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Exponentially few RNA structures are designable
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ABSTRACT

The problem of RNA design attempts to construct RNA sequences
that perform a predefined biological function, identified by several
additional constraints. One of the foremost objective of RNA design
is that the designed RNA sequence should adopt a predefined tar-
get secondary structure preferentially to any alternative structure,
according to a given metrics and folding model. It was observed in
several works that some secondary structures are undesignable, i.e.
no RNA sequence can fold into the target structure while satisfying
some criterion measuring how preferential this folding is compared
to alternative conformations.

In this paper, we show that the proportion of designable sec-
ondary structures decreases exponentially with the size of the target
secondary structure, for various popular combinations of energy
models and design objectives. This exponential decay is, at least
in part, due to the existence of undesignable motifs, which can be
generically constructed, and jointly analyzed to yield asymptotic
upper-bounds on the number of designable structures.
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1 INTRODUCTION

RiboNucleic Acids (RNAs) are ubiquitous biomolecules equipped
with a capacity of performing a wide variety of functions, both as a
messenger enabling gene synthesis (mRNAs), as a regulator of gene
expression (miRNAs...) or as a direct performer of a large collection
of enzymatic activities (ncRNAs) [28]. For a large subset of ncRNA
family, the adoption of a predefined structure is instrumental to
the function(s) of individual molecules [45], and even, at times, the
survival of its hosts organisms [20]. Accordingly, the evolutionary
pressure on RNA families induced by RNA structure, at the sec-
ondary structure level, is at the core of most approaches for the
identification of novel ncRNA families [46]. Improved characteriza-
tions of this pressure for individual represents a key challenge of
RNA Bioinformatics and the object of current work, for instance in
the case of the elusive long non-coding RNAs (IncRNAs) [38].

Cedric Chauve

Department of Mathematics, Simon Fraser University
Burnaby, Canada

Yann Ponty
yann.ponty@lix.polytechnique.fr
LIX, UMR 7161, Ecole Polytechnique
Palaiseau, France

This strong connection between RNA structure and function
has motivated the continuous development of mature computa-
tional methods for structure prediction [24, 34, 49]. More recently,
researchers have attempted to harness the success of folding predic-
tion approaches, and tackled a de novo design of structured RNAs. In
its historic setting [24], the RNA Design, or inverse folding, consists
in designing a sequence of nucleotides, folding into a predefined
structure according to a criterion which can computed using avail-
able computational methods. RNA design is now an established
problem in RNA bioinformatics, motivated by applications rang-
ing from synthetic biology [42] to RNA therapeutics [47] through
systems biology [14] and nanotechnologies [21].

Computationally, RNA design is a hard problem [4], motivating
the development of several design methodologies [6] relying on
exact exponential algorithms (constraint-programming [19], SAT
solving) on heuristics (local search [1, 2, 5, 24, 48], genetic algo-
rithms [13, 32], sampling [37]...). While the former methods are
limited in their scope of applications by their extreme computa-
tional demands, methods of the latter category have encountered
numerous applied successes [23], and enjoy a growing popularity.
Historic objectives of design include the adoption, by the produced
sequence, of a structure having energy as close as possible to the
Minimal Free-Energy (MFE) achieved by the sequence. Modern
formulations also include the minimization of defects, properties of
the thermodynamic equilibrium that indicate a notion of distance to
the expectation of a perfect design [9]. Those include the probability
defect [9], the probability of not folding into the target structure,
or the ensemble defect [48], the expected base pair distance to the
target at the thermodynamic equilibrium.

However, some secondary structures do not admit a solution to
the design problem. This was first observed by Aguirre-Hernandez et
al [1], with the discovery of two undesignable motifs, motifs for
which alternatives would always be preferred by the usual Turner
energy models [43]. This claim was later generalized to simple base-
pair based energy models by a study of a combinatorial version
of RNA design [22], exhibiting motifs whose presence within a
structure precludes its designability. However, the prevalence, in
the folding space, of such undesignable motifs, and their impact
on the overall combinatorics of designable structures, was never
been assessed to date. Moreover, a characterization of undesignable
structures would allow for sanity checks within design methods,
avoiding the costly execution of a heuristics-based algorithm in
contexts where no such solution exists.

Another motivation for this work pertains to theoretical evolu-
tionary studies, where the RNA sequence to structure relationship
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represents an attractive model of neutral network [18], and a crucial
conceptual framework to quantify the evolvability of species [10].
Indeed, the sequence/structure relationship in RNA enables the
existence of, possibly large and highly diverse, subsets of sequences
(genotype) folding into the same structure (phenotype), thus achiev-
ing the same fitness level. Studies of RNA neutral networks [17, 40]
often require an enumeration of accessible phenotypes, i.e. the
number of RNA secondary structures of a given size which are
adopted as the most stable structure for some sequence. Since no
exact method is known to compute this quantity, studies rely on
available asymptotic estimates for the number of all secondary struc-
tures [44]. Such an implicit assumption of universal designability
may bias studies [27, 29] of the underlying evolutionary dynamics,
by artificially inflating the cardinality of structural ensembles. It is
thus crucial to provide more precise (approximate) expressions for
the number of designable structures.

In this work, we show that the existence of small undesignable
motifs, which we call local obstructions, constitutes an intrinsic
feature of RNA design objectives. An enumeration of the secondary
structure that avoid those motifs thus represents an upper bound
on the number of designable structures. A direct consequence of
this observation is that the proportion of designable secondary
structures is typically negligible beyond a certain sequence sizes.
Indeed, a tree motif perspective on the problem, coupled with clas-
sic results in analytic combinatorics [16] imply that the proportion
of designable structures over n nucleotides scales like @, where
a < 1 can be numerically computed from any collection of local
obstructions. As a side product of our automated method for com-
puting local obstructions, we are also able to establish a list of likely
candidate sequences for each motifs of a given size.

