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Abstract

Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue
microstructure. By fitting a model to the dMRI signal, various quantita-
tive measures can be derived from the data, such as fractional anisotropy,
neurite density and axonal radii maps. The uncertainty in these dMRI mea-
sures is often ignored, while previous work in functional MRI has shown
that incorporating uncertainty estimates can lead to group statistics with a
higher statistical power. We propose the Fisher Information Matrix (FIM)
as a generally applicable method for quantifying the parameter uncertain-
ties in non-linear diffusion MRI models. In direct comparison with Markov
Chain Monte Carlo sampling, the FIM produces similar uncertainty esti-
mates at lower computational cost. Using acquired and simulated data,
we then list several characteristics that influence the parameter variances,
like data complexity and signal-to-noise ratio. In individual subjects, the
parameter standard deviations can help in detecting white matter artifacts
as patches of relatively large standard deviations. In group statistics, we
recommend using the parameter standard deviations by means of variance
weighted averaging. Doing so can reduce the overall variance in group
statistics and reduce the effect of data artifacts without discarding data
from the analysis. Both these effects can lead to a higher statistical power
in group studies.

Keywords: Uncertainty estimates, Variances, Diffusion MRI,
Microstructure, Fisher Information Matrix (FIM), Cramér Rao Lower
Bound (CRLB)

1 Introduction1

Diffusion Magnetic Resonance Imaging (dMRI) allows for non-invasive in-2

vestigation of brain tissue microstructure. By fitting a dMRI model to each3
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voxel, various quantitative measures can be derived from the data, such4

as fractional anisotropy (Basser et al., 1994), neurite density (Zhang et al.,5

2012) and axonal radii maps (Assaf & Pasternak, 2008; Alexander et al.,6

2010). These quantitative measures can be used in statistical group analysis.7

For example, tract-based spatial statistics (TBSS) is a popular approach to8

group analysis of fractional anisotropy measures (Smith et al., 2006). More9

often than not, these approaches (including TBSS) ignore the uncertainty in10

the quantitative measures. In functional magnetic resonance imaging, pre-11

vious work has shown that incorporating uncertainty estimates can lead to12

group statistics with a higher statistical power (Chen et al., 2012; Woolrich13

et al., 2004). For linear diffusion models, a method for computing and using14

uncertainty estimates has been shown before (Sjölund et al., 2018), but this15

has not yet been generalized to non-linear diffusion models like NODDI16

(Zhang et al., 2012) and CHARMED (Assaf & Basser, 2005).17

Previous work in quantifying the parameter uncertainties include Markov18

Chain Monte Carlo (MCMC) (Behrens et al., 2003; Wegmann et al., 2017; Gu19

et al., 2017) and bootstrapping (Jones, 2003; Chung et al., 2006; Whitcher20

et al., 2008) methods. Of these two techniques, bootstrapping is often not21

applicable as it is either model specific (Whitcher et al., 2008) or requires22

very specific additional MRI measurements (Jones, 2003; Chung et al., 2006)23

which are often not acquired in diffusion MRI datasets. MCMC on the other24

hand can readily be extended to all microstructure models, but often re-25

quires long computation times, even with parallel processing on graphical26

processing units (Harms & Roebroeck, 2018).27

We propose the Fisher Information Matrix (FIM) as a generally applicable28

method for quantifying the parameter uncertainties in non-linear diffusion29

MRI models. The FIM allows for estimating the local variances around the30

maximum likelihood point estimate, which is the point estimate typically31

used in group statistics. Computing the FIM is a relatively fast operation,32

requiring only a few additional model evaluations. In other fields, like for33

example astrophysics, the Fisher Information Matrix is already recognized34

as a useful tool for quantifying the uncertainty in parameter estimates (Val-35

lisneri, 2008; Rodriguez et al., 2013). In diffusion MRI, the FIM has been36

applied before, but only specific to the multi-Tensor model (Versteeg et al.,37

2018) and has not yet been generalized to all non-linear microstructure38

models.39

The Fisher Information Matrix can additionally be used to compute the40

Cramér Rao Lower Bound (CRLB; Rao, 1945; Cramer, 1946), if and only41

if the true parameters are known (Kay, 1993). For example, in simula-42

tion studies the CRLB can function as a ground truth lower bound on43

the estimable variances, thereby indirectly evaluating the performance of44

the maximum likelihood routines (Kay, 1993). Although in brain data the45
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FIM can be interpreted as an approximation to the CRLB, we follow the re-46

