of each
630 participant. They were instructed to place left and right index fingers on the z and m keys to
631 indicate whether targets were of the same or different category. Further, they were asked to
632 refrain from excessive blinking and motion during the experiment. The experimenter received
633 real-time feedback on behavioral performance and quality of EEG recording in an adjacent
634 room.

635 We used the BioSemi ActiveTwo system (Biosemi, Amsterdam, The Netherlands) to
636 record from 64 AG/AgCI EEG channels, four EOG channels and two reference channels at a
637 sampling rate of 512 Hz. EEG channels were placed according to the 10-20 system. EOG
638 channels were placed one cm outside the external canthi of each eye to measure horizontal
639 eye movements and two cm above and below the right eye, respectively to measure vertical
640 eye movements and blinks. Reference electrodes were placed on the left and right mastoids.
641 EEG Preprocessing. All EEG preprocessing and analyses were performed offline in
642 Matlab (2014b, The Mathworks) and Python (2.7, www.python.org), using a combination of
643 EEGLAB (Delorme and Makeig, 2004), the Amsterdam Decoding And Modeling toolbox
644 (ADAM, version: 1.07-beta, (Fahrenfort et al., 2018) and custom scripts (freely accessible at
645 https://osf.io/3bn64). EEG data were first re-referenced to the average of the left and right

646 mastoids. No offline filters were applied to the data. Next, the continuous signal was split into
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647 epochs from 300 ms before until 800 ms after search display onset. Epochs were baseline
648 corrected by removing the average activity in a pre-stimulus window between -100 and 0 ms
649 from each time point. All epochs in which participants failed to respond correctly, or response
650 times were lower than 200 ms (anticipatory errors) or greater than three standard deviations
651 above the block mean were removed from further analyses (mean exclusion: 6.6%, min-max
652 range across participants: 4.4% - 9.7%). To make sure that the EEG would not be
653 contaminated by eye movements, we scanned epochs for horizontal eye movements within
654 the first 500 ms after stimulus onset (amplitude threshold: 30 yV, window length: 100 ms,
655 step size: 50 ms) and removed epochs containing such. This resulted in an exclusion of on
656 average 2.4% (min-max range: 0.0% - 16.8%) of all epochs. Noise due to muscle activity
657 was removed using an automatic trial-rejection procedure. To specifically capture EMG, we
658 used a 110 - 140 Hz band-pass filter, and allowed for variable z-score cut-offs per participant
659 based on the within-subject variance of z-scores, resulting in the exclusion of on average
660 7.1% (min-max range: 1.8% - 13.1%). Next, all epochs were visually inspected for any
661 obviously contaminated trials that have been missed by the automatic trial-rejection
662 procedure (mean exclusion: 0.4%, min-max range: 0.0% - 0.9%). To identify and remove
663 components related to blinks, we used EEGLAB’s implementation of independent component
664 analysis (ICA). In total, 15.6% (min-max range: 8.1% - 34.2%) of all epochs were removed

665  during preprocessing.
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666 Decoding of Target Locations. The main analyses decoded target positions based
667 on the raw EEG of all 64 channels, using the ADAM toolbox (Fahrenfort et al., 2018). To that
668 end, we used a 10-fold cross-validation scheme by splitting the data of individual participants
669 into ten equal-sized folds after randomizing the order in which trials occurred in the
670 experiment. A linear discriminant classifier was then trained on the data of nine folds and
671 tested on the data of the tenth one. This procedure was repeated ten times until each fold
672 served as a test set once. Finally, the classifier performance was averaged across all
673 individual folds. For each condition, we trained one classifier to differentiate trials on which
674 one of the targets was presented on the left versus the right position, and another classifier
675 to differentiate the same trials as to whether the other target was presented on the top versus
676 the bottom position. Furthermore, to account for minor incidental imbalances with respect to
677 the trial count per class introduced by the trial rejection procedure, we performed within-class
678 and between-class balancing. For within-class balancing, we undersampled trials to match
679 the number of trials in which the target appeared on the irrelevant dimension within each
680 class. For example, when training a classifier to differentiate trials in which the target
681 appeared on the left versus right position, we made sure that each class (e.g., left targets)
682 contained the same number of trials in which the second target appeared on the top or the
683 bottom position by removing trials of the more frequent trial type. Between-class balancing
684 entailed the oversampling of trials (generating synthetic samples based on the existing data;