After dedicating Section 2 to formal definitions for the key con-
cepts, and state our main result, we describe in Section 3 the appli-
cation of our general strategy on a simple combinatorial version of
RNA design. We then show in Section 4 how small local obstruc-
tions can be computed, for any combination of defect, tolerance
and energy models. Section 5 introduces a generic specification for
enumerating secondary structures that avoid a collection of local
obstructions, and describes a simple numerical procedure to derive
asymptotic equivalents for the number of such structures. Section 6
presents the results of our analysis of different design objectives,
using the realistic Turner energy model.

2 BACKGROUND AND RESULTS OVERVIEW

RNA secondary structure. An RNA can be abstracted as a se-
quence w € 3%, 3 = {A,C, G, U}, of nucleotides, having length
n := |w|. For a sequence w, a secondary structure is a set S of base
pairs (i, j), i < j € [1, n], representing the interaction of nucleotides
at positions i and j through hydrogen bonds, such that:

(1) Base pairs are pairwise non-crossing, i.e. 3(i, ), (k,I) € S
suchthati <k <j <

(2) A minimal distance of 6 is ensured between interacting po-
sitions, i.e. V(i,j) € S,j—i > 6;

(3) Any position of [1, n] is involved in at most one base pair.

Positions of [1, n] that are not involved in any base pair are called
unpaired. In the following, we will denote by S the entire set of

Hua-Ting Yao, Cedric Chauve, Mireille Regnier, and Yann Ponty

Root

1,50

(a) Secondary structure S, as a graph (left) or a tree (right)
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(b) Motif m; € S (left-graph, right-tree) (c) Motif m; ¢ S
Figure 1: Graph and tree representations of an RNA sec-
ondary structure S of size 50 (1a). It features an occurrence of
the motif m; (1b), having size 14 with 2 paired leaves, rooted
at node (5, 46). Although my (1c) resembles mj, it lacks two
unpaired nodes and is thus does not strictly occurs at posi-
tion (5, 46).

secondary structures, and by S, its restriction to structures of
length n.

A shown in Fig. 1, a secondary structure S of length n can be
unambiguously represented as a rooted ordered tree T = (V :=
Vi UV}, E), whose nodes are either intervals [i, j] € V;, i < j, rep-
resenting base paired positions (i, j) in S, or singletons {i} € Vj,
representing an unpaired position i in S. Note that leaves of such
tree represent only singletons. Any edge (u — v) € E connects
intervals such that u ¢ v and v’ € V; such thatu c v’ C .

Energy model. An energy model assigns a free-energy value to
each pair (w, S), where w is an RNA sequence and S is a secondary
structure for w. Popular energy models for RNA folding predic-
tion, such as the base pairs-based Nussinov and the Turner nearest-
neighbors models, consider additive contributions associated with
the shallow subtrees, i.e. subtrees of depth 1 occurring in S, and their
respective nucleotides assignments. Hence, an energy model is a
function E : * X & — R U {+o0} such that

E(w,S) = Z

T= R €S
a’pc

AG (T, {p = wp,a > wa,b = wp .. .})

where AG (T, m) is the free-energy, expressed in kcal.mol™! associ-
ated with the assignment m of concrete nucleotides from w to the
(pairs of) positions in the subtree T. In practice, values taken by
AG are tabulated or extrapolated from experimentally-measured
values.

RNA Folding. RNA structure modeling aims, given a sequence w,
to find one or several folding(s) of w into RNA secondary struc-
ture(s). Several paradigms exist, associated to different objective
functions measuring the quality of a folding. In the energy mini-
mization setting, a central algorithmic question is to compute the
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minimum free energy (MFE) structure(s), optimizing the thermody-
namic stability:

MFE(w) = {S € Sjw | E(w.$) = S,rél‘isn E(W,S')} .
[wl

A second, increasingly popular, paradigm strives to predict struc-
tures that are representative of the Boltzmann ensemble of low
energy structures. Under the hypothesis of a Boltzmann equilib-
rium, statistical mechanics postulates that, for a given sequence w,
the putative secondary structures follow a Boltzmann distribution

B(w,S)
PGS |w)= ——=
(S z.
, ~E(w.5) ,
with B8(w,S) = e RT  and Z,, := Z B(w,S")
S’€S|W‘

where R is the Boltzmann constant, T is the temperature, 8(w, S)
is called the Boltzmann factor of w and S, and Z,, the partition
function of w. Similarly, the probability of a base pair is defined as

pwii)= Do B(S|w)
SeS,
(i.j)es
and p(i, i) represents the probability of i being left unpaired.

Note that, while an MFE structure has maximum probability
in the Boltzmann ensemble, its probability can be arbitrary low,
so achieving a high probability is not reducible to being an MFE.
In fact, modern approaches typically elect structures that are, on
average, maximally similar (MEA [31], centroids [8]) to random
structures in the Boltzmann ensemble.

Defects and negative RNA design. Given a target secondary
structure S*, the negative RNA design problem, also called inverse
folding, consists in producing one or several RNA sequences w that
folds into S* while avoiding alternative folds of similar quality for
the chosen energy model.