sults in astrophysics and only interpret the FIM as a measure of uncertainty47

around the estimated parameters (Vallisneri, 2008).48

We first compare the uncertainty estimates from the Fisher Information49

Matrix to those of MCMC, using multiple datasets and multiple dMRI mi-50

crostructure models. We then investigate several data and model character-51

istics that can influence the parameter variances, like data complexity and52

Signal-to-Noise Ratio (SNR). In the end, we discuss the use of uncertainty53

estimates in white matter artifact detection (e.g. detecting fat saturation)54

and show how weighted averaging could lead to an increase in power in55

group studies.56

2 Methods57

2.1 Parameter distribution estimates58

We compare two different methods for summarizing the parameter poste-59

rior distributions of a single voxel, a frequentist method using Maximum60

Likelihood Estimation (MLE) and the Fisher Information Matrix (FIM) and61

a Bayesian method using Markov Chain Monte Carlo (MCMC) (see fig-62

ure 1 for a schematic overview). With both methods we summarize the63

voxel-wise posteriors as a point estimate with a corresponding standard64

deviation (std.).65

In the first method we use the Powell optimization routine (Powell, 1964;66

Harms et al., 2017) to get an MLE parameter point estimates. We estimate67

the standard deviations around those point estimates using the theory of68

the FIM. Standard deviations in derived parameter maps (e.g. Tensor Frac-69

tional Anisotropy) can be obtained by propagating the uncertainty of the70

model parameters. We refer to this method as MLE+FIM.71

The second methodology uses MCMC sampling to approximate the full72

posterior distribution, using the Adaptive Metropolis Within Gibbs routine73

as discussed in (Harms & Roebroeck, 2018). From these samples we sum-74

marize the posterior distribution using a mean and standard deviation, as75

done before in before in dMRI modeling (Behrens et al., 2003; Sotiropou-76

los et al., 2013; Wegmann et al., 2017). Uncertainties in derived parameter77

maps can be obtained by computing the derived parameter maps at ev-78

ery sampled point and summarizing the result. We refer to this method as79

MCMC.80

The MLE+FIM provides a local variance around a mode while MCMC pro-81

vides a global variance around the mean. As such, these methods are only82

comparable if the posterior is unimodally Gaussian distributed, since then83
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the mean equals the mode. As in previous work (Behrens et al., 2003;84

Sotiropoulos et al., 2013; Wegmann et al., 2017), we assume the posteriors85

to be unimodally Gaussian distributed.86

This assumption may not necessarily hold. For example, multi-modality87

could arise when fitting a single fiber model to a crossing fiber voxel. In88

such cases, different post-processing would be required on the MCMC sam-89

ples to correctly reflect the parameter variances. The FIM would be less90

sensitive to this issue since the FIM provides only local variances estimates.91

That is, the MLE would choose one mode of the distribution and the FIM92

would provide a local variance estimate around the chosen mode. This is-93

sue could also be circumvented by applying appropriate model selection to94

every voxel.95

Non-Gaussian distributions can happen near parameter boundaries. For96

instance, very low (close to zero) or very high (close to one) compartment97

volume fractions can lead to a truncated posterior. In such cases the FIM98

no longer applies. For MCMC different post-processing would be required,99

like fitting a truncated normal distribution to the posterior. This could100

again be solved by appropriate model selection. We take no special pre-101

cautions for these boundary effects and assume these to not be present in102

white matter.103

Nevertheless, we expect most posteriors to be unimodally Gaussian dis-104

tributed. This assumption is also supported by two theoretical arguments.105

First, if the model is suitable to describe the data (e.g. if model selection was106

successfully applied), the posterior asymptotically approaches a Gaussian107

distribution (Gelman et al., 2013). Second, according to the central limit108

theorem, each parameter’s marginal distribution will asymptotically tend109

to a Gaussian as the number of model parameters increases (Gelman et al.,110

2013).111

Figure 1: The uncertainty computation methods for both the Maximum Likelihood Estima-
tion (MLE) and Markov Chain Monte Carlo (MCMC) methods.

2.1.1 Fisher Information Matrix112

The observed Fisher Information Matrix is defined as the negative Hessian113

of the log-likelihood function when evaluated at the maximum likelihood114

estimate (Pawitan, 2013; Gelman et al., 2013). The inverse of the FIM is115
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an asymptotic estimator of the covariance matrix (Pawitan, 2013; Gelman116

et al., 2013). Formally, let l(x) be a log-likelihood function with maximum117

likelihood estimate x̂. A second order Taylor approximation of l(x) cen-118

tered at x̂ is then given by:119

l(x) = l(x̂) +
1

2
(x− x̂)T

∂2

∂x2
l(x̂)(x− x̂) (1)

ignoring the higher terms and having dropped the linear term since the120

first derivative of a function is zero at the mode. Considering the first term,121

l(x̂), a constant and the second term, 1
2(x− x̂)T ∂2

∂x2 l(x̂)(x− x̂), proportional122

to the logarithm of a normal density, we get the approximation:123

l(x) ≈ N (x̂, [I(x̂)]−1) (2)

where I(x̂) is the observed Fisher Information Matrix:124

I(x̂) = −H(x̂) = − ∂2

∂x̂2
l(x̂) (3)

