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Summary 
Ion mobility can add a dimension to LC-MS based shotgun proteomics which has the 

potential to boost proteome coverage, quantification accuracy and dynamic range.  

Required for this is suitable software that extracts the information contained in the four-

dimensional (4D) data space spanned by m/z, retention time, ion mobility and signal 

intensity. Here we describe the ion mobility enhanced MaxQuant software, which utilizes 

the added data dimension.  It offers an end to end computational workflow for the 

identification and quantification of peptides, proteins and posttranslational modification 

sites in LC-IMS-MS/MS shotgun proteomics data. We apply it to trapped ion mobility 

spectrometry (TIMS) coupled to a quadrupole time-of-flight (QTOF) analyzer. A highly 

parallelizable 4D feature detection algorithm extracts peaks which are assembled to 

isotope patterns. Masses are recalibrated with a non-linear m/z, retention time, ion 

mobility and signal intensity dependent model, based on peptides from the sample. A 

new matching between runs (MBR) algorithm that utilizes collisional cross section (CCS) 

values of MS1 features in the matching process significantly gains specificity from the 

extra dimension. Prerequisite for using CCS values in MBR is a relative alignment of the 

ion mobility values between the runs. The missing value problem in protein 

quantification over many samples is greatly reduced by CCS aware MBR.MS1 level 

label-free quantification is also implemented which proves to be highly precise and 

accurate on a benchmark dataset with known ground truth. MaxQuant for LC-IMS-

MS/MS is part of the basic MaxQuant release and can be downloaded from 

http://maxquant.org. 
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INTRODUCTION 
Ion mobility spectrometry (1–3) (IMS) separates molecules in the gas phase by their 

collisional cross section (CCS) which is the effective area of a molecule quantifying the 

likelihood of scattering events with the gas. It can be coupled to mass spectrometry (MS) 

for which it constitutes a separation dimension in addition to mass over charge 

(m/z).Together with liquid chromatography (LC) and tandem mass spectrometry 

(MS/MS) one obtains LC-IMS-MS/MS shotgun proteomics, a promising strategy for the 

analysis of complex samples (4–7).Specifically, the object of our studies is the timsTOF 

Pro instrument (8) which is a time-of-flight (TOF) mass spectrometer utilizing a trapped 

ion mobility spectrometry (9–11) (TIMS)device operated with the parallel accumulation-

serial fragmentation (PASEF) scan mode (12). 

 

MaxQuant (13, 14) is a popular software platform for LC-MS/MS shotgun proteomics 

possessing a large ecosystem of algorithms for comprehensive data analysis (15). It 

incorporates the peptide search engine Andromeda (16) and the companion software 

Perseus (17, 18) offers a complete solution for the downstream bioinformatics analysis. 

MaxQuant performs quantification with labels (19) and via the MaxLFQ algorithm 

(20)on label-free data. MaxQuant achieves high peptide mass accuracies thanks to its 

advanced nonlinear recalibration algorithms (21, 22). It contains comfortable 

visualization capabilities (23) for the inspection of the raw data and runs on Windows and 

Linux operating systems (24). 

 

The aim of this publication is to combine these two factors, i.e. to make MaxQuant 

capable of analyzing timsTOF Pro data. A main challenge originates from the inflation of 

raw data by the added dimension. To keep the computation time required for the analysis 

down to a realistic amount is of highest importance. In this manuscript we describe the 

updated computational workflow of MaxQuant for ion mobility-enhanced shotgun 

proteomics data, which has been optimized for computational performance. It is based on 

4D feature detection in the space augmented by the extra dimension provided by IMS. 

Matching between runs is a crucial algorithmic step in MaxQuant for retrieving MS1 
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features in data-dependent acquisition shotgun proteomics, in order to make 

quantification of peptides and proteins more reproducible over many samples. It requires 

high mass accuracy and precise relative retention time measures, obtained by non-linear 

retention time alignment in order to restrict false positives matches. Here we present a 

new matching algorithm that takes into account ion mobility values of peptide features 

measured on a timsTOF Pro instrument. Similarly, as for the retention times, we observe 

the necessity for relative alignment of ion mobility values between LC-IMS-MS/MS 

runs, and include a nonlinear multi-sample alignment algorithm into the MaxQuant 

workflow. Matching the 4D features using these aligned CCS values did significantly 

improve specificity. Furthermore, we observe a strong positive impact on the missing 

value problem in quantitative proteomics. All new algorithmic steps as well as their 

application to example data are detailed in the Results section. 

 

EXPERIMENTAL PROCEDURES  

Cell culture and sample preparation 

Whole protein extracts of human cervical cancer cells (HeLa) were purchased 

fromPromega and digestion was performed according to the protocol of Wang et al.(25). 