The avoidance of alternative structures is captured by a notion of
defect, defined as a function D : 3* xS — R. RNA design methods
usually consider one of the three following defects:

(1) The Suboptimal Defect Ds of a sequence w is defined as the
energy distance to the first suboptimal, such that
log Ds(w, S*) := — Smén E(w, S) — E(w, §*);
[w]
S#S*
(2) The Probability Defect Dp represents the probability of fold-
ing into any other structure than S*:

Dp(w, §*) := Z P(S | w) = 1-P(S* | w);
5€S|w|
S#S*

(3) The Ensemble Defect D, is the expected base pair distance
between S* and a random structure, generated with respect
to the Boltzmann probability distribution:

Dp(w,8*) = Y B(S|w)-ISas | =lwl— > pulij)
SES‘W‘ (i,j)eS*

with |S A §’| a shorthand for the set symmetric distance, also
known as base pair distance.
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Now we can define the main objectives of negative RNA design.
Given a real-valued threshold ¢ > 0 and a defect D, a sequence w
is a (negative) (D, ¢)-design for a structure S* if and only if

MFE(w) = {S*} and D(w,S") <e. (1)

Similarly, we call (D, ¢)-designable a secondary structure that does
admit at least a valid design. Note that the defect definition also
depends on the chosen energy model, but we chose to make this
dependency implicit for the sake of simplicity.

Motifs and local defect. A motif is a rooted ordered tree, similar
to a secondary structure, but whose leaves may represent base
paired positions. We say a motif m occurs in a secondary structure
S (resp. a motif m’) or a secondary structure S (resp. a motif m’)
contains a motif m if m is a subtree of S (resp. m’), rooted at any
base paired node in S (resp. m’) and obtained by deleting all the
children for a subset of its base paired nodes. In other words, a
node in m either has exactly all of its children within S (resp. m’),
or none. See Fig. 1 for an example.

Consider a motif m, having a root base-pair (i, j) and paired
leaves (i1,j1), .-, (ij,j;), and let w, |w| = n, be an assignment
of nucleotides to the positions of m. We define the local defect
DL (w, m) similarly as D, by replacing S,, with

Sm = {S € Sn | (i,)) € S and (ig, j) € S,V € [1,1]}

a restricted set of structures where both the root, and all the paired
leaves, of m appear as base pairs. A crucial observation, of which
we omit a formal proof in the interest of space, is stated in the
following proposition.

ProPOsITION 1. For any defect D € {Ds, Dp, D}, sequence w,
|w| = n, and structure S € Sy, one has

D(w,S) > DL(wm, m),Ym € S
where wp, is the restriction of w to the positions in m.
COROLLARY 1. If there exists a motif m € S* such that
Z)L(w, m) > e, Yw € nlml
then S* cannot be D-designed.
In other words, the presence in the target structure S* of a motif

that cannot be designed locally is sufficient to forbid the existence
of a sequence w that would constitute a design for S*.

Problem statement and results overview. In this work, we ad-
dress the following question: Given an energy model, a design crite-
rion, how many secondary structures of a given length actually admit
a negative design? Our main result is summarized by the following
theorem.

THEOREM 1. For any energy model, defect D € {Ds, Dp, Dg}
and tolerance ¢ > 0, only an exponentially small fraction of the
secondary structures in Sy, are (D, €)-designable.

3 BASIC COMBINATORIAL DESIGN

Here, we consider the special case of the 0-dominance criterion in
the simplest energy model, the Nussinov model, considered in a
previous work [22]. In this setting, the design problem simplifies
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into finding an RNA sequence admitting a unique folding maximiz-
ing the number of base pairs, such that this folding coincides with
the given target secondary structure.

THEOREM 2. Let dy, be the number of secondary structures that
are designable in the Nussinov model with 6 = 1. Then
n

dneo(“ ) @)

nyn

where a = 2.35 ... is the smallest positive real root of
525 — 1427 +132° - 82° + 62* —22° + 42% — 4z + 1.

COROLLARY 2. The probability that a uniform random secondary
structure of length n, with 0 = 1, is designable in the Nussinov model
for the 0-dominance criterion is in O(B™), where f = a(3—+/5)/2 < 1.

To prove Theorem 2, we rely on analytic combinatorics tech-
niques, widely used in analysis of algorithms [15] and bioinformat-
ics [41], exposed in [16]. Their application in this context involves
the following steps:

(1) Identify a collection of secondary structure motifs M whose
occurrence in S implies that S is not designable in the Nussi-
nov model for the 0-dominance criterion;

(2) Design a grammar for the set SM of all RNA secondary
structures excluding this motif;

(3) Derive and solve a system of functional equations satisfied
by the generating function SM(z) = 3 n>0Snz", where s,
is the number of structures of SM of length n;

(4) Use singularity analysis to obtain an asymptotic equivalent
for s, in particular the coefficient a of (2) in Theorem 2,
called the growth factor, that drives the exponential growth
of s, as a function of n.

Corollary 2 follows from Theorem 2 and the fact that, when 6 = 1,
the asymptotic number ¢, of secondary structures of length n is

such that N
(2/(3 = V5)"
o coEO=") 0

The exponential decrease in the proportion of designable secondary
structures follows from 2/(3 - \/5) =262...>a=235....

We now turn to the proof of Theorem 2. For step (1) of the
approach outlined above, we rely on the recent paper [22], where
it was proved that a secondary structure cannot be designed if its
tree representation includes an internal node whose children set
contain > 2 internal nodes and at least one leaf (the collection of
motifs M discussed above).