For the Hessian to be positive definite, this theory requires x̂ to lie within125

the boundaries of the parameter space (Gelman et al., 2013). We compute126

the Hessian numerically (see Appendix A) and its inverse using a direct127

inverse where possible with a fallback on the (Moore-Penrose) pseudo-128

inverse for ill-conditioned Hessians. Ill-conditioned Hessian can for exam-129

ple arise with parameter estimates lying at a predefined parameter bound-130

ary (Gelman et al., 2013).131

2.1.2 Uncertainty propagation132

Given a function y = f(θ) where f(·) is a known function, uncertainty133

propagation provides the probability distribution of y given the probability134

distribution of θ. For example, we can use this to estimate the standard135

deviation of a Tensor Fractional Anisotropy (FA) estimate, by propagating136

the standard deviation estimates of the Tensor diffusivities. We use a first137

order Taylor expansion linear approximation (Arras, 1998), which states138

that if θ is normally distributed with mean µθ and covariance matrix Σθ,139

the distribution of y can be approximated as:140

y ≈ N (µy,Σy) = N (f(θ), Jf (θ)ΣθJf (θ)>) (4)
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with Jf the Jacobian matrix of f . More succinctly, the covariance matrix of141

y = f(θ) is given by:142

Σy = JfΣθJ
>
f (5)

which holds as a generally applicable formula for linear propagation of co-143

variances (Arras, 1998). In the case of an univariate output y = f(θ), the144

Jacobian can be formulated as a gradient vector ∇f , leading to the follow-145

ing expression for the variance in y:146

σ2y = ∇fΣθ∇>f (6)

This error propagation technique uses both the variances and the co-variances147

of all the propagated parameters. Additionally, this technique takes into ac-148

count the functional form of the propagated function, i.e. if the function is149

linear or non-linear. The Jacobian or gradient can be computed numerically150

using finite-differences or can be evaluated at an analytical derivative. We151

use analytical expressions for all uncertainty propagations. See Appendix B152

for worked out error propagation examples of the Tensor FA and Ball&Stick153

Fraction of Stick parameters.154

2.2 Variance weighted average155

Variance weighted averaging makes it possible to include the variances of156

the data points when computing a mean and standard deviation. For ex-157

ample, the voxel-wise variances discussed earlier can be used in averages158

of white matter regions within a subject, or in voxel-wise averages over159

multiple subjects. First, given n data points zi, we define the regular mean160

as:161

µ̄regular =
1

n

n∑
i

zi (7)

and regular standard deviation as:162

σ̄regular =

√∑n
i (zi − µ̄regular)2

n
(8)

If each data point zi has a corresponding weight wi, we can compute a163

weighted mean as:164

µ̄weighted =

∑n
i wizi∑n
i wi

(9)
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and a weighted standard deviation as:165

σ̄weighted =

√∑n
i wi(zi − µ̄weighted)2

(m−1)
m

∑n
i wi

(10)

withm for the number of non-zero weights, included here to allow for non-166

normalized weights. It has been shown that the weights that minimize the167

variance of the weighted average are the reciprocals of the variances of each168

of the data points zi (Shahar, 2017). That is, given the variances σ2i for each169

zi, the weights that minimize Var(
∑

iwizi) is given by:170

wi =
1

σ2i
(11)

Incidentally, these weights are also the maximum likelihood estimator of171

the weighted mean and variance under the assumption that the data points172

zi are independent and normally distributed with the same mean (Cochran,173

1937).174

2.3 Diffusion microstructure models175

To capture the variety of microstructure models in diffusion MRI we chose176

four different models, the Tensor (Basser et al., 1994), Ball&Stick (Behrens177

et al., 2003), Bingham-NODDI (Tariq et al., 2016) and CHARMED (Assaf178

et al., 2004) models. The Tensor model is the oldest diffusion MRI model179

and still sees widespread usage in the literature. From the Tensor we derive180

the Fractional Anisotropy (FA) quantity. The Ball&Stick model (Behrens181

et al., 2003) is the first multi-compartment model and is often used as lo-182

cal estimator for tractography. To delineate multiple fiber orientations,183

the Ball&Stick model can feature multiple Stick compartments, but always184

with a single Ball compartment. To differentiate between the Ball&Stick185

models with one or more Stick compartments, we denote the specific Ball&Stick186

model as ”BallStick in1”, ”BallStick in2” and ”BallStick in3” for respec-187

tively one, two or three Stick compartments. This is a general naming188

scheme to denote models that can have one or more intra neuronal com-189

partments relative to the other compartments. From the Ball&Stick model190

we derive the Fraction of Stick (FS) quantity, which is the sum of the vol-191

ume fractions of the Stick compartments.192

More recent, biologically inspired, models include Bingham-NODDI and193

CHARMED. The Bingham-NODDI model assumes that white matter con-194

sists of restricted intra-cellular and hindered extra-cellular water compart-195

ments, with the intra-cellular compartment capturing neurite orientation196
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dispersion. From the Bingham-NODDI model we use the Fraction of Re-197

