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Summary

Ion mobility can add a dimension to LC-MS based shotgun proteomics which has the
potential to boost proteome coverage, quantification accuracy and dynamic range.
Required for this is suitable software that extracts the information contained in the four-
dimensional (4D) data space spanned by m/z, retention time, ion mobility and signal
intensity. Here we describe the ion mobility enhanced MaxQuant software, which utilizes
the added data dimension. It offers an end to end computational workflow for the
identification and quantification of peptides, proteins and posttranslational modification
sites in LC-IMS-MS/MS shotgun proteomics data. We apply it to trapped ion mobility
spectrometry (TIMS) coupled to a quadrupole time-of-flight (QTOF) analyzer. A highly
parallelizable 4D feature detection algorithm extracts peaks which are assembled to
isotope patterns. Masses are recalibrated with a non-linear m/z, retention time, ion
mobility and signal intensity dependent model, based on peptides from the sample. A
new matching between runs (MBR) algorithm that utilizes collisional cross section (CCS)
values of MS1 features in the matching process significantly gains specificity from the
extra dimension. Prerequisite for using CCS values in MBR is a relative alignment of the
ion mobility values between the runs. The missing value problem in protein
quantification over many samples is greatly reduced by CCS aware MBR.MSI1 level
label-free quantification is also implemented which proves to be highly precise and
accurate on a benchmark dataset with known ground truth. MaxQuant for LC-IMS-
MS/MS is part of the basic MaxQuant release and can be downloaded from

http://maxquant.org.
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INTRODUCTION

Ion mobility spectrometry (1-3) (IMS) separates molecules in the gas phase by their
collisional cross section (CCS) which is the effective area of a molecule quantifying the
likelihood of scattering events with the gas. It can be coupled to mass spectrometry (MS)
for which it constitutes a separation dimension in addition to mass over charge
(m/z).Together with liquid chromatography (LC) and tandem mass spectrometry
(MS/MS) one obtains LC-IMS-MS/MS shotgun proteomics, a promising strategy for the
analysis of complex samples (4—7).Specifically, the object of our studies is the timsTOF
Pro instrument (8) which is a time-of-flight (TOF) mass spectrometer utilizing a trapped
ion mobility spectrometry (9—11) (TIMS)device operated with the parallel accumulation-
serial fragmentation (PASEF) scan mode (12).

MaxQuant (13, 14) is a popular software platform for LC-MS/MS shotgun proteomics
possessing a large ecosystem of algorithms for comprehensive data analysis (15). It
incorporates the peptide search engine Andromeda (16) and the companion software
Perseus (17, 18) offers a complete solution for the downstream bioinformatics analysis.
MaxQuant performs quantification with labels (19) and via the MaxLFQ algorithm
(20)on label-free data. MaxQuant achieves high peptide mass accuracies thanks to its
advanced nonlinear recalibration algorithms (21, 22). It contains comfortable
visualization capabilities (23) for the inspection of the raw data and runs on Windows and

Linux operating systems (24).

The aim of this publication is to combine these two factors, i.e. to make MaxQuant
capable of analyzing timsTOF Pro data. A main challenge originates from the inflation of
raw data by the added dimension. To keep the computation time required for the analysis
down to a realistic amount is of highest importance. In this manuscript we describe the
updated computational workflow of MaxQuant for ion mobility-enhanced shotgun
proteomics data, which has been optimized for computational performance. It is based on
4D feature detection in the space augmented by the extra dimension provided by IMS.

Matching between runs is a crucial algorithmic step in MaxQuant for retrieving MS1
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features in data-dependent acquisition shotgun proteomics, in order to make
quantification of peptides and proteins more reproducible over many samples. It requires
high mass accuracy and precise relative retention time measures, obtained by non-linear
retention time alignment in order to restrict false positives matches. Here we present a
new matching algorithm that takes into account ion mobility values of peptide features
measured on a timsTOF Pro instrument. Similarly, as for the retention times, we observe
the necessity for relative alignment of ion mobility values between LC-IMS-MS/MS
runs, and include a nonlinear multi-sample alignment algorithm into the MaxQuant
workflow. Matching the 4D features using these aligned CCS values did significantly
improve specificity. Furthermore, we observe a strong positive impact on the missing
value problem in quantitative proteomics. All new algorithmic steps as well as their

application to example data are detailed in the Results section.

