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High-dimensional phenomena, which often defy1

low-dimensional intuitions1;2, are an essential and2

yet seldom explored frontier in our understanding3

of ecological communities3. Ecologists have long4

speculated about how large numbers of species5

manage to coexist in rich assemblages. Most an-6

swers to date have focused on identifying partic-7

ular dimensions along which species may orga-8

nize to persist together4. Here we instead ask:9

what is the characteristic structure of a commu-10

nity where coexistence arises from a large num-11

ber of concurrent factors? In such communities,12

individual species might not follow any evident13

pattern in their interactions, yet the group as a14

whole exhibits a statistical structure that we call15

“diffuse clique”. We find remarkable quantita-16

tive evidence for this pattern across a range of17

plant biodiversity experiments. Our approach ex-18

ploits the emergent simplicity of high-dimensional19

systems5;6, a powerful idea originating in physics20

that has, so far, rarely been demonstrated un-21

equivocally in ecological data. We conclude that a22

subtle form of collective order may underlie com-23

plex networks of species interactions. This diffuse24

order offers a new grasp on how ecological com-25

munities maintain their fascinating diversity.26

The coexistence of many species with similar attributes27

is a long-standing puzzle: simple theories and exper-28

iments support the principle of competitive exclusion,29

whereby the best competitor should displace all others7;8.30

Yet, strict dominance by one species appears, at most31

spatial and temporal scales, to be the exception rather32

than the rule in the natural world. Over decades of33

ecological research, many partial solutions to this puz-34

zle have been proposed, and integrated into the overar-35
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ching framework of niche theory9. This framework sug- 36

gests that we should identify particular trade-offs between 37

abilities such as resource exploitation10, defense against 38

predators11 and tolerance of temporal fluctuations12;13. 39

Through these trade-offs, strict bounds are imposed upon 40

how species grow and interact, preventing any species 41

from overwhelming its competitors. 42

We propose to start from a different perspective. Co- 43

existence in highly diverse communities likely involves a 44

large number of niches and trade-offs, some known and 45

many unknown a priori 14. Each cross-species interaction 46

may be determined by a unique combination of factors, 47

precluding any simple and conspicuous (low-dimensional) 48

order in the community3. Some ecological theories there- 49

fore make the assumption that interactions are essentially 50

random5 – a bold move, yet one that parallels major suc- 51

cesses in physics15;16. Fully random interactions, how- 52

ever, do not allow many species to coexist17. The high 53

biodiversity observed in many natural communities there- 54

fore implies some form of latent structure. 55

We first derive a theoretical prediction, the most par- 56

simonious way to constrain species interactions in order 57

to achieve coexistence. We uncover it by asking: if one 58

samples many different interaction networks, and retains 59

only those where all species survive, what do the remain- 60

ing networks have in common? Some may appear very 61

structured, others almost random. Yet, we find in Fig. 1 62

that most of these networks exhibit the same statistical 63

pattern. This pattern, expressed in equations below, is a 64

weak but crucial bias in how the most successful competi- 65

tors interact with others20. We now derive this pattern 66

from a simpler probabilistic argument, and explain in in- 67

tuitive terms how it allows coexistence. 68

Measuring species interactions is often difficult and 69

prone to high uncertainty21–23, and most empirical set- 70

tings only give us access to aggregated statistics. The to- 71

tal effect of interactions on one species i can be inferred 72

from its relative yield 73

ηi = Bi/Ki (1)

