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Diffuse cliques maintain biodiversity in species-rich ecological

communities

Matthieu Barbier’?*, Claire de Mazancourt!, Michel Loreau! and Guy Bunin?

May 28, 2019

High-dimensional phenomena, which often defy
low-dimensional intuitions”*2, are an essential and
yet seldom explored frontier in our understanding
of ecological communities®. Ecologists have long
speculated about how large numbers of species
manage to coexist in rich assemblages. Most an-
swers to date have focused on identifying partic-
ular dimensions along which species may orga-
nize to persist together®. Here we instead ask:
what is the characteristic structure of a commu-
nity where coexistence arises from a large num-
ber of concurrent factors? In such communities,
individual species might not follow any evident
pattern in their interactions, yet the group as a
whole exhibits a statistical structure that we call
“diffuse clique”. We find remarkable quantita-
tive evidence for this pattern across a range of
plant biodiversity experiments. OQur approach ex-
ploits the emergent simplicity of high-dimensional
systems®®, a powerful idea originating in physics
that has, so far, rarely been demonstrated un-
equivocally in ecological data. We conclude that a
subtle form of collective order may underlie com-
plex networks of species interactions. This diffuse
order offers a new grasp on how ecological com-
munities maintain their fascinating diversity.

The coexistence of many species with similar attributes
is a long-standing puzzle: simple theories and exper-
iments support the principle of competitive exclusion,
whereby the best competitor should displace all others™,
Yet, strict dominance by one species appears, at most
spatial and temporal scales, to be the exception rather
than the rule in the natural world. Over decades of
ecological research, many partial solutions to this puz-
zle have been proposed, and integrated into the overar-

* Corresponding author: contact@mrcbarbier.org.
L Centre for Biodiversity Theory and Modelling, Theoretical
and Experimental Ecology Station, UMR 5321, CNRS and Paul
Sabatier University, 09200 Moulis, France. 2 Department of
Physics, Technion-Israel Institute of Technology, Haifa, 3200003 Is-
rael. 3 Institut Natura e Teoria Pirenéus, 75015 Paris, France.

ching framework of niche theory”. This framework sug-
gests that we should identify particular trade-offs between
abilities such as resource exploitation*?, defense against
predators and tolerance of temporal fluctuationst#13,
Through these trade-offs, strict bounds are imposed upon
how species grow and interact, preventing any species
from overwhelming its competitors.

We propose to start from a different perspective. Co-
existence in highly diverse communities likely involves a
large number of niches and trade-offs, some known and
many unknown a priorit¥. Each cross-species interaction
may be determined by a unique combination of factors,
precluding any simple and conspicuous (low-dimensional)
order in the community®. Some ecological theories there-
fore make the assumption that interactions are essentially
random® — a bold move, yet one that parallels major suc-
cesses in physicsi®18  Fully random interactions, how-
ever, do not allow many species to coexist’™?. The high
biodiversity observed in many natural communities there-
fore implies some form of latent structure.

We first derive a theoretical prediction, the most par-
simonious way to constrain species interactions in order
to achieve coexistence. We uncover it by asking: if one
samples many different interaction networks, and retains
only those where all species survive, what do the remain-
ing networks have in common? Some may appear very
structured, others almost random. Yet, we find in Fig.
that most of these networks exhibit the same statistical
pattern. This pattern, expressed in equations below, is a
weak but crucial bias in how the most successful competi-
tors interact with others®Y. We now derive this pattern
from a simpler probabilistic argument, and explain in in-
tuitive terms how it allows coexistence.

Measuring species interactions is often difficult and
prone to high uncertainty?*23 and most empirical set-
tings only give us access to aggregated statistics. The to-
tal effect of interactions on one species i can be inferred

from its relative yield
ni = Bi/K; (1)

the ratio of its abundance B; in a community to its abun-
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Figure 1: Finding a general pattern of coexistence
in species-rich interaction networks. Interaction
networks of S species are represented by S x S matri-
ces (square boxes) where each element f3;; denotes the
effect of species j on species i. Of all possible species
interaction networks (bottom disk), only an infinitesimal
fraction (shaded area) allows S species to coexist at some
equilibrium 7;. Zooming into this area of coexistence (up-
per disk), we find that most such networks appear almost
random, yet they tend to follow a common trend which we
call a “diffuse clique structure”: an underlying pattern of
biases @D and correlations @ hidden in the large spread
of coeflicients 3;;. We define a metric p to quantify how
well our predicted pattern is observed in a given interac-
tion network. We find in simulations that this metric p
gets closer to 1 as biodiversity increases (histograms show
the distribution of p for 200 networks with S = 8 and 25
species). By contrast, some coexistence mechanisms, such
as the one-dimensional competition-colonization tradeoff
I819 can give rise to highly atypical networks, showing
unrelated or even opposite patterns.

dance without competitors K; (known as carrying capac-
ity) in the same environment?, We interpret species with
higher n as successful competitors, as they benefit more
(or suffer less) in total from their interactions with oth-
ers. The simplest way to model these interactions is by
assuming a linear dependence between species

mi=1-= By
J#i
where (3;; is the competitive effect of species j on species
i. This relationship, which can be tested empirically2425,
holds between coexisting species at equilibrium in the
classic Lotka-Volterra model.