Briefly, the protein lyophilisate was re-constituted in water and trifluoroethanol (1:1). 

Disulfide bonds were reduced with dithiothreitol at a concentration of 5 mM and 

alkylated with chloroacetamide (20mM) in ammonium bicarbonate buffer, followed by 

90 min incubation in the dark. Trypsin (Promega) was added in a protease: protein ratio 

(wt:wt) of 1:100 and incubation was performed overnight at 37°C. Digestion was stopped 

by acidification with formic acid to pH 2 and peptides were desalted on C18 cartridges (3 

M Empore) and dried in a vacuum centrifuge. For the mixed species experiments, tryptic 

protein digests of H. sapiens (HeLa), S. cerevisiae (Promega) and E.coli (Waters) were 

mixed in two different experiments leading to a ratio of 1:1 (HeLa), 1:2 (S. cerevisiae) 

and 1:4 (E.coli) between the two samples. The human blood plasma samples were 

collected from acute inflammation patients and were depleted for the 12 most abundant 

proteins using spin columns (Pierce) according to the manufacturer’s instructions. The 
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depleted plasma proteome was TCA/DOC precipitated and digested with SMART digest 

trypsin (Pierce) for 2h. . Peptides were desalted (SOLAμ HRP, Pierce), diluted to 5 

ng/μL0.1% of formic acid in water for subsequent transfer of 100 ng to Evotips. 

Liquid chromatography 

A nanoElute (Bruker) high pressure nanoflow system was connected to the timsTOF Pro, 

an ion-mobility spectrometry quadrupole time of flight mass spectrometer (Bruker). 

Peptides were reconstituted in 0.1% FA and 200 ng were delivered to reversed phase 

analytical columns (25 cm x 75 µm i.d., Ion opticks) with pulled emitter tips. Liquid 

chromatography was performed at 50 °C and peptides were separated on the analytical 

column using a 120 min gradient (solvent A: 0.1% FA; solvent B: 0.1% FA, in ACN) at a 

flow rate of 400 nl/min. A linear gradient from 2-17 % B was applied for 60 min, 

followed by 17-25 % B for the next 30 min and followed by a step to 37% B for 10 min 

and a step to 80% B for 10 min followed by 10 min of washing at 80% B. For the plasma 

proteome samples, the Evosep One (Evosep) was used to achieve low overhead times and 

a high sample throughput. Separation was performed by transferring 100 ng proteolytic 

digest from the sample loop on short columns (8 cm x 100 µm i.d.) at flow rate of 1.5 

µl/min achieving 11.5 min gradient times and the measurement of 100 samples/day.  

 

Ion mobility mass spectrometry 

For all experiments, the timsTOF Pro was operated in PASEF mode. Ions entering the 

instrument were orthogonally deflected into an electrodynamic funnel and were trapped 

in the front region of the trapped ion mobility (TIMS) analyzer. The TIMS tunnel is 

separated into two parts (“dual TIMS” design), allowing for accumulation of entering 

ions in the first part and trapped ion mobility elution in the second part. The dual TIMS 

design allows usage of almost 100% of the ions as long as equal accumulation and 

analysis times are used. While ions are eluted from the second part, accumulation of new 

ions can already take place in the first part for subsequent transfer into the second part. 

Trapped ion mobility separation was achieved by repulsion of an increasing longitudinal 

electric field gradient (ramp) and a drag force of incoming gas from ambient air. 

Dependent on the collisional cross sections and charge states high mobility ions are 
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accumulated at the front part and low mobility ions at the end of the analyzer. To achieve 

close to 100 % duty cycle, we set the ramp and accumulation time for the electric field 

gradient to 100 ms. For each topN acquisition cycle and long nanoLC runs, one full 

frame and 10 PASEF MS/MS frames, each containing on average 12 MS/MS spectra, 

were acquired resulting in a cycle time of 1.1 s. MS and MS/MS spectra were recorded 

from 100 to 1,700 m/z and precursor ions for PASEF scans were selected in real time by 

the precursor selection algorithm. A polygon filtering was applied in the m/z and ion 

mobility area to exclude the low m/z of singly charged ions for PASEF precursor 

selection. For the 2h runs a ‘target value’ of 20.000 was applied to repeatedly schedule 

MS precursors for PASEF MS/MS spectra until this intensity value is reached and an ion 

mobility range (1/K0) of 0.6-1.6 Vs/cm2 was used. By using one full frame and 4 PASEF 

MS/MS frames we have optimized data acquisition for short gradients on the Evosep 

system to achieve a good MS1 sampling rate for quantification at a cycle times of 0.5 s. 