the ratio of its abundance Bi in a community to its abun- 74

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652230doi: bioRxiv preprint 

https://doi.org/10.1101/652230
http://creativecommons.org/licenses/by/4.0/


Figure 1: Finding a general pattern of coexistence
in species-rich interaction networks. Interaction
networks of S species are represented by S × S matri-
ces (square boxes) where each element βij denotes the
effect of species j on species i. Of all possible species
interaction networks (bottom disk), only an infinitesimal
fraction (shaded area) allows S species to coexist at some
equilibrium ηi. Zooming into this area of coexistence (up-
per disk), we find that most such networks appear almost
random, yet they tend to follow a common trend which we
call a “diffuse clique structure”: an underlying pattern of
biases (4) and correlations (6) hidden in the large spread
of coefficients βij . We define a metric ρ to quantify how
well our predicted pattern is observed in a given interac-
tion network. We find in simulations that this metric ρ
gets closer to 1 as biodiversity increases (histograms show
the distribution of ρ for 200 networks with S = 8 and 25
species). By contrast, some coexistence mechanisms, such
as the one-dimensional competition-colonization tradeoff
18;19, can give rise to highly atypical networks, showing
unrelated or even opposite patterns.

dance without competitors Ki (known as carrying capac- 75

ity) in the same environment9. We interpret species with 76

higher η as successful competitors, as they benefit more 77

(or suffer less) in total from their interactions with oth- 78

ers. The simplest way to model these interactions is by 79

assuming a linear dependence between species 80

ηi = 1−
∑
j 6=i

βijηj for all i. (2)

where βij is the competitive effect of species j on species 81

i. This relationship, which can be tested empirically24;25, 82

holds between coexisting species at equilibrium in the 83

classic Lotka-Volterra model. 84

Many different interaction networks can generate the 85

same equilibrium community. Observing the coexistence 86

of S species with relative yields ηi conveys some infor- 87

mation about their interactions, but not enough to fully 88

determine them: the equations (2) impose S constraints, 89

while there are S(S− 1) unknown interaction coefficients 90

βij . On the other hand, community-wide statistics, such 91

as the mean strength of competition β̄, can be reliably 92

deduced from that information26 (Appendix E). 93

We therefore adopt a probabilistic approach, and ask 94

what is the most likely community structure, i.e. the set 95

of features most widely shared among the many possible 96

solutions. We first define a prior distribution P (βij) that 97

can be adapted to our biological knowledge of the commu- 98

nity. For all experiments below, we simply assume that 99

each coefficient βij is drawn independently from a normal 100

distribution with mean β̄. We then compute how this 101

prior is modified once restricted to networks that admit 102

the equilibrium ηi (Appendix B). Computing a posterior 103

distribution given a prior and linear constraints (2) is a 104

well-established problem in probability theory27;28. 105

We find that interactions βij should follow two statis- 106

tical patterns that both admit intuitive interpretations 107

(Fig. 2). First, competition must be biased to explain 108

which species are successful or not. If all interaction 109

strengths were equal to the prior mean, βij = β̄, we would 110

expect any species to achieve the same relative yield, 111

η∗ =
1− β̄

∑
i ηi

1− β̄
. (3)

When ηi > η∗, we therefore expect that species i suffers 112

less competition than β̄, and conversely if ηi < η∗. In our 113

calculation, this appears in the conditional expectation of 114

the competitive effect of j on i, 115

E[βij |ηi, ηj ] = β̄ + (1− β̄)∆(ηi, ηj) (4)

which deviates from the prior mean β̄ by a bias

∆(ηi, ηj) = − (ηi − η∗)ηj∑
m6=i η

2
m

. (5)
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Figure 2: The diffuse clique structure is charac-
terized by two statistical patterns in the compe-
tition of successful species. (a) Bias in competitive
effects (4). If all species competed with equal strength β̄,
we would expect any given species i to achieve the relative
yield ηi = η∗ (3). When ηi differs from this baseline, we
can infer how interactions most likely deviate from β̄. We
show this deviation ∆(ηi, ηj) for simulated data, in the
form of a matrix which we now describe. Left to right:
a species with low ηj competes indiscriminately against
others (white, ∆ = 0), whereas a species with high ηj
is a biased competitor. Top to bottom: species with
ηi < η∗ experience stronger competition on average (red,
∆ > 0) whereas species with ηi > η∗ experience weaker
competition (blue, ∆ < 0). Together, these biases indi-
cate the existence of a “clique” of species that compete
less against each other, and more against all others, thus
achieving higher relative yield than the baseline η∗. (b)
Correlation structure between columns of the interaction
matrix: the competitive effects of two successful species
are anti-correlated, avoiding overlap in which species they
affect, whereas competition from unsuccessful species is
again indiscriminate.