stricted (FR) quantity, the volume fraction of the restricted intra-cellular198

compartment. The CHARMED model assumes a tissue model of restricted199

intra-neuronal and hindered extra-neuronal water compartments, with the200

intra-neuronal compartment assuming a bundle of axons. Since CHARMED201

can be used with multiple intra-neuronal compartments we again denote202

these with the ’ in’ suffix. Here, we only use CHARMED with one intra-203

neuronal compartment, denoted as ”CHARMED in1”. From the CHARMED204

model we use the Fraction of Restricted (FR) quantity, the volume fraction205

of the restricted intra-neuronal compartment. For implementation notes of206

these models see (Harms et al., 2017).207

2.4 Software208

All models and routines used in this study are implemented in a Python209

based GPU (graphical processing unit) accelerated toolbox, the Microstruc-210

ture Diffusion Toolbox, MDT, which is freely available under an open source211

license at https://github.com/cbclab/MDT. We used the models and212

MCMC routine as implemented in MDT version 0.18.3. From this version213

onward, MDT automatically computes the FIM after every maximum like-214

lihood estimation operation and writes out the variances and covariances215

alongside the parameter estimates. Scripts for reproducing the results in216

this article can be found at https://github.com/robbert-harms/217

uncertainty_paper. All computations for this paper were performed218

on a single AMD Fury X graphics card.219

2.5 Datasets220

In this study we used simulated data and imaging data from two popula-221

tion studies. To illustrate the methods on a dataset with a clinically feasible,222

fast to acquire, acquisition scheme, we used data from the diffusion pro-223

tocol pilot phase of the Rhineland Study (www.rheinland-studie.de).224

We refer to these datasets and acquisition schemes as RLS-pilot. To illustrate225

the methods on a dataset with a high-end, long acquisition time, acquisition226

scheme, we used data from the Human Connectome Project MGH-USC227

Young Adult study. We refer to these datasets and acquisition schemes as228

HCP MGH. For simulated data we used a single representative acquisition229

scheme from both the RLS-pilot and HCP MGH studies.230

The RLS-pilot datasets were acquired on a Siemens Magnetom Prisma (Siemens,231

Erlangen, Germany) with the Center for Magnetic Resonance Research (CMRR)232

multi-band (MB) diffusion sequence (Moeller et al., 2010; Xu et al., 2013).233

These datasets had a resolution of 2.0 mm isotropic with diffusion param-234

eters ∆ = 45.8 ms, δ = 16.3 ms, TE = 90 ms and TR = 4500 ms, and with235
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Partial Fourier = 6/8, MB factor 3, no in-plane acceleration with 3 shells of236

b = 1000, 2000, 3000 s/mm2, with respectively 30, 40 and 50 directions to237

which are added 14 interleaved b0 volumes leading to 134 volumes in total238

per subject. Additional b0 volumes were acquired with a reversed phase239

encoding direction which were used to correct susceptibility related distor-240

tion (in addition to bulk subject motion) with the topup and eddy tools in241

FSL version 5.0.9 (Andersson & Sotiropoulos, 2016). The total acquisition242

time is 10 min 21 sec. These three-shell datasets represent a relatively short243

time acquisition protocol that still allows many models to be fitted. From244

this dataset we used a single representative subject (v3a 1 data ms20).245

The HCP MGH datasets come from the freely available fully preprocessed246

dMRI data from the USC-Harvard consortium of the Human Connectome247

project. Data used in the preparation of this work were obtained from the248

MGH-USC Human Connectome Project (HCP) database (https://ida.249

loni.usc.edu/login.jsp). The data were acquired on a specialized250

Siemens Magnetom Connectom with 300 mT/m gradient set (Siemens, Er-251

langen, Germany). These datasets were acquired at a resolution of 1.5 mm252

isotropic with diffusion parameters ∆ = 21.8 ms, δ = 12.9 ms, TE = 57 ms,253

TR = 8800 ms, Partial Fourier = 6/8, MB factor 1 (i.e. no simultaneous254

multi-slice), in-plane GRAPPA acceleration factor 3, with 4 shells of b =255

1000, 3000, 5000, 10,000 s/mm2, with respectively 64, 64, 128, 393 directions256

to which are added 40 interleaved b0 volumes leading to 552 volumes in257

total per subject, with an acquisition time of 89 minutes. These four-shell,258

high number of directions, and very high maximum b-value datasets allow259

a wide range of models to be fitted. From these datasets we used a single260

representative subject (hcp 1003) in single subject illustrations and we used261

all 35 subjects in the group comparisons.262

Since the CHARMED in1 model requires relatively high b-values (≥∼6000263

s/mm2), which are not present in the RLS-pilot datasets, we will only use264

the HCP MGH dataset when showing CHARMED in1 results. Addition-265

ally, since the Tensor model is only valid for b-values up to about 1200266

s/mm2, we only use the b-value 1000 s/mm2 shell and b0 volumes in maxi-267

mum likelihood estimation and MCMC sampling of the Tensor model. All268

other models use all the data volumes.269

For all datasets we created a white matter (WM) mask from the Tensor FA270

estimates and, using BET from FSL (Smith, 2002), a whole brain mask. The271

whole brain mask is used for MLE and MCMC sampling, whereas aver-272

ages over the WM mask are used in model or data comparisons. For each273

dataset, voxel-wise SNR is estimated using only the unweighted (b0) vol-274

umes, by dividing the mean of the unweighted volumes by the standard275

deviation.276
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2.5.1 Ground truth simulations277