The set of tree representations of the secondary structure avoid-
ing this local motif can be generated by the context-free grammar
given below.

root
root root

VAN —>./A | {_\ | root

@ﬁ@ll

A = gl |

NI
@ﬁ@ll

-l
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Intuitively, this grammar keeps track of properties of the structural
elements generated for the current internal node. Except for the
root, each non-terminal is indexed by pairs taken from (i,u) €
{0,1,2%} x {o, e} where, within the current siblings, i represents
the number of internal nodes/base pairs, and u expresses whether
(e) or not (o) a leaf has been generated. Notice that the grammar
implicitly excludes structures having a three siblings composed of
two internal nodes and one leaf ((i, u) = (2%, »)), i.e. the motif M.

Following standard enumerative combinatorics techniques that
links combinatorial specifications to the calculus of generating
functions [16], one obtains that the ordinary generating function

SM(z2) is defined by the system of functional equations below.

SM(z) = 2 x SM(z) + 22 x Spo(2) x SM(2) + 1
S0e(2) = 2% Soa(2) + 2% X S0o(2) X S1a(2) + 1
S1e(z) =2 X S1e(z) + 1
So0(2) = 2 X S0e(2) + 2 X Spo(2) X S10(2)
S10(2) = 2 X S1e(2) + 22 X Spo(2) X Sp+o(2) + 1

Syro(z) = 2% X Spo(z) X Spro(z) + 1

Solving the system using algebraic elimination, followed by a

careful choice of the right conjugate, one obtains a closed form for

the generating function S M(2):

Mz = - POVRG)

Q(2)
where

P(z)=22° — 724 +72° = 62% + 4z — 1
0(z) = 22(z = 1)(z* = 42° + 322 =3z + 1)
R(z) = 528 — 1427 + 1320 = 82° + 62% — 22° + 422 — 4z + 1.

It follows from classic transfer theorems [15] that the singularity
of this generating function is of square-root type, leading to the
following asymptotic expansion for its coefficients,

pm"
Sn € @( i ) .
where p pq is the dominant singularity of S;(z), i.e. the smallest root
of R(z), and can be numerically evaluated at p 4 = 0.4262. .. ..
Theorem 2 follows from a = 1/p p and the fact that d,, < s,.
Indeed, while it is necessary for a designable secondary structures
to avoid M, this condition is not sufficient.

4 LOCAL OBSTRUCTIONS

In this section, we describe an algorithm to compute local obstruc-
tion, motifs whose presence within a secondary structure forbids
its design with respect to some predefined design objectives. Fig. 3
describes the main workflow of this study.

4.1 Emulating a local defect with constraints

The minimal completion of a motif m for a nucleotide assignment
w is a pair (S, W) such that:
® Sy is the secondary structure obtained from m by adding 6
unpaired nodes (leaves) under each paired leaf node;
® wp, is the sequence obtained by inserting 6 occurrence of
the letter A under paired leaves.
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oo &E\. 'ﬁ?’

Motif mq Minimal completion of my

Figure 2: Minimal completion of the motif m; (Fig. 1b).

In this study, we set 6 = 1 for the Nussinov model and 8 = 3 for the
Turner model. In other words, in the Turner model, the minimal
completion is obtained by replacing any paired leaf = by .%.
Figure 2 illustrates the application of the minimal completion to the
motif mq in Fig. 1b. A trimming operation is defined as the inverse
of the completion, and allows to recover a motif/sequence pair from
its completion.

Given a length k, a folding constraint C is a set consisting of po-
sitions from [1, k] and pairs from [1, k]?, respectively representing
positions forced to remain unpaired and paired to a specific partner.
The constrained defect Dc(w, S) can be defined by restricting the
computation to structures compatible with the constraint C. Such
constraints are supported by reference implementations of energy-
minimization and partition-function algorithms, and can be easily
enforced in simpler energy models.

Consider a motif m, and its minimal completion (S, wy,), we
define the induced constraint Cy, of m as consisting of:

o the root base pair of S;;
e the base pairs in S, stemming from the paired leaves in m;
e the unpaired positions introduced by the completion.

Intuitively, such a constraint will limit the alternative conforma-
tions, considered by the defect computation, to be consistent with
the boundaries of the initial motif.

PROPOSITION 2. For every defect D and energy model considered
in this work, one has DX (w, m) = Dc,,(Wm, Sm).

In other words, the local defect of a motif can be practically com-
puted by executing a constrained version of a, suitably constrained,
global off-the-shelf algorithm (energy-minimization for Dg, base-
pair probability for Dp and Dg) on the minimal completion of
the motif. In particular, motifs that represent local obstructions to
design, associated with large local defect, can be detected using this
property as shown below.

4.2 Computing local obstructions

We now turn to the computation of a list of local obstructions over k
nucleotides, motifs whose presence within any secondary structure
implies that the overall defect exceeds a predefined tolerance ¢ > 0.

In principle, we could compute all possible motifs and nucleotides
assignments, followed by an evaluation of the local defect, as de-
scribed in the previous section. We could then simply consider as
local obstructions any motif which, for all its compatible sequences,
fails to satisfy the ¢ defect threshold. Indeed, Prop. 1 implies that
any motif whose local defect exceeds ¢ cannot be part of a sec-
ondary structure having defect less than ¢, thus representing a
local obstruction. Since motifs are essentially structures over k nu-
cleotides (for 6 = 0), the complexity of this approach would be in
03k - 4k . P(k)), for P(n) the complexity of the (constrained) direct
MFE/defect algorithm.
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(A Shallow Motifs Minimal Completions\
l Compatible
Sequences
UAGCCCGAA UAGAAACCCGAA
UAAUCCGAA UAAAAAUCCGAA
UACGCCGAA UACAAAGCCGAA
J