EXPERIMENTAL PROCEDURES

Cell culture and sample preparation

Whole protein extracts of human cervical cancer cells (HelLa) were purchased
fromPromega and digestion was performed according to the protocol of Wang et al.(25).
Briefly, the protein lyophilisate was re-constituted in water and trifluoroethanol (1:1).
Disulfide bonds were reduced with dithiothreitol at a concentration of 5 mM and
alkylated with chloroacetamide (20mM) in ammonium bicarbonate buffer, followed by
90 min incubation in the dark. Trypsin (Promega) was added in a protease: protein ratio
(wt:wt) of 1:100 and incubation was performed overnight at 37°C. Digestion was stopped
by acidification with formic acid to pH 2 and peptides were desalted on C18 cartridges (3
M Empore) and dried in a vacuum centrifuge. For the mixed species experiments, tryptic
protein digests of H. sapiens (HeLa), S. cerevisiae (Promega) and E.coli (Waters) were
mixed in two different experiments leading to a ratio of 1:1 (HeLa), 1:2 (S. cerevisiae)
and 1:4 (E.coli) between the two samples. The human blood plasma samples were
collected from acute inflammation patients and were depleted for the 12 most abundant

proteins using spin columns (Pierce) according to the manufacturer’s instructions. The
4
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depleted plasma proteome was TCA/DOC precipitated and digested with SMART digest
trypsin (Pierce) for 2h. . Peptides were desalted (SOLAp HRP, Pierce), diluted to 5

ng/ulL0.1% of formic acid in water for subsequent transfer of 100 ng to Evotips.

Liquid chromatography

A nanoElute (Bruker) high pressure nanoflow system was connected to the timsTOF Pro,
an ion-mobility spectrometry quadrupole time of flight mass spectrometer (Bruker).
Peptides were reconstituted in 0.1% FA and 200 ng were delivered to reversed phase
analytical columns (25 cm x 75 pm i.d., Ion opticks) with pulled emitter tips. Liquid
chromatography was performed at 50 °C and peptides were separated on the analytical
column using a 120 min gradient (solvent A: 0.1% FA; solvent B: 0.1% FA, in ACN) ata
flow rate of 400 nl/min. A linear gradient from 2-17 % B was applied for 60 min,
followed by 17-25 % B for the next 30 min and followed by a step to 37% B for 10 min
and a step to 80% B for 10 min followed by 10 min of washing at 80% B. For the plasma
proteome samples, the Evosep One (Evosep) was used to achieve low overhead times and
a high sample throughput. Separation was performed by transferring 100 ng proteolytic
digest from the sample loop on short columns (8 cm x 100 pm i.d.) at flow rate of 1.5

ul/min achieving 11.5 min gradient times and the measurement of 100 samples/day.

Ion mobility mass spectrometry

For all experiments, the timsTOF Pro was operated in PASEF mode. Ions entering the
instrument were orthogonally deflected into an electrodynamic funnel and were trapped
in the front region of the trapped ion mobility (TIMS) analyzer. The TIMS tunnel is
separated into two parts (“dual TIMS” design), allowing for accumulation of entering
ions in the first part and trapped ion mobility elution in the second part. The dual TIMS
design allows usage of almost 100% of the ions as long as equal accumulation and
analysis times are used. While ions are eluted from the second part, accumulation of new
ions can already take place in the first part for subsequent transfer into the second part.
Trapped ion mobility separation was achieved by repulsion of an increasing longitudinal
electric field gradient (ramp) and a drag force of incoming gas from ambient air.

Dependent on the collisional cross sections and charge states high mobility ions are