We see that this bias is not evenly distributed. Compe- 116

tition coming from unsuccessful species (low ηj) can be 117

random without compromising the equilibrium. On the 118

other hand, a species that is successful (achieving high 119

ηj) is likely to have biased interactions, competing less 120

on average against other successful species, and experi- 121

encing weaker competition from them (Fig. 2a). 122

The second pattern imposes that successful species j 123

and k avoid competing against the same target i (Fig. 2b) 124

corr(βij , βik|ηi, ηj , ηk) = − ηjηk∑
m6=i η

2
m

. (6)

While the first pattern (4) determines the expected success 125

of each species, the second pattern guarantees that each 126

relative yield is exactly set to ηi. We show in Appendix B 127

that this correlation pattern prevents ηi from deviating 128

from its expectation, which would likely drive some low-η 129

species to extinction in a fully random community. 130

Taken together, these two patterns suggest that we will 131

generally observe a fuzzy “clique” of competitors that are 132

both biased and successful, surrounded by unsuccessful 133

species with arbitrary interactions. This picture differs 134

in multiple respects from classic explanations of coexis- 135

tence. It does not suppose a measurable segregation of 136

species into distinct niches. By imposing only the weakest 137

possible constraints upon the many degrees of freedom in 138

βij , it allows interactions to take almost arbitrary values. 139

It also represents a form of collective organization, where 140

coexistence arises, not from particular species traits, but 141

from statistical biases distributed over all interactions. 142

Accordingly, Fig. 1 shows that this structure becomes 143

increasingly prevalent (although more diffuse) in highly 144

diverse communities. 145

We now present an empirical validation of these pat- 146

terns on experimental data in Fig. 3 and Fig. 4. Grassland 147

biodiversity experiments29–31 provide an ideal testbed for 148

inferring species interactions and mechanisms of coexis- 149

tence. Each experiment contains a large number of plots 150

in which plant species are assembled in varying numbers 151

and combinations, out of a pool of S = 8 to 60 species 152

depending on the experiment. Biomass in monoculture 153

(single-species plots) provides an estimate of the species’ 154

carrying capacities. 155

To test our predictions, we split these data in two sets. 156

Relative yields ηi in the full-diversity plots are used to 157

compute the theoretical expectations (4) and correlations 158

(6) of interactions. All other plots, comprising different 159

subsets of the species pool, are used to fit individual in- 160

teraction coefficients βij by a multilinear regression of 161

equation (2). From these fitted coefficients, we construct 162

empirical estimates of the theoretical statistics. 163

We show in Fig. 3 the interaction matrix computed in 164

the Wageningen grassland experiment. While lacking ap- 165
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Figure 3: Diffuse clique in the Wageningen grassland experiment. (a) Using many species combinations
(56 sets of S < 8 species), we can fit interaction coefficients βij by multilinear regression23. (b) Knowing only the
relative yields ηi in the full community (all S = 8 species), our method (4) suggests a theoretical expectation for
each interaction, E[βij |ηi, ηj ]. (c) Comparison between fitted coefficients and expectations. In our diffuse pattern,
individual coefficients are expected to exhibit a large spread around their expectation E[βij ]. But we can construct
an empirical estimate of the mean, the running average A[βij ] (grey curve, 90% CI in shaded area). It is in good
agreement with the theoretical mean, as shown by proximity to the red 1:1 line. (d) We show this empirical average
A[βij ] in matrix form (median value for each species pair i, j), to compare with the predicted matrix E[βij ] in (b).