Constrained Folding
+Defect Filtering

Designable Completions

P

Structure
Trimming

\_

J

[C Designable Motifs

kA AR AN

Local Obstructions l
O R

N\
(E M(2,T) = 2"T(z) + 2"T(2) + z77:((z) T

Complement in
set of motifs

_J

J

S = (T)S|eS|e S(z) = 22T(2)S(2)+28(2)+1
T = S\M —» T(:) = S -M(1) —> [[2"]S(2)
\_ Asymptotic Analysis Result /

Figure 3: General workflow. Minimal completions are com-
puted for all pairs of shallow motifs and compatible se-
quences (A). Constrained MFE predictions, filtered by de-
fect, produce designs for refinements of the input motif (B).
Designable completions are then trimmed into a set of des-
ignable motifs (C), itself complemented to obtain local ob-
structions (D). A grammar for secondary structures avoid-
ing obstructions is built, and singularity analysis gives an
asymptotic upper bound for designable structures (E).

This complexity can be further reduced by restricting the above
computation to shallow motifs, motifs having tree height 1 consist-
ing of paired and unpaired nodes underneath a root node. For any
sequence assignment to such a motif, running a constrained energy
minimization algorithm on the minimal completion of the sequence
either returns one, or multiple co-optimal solutions. In the case of
multiple solutions, the sequence admits several alternative local
MEE folds. It is thus not suitable for any refinement of the shallow
motif, i.e. any motif that includes the pairs of the shallow motif.
Conversely, a unique MFE solution is provably a refinement of the
shallow motif, and one concludes that the motif is designable. Since
every motif over k nucleotides is a refinement of some shallow mo-
tif, this strategy produces the same output as the above-described
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one. Its complexity, however, is reduced to O(¢* - 4% . P(k)), where
@ := (1 +v5)/2 ~ 1.62 is the golden ratio, observing that shallow
motifs are counted by the Fibonacci numbers.

Given a defect D restricted to a value ¢, and a given motif size
k, our algorithm execute the following steps:

e Enumerate all shallow motifs (of depth 1) of size k;
e For any such motif m°, consider any assignment w® consis-
tent with the paired nodes in m°:

— Build the minimal completion (S;,, wy,) of (m°, w°®), and
execute on wy, a constrained MFE folding algorithm, using
the induced constraint Cyy0;

- If the MFE computation returns a unique structure m*,
consider the motif m’ obtained by trimming m* (m’ is a
refinement of m°);

- Evaluate the local defect and, if DE(w®, m’) < ¢, add m’
to the list M of designable motifs;

e Return ﬂ, the set of all motifs of size k not in M.

A detailed version of the procedure is described in Alg. 1 and illus-
trated in Fig. 3.

Algorithm 1: Computing local obstructions of a given size

Input :A motif size k, an energy model E, a defect
definition D, and a tolerance £ > 0
Output:ﬂ a, possibly empty, set of local obstructions of
length k
M — &;
Q. < Set of all shallow motifs of size k;
foreach m° € Q. do
foreach w° € 3 (compatible with m®) do
Cme < Induced constraint of m®;
(Spys Wpp) < Minimal completion of (m°, w°);
O — MFE(wp, | Cippo) w.rt. energy model E;
if |O] = {S’} then
if Dc, . (w°,5’) < & then
L m’ « trimming of S’ ;

M MU {m'}

Ry < Complete set of all motifs of size k;
B return M = R, - M

PROPOSITION 3. Motifs returned by Alg. 1 are local obstructions.

Proor. Fist, let us consider the properties of a motif m returned
by the algorithm. Note that there exists only a single shallow mo-
tif m®, of which m is a refinement. Since m ¢ M then, for each
sequence w°, either a lower constrained MFE fold was found, or
the local defect exceeded ¢. In the latter case, Proposition 1 implies
that any pair (S, w), where S features m, and sequence w having
nucleotide assignment w® on the motif positions, has defect greater
than ¢, thus w is not a design for S. In the former case where an
alternative motif m’ is preferred to (or equally stable as) m for w°,
then for any structure S containing m and sequence w, having nu-
cleotide assignment w° on the positions of m, a competitor to S
for w can be constructed by replacing m by m” in S. One concludes
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Figure 4: Two examples of pairs of redundant motifs. In both
cases, the set of secondary structures rooted on the right mo-
tif strictly includes that of the right one, and we discard the
left one from our computations.

that, if m ¢ M, any structure S, m € S, and sequence w does not
represent a (D, ¢)-design. O

The exhaustivity, for a given size k, of the list of motifs produced
by Algorithm 1 remains unclear. Indeed, a motif is disregarded as
a local obstruction as soon as its minimal completion folds cor-
rectly (with admissible defect) under suitable constraints for some
sequence. Thus, there is no formal guarantee that a sequence would
adopt this motif with an acceptable defect in the absence of con-
straints. However, we empirical observed that motifs not returned
by the algorithm can overwhelmingly be included in design and,
in particular, that the sequence of their minimal completion is a
design for the completed structure. Moreover, the possible omission
of some local obstructions is not overly critical, since our main goal
is to provide upper bounds on the number of designable structures.

5 ENUMERATING SECONDARY
STRUCTURES WHILE AVOIDING LOCAL
OBSTRUCTIONS

Next, we turn to the computation of asymptotic equivalent for
the number of secondary structures that avoid a collection of local
obstructions, computed using the algorithm outlined in the previous
section. We first start by eliminating redundant motifs, i.e. motifs
that merely extend another motif, as shown in Figure 4, which can
be done by running a classic tree alignment algorithm [26] in a
pairwise fashion.

5.1 Specification and generating function
Our approach represents an instance of the symbolic method [16],
and is similar in essence to the detailed example of Section 3.