5
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accumulated at the front part and low mobility ions at the end of the analyzer. To achieve
close to 100 % duty cycle, we set the ramp and accumulation time for the electric field
gradient to 100 ms. For each topN acquisition cycle and long nanoLC runs, one full
frame and 10 PASEF MS/MS frames, each containing on average 12 MS/MS spectra,
were acquired resulting in a cycle time of 1.1 s. MS and MS/MS spectra were recorded
from 100 to 1,700 m/z and precursor ions for PASEF scans were selected in real time by
the precursor selection algorithm. A polygon filtering was applied in the m/z and ion
mobility area to exclude the low m/z of singly charged ions for PASEF precursor
selection. For the 2h runs a ‘target value’ of 20.000 was applied to repeatedly schedule
MS precursors for PASEF MS/MS spectra until this intensity value is reached and an ion
mobility range (1/Ko) of 0.6-1.6 Vs/cm? was used. By using one full frame and 4 PASEF
MS/MS frames we have optimized data acquisition for short gradients on the Evosep
system to achieve a good MS1 sampling rate for quantification at a cycle times of 0.5 s.
A ‘target value’ of 6.000 was applied to repeatedly schedule MS precursors with low
intensity in digests of plasma proteomes and the ion mobility range was limited to 0.85-
1.3 Vs/cm?. For all experiments the quadrupole isolation width was set to 2 Th for m/z <
700 and 3 Th for m/z > 700. Collision energy was changed in 5 steps within a TIMS
elution ramp from 52 eV for 0-19% of the ramp time; 47 eV from 19-38%; 42 eV from
38-57%; 37 eV from 57-76%; and 32 eV for 76-95%.

MaxQuant software framework

MaxQuant version 1.6.6.0 was used to perform all data analysis, which is downloadable

from http://maxquant.org. MaxQuant has a plugin API for raw data access, which has
been implemented for the access to Bruker TDF raw data format. MaxQuant is written in
C# (NET Framework 4.7.2 or higher) and runs on Windows and Linux operating
systems(24). MaxQuant can be run interactively from a user interface or alternatively be
called from the command line. Projects analyzed in MaxQuant can be automatically
uploaded to the PRIDE repository as a ‘complete’ submission(26).A MaxQuant help

forum can be visited at https://groups.google.com/group/maxquant-list/. Bug reports

should be addressed to https://maxquant.myjetbrains.com/youtrack/.
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For searches with Hela data we wused human UniProt sequences

(https://www.uniprot.org/proteomes/UP000005640, version January 26, 2019) containing

73,920 proteins. All searches were performed with oxidation of methionine and protein
N-terminal acetylation. Values of parameters in MaxQuant have not been changed from

their default values unless explicitly stated.

RESULTS

Computational workflow for data-dependent LC-IMS-MS/MS data

The MaxQuant workflow is an end-to-end solution, taking the mass spectrometric raw
data as input and providing output tables on several levels, e.g., a table for results on the
level of protein groups, of peptides or of peptide spectrum matches (PSMs). The
identification strategy is peptide database search engine-based, utilizing the integrated
Andromeda search engine as the main source of identifications. Also, for ion mobility-
enhanced data the identification of peptides will be done by conventional Andromeda
searches for which the input spectra are projected to the usual form of m/z-intensity
profiles. The workflow consists of a series of data processing steps, the most important
ones of which are summarized in Table 1. Some computational steps needed substantial
adaptation in order to support IMS, while other steps remained nearly unchanged. For
instance, feature detection needed to be massively adapted, since adding a dimension to
the raw data space requires new concepts for the detection of features. Also the
preparation of MS/MS spectra for database search is vastly different for ion-mobility
enhanced data, since it involves a projection from the higher-dimensional data to
conventional spectra. The alignment of raw data between samples will be affected since,
in addition to the alignment of retention times, it may be necessary to also calibrate ion
mobility measurements relative to each other. The process of matching features between
runs for the sake of increasing the feature set usable for quantification will also need
adaptations since the collision cross section values can be used to make the matching
more specific. On the other hand there are algorithms that need no adaptation from the

standard workflow: for instance, grouping proteins into redundant protein groups or
7
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determining their false discovery rate (FDR) will remain unchanged. In the following
sub-sections we describe how the individual data processing steps have been adapted for

LC-IMS-MS/MS data.

Feature detection

The task of feature detection becomes more challenging in the higher-dimensional ion
mobility-enhanced data. While in LC-MS data, peak boundaries were determined by a
closed line in the m/z-retention time plane, now a peak is bounded by a two-dimensional
closed surface in three-dimensional space. In principle the task is similar to segmentation
of 3-dimensional voxel data into regions of independent signals. However, since the
shapes of feature boundaries in MS data typically exhibit certain regularities, we want to
exploit these to obtain a well performing algorithm, since otherwise computation time
remains a bottleneck for ion-mobility enhanced MS data. Fig. 1 shows an overview of the
steps involved in feature detection. First, the data is interpolated onto a common mass
grid (Fig. 1a) while the number of scans in the ion mobility direction remains the same.
The lattice spacing of the new m/z grid depends on m/z,to ensure that the local point
density is adapted to the peak width that is approximately expected by the resolution, and