We additionally created simulated data to illustrate the effects of the signal-278

to-noise ratio (SNR) on the variance of the estimated parameters. We used a279

single representative acquisition scheme from both the RLS-pilot and HCP280

MGH datasets (the acquisition schemes of subject v3a 1 data ms20 and281

hcp 1003), and simulated data for each model. For each acquisition scheme282

and each model, we simulate 10000 voxels with random volume fractions283

in [0.2, 0.8], diffusivities in [5e−11, 5e−9] mm2/s, and orientations in [0, π].284

From these, we created multiple copies with Rician noise (Gudbjartsson &285

Patz, 1995) of SNRs 5, 10, 20, 30, 40 and 50. We then fit and sample each286

model ten times to these simulated datasets and estimate the standard de-287

viation using both the FIM and MCMC approach as described above. Per288

SNR we summarize the results of these ten trials as a mean standard devi-289

ation and its corresponding standard error of the mean.290

2.5.2 Group statistics291

For the group statistics we computed Tensor FA and Bingham-NODDI FR292

and FR standard deviation maps on all 35 subjects using the MLE+FIM293

method. To be able to compare the subjects, we first registered the Tensor294

FA estimates to the FMRIB58 FA 1mm template using FLIRT and FNIRT295

from FSL (Andersson et al., 2010). Next, we used those registration tem-296

plates to co-register the Bingham-NODDI FR and FR standard deviation297

maps.298

With uncertainty maps available there are three methods to compute group299

statistics that are robust against subject-level artifacts. Method one, ap-300

ply variance weighted averaging using the uncertainty estimates to down-301

weight voxels with a high standard deviation. This would automatically re-302

move artifacts if these artifacts lead to high parameter uncertainties. Method303

two, exclude outlier subjects from the group statistic. Outlier subjects could304

be detected using the point estimates or using the uncertainty maps. Method305

three, use a combination of method one and two, i.e. computing weighted306

group estimates after removal of outliers.307

To illustrate these three artifact reduction methods, we first computed a308

baseline statistic using a simple mean and standard deviation over all 35309

subjects. We then used artifact reduction method one and used the FR stan-310

dard deviation maps as weights in the variance weighted averaging. To311

apply artifact reduction method two and three, we created a new subgroup312

with only 30 subjects, where we manually removed five subjects (mgh -313

1008, mgh 1009, mgh 1013, mgh 1017 and mgh 1032) that had a large white314

matter artifact over the corpus callosum. We then applied regular averag-315

ing and weighted averaging over these remaining 30 subjects.316
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As a comparison method between regular and weighted averaging we com-317

puted (µweighted − µregular)/µregular and (σweighted − σregular)/σregular as dif-318

ference measure for the mean and standard deviation estimates between319

regular and weighted averaging.320

3 Results321

We begin by comparing the parameter estimates and parameter uncertainty322

estimates of MLE+FIM to the corresponding estimates from MCMC. Next,323

we investigate the effect of SNR on the parameter standard deviations us-324

ing both simulated and imaging data. We end with a comparison of regular325

versus weighted averaging in group statistics.326

3.1 Parameter distribution estimates327

Figure 2 visually compares the results of MLE+FIM to those of MCMC, us-328

ing the Bingham-NODDI Fraction of Restricted (FR) parameter, on a single329

subject from the RLS-pilot dataset. Comparing results of a single transverse330

slice shows high qualitative correspondence between the MLE and MCMC331

methods (figure 2A), with both the point estimates and corresponding stan-332

dard deviations (stds.) in close resemblance. A single voxel illustration of333

the estimated Gaussian distributions (figure 2B) again shows a high degree334

of similarity, with both Gaussian fits capturing the characteristics of the335

MCMC sample distribution to a large degree.336

To further quantify the correspondence between the MLE and MCMC method-337

ologies, we created scatter plots between the MLE and MCMC estimates of338

both the point estimate and standard deviation estimate. This was per-339

formed over a white matter mask for a single subject from both the HCP340

MGH and RLS-pilot datasets. Figure 3 shows Bingham-NODDI FR mean341

and standard deviation scatter plots. The FR point estimates are very tightly342

confined to the identity line, illustrating a high degree of correspondence in343