We establish that the set of all secondary structures avoiding a set
M of local obstructions is generated by the following specification:

S (T)S|eS | ¢
T = S\M

The first line essentially builds the set of all secondary structures
(6 = 0), and is highly reminiscent of Waterman’s seminal decompo-
sition [44]. The second line, however, subtracts the contributions of
secondary structures which, when completed with a root, feature
an occurrence of a local obstruction. In other words, M’ denotes the
set of enclosed forests built from the inner part of local obstructions

M ={m' |Vme M,m= (m')}.
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AT TR AR

(a) Two overlapping motifs (b) Common structure

Figure 5: Both motifs in (5a) represent local obstructions,
each of them contributing z’ T to the O.G.F.M'(z,T). How-
ever, those motifs are overlapping, and any structure in the
intersection, such as (5b), will be subtracted twice. We work
around this issue by including a correcting term z'* in c(z, T).

Therefore, the system of generating functions can be written as

S(z) 22 T(2)S(z) + zS(2) + 1
{ T(z) S(z) - M'(z,T)

©

where M’(z, T) denotes the Ordinary Generating Function (O.G.F.)
of the set of enclosed structure of motifs, defined as
M(z,T) = Z 2V 7m) _ oz )
m'eM’
where y(m’) (resp. §(m”)) is the size (resp. number of paired leaves)
of the motif m’, and ¢(z,T) is a correcting term to account for
potential overlaps.

Indeed, in rare cases, some secondary structures may be counted
in the O.G.F. associated to two or more motifs. Such structures
would therefore be subtracted several times by the grammar, leading
to an error while computing the singularity. Therefore, a correcting
term c(z, T) is introduced, as described in Figure 5 to counterbalance
the overcounting in such (rare) situations. Given the scarcity of
such situations, we computed those terms manually for each pair
of motifs. A more systematic solution could be implemented, using
ideas from Collet et al [7], but the lack of immediate needs led us
to leave this for an extended version of this extended abstract.

5.2 Computing the dominant singularity

In general, one could use a symbolic calculus software (Maple) to
solve the system (4), using some specialized package (gfun [39])
to extract the dominant singularity. However, in our case, such
a approach turns out to scale poorly with the number of motifs
and, more critically, paired leaves in the motifs (i.e. the degree of
T(z) in M(z, T)). Therefore, we consider an alternative approach
which combines an elementary symbolic calculus with a numerical
determination of the dominant singularity.

Indeed, rewriting the system shows that T(z) is a solution of
G(z,y) = 0 where

G(z,y) = 22y2 + y(zzﬁ(z, y)+2z)+(z— 1) M(z, y)+ 1.

As M’(z,T) depends of 18" (2), for 6* = max , 8(m’), the de-
gree of G with respect to y might be greater than 2, and the problem
is not directly amenable to the techniques developed in Section 3.
Nevertheless, it follows from this smooth implicit-function schema
that T(z) is analytic. It is aperiodic and its dominant singularity,
denoted p, is a non-zero root of R(z) defined as the resultant of two
polynomials in y, namely:

{ P(z,y)
Q(z,y)

Glzy) -y
6yP(z, y)
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The solution is easily derived by a numeric approach. The gener-
ating function S(z) shares the same dominant singularity as T(z).
Thus, coefficients of S(z) satisfy

p"
z"15(z) € © .
["]S(=) (n ﬁ)
Example. Let ‘M be restricted to the single motif (@), a spe-
cial case of the local obstructions in the Nussinov Model described
in [22]. Then, the O.G.F. of the set M’ with § = 1is 1+ 2z°T?(z) and

Glzy) =z +y(z + 22) + Y2 (2% = 2° + 2%) + y°7’
Next, we compute the resultant of the polynomial P(z, y) and its
partial derivation on y
Pizy) = 2P+ -2+ +(P+z-1y+z
Qzy) = 3272 +2°0 -2 +22)y+ (2 +z2-1)
A numerical resolution of system locates the dominant singularity
at p = 0.3834. We conclude that

["]5(2) € © (2.6082”) .

nyn

6 RESULTS

We implemented Algorithm 1, and the numerical procedure to com-
pute the dominant singularity described in Section 5, in Python3
using the pandas library and SymPy [35], a Python library for sym-
bolic computing. Our implementation is available at:
http://www.lix.polytechnique.fr/~ponty/?page=countingdesigns

6.1 Recovering the total number of secondary
structures (0 = 3)
As a first test, we ran Algorithm 1, using the suboptimal defect
DE as our objective and no tolerance for suboptimality (¢ := 0),
based on RNAfold [30] (version 2.4.12 with default parameters),
in order to detect local obstructions of small sizes (k € [2,4]).
Unsurprisingly, but still reassuringly, our implementation returned
three local obstructions, (), (@), and (®®), corresponding to the
0 = 3 minimal distance enforced by RNAfold.
Such local obstructions lead to a generating function

MGz)=1+z+72%
and our method produces the following asymptotic upper bound
for the number of designable structures of size n:
2.289™
i)

Those asymptotics match the ones reported by Hofacker et al [25].