1s calculated such that

m/z

Am/z = S

where R plays the role of an effective instrument resolution which we take as 32,000 by
default. For interpolating intensities into one of the resulting spectra we take into account
a window of ion mobility indices around the current index over which the signals are
averaged. All raw intensity measurements within the ion mobility window and within a
mass window corresponding to three sigma of the peak resolution R are smoothed with a
Gaussian kernel, whose width is locally adapted to correspond to the resolution R. This
results in a data cube with a regular gridding in all three dimensions and smoothly
varying signal intensities over the cube. All the data gridding and smoothing is done on
the fly when a spectrum from the data cube is needed and, in order to save space, not
written to disk. We proceed by slicing the cube into planes perpendicular to the ion

mobility dimension (Fig. 1b). For each fixed ion mobility value we obtain a pseudo LC-
8
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MS run with signal intensities depending only on m/z and retention time. In these we
apply the conventional MaxQuant algorithm for detecting peak boundaries as closed
lines. Neighboring ion mobility slices are usually similar to each other regarding their
signal intensity distribution. Therefore, in order to save computing time, ion mobility
slices can be omitted and only every n'" slice is used in the data analysis, where 7 is a
user-definable parameter with default value set to three. The original MaxQuant feature
detection algorithm processes then each of these slices resulting in irregularly shaped
peak boundaries, which, in particular, do not have to be rectangular (Fig. 1¢).Since the
processing of one slice does not depend on the processing of other slices, this step is
trivially parallelized onto a specified number of threads less or equal to the number of
slices.Once the peak boundaries in the slices are obtained, overlapping areas are clustered
across slices to obtain closed surfaces enclosing m/z-retention time-ion mobility volumes
(Fig. 1d). These volume elements define the base of each feature and each point inside
the volume has an intensity value attached, defining the m/z, ion mobility and retention
time-dependent intensity profile of the feature. The total feature intensity is given by the

integral of signals over the volume.

The de-isotoping step aims at grouping those peaks, which are different isotopic forms of
the same peptide molecule, together into isotope patterns. For this purpose we
generalized the de-isotoping algorithm in MaxQuant, which makes use of the correlation
of peak intensities as a function of retention time, to also take into account correlations in
ion mobility direction. The isotopic peak clustering is a two-step process. The first step
consists of a pre-clustering of features. Here, two features are put together into a cluster
whenever two criteria are met: 1) their difference in m/z is compatible with an averagine
(27) mass difference between two consecutive peaks in an isotope pattern and 2) The
cosine correlation between the two intensity patterns over retention time and ion mobility
exceeds a threshold. Since these pre-clusters are assembled based on pair-wise relations
between peaks, they can be too large and inconsistent regarding charge state, typically
containing, in addition to the main isotope pattern of the cluster, other correlating peaks.
These are separated in the second step which refines the pre-clusters based on several
criteria, as, for instance, consistency of charge state. As an example we report numbers of

9
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scans, features, isotope patterns and identifications found in a single typical LC-IMS-

MS/MS run in Table 2.

Extraction of MS/MS spectra

The timsTOF Pro effectively gains MS/MS spectrum acquisition speed by measuring
multiple PASEF fragmentation patterns in one frame. It generates up to 110 of these
MS/MS frames per second, which, in the example shown in Table 2 amounts to 233437
raw PASEF precursors distributed over 52679 MS/MS frames in a two-hour LC-IMS-
MS/MS run. Multiple scans can be triggered for the same precursor. This is done
deliberately, because the acquisition software decides to allocate additional MS/MS scans
to a low-abundant precursor in order to accumulate signal for the fragmentation
spectrum, to increase the likelihood of its identification. There can be additional
multiplicity in terms of multiple MS/MS scans per precursor, which happens
accidentally, and only becomes visible post acquisition by the MaxQuant analysis. These
resequencing events are usually further apart in retention time and only the 4D peak
detection reveals that they belong to the same precursor. All MS/MS spectra that were
acquired for the same precursor are accumulated in MaxQuant. In them equal ions are
added up, and only a single summed spectrum per 4D precursor is submitted to the
database search. Fragmentation spectra are projected from the higher-dimensional raw
data by integrating the MS/MS frame intensities over the ion mobility index range for
each PASEF scan. This results in a single conventional MS/MS spectrum per MaxQuant
precursor that can be submitted to the Andromeda search engine in the conventional
way.In the projected and summed spectra de-isotoping is performed and in case an
isotope pattern is detected, its members are removed from the spectrum and added as the
monoisotopic peak of a singly charged fragment. If this procedure leads to overlapping
peaks within a mass tolerance, resulting from multiple charge states for the same

fragment, the corresponding peak intensities are added up to a single peak.