the point estimates from MCMC and MLE. The variation of point estimates344

along the diagonal corresponds to variation of FR values over the white345

matter mask, ranging between roughly 0.3 and 0.7. The std. estimates be-346

tween the MLE and MCMC methodologies again show a high correspon-347

dence, although the off-diagonal spread in the std. plot is visibly larger348

than that in the point estimate plot. There is also some clipping visible in349

the std. plot, with MLE estimating a zero std. while MCMC provides a350

range of values. This is mostly due to very low point estimates (near zero),351

at which point the FIM is no longer applicable. The blue-green-yellow-red352

coded points in both plots account for 97-99.5% of the voxels and the pur-353

ple points account for the remaining fraction of outliers. The std. estimates354
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for the HCP MGH data are clearly lower than for the RLS-pilot data, con-355

firming an expected higher precision (lower uncertainty) of point estimates356

based on more dMRI data-points.357

To investigate the correspondence in MCMC and MLE uncertainty esti-358

mates for a larger number of models, figure 4 shows scatter plots for mul-359

tiple microstructure models. Parameter point estimate comparisons are360

not shown here, but are generally in correspondence to a very high de-361

gree. Across all models and data, except for the CHARMED in1 model362

fit on RLS-pilot data, MCMC and MLE uncertainty estimates are in high363

correspondence and located close to the identity diagonal. A relatively364

large off-diagonal variance in standard deviation estimates is visible in the365

CHARMED in1 FR parameter on the RLS-pilot data. This is expected as the366

RLS-pilot dataset is not well suited for the CHARMED in1 model due to367

too low b-values (the CHARMED in1 model requires b-values≤ 6000s/mm2).368

Standard deviation estimates for CHARMED in1 on the HCP MGH data369

are not only much more tightly confined to the identity diagonal, the std.370

estimates themselves are also about a factor two lower. A large spread to371

the right is also visible in the Ball&Stick in3 results. This might be related372

to MLE choosing a different mode and is perhaps solved using model se-373

lection. There is also again some clipping visible, with MLE providing a374

zero std. with voxels with a very low point estimate.375

Irrespective of the method (MCMC or MLE+FIM), the std. estimates on376

the RLS-pilot data are always higher than the corresponding estimates on377

the HCP MGH data, once again confirming the expected higher precision378

on datasets with a larger number of direction. Conversely, one would ex-379

pect higher complexity models (i.e. models with more compartments and380

more parameters to fit) to have higher uncertainty when fitted on the same381

data. This is indeed illustrated by the Ball&Stick in{1,2,3} results, were we382

see an increasing estimated standard deviation for an increasing number383

of Sticks, within each of the HCP MGH and RLS-pilot datasets. Finally,384

Tensor FA standard deviations are about a factor two higher than those of385

the other models. This is probably related to Tensor FA being a compound386

parameter.387

To quantify correspondence in the MCMC and MLE std. estimates in the388

scatter plots, table 1 shows the percentage of voxels for which the differ-389

ence between the MLE and MCMC variances is less than two standard de-390

viations from the mean difference. We note an average similarity of∼98.7%391

across six models and two datasets, even including the 97.9% similarity for392

the CHARMED in1 model fit on RLS-pilot data. Table 2 compares runtimes393

between the MLE with the FIM and the MCMC methodologies, measuring394

the time between loading the data and writing the results. Averaged over395

six models and two subjects, the GPU-optimized MLE and FIM together396
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compute approximately 38 times faster than GPU-optimized MCMC.397

Figure 2: A) Visual comparison of parameter and standard deviation uncertainty maps
between the Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo
(MCMC) methodologies for the Bingham-NODDI Fraction of Restricted (FR) on an RLS-
pilot dataset. B) Histogram of the 20 thousand MCMC samples of the highlighted voxel in
figure A, with in red and blue the fitted Gaussian distributions of, respectively, the MLE
and MCMC methodologies.
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Figure 3: Scatter plots comparing Maximum Likelihood Estimation (MLE) and Markov
Chain Monte Carlo (MCMC) point estimates (left column) and standard deviations (right
column) for the Bingham-NODDI Fraction of Restricted (FR) values over a white matter
mask for both a complex, long acquisition time HCP MGH dataset and a clinically feasible
RLS-pilot dataset. Plots are color coded using a kernel density estimate (a.u) from purple
(low density) to red (high density). Purple points correspond to a small percentage (0.5-3%)
of the data (c.f. Table 1).

14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/651547doi: bioRxiv preprint 

https://doi.org/10.1101/651547
http://creativecommons.org/licenses/by/4.0/


Figure 4: Scatter plots comparing Maximum Likelihood Estimation (MLE) and Markov
Chain Monte Carlo (MCMC) standard deviations for multiple models over a white matter
mask for both an HCP MGH and an RLS-pilot dataset. Acronyms are Fraction of Stick (FS),
Fraction of Restricted (FR) and Fractional Anisotropy (FA). Plots are color coded using a
kernel density estimate (a.u) from purple (low density) to red (high density). Purple points
correspond to a small percentage (0.5-3%) of the data (c.f. Table 1).
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HCP MGH RLS-pilot

Ball&Stick in1 99.5% 98.8%
Ball&Stick in2 99.9% 99.4%
Ball&Stick in3 98.8% 97.5%
Bingham-NODDI 98.9% 98.7%
CHARMED in1 98.6% 96.9%
Tensor 99.0% 97.9%

Table 1: For each model and dataset the percentage of voxels where the difference between
the parameter stds. from the FIM and of MCMC are within two standard deviations from
the mean difference. These percentages correspond to the red/yellow high densities in
figure 4.