[2"]S(2) = sn € @( )

6.2 Refined estimates for the phenotype space

We pushed our analysis further by using Algorithm 1 to compute the
local obstructions of sizes up to 14 (hairpins) and up to 10 (internal
loops and bulges). After removing the redundant motifs from the set,
we manually computed the correcting terms ¢(z, T) to avoid double-
counting structures compatible with several obstructions. Then,
we applied the methodology of Section 5 to produce the dominant
term of the asymptotics, along with the first-order estimates for
the proportion of designable structures reported in Table 1.
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#Local
Defect ¢ obstructions p

Asymptotic

equivalent Equivalent P1o(%) Pso (%) Pioo (%)

Proportion of designable structures* (upper bound)

Pooo (%) Psoo (%) P1oo0 (%)

Dr 1 104 0.44917 © (%) 0.973"
Dp 5 117 0.44964 © (%) 0.972"
Dp 1 152 0.45967 © (%) 0.95"
Dp 01 174 0.48127 © (%) 0.908"

25.4 6.48  4.19-107! 1.14-107* 1.30-10710
24.2 584  3.41-107! 6.81-107> 4.64-10"1!
7.69 059  3.51-1073 7.27-10710 5.29.10721

0.80 6.44-1073 4.14-1077 1.10-107%° 1.22.107%

Table 1: Collections of local obstructions of size up to 12, and their consequences on the proportion of actually designable sec-
ondary structures. * Proportions of designable sequences computed using an assumption of equal constants for the asymptotic
leading terms of the number of secondary structures, respectively allowing and forbidding local obstructions.

6.2.1 Inverse folding. In the classic setting of RNA design, the
inverse folding, one attempts to design a sequence which admits a
target structure as its unique MFE structure. This corresponds to
choosing a suboptimal defect with ¢ = 1.

Our analysis reveal the existence of 104 motifs (after removal
of redundant ones), an overwhelming majority of which contain
isolated base pairs. Such motifs are expected, as they are heavily
penalized, yet not explicitly forbidden (unless specified), by folding
algorithms. Consecutive bulges, alternating on the 5" and 3’ ends of
an helix, also seem systematically suboptimal for the Turner model,
a large interior loop being systematically favored as a candidate
for the MFE. Finally, hairpin loops directly stemming from a multi-
loop are systematically discriminated, and a structure consisting
of a larger unpaired stretch in the multiloop seem systematically
favored.

Computing the dominant singularity yields p = 0.44917, which
implies the following asymptotic upper bound on the number of
secondary structures

(6)

[2"]S(2) = 5, € @(M).

nyn

The probability for a secondary structure of size n, taken uniformly
at random, to be designable is upper-bounded by P,, € ©(0.973").
Assuming the identity of constants involved in the leading terms
of Equations (5) and (6), one concludes that, while about 3/4 of the
structures of size 10 can be designed, this proportion quickly drops
to less than 0.5% for RNAs of size 200, and reaches infinitesimal
proportions (10719%) for very large RNAs of size 1 000.

6.2.2 Designing structures with large probabilities. Next, we ana-
lyze the probability defect Dp, and investigate the impact of ¢ on
the proportion of designable secondary structures. We consider 3
thresholds, ¢ € {0.5,0.1,0.01}, associated with Boltzmann proba-
bilities for the motif greater than 50%, 90% and 99% respectively.
Executing Algorithm 1, followed by a removal of redundant mo-
tifs, led to the identification 117, 152 and 174 local obstructions
respectively.

Interestingly, the ¢ = 50% case induces a dominant singularity
of 0.44964, leading to a slightly slower asymptotic growth

[2715(2) = 5, € © (2.22400")

nyn

Figure 6: Example of secondary structure with isolated base
pairs (red) in its MFE structure, obtained by connecting local
solutions.

than for classic inverse folding. This is not entirely unexpected,
since our definition of a valid design requires the target structure
to be the sole MFE for the sequence. Thus, secondary structures
satisfying some probability defect condition must also be solutions
to the inverse folding problem. However, the observed divergence
of the two singularities suggests that an exponentially small pro-
portion (albeit with growth factor very close to 1) of MFE designs
have Boltzmann probability greater than 50%.

For defect thresholds of 0.1 and 0.01 on the probability, the de-
parture from the MFE design is much more pronounced, with re-
spective singularities at 0.45967 and 0.48127 respectively, leading
to asymptotic equivalents in

o (2.17549") and © (2.07783") .
nyn nyn

Again, assuming the equality of constants, we obtain proportions
of designable structures bounded by P,, = 0.95" and P,, = 0.908"
respectively. Those estimates support the notion of an extreme spar-
sity of designable structures in the folding space, with only three out
of 107> (resp. 4 out of 10~°%) structures being designable for ¢ = 0.1
(resp. € = 0.01). These abysmal proportions are consistent with
the popular belief, which rigorously holds for the homopolymer
model [12], that the Boltzmann probability of the MFE structure
decreases exponentially with the sequence length in a random,
uniformly distributed, RNA sequence.

7 CONCLUSION

In this work, we have addressed the designability of RNA structures
for a variety of design paradigms, thresholds and energy models.
We have described a procedure for computing a list of local mo-
tifs whose presence represents an obstruction to the design task.
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This procedure is largely agnostic to the exact objectives of design,
and holds for any design under mild assumptions (monotonicity
of defects over loops). Using enumerative and analytic combina-
torics techniques, we were able to automate the computation of as-
ymptotic upper-bounds, revealing an overall sparsity of designable
structures within the full conformational space, both in simple base-
pair based and the complete Turner energy model. The number of
designable structures still increases with the length of considered
targets, but at a much slower rate than initially anticipated.

This work sets the stage for further analyses of designable struc-
tures, and unlocks a systematic way to address many further ques-
tions. For instance, the popular ensemble defect [48], could benefit
from a more refined treatment using bivariate generating func-
tions. Indeed, the ensemble defect is defined as an expectation,
and is therefore fully additive on the Turner loops of the target
secondary structures. One could therefore determine, through a
trivial modification of Equation (4), the bivariate generating func-
tion S(z,u) = X k>0 sn,vz"uk, Sn,v being an upper bound for
the number of structures of size n having v ensemble defect. An
application of the famous Drmota theorem [11] would then very
likely provide sharper estimates, accounting for the accumulation
of local defects rather than restricting to the worst one.