In the example run in Table 2 the initial number of PASEF precursors is 233437 (run
20190122 HeLa QC Slotl1-47 1 3219.d) which gets accumulated to 114477 MS/MS

10
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scans by MaxQuant corresponding to unique 4D precursors. Only these accumulated
scans are submitted to the database search. Usually, a large fraction of MS1 precursors
remains without an MS/MS scan taken for them (294,902 in the example in Table 2),
which makes them ideal targets for exploiting them for quantification with the help of the
ion mobility-enhanced matching between runs algorithm. (See later subsection on

alignment and matching between runs.)

Mass recalibration

Nonlinear mass recalibration is a crucial prerequisite for obtaining high peptide mass
accuracies in MS-based proteomics. For LC-MS/MS data, MaxQuant performs nonlinear
recalibration of the m/z range. The recalibration function used for this depends
nonlinearly on m/z, retention time and signal intensity. Peptides present in the sample are
used as standards, which eliminates the requirement for spike-in of molecules as
calibration standards. A preliminary round of peptide identification with simple
identification criteria, as, for instance, a fixed Andromeda score cutoff, is performed for
generating such a list of peptides that are going to be used as internal standards. By
default we use an Andromeda score cutoff of 70. Once the recalibration function is
determined and applied to the whole data, in the subsequent analysis, more stringent mass
tolerances can be applied to precursor masses, for instance in the main peptide search and
in the matching of MS1 features between runs. These precursor mass windows can even
be adapted to each individual peptide by exploiting the variability of multiple mass
measurements within the 4d precursor. Also, in the main search more refined statistical

methods will be used for the peptide identification process than a simple score cutoff.

Ion mobility adds another variable, potentially confounding the mass error of MSI1
features in a nonlinear way. Hence, the m/z recalibration function can now depend on
four variables in total. We split the general dependence of the mass error in parts per
million (p.p.m.) into four additive components, each of them depending only on a single
variable
Am/z = fi(m/z) + £2(RT) + f3(1) + f2(IM).
11
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A constant contribution can be arbitrarily split among the four contributions. Hence, three
of the four functions can be constrained to have a certain value, e.g. at an argument of
choice. We determine first the ion mobility dependent part fa(IM) by calculating a
window median of the mass deviations over ion mobility index windows and subtract it
from the original mass deviations. We then apply the conventional MaxQuant algorithm
depending on the other three dimensions to the ion mobility independent residual
deviation. The m/z and retention time dependent parts are modeled as piecewise linear
functions, while the intensity dependent part is assumed to be a low degree polynomial in

the logarithm of the signal intensity.

In Fig. 2a-d we show the individual contributions of the four variables to the mass error.
For each variable, the residual error is shown after the other three dependencies have
been taken into account. For instance in Fig. 2a Am/z - £2(RT) - f3(I) - f4(IM) is plotted
against m/z to show the m/z dependent contribution to the mass error. It can be observed
that the ion mobility-dependent component has the largest amplitude. It explains 52%of
the variance captured by the model. Hence, it is crucial to include an ion mobility-
dependent component in the mass recalibration. The residuals after complete
recalibration (Supplementary Fig. 1) show no remaining systematic effects. As can be
seen in the mass error histograms before and after recalibration (Fig. 2e-f) the mass
accuracy improves considerably upon recalibration. The median absolute deviation
(MAD) is 2.79 p.p.m. before and 0.94 p.p.m after recalibration, corresponding to a3-fold

improvement.

Alignment and matching between runs

To alleviate the stochasticity of shotgun proteomics, MaxQuant employs the matching
between runs algorithm, which consists of transferring identifications of MS1 features
between samples based on accurate mass and retention time values (28). One promise of
LC-IMS-MS is that this matching between runs becomes more specific by exploiting the
additional dimension of ion mobility, which can be used to eliminate false positive

matches. In order to use the retention time as a criterion for matching features, MaxQuant
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allows to first perform a nonlinear recalibration of retention times. It is an open question
if such an alignment is also necessary prior to using ion mobility values for this kind of

matching.