Many different interaction networks can generate the
same equilibrium community. Observing the coexistence
of S species with relative yields 7; conveys some infor-
mation about their interactions, but not enough to fully
determine them: the equations impose S constraints,
while there are S(S — 1) unknown interaction coeflicients
Bij. On the other hand, community-wide statistics, such
as the mean strength of competition 3, can be reliably
deduced from that information®® (Appendix E).

We therefore adopt a probabilistic approach, and ask
what is the most likely community structure, i.e. the set
of features most widely shared among the many possible
solutions. We first define a prior distribution P(;;) that
can be adapted to our biological knowledge of the commu-
nity. For all experiments below, we simply assume that
each coeflicient ;; is drawn independently from a normal
distribution with mean 3. We then compute how this
prior is modified once restricted to networks that admit
the equilibrium 7n; (Appendix B). Computing a posterior
distribution given a prior and linear constraints li is a
well-established problem in probability theory 2?2,

We find that interactions 3;; should follow two statis-
tical patterns that both admit intuitive interpretations
(Fig. [2). First, competition must be biased to explain
which species are successful or not. If all interaction
strengths were equal to the prior mean, §;; = B, we would
expect any species to achieve the same relative yield,

n* = 1-B%m (3)

1-5

When 7, > n*, we therefore expect that species 4 suffers

less competition than 3, and conversely if 7; < n*. In our

calculation, this appears in the conditional expectation of
the competitive effect of j on ¢,

E[Bijni,m;] = B+ (1 — B)A(ni, ;)
which deviates from the prior mean 5 by a bias

(i —n")n;

for all 3.

(2)

(4)

A(% 77j) = (5)
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Two statistical patterns among coexisting species

(a) Bias in competition: A(ni,n;) ~ = —n*)n;

Less biased More biased

ARA X

+
More targeted I} - _
by competition \‘ N N BB > B

n* == 0A

Less targeted ’ o | —
by competition . W d E[fl <8

(b) Overlap avoidance:

corr (B, Bik) ~ — NNk

> B
A
j
<p
T
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Figure 2: The diffuse clique structure is charac-
terized by two statistical patterns in the compe-
tition of successful species. (a) Bias in competitive
effects . If all species competed with equal strength 3,
we would expect any given species ¢ to achieve the relative
yield n; = n* . When 7; differs from this baseline, we
can infer how interactions most likely deviate from 3. We
show this deviation A(n;,n;) for simulated data, in the
form of a matrix which we now describe. Left to right:
a species with low 7; competes indiscriminately against
others (white, A = 0), whereas a species with high 7,
is a biased competitor. Top to bottom: species with
7; < n* experience stronger competition on average (red,
A > 0) whereas species with n; > n* experience weaker
competition (blue, A < 0). Together, these biases indi-
cate the existence of a “clique” of species that compete
less against each other, and more against all others, thus
achieving higher relative yield than the baseline n*. (b)
Correlation structure between columns of the interaction
matrix: the competitive effects of two successful species
are anti-correlated, avoiding overlap in which species they

affect, whereas competition from unsuccessful species is
again indiscriminate.

Two successful species do not
team up against the same species.

We see that this bias is not evenly distributed. Compe-
tition coming from unsuccessful species (low 7;) can be
random without compromising the equilibrium. On the
other hand, a species that is successful (achieving high
n;) is likely to have biased interactions, competing less
on average against other successful species, and experi-
encing weaker competition from them (Fig. [2p).

The second pattern imposes that successful species j
and k avoid competing against the same target i (Fig.[2b)

cort(Big, Binlni ns ) = — . (6)

ngéi m

While the first pattern (4f) determines the expected success
of each species, the second pattern guarantees that each
relative yield is ezactly set to n;. We show in Appendix B
that this correlation pattern prevents 7; from deviating
from its expectation, which would likely drive some low-7
species to extinction in a fully random community.