parent structure, it conforms to the statistical patterns166

predicted by our theory. Individual coefficients βij show167

a wide dispersion (Fig. 3), which may be widened by infer-168

ence errors23. Despite this large spread, when we group169

interactions involving species with similar relative yields,170

their average A[βij |ηi, ηj ] lays close to a one-to-one re-171

lationship with the theoretical expectation E[βij |ηi, ηj ].172

The reconstructed statistical pattern in Fig. 3 agrees both173

qualitatively and quantitatively with the predictions.174

This striking agreement between theory and data is175

quantified for multiple experiments in Fig. 4. We stress176

that this is a strong test. All results are fully determined177

by measured abundances, without any adjustable param-178

eter. Furthermore, none of the data used to parameterize179

theoretical formulas is involved in fitting the empirical180

interaction coefficients. Finally, we rule out these rela-181

tionships being artefacts of our method, as they vanish182

for very sparse or noisy data, and can be violated in sim-183

ulated ecosystems with a low-dimensional structure, as184

seen in Fig. 1 and 4.185

The approach developed here provides a test of how186

typical an empirical or theoretical interaction network is,187

given the observed abundances of its species: how sim-188

ilar it is to the majority of possible networks admitting189

the same equilibrium ηi (Fig. 1). We also detail in Ap-190

pendix B an algorithm for generating such typical net- 191

works. A deviation from typicality may hint at low di- 192

mensional mechanisms, such as particular trade-offs4. 193

We have introduced a novel methodology for thinking 194

about the collective organization of coexistence in ecolog- 195

ical communities. This approach goes beyond the partic- 196

ular theoretical predictions (4) and (6), which are simpli- 197

fied results tied to our choice of unstructured prior distri- 198

bution and linear interactions. When there is a positive 199

but nonlinear relationship between data and predictions, 200

our approach could be improved with more accurate in- 201

ference and more realistic models, but it already captures 202

an important qualitative feature of community organiza- 203

tion. The same methods could be expanded by adding 204

structure to the prior and nonlinearity to the dynamics. 205

This will allow extensions to more complex communities, 206

such as food webs, or networks that have been structured 207

by other ecological and evolutionary processes32. Future 208

work should explore how this approach, based on ideas 209

from statistical physics and generic properties of high- 210

dimensional systems, can be generalized to other biologi- 211

cal systems. 212
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Figure 4: Cross-experiment validation of the two
components of the diffuse clique structure. We
compute the agreement between the measured and pre-
dicted values for: conditional expectations E[βij |ηi, ηj ]
(left) and correlations corr(βij , βik|ηi, ηj , ηk) (right), us-
ing the predictions in Fig. 2. We show the agreement
metric ρ (see SI Appendix E), comprised between -1 and
1. Boxes and whiskers represent the 50% and 95% CI of
bootstrapped values, with the median shown as the cen-
ter line. The shaded rows show results for two coexistence
mechanisms as in Fig. 1: a one-dimensional trade-off with
ρ < 0 (top row) and our high-dimensional diffuse clique
structure with ρ > 0 (bottom row), both aggregated over
5 simulated communities with S = 25 species. In the Wa-
geningen experiment, ρ is significantly larger than zero
for both means and correlations. The Big Bio and Bio-
CON experiments comprise multiple treatments (see SI
Appendix E), over which we aggregate to find that zero
always lies below the 10th percentile of ρ.