To address this question we matched features between two LC-IMS-MS/MS runs. These
were runs 2823 and 2799 from the dataset ‘20181129HeLafraction22’, which were
measured on the same mass spectrometer and column, but days apart without
recalibrating mass or mobility. We first find feature pairs with one feature from each run
by applying mass, retention time and ion mobility windows. Masses are already
recalibrated, which implies that small windows can be used. The actual criterion for
matching features between the two runs applies the individual mass tolerances
determined by MaxQuant after mass recalibration. Furthermore we use wide windows for
retention time and ion mobility index since the alignment has not yet been performed in
these two dimensions. For instance, time windows of several (15 by default) minutes
could be used. Whenever there is more than one matching feature found in the second run
for a feature in the first run, we take only the closest match according to a weighted

distance in m/z, retention time and ion mobility index space.

Based on the feature pairs found by this procedure, we create plots of retention time
difference within each feature pair against retention time in one of the runs (Fig. 3a) and
similarly for ion mobility index difference against ion mobility index (Fig. 3c). In each
plot the local point density has been color coded. As can be seen for this typical case, a
nonlinear recalibration function needs to be applied in order to make the retention times
in the two runs comparable. This is also the case for the ion mobility index: it is
necessary to do ion mobility alignment in addition to retention time alignment. In the
example shown, a linear recalibration would be sufficient. Nevertheless, we apply the
same nonlinear recalibration algorithm that is used for retention time alignment also for
the ion mobility direction, in order to be prepared for the general case. As can be seen in
Fig. 3b and d, after alignment the retention times and ion mobility indices become
comparable between runs. After alignment, the matching requirement is, in addition to
the masses matching, that the peak maximum is within a tighter retention time window,
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typically 42 seconds, and the aligned ion mobility index match is bounded by a tighter

window as well.

The distribution of time differences between matching features as well as of the ion
mobility index differences are shown in Fig. 4.In Fig. 4a the matching time differences
before alignment are shown while Fig. 4b displays the distribution of time differences
after alignment. Only after alignment is the distribution centered on zero. The full width
half maximum (FWHM) for the retention time differences is 8.5 seconds after alignment
in this two-hour run. Fig. 4c-d shows similar distributions before and after alignment for
the ion mobility index. As can be seen, besides a centering to zero, the FWHM improves
dramatically through alignment, decreasing by a factor of 2.59, which brings it down to
less than 1% of the total ion mobility range. This again displays the need for relative
alignment of ion mobility measurements in the general case before it is being used for
matching of features. Aligned and calibrated ion mobilities should then be comparable
between different platforms, since they are a property of the molecule and not of the

measuring systems, as retention times are.

While so far we have described how two runs are aligned and its features are matched,
MaxQuant can perform the same for multiple samples as well, without singling out one
of the samples as a master run. The alignment is done by first building a guide tree based
on the similarity between the runs. The alignment starts then between the two most
similar runs. After these have been aligned they are merged to an effective aligned
sample. The process continues by always taking the as yet not merged most similar
samples from the guide tree, align and merge them, and continue until all samples are

aligned.

In order to estimate the gain in accuracy that is brought about by using ion mobility as an
additional criterion for matching features between runs, we perform a special analysis of
matches with relatively loose criteria. Now, matches are performed without using
retention time but with applying a varying matching window in 1/Ko. (See Fig. 5.)Then
we want to use the fact that matches with large retention time differences have a larger
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likelihood of being false than matches with small retention time difference. We introduce
the (not strictly correct) nomenclature of calling a match with retention time difference
larger than 42 seconds a ‘false’ match and when it is smaller than 42 seconds a ‘true’
match. Note that the threshold is picked arbitrarily, just to allow us distinguishing two
populations of matches one of which is enriched and one depleted of false positives. In
Fig. Sa the number of ‘true’ and ‘false’ matches is shown as a function of the window
size in 1/Kp used for accepting matches. Both curves are plateauing to the right which
corresponds to only mass-based matching. When decreasing the 1/Ko window the ‘false’
matches are decreasing more rapidly than the ‘true’ matches. In order to quantify the
1/K0 window dependent gain we show in Fig. SB the ratio of the two curves for ‘true’
and ‘false matches, which before are normalized to both plateau at 1. While a large 1/K0
window provides no gain in terms of specificity, a smaller window provides an up to

three-fold gain in specificity.