HCP MGH RLS-pilot
MLE + FIM MCMC rel. MLE + FIM MCMC rel.

Ball&Stick in1 00:01:49 01:21:55 45x 00:00:30 00:20:49 42x
Ball&Stick in2 00:04:32 02:33:18 34x 00:01:08 00:42:36 38x
Ball&Stick in3 00:13:01 07:00:51 32x 00:03:19 01:53:33 34x
Bingham-NODDI 02:06:19 111:32:52 53x 00:28:19 26:11:47 56x
CHARMED in1 02:09:49 53:34:47 25x 00:21:53 07:49:55 21x
Tensor 00:02:41 01:59:07 44x 00:02:18 01:02:11 27x

Table 2: Runtime comparison between the two methodologies for computing parameter
statistics, Maximum Likelihood Estimation (MLE) with the Fisher Information Matrix (FIM)
and Markov Chain Monte Carlo (MCMC) sampling, for six different models and using a
single representative subject from both the HCP MGH and the RLS-pilot datasets. Reported
run times are over the entire brain mask and are in units of (h:m:s), with next to it the relative
speed advantage of the MLE + FIM over MCMC.
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3.2 Effect of SNR on parameter variances398

Lower SNR per data point (i.e. single diffusion volume) is expected to lead399

to higher uncertainty in fitted parameter estimates. This issue is of extra im-400

portance in brain dMRI by the fact that SNR is non-uniform over the brain,401

especially in modern high number-of-channel phased array RF-coils. In or-402

der to assess the effect of SNR on parameter variances, figure 5 compares403

an estimate of SNR, its reciprocal, and the parameter standard deviation404

estimates of multiple white matter models on a single HCP MGH dataset.405

We observe a decreased SNR in the center of the brain and an increase of406

SNR towards the periphery. A very similar gradient can be observed in the407

standard deviation maps, with a decrease in parameter standard deviations408

towards the periphery. As in the previous results, we observe an increase409

in standard deviations for an increased number of Sticks in the Ball&Stick -410

in{1,2,3}models, and Tensor FA standard deviations are about a factor two411

higher than the other standard deviation estimates.412

To further compare SNR and standard deviation estimates, figure 6 plots413

SNR versus parameter standard deviations, for both simulated data and414

imaging data. In general, we observe an inverse relationship between SNR415

and standard deviation, where an increase in SNR leads to an decrease416

in parameter std. estimates. Standard deviations on RLS-pilot data are417

always higher than corresponding estimates on HCP MGH data, except418

for the imaged data analysis at an SNR of 5, where the RLS-pilot dataset419

has a lower standard deviation. For lower SNR (< 10), MLE std. esti-420

mates are slightly higher than the MCMC estimates. For higher SNR (>421

10), the MLE and MCMC standard deviation estimates quickly converge,422

except for Ball&Stick in2, Ball&Stick in3 and Tensor estimates on the RLS-423

pilot dataset, where MLE standard deviations stay higher than those from424

MCMC. For the HCP MGH dataset, results are consistent between simu-425

lated and imaging data, with differences within the Standard Error of the426

Mean (SEM). Results on the RLS-pilot dataset are generally also consistent,427

except for an SNR of 5, where imaging data results are lower than those428

on simulated data. We finally observe that the standard error of the mean429

is generally higher for the simulated data compared to the imaging data,430

especially for lower SNR.431

17

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/651547doi: bioRxiv preprint 

https://doi.org/10.1101/651547
http://creativecommons.org/licenses/by/4.0/


Figure 5: Illustration of the effect of Signal to Noise ratio (SNR) on parameter standard
deviation estimates (using the MLE methodology), for a single HCP MGH subject (subject
1003). Maps are slightly smoothed with a 3d Gaussian filter (σ = 1voxel). Parameter
acronyms are Fraction of Stick (FS), Fraction of Restricted (FR) and Fractional Anisotropy
(FA).
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Figure 6: Effect of SNR on parameter standard deviations for simulated data and imaging
data. Simulation results are over 10000 simulated voxels per SNR with a standard error of
the mean (SEM) as error bar over 10 optimization and sampling trials. Real data results
are for 10 subjects of the HCP MGH and 10 subjects of the RLS-pilot datasets, with SNR
estimated as mean(b0 volumes)/std(b0 volumes).
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3.3 Group statistics432