685 see He et al., 2008) belonging to the less frequent class, so that the classifier would not
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686 become biased toward the more frequent class. As performance measure we used the Area
687  Under the Curve (AUC, Hand and Till, 2001), which is an unbiased measure that is based in
688 signal detection theory and describes the area under the receiver-operator curve when
689 plotting hit rate over false alarm rate. The decoding performance for single conditions was
690 statistically tested against chance level (AUC = 0.5) by running two-sided one-sample t-tests
691 across participants for every time point, or by testing AUCs against each other when
692 comparing conditions directly. To correct for multiple comparisons, we used cluster-based
693 permutation tests (5000 permutations) on adjacent time points with the alpha level set to o
694 = .05 (Maris and Oostenveld, 2007). Next, to examine the topography of the activations, we
695 multiplied the classifier weights across all channels with the data covariance matrix, yielding
696 activation maps that can directly be interpreted as neural sources (Haufe et al., 2014).

697 Estimating and Statistically Testing Onset Latency and Amplitude Difference To
698 estimate the onset latencies at which target location became decodable, we used an
699 approach in which we combined computing the fractional peak latency with a jackknife-based
700 approach (Miller, Patterson and Ulrich, 1998; Luck, 2014; Liesefeld, 2018). Group-averaged
701 classification scores were repeatedly computed over all but one participant, until each
702 participant was left out once. For each of these averages, we estimated its onset latency by
703 identifying the peak amplitude in the window of 150 to 700 ms after search display onset and
704 defined the onset as the first point in that time window in which the classification scores

705 exceeded 50% of the peak score. To mitigate the influence of high-frequency noise on the

41


https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/653030; this version posted August 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

706 latency estimation, for every time point we averaged the amplitude of that time point and the
707 two adjacent time points for peak and onset latency estimation. To statistically test for
708 potential differences in onset latencies across experimental conditions, we followed Miller et
709 al. (1998) and computed t-statistics for the pairwise comparisons between the 1 TMP-1TGT
710 and 2TMP-1TGT condition, and between the 2TMP-1TGT and 2TMP-2TGT condition. The
711 procedure corrects for the artificially reduced error term due to the jackknifing by effectively
712 dividing the t-statistic by the degrees of freedom.

713 Finally, the 2TMP—-1TGT condition (when two target colors were cued but only one of
714 them was present in any one search display) allowed us to asses intertrial switch costs
715 (Maljkovic and Nakayama, 1994; Olivers and Humphreys, 2003; Wolfe et al., 2004;
716 Dombrowe, Donk and Olivers, 2011; Ort, Fahrenfort and Olivers, 2017), by splitting the
717 2TMP-1TGT condition into repeat and switch trials and to run all analyses separately for
718 these two trial types.

719 N2pc analysis Even though the backward decoding approach would already show
720 whether and when location-specific information would be present in the raw EEG, for the
721 sake of comparison to the existing N2pc literature, we also conducted a more common
722 event-related potential (ERP) analysis to examine latency and amplitude of the N2pc
723 component. First, to identify N2pc components, we computed ERPs locked to stimulus onset
724  at electrodes PO7 and PO8. ERPs at the ipsilateral electrode relative to the horizontal target

725 position (i.e., PO7 for targets on the left, PO8 for targets on the right), were subtracted from
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726 ERPs at the contralateral electrode, collapsed over the vertical target position, but separately
727 for each participant and condition. The resulting difference wave forms were then statistically
728 tested against zero with two-sided one-sample t-tests at each time point. A cluster-based
729 permutation test (5000 permutations, o = .05) was performed on contiguous time points to
730 correct for multiple comparisons (Maris and Oostenveld, 2007). To quantify amplitudes and
731 onset latency the same approach as for the classification scores was used, with the
732 exception that we did not use the entire epoch when looking for the peak, but only the
733 window of 200 — 350 ms post stimulus, as this is the time window in which the N2pc is
734  typically observed (e.g., Eimer, 1996; Eimer and Grubert, 2014)