Enumerative aspects of this work could also easily be extended
to secondary structures including algebraic types of pseudoknots.
Indeed, multiple grammars have been shown to capture major pseu-
doknot classes while, at the same time, allowing for a characteri-
zation of generating functions [36]. An enumeration of designable
structures would greatly help in the parametrization of free-energy
models, a key aspect of pseudoknot prediction programs which has
so far greatly hindered the development of predictive methods [33].

Regarding the complexity of our method for building local ob-
structions, we strongly believe its exponential nature may be intrin-
sic to the problem. More precisely, we believe that the list of local
obstructions may generically grow exponentially with the length of
investigated motifs. Indeed, since structures can be seen as motifs
in our definitions, the existence of a polynomially-bounded list of
local obstructions would imply a polynomial-time algorithm for
decided whether an RNA can be designed. Unfortunately, the prob-
lem was recently been shown to be NP-hard [4], appearing to rule
out a polynomial-time alternative to Algorithm 1.

On a more positive note, Algorithm 1 can easily be modified
to keep the list of suitable candidate sequences for each and ev-
ery designable motif. This allows to greatly restrict the search
space of classic design algorithms, but also suggests a promising
strategy for hard design instances. As an illustration, while in-
vestigating our database of local obstructions, we discovered that
lonely base pairs appear in a few designable motifs, usually consid-
ered unstable in the Turner model and difficult to design for. For
example, the structure (((.(....).))) is the MFE structure of
the RNA sequence UCAGCUUAUGGUGA. We also found that the motif
((..(*)..)) could be designable for some collection of sequences.
Combining sequences adopting these two motifs, we could verify
that an RNA sequence

GGGACAAUCAGCUUAUGGUGAAAGGACC

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA

is predicted by RNAfold to adopt its unique MFE structure of
(GG CCGaeddMmaaam

featuring two isolated base pairs, and a free-energy of -6.4kcal.mol !,
a stability unmatched across several runs of RNAinverse [24] and
Nupack [48]. While this observation remains anecdotal, it is sup-
ported by the success of recent approaches using (partial) libraries
of local motifs [3].
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Exponentially few RNA structures are designable

A PROOF OF PROPOSITION 1

PROPOSITION. For any defect D € {Ds, Dp, Dg}, sequence w,
|w| = n, and structure S € S;,, one has

D(w,8) > DX(wyppjm),Ym e S

where W[ || is the restriction of w to the positions in m.

PRrOOF. Let constraint C be the set of all (un)paired positions of
S \ m plus the paired leaves and the root of m and S¢ € S denotes
the set of secondary structures of size n that are compatible with
the constraint C. Then, we have the follow inequality,

B(w,S)
2stes, B(w,S)
B(w,S)

ZS’ESC B(w,S’)
BWiim|),m)
i/ eSm BW(|m|)-m’)

= P(m|wm))

P(S | w)

IA

Therefore, Dp(w, S) > Dﬁ(w[‘mn, m).
Similarly,

Lsresc B(S" | w)-S"aS]

ZS’ES,,P(S/ |W)'|S/AS| >
= YmweS,, P [ wmp) - Im" am|

Thus, the inequality for D = Dg
For the case D = Dg, we consider m’ such that,

m’ := argmin E(W[ ||} X) = E(W[|m|}- m)
x€Sm
xXFm
A such m’ exists since the set Sy, is finite. Let S € S¢ be the
secondary structure containing m’ at the position of m. We have,

E(W[|m|}»m") = E(W[|m|}» m) = E(w,S") = E(w, S)
In addition, we have, by definition, Dg(w, S) > e~ (E(w,S)-E(w.5)),
which implies the inequality Ds(w, S) > Z)é(wumu, m) O

B PROOF OF PROPOSITION 2

PROPOSITION. For every defect D and energy model considered in
this work, one has DL (w, m) = De,, (Wm, Sm).

ProoF. The schema of proof is similar to the above one. Let Sc,,
be the set of secondary structures of length |S, | that are compatible
with the folding constraint Cp,. One can observe that the way to
make the completion structure is a bijection from Sy, to Sc,,. Let
m’ be a motif equivalent to m and Spy € Sc,, be its minimum
completion structure. The energy of the structure Sy, (resp. Sp) is
the sum of the energy contribution with the motif m (resp. m’) and
with the constrained part, which is the same for both structures.
The later one is a constant for a given sequence. For the reason of
simplicity, we denote it by Ec. Then, for a given sequence w and
its minimum completion wy,, we have

E(wm, Sp) = E(Wm, Sm) = E(w, m") = E(w, m)

This proves the proposition for the case where D = Dg
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For the case of the Probability Defect Dp,

~E(wm.Sm)/RT
e
P(Sm | wm) o~ E(wm. S, )IRT

Zsm, eSc
¢~E(w.m)/RT ,~EC/RT
Zm/esm e—E(w,m')/RTe*EC/RT

e*E(w,m)/RT
—E(w,m’)/RT

Zm’ eSm €
= P(m|w)
Thus, the equality.

Furthermore, for any motif m’ € Sy, and its minimal comple-
tion Sy, the base pair distance are equal between motifs m” and
m and between their minimal completion structures, |m’ Am| =
|Smy A Sm|, because the completion part is same for both motifs.
Therefore, the equality for the case of the ensemble defect D = Dg

[m]
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