A ‘target value’ of 6.000 was applied to repeatedly schedule MS precursors with low 

intensity in digests of plasma proteomes and the ion mobility range was limited to 0.85-

1.3 Vs/cm2. For all experiments the quadrupole isolation width was set to 2 Th for m/z < 

700 and 3 Th for m/z > 700. Collision energy was changed in 5 steps within a TIMS 

elution ramp from 52 eV for 0-19% of the ramp time; 47 eV from 19-38%; 42 eV from 

38-57%; 37 eV from 57-76%; and 32 eV for 76-95%. 

MaxQuant software framework 

MaxQuant version 1.6.6.0 was used to perform all data analysis, which is downloadable 

from http://maxquant.org. MaxQuant has a plugin API for raw data access, which has 

been implemented for the access to Bruker TDF raw data format. MaxQuant is written in 

C# (.NET Framework 4.7.2 or higher) and runs on Windows and Linux operating 

systems(24). MaxQuant can be run interactively from a user interface or alternatively be 

called from the command line. Projects analyzed in MaxQuant can be automatically 

uploaded to the PRIDE repository as a ‘complete’ submission(26).A MaxQuant help 

forum can be visited at https://groups.google.com/group/maxquant-list/. Bug reports 

should be addressed to https://maxquant.myjetbrains.com/youtrack/. 
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For searches with HeLa data we used human UniProt sequences 

(https://www.uniprot.org/proteomes/UP000005640, version January 26, 2019) containing 

73,920 proteins. All searches were performed with oxidation of methionine and protein 

N-terminal acetylation. Values of parameters in MaxQuant have not been changed from 

their default values unless explicitly stated. 

 

RESULTS 

Computational workflow for data-dependent LC-IMS-MS/MS data 

The MaxQuant workflow is an end-to-end solution, taking the mass spectrometric raw 

data as input and providing output tables on several levels, e.g., a table for results on the 

level of protein groups, of peptides or of peptide spectrum matches (PSMs). The 

identification strategy is peptide database search engine-based, utilizing the integrated 

Andromeda search engine as the main source of identifications. Also, for ion mobility-

enhanced data the identification of peptides will be done by conventional Andromeda 

searches for which the input spectra are projected to the usual form of m/z-intensity 

profiles. The workflow consists of a series of data processing steps, the most important 

ones of which are summarized in Table 1. Some computational steps needed substantial 

adaptation in order to support IMS, while other steps remained nearly unchanged. For 

instance, feature detection needed to be massively adapted, since adding a dimension to 

the raw data space requires new concepts for the detection of features. Also the 

preparation of MS/MS spectra for database search is vastly different for ion-mobility 

enhanced data, since it involves a projection from the higher-dimensional data to 

conventional spectra. The alignment of raw data between samples will be affected since, 

in addition to the alignment of retention times, it may be necessary to also calibrate ion 

mobility measurements relative to each other. The process of matching features between 

runs for the sake of increasing the feature set usable for quantification will also need 

adaptations since the collision cross section values can be used to make the matching 

more specific. On the other hand there are algorithms that need no adaptation from the 

standard workflow: for instance, grouping proteins into redundant protein groups or 
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determining their false discovery rate (FDR) will remain unchanged. In the following 

sub-sections we describe how the individual data processing steps have been adapted for 

LC-IMS-MS/MS data. 

 

Feature detection 

The task of feature detection becomes more challenging in the higher-dimensional ion 

mobility-enhanced data. While in LC-MS data, peak boundaries were determined by a 

closed line in the m/z-retention time plane, now a peak is bounded by a two-dimensional 

closed surface in three-dimensional space. In principle the task is similar to segmentation 

of 3-dimensional voxel data into regions of independent signals. However, since the 

shapes of feature boundaries in MS data typically exhibit certain regularities, we want to 

exploit these to obtain a well performing algorithm, since otherwise computation time 

remains a bottleneck for ion-mobility enhanced MS data. Fig. 1 shows an overview of the 

steps involved in feature detection. First, the data is interpolated onto a common mass 

grid (Fig. 1a) while the number of scans in the ion mobility direction remains the same. 