735 Correlating classification confidence. Another useful feature of the AUC measure
736 is that it considers the confidence that a classifier has about class membership of a particular
737 instance at every time point. Confidence is expressed as the distance from the decision
738 boundary and can be interpreted as the representativeness of a certain instance (EEG
739 activity across all channels for a given time point) of that class (Ritchie and Carlson, 2016;
740 Grootswagers, Cichy and Carlson, 2018). Applied to the present paradigm, we assumed that
741 the more strongly prioritized a particular target position, the higher the classifier’'s confidence
742  scores. Based on this logic, we reasoned that if prioritization is limited to a single target at a
743 time, a classifier cannot simultaneously have high confidence about both targets, and thus
744  confidence should correlate negatively. To test this hypothesis, we extracted the confidence

745 scores of both classifiers (left-right and top-bottom) and correlated these across trials
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746 (Spearman’s p), separately for each time point and condition. If prioritization is limited to a
747 single item for certain time points, we would expect a moderately negative correlation
748 between left-right and top-bottom classifiers for those points, because whenever the
749 classifier has high confidence in one dimension, it will have low or random confidence in the
750 other dimension, and vice versa. If on the other hand, prioritization occurs in parallel and
751 selection strength is driven by a common mechanism, one would expect a positive
752 correlation at those time points. Finally, if prioritization occurs in parallel but selection
753 strength is driven by independent mechanisms, one would expect zero correlation. To
754 assess these competing hypotheses, correlations were statistically tested against zero by
755 running two-sided one-sample t-tests across participants at every time point, using cluster-
756 based permutation tests (5000 permutations, o = .05) to correct for multiple comparisons
757  (Maris and Oostenveld, 2007).

758 Correlating classification confidence on simulated data with known underlying
759 correlational structure When correlating confidence scores, a lack of correlation could
760 reflect parallel processing of the two targets, but could also be caused by the decoding
761 strength being too weak, due to an insufficient signal-to-noise ratio (SNR) in the data. To
762 make sure that we had enough statistical power to detect a correlation if it was actually
763 present, we ran a simulation in which we embedded a signal in systematically
764 manipulated noise levels, and determined at which decoding strength a known

765 correlation could be reliably extracted. The exact same analysis pipeline was applied as
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766 for the actual data. Specifically, we replaced the data of eight channels with simulated
767 data in which we injected either a positive, negative or null correlation between horizontal
768 and vertical targets and varied the overall noise level. The data were created by
769 generating half a cycle of a sine wave with an amplitude of 1 pV, extending over 400 ms
770 (200 — 600 ms post stimulus) and assigned to a subset of channels to reflect attentional
771 selection. To create location-specific effects (i.e., contra vs. ipsilateral), we injected the
772 same ERP with a negative amplitude on an orthogonal subset of the channels.
773 Therefore, attentional selection was simulated with a positive ERP on half the channels
774 and a negative ERP on the other half. Importantly, attentional selection of vertical and
775 horizontal targets was simulated independently, by using an orthogonal split of the
776 channels into contra- and ipsilateral. For every correlation pattern we simulated 512
777 trials, the same number as in the real experiment. For the positive correlation, we
778 injected the ERP for both vertical and horizontal targets on half of the simulated trials,
779 and no ERP on the other half, reflecting either both targets to be selected
780 simultaneously, or none of them (i.e. parallel selection). For the negative correlation, the
781 ERP was either injected for vertical targets or for horizontal targets (each half of the
782 trials), but never in both, reflecting the selection of either one or the other target (i.e.
783 serial selection). For the null correlation, per trial, we randomly chose whether an ERP
784 was present for one of the targets, both, or none. Next, we added random noise for all
785 trials. Critically, the SNR was parametrically manipulated, relative to the (constant)
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786 amplitude of the ERP. For example, a SNR of 4 means the peak ERP amplitude was four
787 times as high as the maximum noise amplitude. In total, we used SNRs of 4, 2, 1.33, 1,
788 0.67, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.13, 0.11, 0.1, 0.07, 0.05, and 0.04. Once the
789 simulated dataset was created, the same backward decoding model (see Methods) was
790 used to decode the target location, separately for the vertical and horizontal target, the
791 injected correlation and the SNR. Similarly, the classifiers’ confidence scores were

792 correlated between vertical and horizontal targets, as was done for the actual data.
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795 Figure 2 - Figure Supplement 1. Average N2pc difference waves for targets on the
796 horizontal (left vs. right) meridian as a function of number of templates and number of target
797 features. N2pc components were computed using the electrodes PO7 and POS8, by
798 subtracting ERPs ipsilateral to the visual field of lateral targets from contralateral ERPs. The