Taken together, these two patterns suggest that we will
generally observe a fuzzy “clique” of competitors that are
both biased and successful, surrounded by unsuccessful
species with arbitrary interactions. This picture differs
in multiple respects from classic explanations of coexis-
tence. It does not suppose a measurable segregation of
species into distinct niches. By imposing only the weakest
possible constraints upon the many degrees of freedom in
Bij, it allows interactions to take almost arbitrary values.
It also represents a form of collective organization, where
coexistence arises, not from particular species traits, but
from statistical biases distributed over all interactions.
Accordingly, Fig. [I] shows that this structure becomes
increasingly prevalent (although more diffuse) in highly
diverse communities.

We now present an empirical validation of these pat-
terns on experimental data in Fig.[3|and Fig.[4} Grassland
biodiversity experiments®¥ 3L provide an ideal testbed for
inferring species interactions and mechanisms of coexis-
tence. Each experiment contains a large number of plots
in which plant species are assembled in varying numbers
and combinations, out of a pool of § = 8 to 60 species
depending on the experiment. Biomass in monoculture
(single-species plots) provides an estimate of the species’
carrying capacities.

To test our predictions, we split these data in two sets.
Relative yields 7; in the full-diversity plots are used to
compute the theoretical expectations and correlations
@ of interactions. All other plots, comprising different
subsets of the species pool, are used to fit individual in-
teraction coeflicients £;; by a multilinear regression of
equation . From these fitted coefficients, we construct
empirical estimates of the theoretical statistics.

We show in Fig. [3] the interaction matrix computed in
the Wageningen grassland experiment. While lacking ap-
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Figure 3: Diffuse clique in the Wageningen grassland experiment. (a) Using many species combinations
(56 sets of S < 8 species), we can fit interaction coefficients f;; by multilinear regression3. (b) Knowing only the
relative yields 7); in the full community (all S = 8 species), our method suggests a theoretical expectation for
each interaction, E[8;;|n;,n;]. (c) Comparison between fitted coefficients and expectations. In our diffuse pattern,
individual coefficients are expected to exhibit a large spread around their expectation E[3;;]. But we can construct
an empirical estimate of the mean, the running average A[f;;] (grey curve, 90% CI in shaded area). It is in good
agreement with the theoretical mean, as shown by proximity to the red 1:1 line. (d) We show this empirical average
A[f;;] in matrix form (median value for each species pair ¢, j), to compare with the predicted matrix E[5;;] in (b).

parent structure, it conforms to the statistical patterns
predicted by our theory. Individual coefficients §;; show
a wide dispersion (Fig. [3]), which may be widened by infer-
ence errors=?. Despite this large spread, when we group
interactions involving species with similar relative yields,
their average A[B;;|n:,n;] lays close to a one-to-one re-
lationship with the theoretical expectation E[3;;|n;,n;].
The reconstructed statistical pattern in Fig.|3|agrees both
qualitatively and quantitatively with the predictions.

This striking agreement between theory and data is
quantified for multiple experiments in Fig. [ We stress
that this is a strong test. All results are fully determined
by measured abundances, without any adjustable param-
eter. Furthermore, none of the data used to parameterize
theoretical formulas is involved in fitting the empirical
interaction coefficients. Finally, we rule out these rela-
tionships being artefacts of our method, as they vanish
for very sparse or noisy data, and can be violated in sim-
ulated ecosystems with a low-dimensional structure, as
seen in Fig. [T and

The approach developed here provides a test of how
typical an empirical or theoretical interaction network is,
given the observed abundances of its species: how sim-
ilar it is to the majority of possible networks admitting
the same equilibrium 7; (Fig. [I). We also detail in Ap-

pendix B an algorithm for generating such typical net-
works. A deviation from typicality may hint at low di-
mensional mechanisms, such as particular trade-offs.

We have introduced a novel methodology for thinking
about the collective organization of coexistence in ecolog-
ical communities. This approach goes beyond the partic-
ular theoretical predictions and @, which are simpli-
fied results tied to our choice of unstructured prior distri-
bution and linear interactions. When there is a positive
but nonlinear relationship between data and predictions,
our approach could be improved with more accurate in-
ference and more realistic models, but it already captures
an important qualitative feature of community organiza-
tion. The same methods could be expanded by adding
structure to the prior and nonlinearity to the dynamics.
This will allow extensions to more complex communities,
such as food webs, or networks that have been structured
by other ecological and evolutionary processes®2. Future
work should explore how this approach, based on ideas
from statistical physics and generic properties of high-
dimensional systems, can be generalized to other biologi-
cal systems.
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Figure 4: Cross-experiment validation of the two

components of the diffuse clique structure. We
compute the agreement between the measured and pre-
dicted values for: conditional expectations E[B;;[n;,n;]
(left) and correlations corr(S;;, Bik|m, 15, k) (right), us-
ing the predictions in Fig. We show the agreement
metric p (see SI Appendix E), comprised between -1 and
1. Boxes and whiskers represent the 50% and 95% CI of
bootstrapped values, with the median shown as the cen-
ter line. The shaded rows show results for two coexistence
mechanisms as in Fig.[I} a one-dimensional trade-off with
p < 0 (top row) and our high-dimensional diffuse clique
structure with p > 0 (bottom row), both aggregated over
5 simulated communities with S = 25 species. In the Wa-
geningen experiment, p is significantly larger than zero
for both means and correlations. The Big Bio and Bio-
CON experiments comprise multiple treatments (see SI
Appendix E), over which we aggregate to find that zero
always lies below the 10th percentile of p.