The lattice spacing of the new m/z grid depends on m/z,to ensure that the local point 

density is adapted to the peak width that is approximately expected by the resolution, and 

is calculated such that 

∆𝑚𝑚 𝑧𝑧⁄ = 𝑚𝑚 𝑧𝑧⁄
4𝑅𝑅

, 

where R plays the role of an effective instrument resolution which we take as 32,000 by 

default. For interpolating intensities into one of the resulting spectra we take into account 

a window of ion mobility indices around the current index over which the signals are 

averaged. All raw intensity measurements within the ion mobility window and within a 

mass window corresponding to three sigma of the peak resolution R are smoothed with a 

Gaussian kernel, whose width is locally adapted to correspond to the resolution R. This 

results in a data cube with a regular gridding in all three dimensions and smoothly 

varying signal intensities over the cube. All the data gridding and smoothing is done on 

the fly when a spectrum from the data cube is needed and, in order to save space, not 

written to disk. We proceed by slicing the cube into planes perpendicular to the ion 

mobility dimension (Fig. 1b). For each fixed ion mobility value we obtain a pseudo LC-
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MS run with signal intensities depending only on m/z and retention time. In these we 

apply the conventional MaxQuant algorithm for detecting peak boundaries as closed 

lines. Neighboring ion mobility slices are usually similar to each other regarding their 

signal intensity distribution. Therefore, in order to save computing time, ion mobility 

slices can be omitted and only every nth slice is used in the data analysis, where n is a 

user-definable parameter with default value set to three. The original MaxQuant feature 

detection algorithm processes then each of these slices resulting in irregularly shaped 

peak boundaries, which, in particular, do not have to be rectangular (Fig. 1c).Since the 

processing of one slice does not depend on the processing of other slices, this step is 

trivially parallelized onto a specified number of threads less or equal to the number of 

slices.Once the peak boundaries in the slices are obtained, overlapping areas are clustered 

across slices to obtain closed surfaces enclosing m/z-retention time-ion mobility volumes 

(Fig. 1d). These volume elements define the base of each feature and each point inside 

the volume has an intensity value attached, defining the m/z, ion mobility and retention 

time-dependent intensity profile of the feature. The total feature intensity is given by the 

integral of signals over the volume. 

 

The de-isotoping step aims at grouping those peaks, which are different isotopic forms of 

the same peptide molecule, together into isotope patterns. For this purpose we 

generalized the de-isotoping algorithm in MaxQuant, which makes use of the correlation 

of peak intensities as a function of retention time, to also take into account correlations in 

ion mobility direction. The isotopic peak clustering is a two-step process. The first step 

consists of a pre-clustering of features. Here, two features are put together into a cluster 

whenever two criteria are met: 1) their difference in m/z is compatible with an averagine 

(27) mass difference between two consecutive peaks in an isotope pattern and 2) The 

cosine correlation between the two intensity patterns over retention time and ion mobility 

exceeds a threshold. Since these pre-clusters are assembled based on pair-wise relations 

between peaks, they can be too large and inconsistent regarding charge state, typically 

containing, in addition to the main isotope pattern of the cluster, other correlating peaks. 

These are separated in the second step which refines the pre-clusters based on several 

criteria, as, for instance, consistency of charge state. As an example we report numbers of 
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scans, features, isotope patterns and identifications found in a single typical LC-IMS-

MS/MS run in Table 2. 

 

Extraction of MS/MS spectra 

The timsTOF Pro effectively gains MS/MS spectrum acquisition speed by measuring 

multiple PASEF fragmentation patterns in one frame. It generates up to 110 of these 

MS/MS frames per second, which, in the example shown in Table 2 amounts to 233437 

raw PASEF precursors distributed over 52679 MS/MS frames in a two-hour LC-IMS-

MS/MS run. Multiple scans can be triggered for the same precursor. This is done 

deliberately, because the acquisition software decides to allocate additional MS/MS scans 

to a low-abundant precursor in order to accumulate signal for the fragmentation 

spectrum, to increase the likelihood of its identification. There can be additional 

multiplicity in terms of multiple MS/MS scans per precursor, which happens 

accidentally, and only becomes visible post acquisition by the MaxQuant analysis. These 

resequencing events are usually further apart in retention time and only the 4D peak 

detection reveals that they belong to the same precursor. All MS/MS spectra that were 

acquired for the same precursor are accumulated in MaxQuant. In them equal ions are 

added up, and only a single summed spectrum per 4D precursor is submitted to the 

database search. Fragmentation spectra are projected from the higher-dimensional raw 

data by integrating the MS/MS frame intensities over the ion mobility index range for 

each PASEF scan. This results in a single conventional MS/MS spectrum per MaxQuant 

precursor that can be submitted to the Andromeda search engine in the conventional 

way.In the projected and summed spectra de-isotoping is performed and in case an 

isotope pattern is detected, its members are removed from the spectrum and added as the 

monoisotopic peak of a singly charged fragment. If this procedure leads to overlapping 

peaks within a mass tolerance, resulting from multiple charge states for the same 

fragment, the corresponding peak intensities are added up to a single peak. 