799 shaded area represents 1 SEM above and below the mean for every time point. Thick lines

800 and horizontal bars indicate significant clusters (at a = .05) as produced by cluster-based
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801 permutation testing (5000 permutations). For visualization purposes only, the contra-
802 ipsilateral difference waves over time were fitted with a cubic spline (A=15, comparable to a
803 30 Hz low-pass filter) to achieve temporal smoothing. Note the statistical analyses and
804 estimation of the onset latencies were done on unsmoothed data. The marked time points
805 indicate the latency of 50% maximum amplitude as estimated using a jackknife approach, as
806 a measure of the onset of selection (Miller, Patterson and Ulrich, 1998; Luck, 2014;
807 Liesefeld, 2018). Reliable N2pc and sustained posterior contralateral negativity (SPCN;
808 Mazza et al., 2007; Jolicoeur, Brisson and Robitaille, 2008; Eimer, 2014; Grubert, Carlisle
809 and Eimer, 2016) components were identified in all three conditions. Onset latency was
810 fastest for the 1 TMP-1TGT condition (214 ms), followed by the 2TMP-2TGT condition (225
811 ms), and, surprisingly, the 2TMP—1TGT condition (237 ms, all ts> 2.2, ps < .05). Although
812 overall patterns are similar, these findings indicate that our main classification analyses
813 reflect more information than is present in just the N2pc, which is subject to inherent

814 electrode selection. See also Figure 2 - Figure Supplement 1 - source data 1.

815
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818 Figure 2 - Figure Supplement 2. MVPA decoding performance for target position separately
819 for switch and repeat trials in the 2TMP-1TGT condition. The shaded area represents 1 SEM
820 above and below the mean for every time point. Thick lines as well as horizontal bars
821 indicate significant clusters (at a = .05) as produced by cluster-based permutation testing
822 (5000 permutations). For visualization purposes only, the classification scores over time were
823 fitted with a cubic spline (A=15, comparable to a 30 Hz low-pass filter) to achieve temporal

824 smoothing. Note the statistical analyses and estimation of the onset latencies were done on
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825 unsmoothed data. The marked time points indicate the latency of 50% maximum amplitude
826 as estimated using a jackknife approach (Miller, Patterson and Ulrich, 1998; Luck, 2014;

827 Liesefeld, 2018). See also Figure 2 - source data 2.

828
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831 Figure 3 - Figure Supplement 1. Individual MVPA decoding performance for target
832 positions on the horizontal (left vs. right, less saturated red line) and on the vertical meridian
833 (top vs. bottom, more saturated red line) in the 2TMP-2TGT condition (which is the condition
834 where we expected serial processing, if any, to be most prominent). For each individual, we
835 computed Spearman’s p correlation between the classifier performances in the time window
836 from 150 ms to 700 ms post stimulus (the values of which are shown in each plot). For
837 visualization purposes only, the classification scores over time were fitted with a cubic spline
838 (A=15, comparable to a 30 Hz low-pass filter) to achieve temporal smoothing. Note that the
839 correlations were performed on unsmoothed data. See also Figure 3 - Figure Supplement 1 -

840 source data 1 and Figure 3 - Figure Supplement 1 -source data 2.

841
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Figure 3 - Figure Supplement 2. Results of location decoding and correlation analysis
of a simulated dataset across several signal-to-noise ratios (SNRs). We simulated ERPs
for targets at all four target positions. These artificial ERPs were either positively,
negatively, or not correlated between vertical and horizontal target position. The SNR of
the simulated dataset was then manipulated by adding random noise of various levels
(relative to the peak amplitude of the ERP) to the data. A) AUC scores (color coded) are
shown for a location decoding analysis, separately for the injected correlation and SNR

across time. B) Spearman’s p correlation (color coded) between confidence scores of the

53

AUC

Spearman's p


https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/653030; this version posted August 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

851 vertical and horizontal classifiers, separately for the injected correlation and SNR across
852 time. For both A and B, only those time points were colored that survived cluster-based
853 permutation testing (a = 0.05, 5000 permutations). Dashed vertical lines indicate the time
854 window in which the ERP was injected. The figure shows that both location decoding and
855 the retrieving of the injected correlation declined with decreasing SNR. Importantly,
856 reliable correlations disappear before classification itself, indicating that for the average
857 group classification levels as observed in our data, any correlation present may have

858 been too low to be detected.
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