Methods 213

Experimental data 214

We employ data from 3 grassland biodiversity experi- 215

ments in Wageningen, Netherlands29 and Cedar Creek, 216

MN, USA (the Big Biodiversity31 and BioCON30 exper- 217

iments). Each experiment uses a pool of species seeded 218

or planted in various combinations, including some or all 219

possible monocultures (S = 1 species), some partial com- 220

positions, and all species planted together. We removed 221

the first two year for all experiments as they showed clear 222

evidence of transient dynamics (Appendix C). 223

Interactions measured in the Wageningen experiment 224

showed much lower inference error than in other exper- 225

iments. Therefore, we used this experiment to assess 226

our hypothesis that observed abundances are primarily 227

determined by fixed inter-species interactions (Appendix 228

D). The consistency of the equilibrium Lotka-Volterra de- 229

scription (2) was shown through a series of tests: we em- 230

ployed multiple inference procedures for the matrix βij 231

and carrying capacities Ki, using different subsets of the 232

data for prediction and validation, and found them all 233

statistically significant and in agreement within empirical 234

uncertainty. In particular, carrying capacities Ki inferred 235

from all multispecies plots (S > 1) agreed with measure- 236

ments in monocultures (S = 1). Likewise, interactions 237

βij inferred from all plots with S < 8 were consistent 238

with the equilibrium values of ηi = Bi/Ki in octoculture 239

(S = 8). This strongly supports the simple linear model 240

(2). Interaction estimates from other experiments were 241

less robust and might be affected by nonlinearity, tran- 242

sient dynamics, stochasticity and errors. 243

Validation of theoretical predictions 244

For each experiment, we first split monoculture (S = 1) 245

replicates in two sets, and compute the species’ carry- 246

ing capacities Ki for each set, to be used separately. 247

For a maximal plot biodiversity Smax, all plots with 248

1 < S < Smax and the first set of monocultures were 249

used to infer the interaction matrix βij using the hyper- 250

plane (multilinear) least-squares fit proposed by Xiao et 251

al23 (see Appendix D). The second set of monocultures 252

and the species abundance Bi in plots with S = Smax 253

were then used compute the relative yields ηi = Bi/Ki in 254

the full community. All calculations were performed 250 255

times, using different bootstrapped sample means as val- 256

ues for Ki and Bi. Each calculation led to a different set 257

of ηi, βij and β (see Appendix A for calculation details). 258

We tested the two components of the diffuse clique pat- 259

tern, starting with the pattern of means (4). We plotted 260

the measured values of βij (hereafter y) against their the- 261
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oretical expectation E[βij |ηi, ηj ] (hereafter x). To obtain262

an empirical estimate of the expectation for a single in-263

teraction coefficient, we performed a running average: for264

each point (x, y), we replaced its y coordinate by the av-265

erage y within a window centered on x and spanning 10%266

of the x-axis; we also measure the 90% CI over boot-267

strapped values (Fig. 3c). We then grouped all values268

y associated with the same species pair (i, j), took their269

median, and reconstructed an empirical matrix of expec-270

tations Bij (shown in Fig. 3d).271

To construct a stringent test (see SI Appendix E), the272

metric of agreement ρ used in Fig. 1 and 4 is defined as the273

minimum of three correlation scores: ρ0 testing the over-274

all relationship between x and y, ρrow testing the agree-275

ment of row-wise trends (within bins of ηi) and ρcol for276

column-wise trends (within bins of ηj). This ensures that277

all the qualitative features described in Fig. 2 are present,278

and reduces the risk of spurious agreement scores.279

We proceeded similarly to test the pattern of correla-280

tions (6). Defining dij = βij − E[βij |ηi, ηj ], we compute281

y = δjk−dijdik/mean
(
d2mn

)
, where δjk = 1 if j = k and 0282

otherwise, and the denominator is the sample mean. We283

then plotted y against the prediction x = −ηjηk/
∑

l 6=i η
2
l ,284

performed a running average to get y, and constructed an285

empirical tensor of correlations Cijk from the median of286

all values associated with each species triplet (i, j, k).287

Data availability288

This study brought together existing data that was ob-289

tained upon request (Wageningen biodiversity experi-290

ment data from J. van Ruijven29) and data that is pub-291

licly available (Big Bio http://www.cedarcreek.umn.292

edu/research/data and BioCON http://www.biocon.293

umn.edu/). Data represented in Fig. 3 and 4 is available294

at https://github.com/mrcbarbier/diffuseclique.295

Code availability296

Computer code developed for this study is available at297

https://github.com/mrcbarbier/diffuseclique.298
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