Feature coverage and label-free Quantification

The main reason for applying matching between runs is to make the MS1 features needed
for quantification appear consistently across samples and by that remove the missing
value problem that shotgun proteomics potentially possesses due to the stochasticity of
MS/MS selection. We first assess the extent of the problem in technical replicates of
cellular proteomes. For this we used data of ten replicates of HeLa cell lysate measured
on the timsTOF pro as described in the Experimental Procedures and analyzed them with
MaxQuant, once without and once with matching between runs. Fig. 6a shows for each
of the ten technical replicates the number of protein groups identified and quantified
without and with match between runs. While without matching between runs, on average
5358 protein groups were found per sample, match between runs increased this number
by 381 on average. The number of protein groups that were quantified in all ten replicates

is increased by matching between runs by nearly 1,000 to 5503 (Fig. 6b).

Reproducibility of quantification between samples is a much more challenging problem

in plasma samples with their high dynamic range of concentrations and stronger
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variability. To this end we analyzed 208 plasma samples of human donors with single
shot runs on a timsTOF pro with a 11.5 minutes LC gradient. (See experimental
procedures.) In Fig. 6¢ the number of protein groups identified and quantified per sample
is plotted for each of the 208 plasma samples in ascending order. Without matching
between runs this number reaches from 49 to 176 protein groups with an average of 103.
The gain in number of quantified protein groups achieved by matching between runs

(Fig. 6d) is 90% on average.

To judge quantitative accuracy of label-free quantification, we recorded a dataset with
known ground truth by mixing three cellular proteomes from different species in known
ratios, similar to the strategy applied in the context of data-independent acquisition (DIA)
data (29). While human proteins are expected to have a 1:1 ratio, all yeast proteins are
expected to go up by a 2:1 ratio while all E. coli proteins go down by a 1:4 ratio. The
MaxLFQ algorithm(20)can be applied to ion mobility enhanced data without major
changes. Our adaptation to timsTOF data uses the signal intensities of the 4D MSI
features as input but is otherwise unaltered from its established LC-MS/MS version. The
benchmark data consists of two replicate groups consisting of 3 samples each. The runs
in a replicate group have been quantified as a single experiment with the MaxLFQ
algorithm, which has been run once with and once without the matching between runs
option activated. The resulting logarithmic LFQ intensities in the protein groups table
have been normalized in the Perseus software by subtracting the most frequent value.
Fold changes between the two replicate groups are plotted against the summed LFQ
intensity in Fig. 7a and b without and with matching, respectively. The respective fold
change data distributions are shown in Fig. 7¢ and d. The fold changes are centered on
the positions that were expected for the three different species. The number of quantified
proteins increases from 5819 to 6626 by using the matching between runs. There is no
discernible intensity-dependent trend in the fold changes, meaning there are no
nonlinearities in quantification at the upper or lower end of the dynamic range. Also the
matching does not lead to a systematic change in the population of fold changes or to a
discernible increased rate of wrongly quantified proteins, supporting the view that the
matching is specific, as independently found with the method introduced in Fig. 5.
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Computational performance

A major challenge in the project was to achieve acceptable computational performance
for large datasets with many LC-IMS-MS/MS runs being analyzed together in one
project. Parallelization on multiple cores was achieved for nearly the entire computational
workflow. Performance improvements will continue to be worked on and integrated into
future software versions. The current split of computation time for a typical dataset onto
the different workflow components can be seen in Table 1. Dominating parts are feature

detection, MS/MS preparation, the searches, as well as the alignment.

DISCUSSION

We implemented a novel computational workflow in MaxQuant that uses peptide CCS
values to largely alleviate the missing value problem, typical in DDA shotgun
proteomics. The newly developed MaxQuant CCS re-alignment algorithm does not
require external or recognizable calibrants added to the sample, and successfully aligns
ion mobilities from different runs against each other, prior to performing MBR. It has
profound implications on protein quantification which we show to be possible with label
free methods to good proteome depths and with enhanced precision. The combination of
this particular IMS-QTOF hardware and the MaxQuant software provides the user with a
robust platform for shotgun proteomics with deep and reproducible proteome coverage.
Furthermore, the missing value problem of DDA shotgun proteomics due to its inherent

stochasticity is appreciably reduced.