 

In the example run in Table 2 the initial number of PASEF precursors is 233437 (run  

20190122_HeLa_QC_Slot1-47_1_3219.d) which gets accumulated to 114477 MS/MS 
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scans by MaxQuant corresponding to unique 4D precursors. Only these accumulated 

scans are submitted to the database search. Usually, a large fraction of MS1 precursors 

remains without an MS/MS scan taken for them (294,902 in the example in Table 2), 

which makes them ideal targets for exploiting them for quantification with the help of the 

ion mobility-enhanced matching between runs algorithm. (See later subsection on 

alignment and matching between runs.) 

 

Mass recalibration 

Nonlinear mass recalibration is a crucial prerequisite for obtaining high peptide mass 

accuracies in MS-based proteomics. For LC-MS/MS data, MaxQuant performs nonlinear 

recalibration of the m/z range. The recalibration function used for this depends 

nonlinearly on m/z, retention time and signal intensity. Peptides present in the sample are 

used as standards, which eliminates the requirement for spike-in of molecules as 

calibration standards. A preliminary round of peptide identification with simple 

identification criteria, as, for instance, a fixed Andromeda score cutoff, is performed for 

generating such a list of peptides that are going to be used as internal standards. By 

default we use an Andromeda score cutoff of 70. Once the recalibration function is 

determined and applied to the whole data, in the subsequent analysis, more stringent mass 

tolerances can be applied to precursor masses, for instance in the main peptide search and 

in the matching of MS1 features between runs. These precursor mass windows can even 

be adapted to each individual peptide by exploiting the variability of multiple mass 

measurements within the 4d precursor. Also, in the main search more refined statistical 

methods will be used for the peptide identification process than a simple score cutoff. 

 

Ion mobility adds another variable, potentially confounding the mass error of MS1 

features in a nonlinear way. Hence, the m/z recalibration function can now depend on 

four variables in total. We split the general dependence of the mass error in parts per 

million (p.p.m.) into four additive components, each of them depending only on a single 

variable 

Δm/z = f1(m/z) + f2(RT) + f3(I) + f4(IM). 
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A constant contribution can be arbitrarily split among the four contributions. Hence, three 

of the four functions can be constrained to have a certain value, e.g. at an argument of 

choice. We determine first the ion mobility dependent part f4(IM) by calculating a 

window median of the mass deviations over ion mobility index windows and subtract it 

from the original mass deviations. We then apply the conventional MaxQuant algorithm 

depending on the other three dimensions to the ion mobility independent residual 

deviation. The m/z and retention time dependent parts are modeled as piecewise linear 

functions, while the intensity dependent part is assumed to be a low degree polynomial in 

the logarithm of the signal intensity. 

 

In Fig. 2a-d we show the individual contributions of the four variables to the mass error. 

For each variable, the residual error is shown after the other three dependencies have 

been taken into account. For instance in Fig. 2a Δm/z - f2(RT) - f3(I) - f4(IM) is plotted 

against m/z to show the m/z dependent contribution to the mass error. It can be observed 

that the ion mobility-dependent component has the largest amplitude. It explains 52%of 

the variance captured by the model. Hence, it is crucial to include an ion mobility-

dependent component in the mass recalibration. The residuals after complete 

recalibration (Supplementary Fig. 1) show no remaining systematic effects. As can be 

seen in the mass error histograms before and after recalibration (Fig. 2e-f) the mass 

accuracy improves considerably upon recalibration. The median absolute deviation 

(MAD) is 2.79 p.p.m. before and 0.94 p.p.m after recalibration, corresponding to a3-fold 

improvement. 

 

Alignment and matching between runs 

To alleviate the stochasticity of shotgun proteomics, MaxQuant employs the matching 

between runs algorithm, which consists of transferring identifications of MS1 features 

between samples based on accurate mass and retention time values (28). One promise of 

LC-IMS-MS is that this matching between runs becomes more specific by exploiting the 

additional dimension of ion mobility, which can be used to eliminate false positive 

matches. In order to use the retention time as a criterion for matching features, MaxQuant 
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allows to first perform a nonlinear recalibration of retention times. It is an open question 

if such an alignment is also necessary prior to using ion mobility values for this kind of 

matching.  

 

To address this question we matched features between two LC-IMS-MS/MS runs. These 

were runs 2823 and 2799 from the dataset ‘20181129HeLafraction22’, which were 

measured on the same mass spectrometer and column, but days apart without 

recalibrating mass or mobility. We first find feature pairs with one feature from each run 

by applying mass, retention time and ion mobility windows. Masses are already 

recalibrated, which implies that small windows can be used. The actual criterion for 

matching features between the two runs applies the individual mass tolerances 

determined by MaxQuant after mass recalibration. Furthermore we use wide windows for 

retention time and ion mobility index since the alignment has not yet been performed in 

these two dimensions. For instance, time windows of several (15 by default) minutes 

could be used. Whenever there is more than one matching feature found in the second run 

for a feature in the first run, we take only the closest match according to a weighted 

distance in m/z, retention time and ion mobility index space. 