Methods

Experimental data

We employ data from 3 grassland biodiversity experi-
ments in Wageningen, Netherlands?? and Cedar Creek,
MN, USA (the Big Biodiversity*! and BioCON"Y exper-
iments). Each experiment uses a pool of species seeded
or planted in various combinations, including some or all
possible monocultures (S = 1 species), some partial com-
positions, and all species planted together. We removed
the first two year for all experiments as they showed clear
evidence of transient dynamics (Appendix C).

Interactions measured in the Wageningen experiment
showed much lower inference error than in other exper-
iments. Therefore, we used this experiment to assess
our hypothesis that observed abundances are primarily
determined by fixed inter-species interactions (Appendix
D). The consistency of the equilibrium Lotka-Volterra de-
scription was shown through a series of tests: we em-
ployed multiple inference procedures for the matrix B;;
and carrying capacities K;, using different subsets of the
data for prediction and validation, and found them all
statistically significant and in agreement within empirical
uncertainty. In particular, carrying capacities K; inferred
from all multispecies plots (S > 1) agreed with measure-
ments in monocultures (S = 1). Likewise, interactions
Bij inferred from all plots with S < 8 were consistent
with the equilibrium values of n; = B;/K; in octoculture
(8 = 8). This strongly supports the simple linear model
. Interaction estimates from other experiments were
less robust and might be affected by nonlinearity, tran-
sient dynamics, stochasticity and errors.

Validation of theoretical predictions

For each experiment, we first split monoculture (S = 1)
replicates in two sets, and compute the species’ carry-
ing capacities K; for each set, to be used separately.
For a maximal plot biodiversity Spax, all plots with
1 < 8 < Shax and the first set of monocultures were
used to infer the interaction matrix j3;; using the hyper-
plane (multilinear) least-squares fit proposed by Xiao et
al“? (see Appendix D). The second set of monocultures
and the species abundance B; in plots with S = Spax
were then used compute the relative yields n; = B;/K; in
the full community. All calculations were performed 250
times, using different bootstrapped sample means as val-
ues for K; and B;. Each calculation led to a different set
of n;, Bi; and B (see Appendix A for calculation details).

We tested the two components of the diffuse clique pat-
tern, starting with the pattern of means . We plotted
the measured values of 3;; (hereafter y) against their the-
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oretical expectation E[f;;|n;,n;] (hereafter x). To obtain
an empirical estimate of the expectation for a single in-
teraction coefficient, we performed a running average: for
each point (z,y), we replaced its y coordinate by the av-
erage 7 within a window centered on x and spanning 10%
of the x-axis; we also measure the 90% CI over boot-
strapped values (Fig. ) We then grouped all values
7 associated with the same species pair (i, ), took their
median, and reconstructed an empirical matrix of expec-
tations B;; (shown in Fig. )

To construct a stringent test (see SI Appendix E), the
metric of agreement p used in Fig. [T[and[dis defined as the
minimum of three correlation scores: pg testing the over-
all relationship between x and ¥, p,ow testing the agree-
ment of row-wise trends (within bins of 7;) and p..; for
column-wise trends (within bins of ;). This ensures that
all the qualitative features described in Fig.[2| are present,
and reduces the risk of spurious agreement scores.

We proceeded similarly to test the pattern of correla-
tions (6). Defining d;; = B;; — E[Bi;|ni, n;], we compute
y = 6 —d;jd;ix/mean (d2,,,), where §;, = 1if j = k and 0
otherwise, and the denominator is the sample mean. We
then plotted y against the prediction = = —n;me/ >, 07,
performed a running average to get 7, and constructed an
empirical tensor of correlations Cjj; from the median of
all values associated with each species triplet (i, j, k).

Data availability

This study brought together existing data that was ob-
tained upon request (Wageningen biodiversity experi-
ment data from J. van Ruijven?”) and data that is pub-
licly available (Big Bio http://www.cedarcreek.umn.
edu/research/datal and BioCON http://www.biocon.
umn . edu/). Data represented in Fig. 3 and 4 is available
at https://github.com/mrcbarbier/diffuseclique.

Code availability

Computer code developed for this study is available at
https://github.com/mrcbarbier/diffuseclique.
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