Currently, one of our development emphases is to improve computational performance of
the total workflow. While with the current performance, data analysis is feasible and not
prohibitively slower compared to conventional LC-MS/MS data, speed gains in future
software releases will still have a positive impact on the everyday usage of MaxQuant on
standard computer hardware. We are in an iterative development process of finding
computational bottlenecks in the workflow and alleviating them. Given the significant

improvements described in this paper, we foresee a CCS aware MaxQuant version soon
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that will run just as fast as the current version for conventional LC-MS/MS data. Going
forward, the combination of DIA with IMS in combination with MaxQuant’s advanced
feature detection and recalibration routines has the potential to increase robustness of
proteomics analyses even further. The application of deep learning for the prediction of
MS/MS spectra, retention time and ion mobilities, and its future integration into

MaxQuant (30) has the potential to further improve protein identification rates and LFQ.
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Figure 1. Elements of feature detection. a. Raw data is mapped to a common grid.
While the ion mobility scans already form a regular grid, the m/z values of data centroids
are irregular. All intensity values within an ion mobility window and within a mass range
are mapped to a common mass grid with a spacing that is monotone increasing with m/z.
Intensities are added up using a Gaussian kernel with a locally adapted with according to
the effective resolution. b. The raw data is sliced along the ion mobility axis to obtain
data planes with signal intensity as a function of m/z and retention time. In these planes,
features can be detected with the conventional algorithms in MaxQuant. ¢. The features
in each plane are bounded by irregular shapes following the raw data. d. Features are
clustered between consecutive planes to obtain closed surfaces surrounding the final

features.
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Figure 2. Mass recalibration. a.-d. Residual mass errors after the dependence of all but
one variable have been recalibrated, showing the dependence of the residual mass error
on m/z (a.), retention time (b.), logarithm of the peak intensity (¢.) and ion mobility (d.).
Colors reflect the density of data points. e. Mass error distribution before recalibration. f.

Mass error distribution after recalibration has been applied.
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Figure 3. Retention time and ion mobility alignment. a. Difference in retention time
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time alignment has been applied. ¢. Similar to a, but now the difference in 1/Ko within the
feature pair is plotted against 1/Ko in one of the runs, indicating differences between runs
in terms of ion mobility. d. Same as in ¢, but after ion mobility alignment has been

applied.
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Figure 5. Specificity of ion mobility enhanced matching between runs. a. Matches
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using ion mobility as a function of the window size in 1/Ko.
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Figure 6. Protein quantification coverage. a. Number of protein groups quantified in
10 replicates without and with matching between runs. b. Number of proteins groups
quantified in N out of 10 replicates without and with matching between runs. ¢. Number
of protein groups quantified in 208 short human plasma runs. d. Gain of quantified

protein groups in ¢. by matching between runs.
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Figure 7. LFQ on a benchmark dataset. a. LFQ intensity plotted against fold change
between replicate groups. (Both logarithmic.) Vertical lines correspond to fold changes
expected by the mixing of species-derived samples. b. Same as a, but with matching

between runs. c.-d. Histograms of data in a-b projected on the horizontal axes.
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Feature detection +++ 31.2%
MS/MS preparation +++ 15.6%
Initial search - 14.1%
Recalibration ++ 1.8%
Main search - 19.1%
PSM FDR - 1.9%
Alignment ++ 12.5%
Match between runs ++ 0.4%
Protein groups / FDR - 2.6%
Label-free quantification - 0.3%
Writing of results + 0.4%

Table 1. Main processing steps of the computational workflow. The table lists the
most important and time consuming steps in the MaxQuant pipeline for LC-IMS-MS/MS
data. In the second column, the number of plus signs signifies the extent of changes in the
code in order to accommodate ion mobility information. For instance, ‘+++ for ‘feature
detection’ indicates fundamental changes. The right column contains the percentage of
computation time that is spent on the step on the Hela dataset consisting of ten

replicates, on 60 core machine running Windows Server 2016.
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MSI1 frames 7828 1729
MS?2 frames 52679 3990
IMS scans per frame 918 918
PASEF precursors 233437 44214
4D features 2164978 540917
4D isotope patterns 409379 65501
MS/MS submitted 114477 16928

Table2. Numbers of features and other elements in a single LC-IMS-MS/MS run.
For a typical run with a two-hour gradient we show the numbers of scans, detected

elements and identified entities.
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