 

Based on the feature pairs found by this procedure, we create plots of retention time 

difference within each feature pair against retention time in one of the runs (Fig. 3a) and 

similarly for ion mobility index difference against ion mobility index (Fig. 3c). In each 

plot the local point density has been color coded. As can be seen for this typical case, a 

nonlinear recalibration function needs to be applied in order to make the retention times 

in the two runs comparable. This is also the case for the ion mobility index: it is 

necessary to do ion mobility alignment in addition to retention time alignment. In the 

example shown, a linear recalibration would be sufficient. Nevertheless, we apply the 

same nonlinear recalibration algorithm that is used for retention time alignment also for 

the ion mobility direction, in order to be prepared for the general case. As can be seen in 

Fig. 3b and d, after alignment the retention times and ion mobility indices become 

comparable between runs. After alignment, the matching requirement is, in addition to 

the masses matching, that the peak maximum is within a tighter retention time window, 
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typically 42 seconds, and the aligned ion mobility index match is bounded by a tighter 

window as well. 

 

The distribution of time differences between matching features as well as of the ion 

mobility index differences are shown in Fig. 4.In Fig. 4a the matching time differences 

before alignment are shown while Fig. 4b displays the distribution of time differences 

after alignment. Only after alignment is the distribution centered on zero. The full width 

half maximum (FWHM) for the retention time differences is 8.5 seconds after alignment 

in this two-hour run. Fig. 4c-d shows similar distributions before and after alignment for 

the ion mobility index. As can be seen, besides a centering to zero, the FWHM improves 

dramatically through alignment, decreasing by a factor of 2.59, which brings it down to 

less than 1% of the total ion mobility range. This again displays the need for relative 

alignment of ion mobility measurements in the general case before it is being used for 

matching of features. Aligned and calibrated ion mobilities should then be comparable 

between different platforms, since they are a property of the molecule and not of the 

measuring systems, as retention times are. 

 

While so far we have described how two runs are aligned and its features are matched, 

MaxQuant can perform the same for multiple samples as well, without singling out one 

of the samples as a master run. The alignment is done by first building a guide tree based 

on the similarity between the runs. The alignment starts then between the two most 

similar runs. After these have been aligned they are merged to an effective aligned 

sample. The process continues by always taking the as yet not merged most similar 

samples from the guide tree, align and merge them, and continue until all samples are 

aligned. 

 

In order to estimate the gain in accuracy that is brought about by using ion mobility as an 

additional criterion for matching features between runs, we perform a special analysis of 

matches with relatively loose criteria. Now, matches are performed without using 

retention time but with applying a varying matching window in 1/K0. (See Fig. 5.)Then 

we want to use the fact that matches with large retention time differences have a larger 
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likelihood of being false than matches with small retention time difference. We introduce 

the (not strictly correct) nomenclature of calling a match with retention time difference 

larger than 42 seconds a ‘false’ match and when it is smaller than 42 seconds a ‘true’ 

match. Note that the threshold is picked arbitrarily, just to allow us distinguishing two 

populations of matches one of which is enriched and one depleted of false positives. In 

Fig. 5a the number of ‘true’ and ‘false’ matches is shown as a function of the window 

size in 1/K0 used for accepting matches. Both curves are plateauing to the right which 

corresponds to only mass-based matching. When decreasing the 1/K0 window the ‘false’ 

matches are decreasing more rapidly than the ‘true’ matches. In order to quantify the 

1/K0 window dependent gain we show in Fig. 5B the ratio of the two curves for ‘true’ 

and ‘false matches, which before are normalized to both plateau at 1. While a large 1/K0 

window provides no gain in terms of specificity, a smaller window provides an up to 

three-fold gain in specificity. 

 

Feature coverage and label-free Quantification 

The main reason for applying matching between runs is to make the MS1 features needed 

for quantification appear consistently across samples and by that remove the missing 

value problem that shotgun proteomics potentially possesses due to the stochasticity of 

MS/MS selection. We first assess the extent of the problem in technical replicates of 

cellular proteomes. For this we used data of ten replicates of HeLa cell lysate measured 

on the timsTOF pro as described in the Experimental Procedures and analyzed them with 

MaxQuant, once without and once with matching between runs. Fig. 6a shows for each 

of the ten technical replicates the number of protein groups identified and quantified 

without and with match between runs. While without matching between runs, on average 

5358 protein groups were found per sample, match between runs increased this number 

by 381 on average. The number of protein groups that were quantified in all ten replicates 

is increased by matching between runs by nearly 1,000 to 5503 (Fig. 6b).  

 

Reproducibility of quantification between samples is a much more challenging problem 

in plasma samples with their high dynamic range of concentrations and stronger 
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variability. To this end we analyzed 208 plasma samples of human donors with single 

shot runs on a timsTOF pro with a 11.5 minutes LC gradient. (See experimental 

procedures.) In Fig. 6c the number of protein groups identified and quantified per sample 

is plotted for each of the 208 plasma samples in ascending order. Without matching 

between runs this number reaches from 49 to 176 protein groups with an average of 103. 

The gain in number of quantified protein groups achieved by matching between runs 

(Fig. 6d) is 90% on average. 

 

To judge quantitative accuracy of label-free quantification, we recorded a dataset with 

known ground truth by mixing three cellular proteomes from different species in known 

ratios, similar to the strategy applied in the context of data-independent acquisition (DIA) 

data (29). While human proteins are expected to have a 1:1 ratio, all yeast proteins are 

expected to go up by a 2:1 ratio while all E. coli proteins go down by a 1:4 ratio. The 

MaxLFQ algorithm(20)can be applied to ion mobility enhanced data without major 

changes. Our adaptation to timsTOF data uses the signal intensities of the 4D MS1 

features as input but is otherwise unaltered from its established LC-MS/MS version. The 

benchmark data consists of two replicate groups consisting of 3 samples each. The runs 

in a replicate group have been quantified as a single experiment with the MaxLFQ 

algorithm, which has been run once with and once without the matching between runs 

option activated. The resulting logarithmic LFQ intensities in the protein groups table 

have been normalized in the Perseus software by subtracting the most frequent value. 

Fold changes between the two replicate groups are plotted against the summed LFQ 

intensity in Fig. 7a and b without and with matching, respectively. The respective fold 

change data distributions are shown in Fig. 7c and d. The fold changes are centered on 

the positions that were expected for the three different species. The number of quantified 

proteins increases from 5819 to 6626 by using the matching between runs. There is no 

discernible intensity-dependent trend in the fold changes, meaning there are no 

nonlinearities in quantification at the upper or lower end of the dynamic range. Also the 

matching does not lead to a systematic change in the population of fold changes or to a 

discernible increased rate of wrongly quantified proteins, supporting the view that the 

matching is specific, as independently found with the method introduced in Fig. 5. 
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Computational performance 

A major challenge in the project was to achieve acceptable computational performance 

for large datasets with many LC-IMS-MS/MS runs being analyzed together in one 

project. Parallelization on multiple cores was achieved for nearly the entire computational 

workflow. Performance improvements will continue to be worked on and integrated into 

future software versions. The current split of computation time for a typical dataset onto 

the different workflow components can be seen in Table 1. Dominating parts are feature 

detection, MS/MS preparation, the searches, as well as the alignment. 

DISCUSSION 
We implemented a novel computational workflow in MaxQuant that uses peptide CCS 

values to largely alleviate the missing value problem, typical in DDA shotgun 

proteomics. The newly developed MaxQuant CCS re-alignment algorithm does not 

require external or recognizable calibrants added to the sample, and successfully aligns 

ion mobilities from different runs against each other, prior to performing MBR.  It has 

profound implications on protein quantification which we show to be possible with label 

free methods to good proteome depths and with enhanced precision.  The combination of 

this particular IMS-QTOF hardware and the MaxQuant software provides the user with a 

robust platform for shotgun proteomics with deep and reproducible proteome coverage. 

Furthermore, the missing value problem of DDA shotgun proteomics due to its inherent 

stochasticity is appreciably reduced.     

 

Currently, one of our development emphases is to improve computational performance of 

the total workflow. While with the current performance, data analysis is feasible and not 

prohibitively slower compared to conventional LC-MS/MS data, speed gains in future 

software releases will still have a positive impact on the everyday usage of MaxQuant on 

standard computer hardware. We are in an iterative development process of finding 

computational bottlenecks in the workflow and alleviating them.  Given the significant 

improvements described in this paper, we foresee a CCS aware MaxQuant version soon 
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that will run just as fast as the current version for conventional LC-MS/MS data. Going 

forward, the combination of DIA with IMS in combination with MaxQuant’s advanced 

feature detection and recalibration routines has the potential to increase robustness of 

proteomics analyses even further. The application of deep learning for the prediction of 

MS/MS spectra, retention time and ion mobilities, and its future integration into 

MaxQuant (30) has the potential to further improve protein identification rates and LFQ.  
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Figure 1. Elements of feature detection. a. Raw data is mapped to a common grid. 

While the ion mobility scans already form a regular grid, the m/z values of data centroids 

are irregular. All intensity values within an ion mobility window and within a mass range 

are mapped to a common mass grid with a spacing that is monotone increasing with m/z. 

Intensities are added up using a Gaussian kernel with a locally adapted with according to 

the effective resolution. b. The raw data is sliced along the ion mobility axis to obtain 

data planes with signal intensity as a function of m/z and retention time. In these planes, 

features can be detected with the conventional algorithms in MaxQuant. c. The features 

in each plane are bounded by irregular shapes following the raw data. d. Features are 

clustered between consecutive planes to obtain closed surfaces surrounding the final 

features. 
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Figure 2. Mass recalibration. a.-d. Residual mass errors after the dependence of all but 

one variable have been recalibrated, showing the dependence of the residual mass error 

on m/z (a.), retention time (b.), logarithm of the peak intensity (c.) and ion mobility (d.). 

Colors reflect the density of data points. e. Mass error distribution before recalibration. f. 

Mass error distribution after recalibration has been applied. 
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Figure 3. Retention time and ion mobility alignment. a. Difference in retention time 

between matched feature pairs plotted against the retention time of the feature in one of 

the runs. The point density is color-coded in plots a-d. b. Same as in a, but after retention 

time alignment has been applied. c. Similar to a, but now the difference in 1/K0 within the 

feature pair is plotted against 1/K0 in one of the runs, indicating differences between runs 

in terms of ion mobility. d. Same as in c, but after ion mobility alignment has been 

applied. 
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Figure 4. Accuracy of matching between runs. a. Retention time match difference 

distribution before alignment. b. Retention time match difference distribution after 

alignment. c. 1/K0 match difference distribution before alignment. b. 1/K0 match 

difference distribution after alignment. 
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Figure 5. Specificity of ion mobility enhanced matching between runs. a. Matches 

were performed without retention time restriction and then divided into ‘true’ (|Δt| < 42s) 

and ‘false’ (|Δt| > 42s) matches. The percentage of these matches is shown as a function 

of the window size in 1/K0 that was applied to the matching. b. The gain in specificity by 

using ion mobility as a function of the window size in 1/K0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/651760doi: bioRxiv preprint 

https://doi.org/10.1101/651760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 

 

 
 

Figure 6. Protein quantification coverage. a. Number of protein groups quantified in 

10 replicates without and with matching between runs. b. Number of proteins groups 

quantified in N out of 10 replicates without and with matching between runs. c. Number 

of protein groups quantified in 208 short human plasma runs. d. Gain of quantified 

protein groups in c. by matching between runs. 
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Figure 7. LFQ on a benchmark dataset. a. LFQ intensity plotted against fold change 

between replicate groups. (Both logarithmic.) Vertical lines correspond to fold changes 

expected by the mixing of species-derived samples. b. Same as a, but with matching 

between runs. c.-d. Histograms of data in a-b projected on the horizontal axes. 
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Workflow component Changes 

for IMS 

Percentage 

computation time 

Feature detection +++ 31.2% 

MS/MS preparation +++ 15.6% 

Initial search - 14.1% 

Recalibration ++ 1.8% 

Main search - 19.1% 

PSM FDR - 1.9% 

Alignment ++ 12.5% 

Match between runs ++ 0.4% 

Protein groups / FDR - 2.6% 

Label-free quantification - 0.3% 

Writing of results + 0.4% 

 

Table 1. Main processing steps of the computational workflow. The table lists the 

most important and time consuming steps in the MaxQuant pipeline for LC-IMS-MS/MS 

data. In the second column, the number of plus signs signifies the extent of changes in the 

code in order to accommodate ion mobility information. For instance, ‘+++’ for ‘feature 

detection’ indicates fundamental changes. The right column contains the percentage of 

computation time that is spent on the step on the HeLa dataset consisting of ten 

replicates, on 60 core machine running Windows Server 2016. 
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Workflow component Number of items per 

run in HeLa sample 

Number of items per 

run in plasma sample 

MS1 frames 7828 1729 

MS2 frames 52679 3990 

IMS scans per frame 918 918 

PASEF precursors 233437 44214 

4D features 2164978 540917 

4D isotope patterns 409379 65501 

MS/MS submitted 114477 16928  

 

Table2. Numbers of features and other elements in a single LC-IMS-MS/MS run. 

For a typical run with a two-hour gradient we show the numbers of scans, detected 

elements and identified entities.  
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