Figure 7 shows Bingham-NODDI FR results of three subjects of the HCP433

MGH dataset after co-registration, to illustrate the behavior of standard434

deviations in regions of white matter acquisition artifacts. The first sub-435

ject (top row) has a clear artifact across the genu of the corpus callosum,436

perhaps due to incomplete fat saturation. This artifact is visible in both437

the mean parameter estimates and the standard deviation estimates. The438

second subject (middle row) shows a patch of relatively large standard de-439

viations in and near the splenium of the corpus callosum, without an eas-440

ily detectable alteration in the mean parameter map. For comparison, we441

show a third subject (bottom row) at the same contrast scaling, with no442

visible artifacts or alterations in either the mean or standard deviation es-443

timates. This figure illustrates that parameter std. maps can play a role444

in detecting biased estimates resulting from imaging artifacts. In particu-445

lar, artifacts which may not always be detectable in the parameter maps446

themselves.447

Figure 8 shows four group statistic estimates, a regular (baseline) and three448

statistics using the three mentioned artifact reduction methods using the449

parameter variances. To reiterate, these were method one, a weighted av-450

erage on all 35 subjects, method two, remove outlier subjects and apply451

regular averaging and method three, a weighted average with outlier sub-452

jects removed. Between regular and weighted averaging we computed a453

percentile difference map over a white matter mask to highlight the differ-454

ences in estimates of both the group mean and group standard deviations.455

For both the all-subjects and outliers-removed subject groups, the variance456

weighted mean is approximately lower across the artifact above the corpus457

callosum and, to a lesser degree, over the left internal and external cap-458

sules. For both groups, standard deviation estimates vary more between459

regular and weighted averaging, with a lower weighted average across the460

white matter artifact, equal values in most of the white matter and higher461

estimates near the border with gray matter. Group statistics with a few out-462

lier subjects removed give lower averages and lower standard deviations463

for both weighted and regular averaging. Removing the outlier subjects464

brings the regular and weighted averages closer to each other, with per-465

centile differences dropping by at least half.466

The white matter artifact is most present in the regular average over all sub-467

jects (baseline), followed by regular averaging over the reduced group (ar-468

tifact reduction method two), then by weighted averaging over all subjects469

(artifact reduction method one), and the artifact is least present in weighted470

averaging over the reduced group (artifact reduction method three).471
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Figure 7: Illustration of artifacts in the HCP MGH datasets using the Bingham-NODDI
Fraction of Restricted (FR) mean and standard deviation (std.) estimates from the MLE
methodology. In the top row, estimates for HCP MGH subject 1017, with an artifact across
the corpus callosum. In the middle row, estimates for HCP MGH subject 1016 with in-
creased standard deviation estimates near a ventricle. In the bottom row, estimates for
HCP MGH subject 1016 with no artifacts visible in the mean or standard deviation map.
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Figure 8: Group averages of Bingham-NODDI Fraction of Restricted (FR) estimates using
the HCP MGH data, once over all 35 subjects (left two columns) and once over only 30 sub-
jects where 5 outlier subjects have been removed (right two columns). First row, the regular
mean and standard deviation, second row, the variance weighted mean and standard de-
viations, final row, percentage difference between regular and weighted averages. Point
estimates and variances were computed using the MLE methodology.
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4 Discussion472

We evaluated parameter variance estimates as a quantification of parame-473

ter uncertainties. We compared standard deviation estimates from Max-474

imum Likelihood Estimation (MLE) plus the Fisher Information Matrix475

(FIM) to those of Markov Chain Monte Carlo (MCMC) sampling and showed476

that both results are identical in∼98.7% of the voxels. In terms of computer477

processing time, the estimates of MLE+FIM computed about 38x faster than478

those of MCMC. We then showed how data complexity and the signal-to-479

noise ratio can affect the parameter variances. Finally, we illustrated how480

the parameter variances can be applied in group studies to identify and481

downweight the effect of outliers, thereby decreasing the variance in group482

estimates, leading to an increase in statistical power of group studies.483

4.1 Comparison of the FIM and MCMC484

In general, we noted a close correspondence between the parameter dis-485

tribution estimates from the FIM and those from MCMC sampling, with486

an average similarity of ∼98.7% across six models and two datasets. Com-487

pared on runtime, computing MLE+FIM is about 38x faster than the use of488

MCMC, for comparable results.489

We made the explicit assumption that the parameter posterior distributions490

would follow a Gaussian distribution with a single mode. Theoretically,491

only a symmetrical distribution with a single mode would have an equal492

mode and mean. Therefore, if the MLE point estimate, which attempts to493

find the mode of the posterior, and the MCMC point estimate, which was494

computed here as the mean of the sample distribution are equal, then this495

is evidence towards symmetric single mode posteriors. Since our results496

from the FIM and MCMC were highly comparable (i.e. up to 98.7% of497

points estimates were indeed nearly equal), the Gaussian assumption is of-498

ten confirmed. In the remaining 1.3% of the voxels, it could either be that499

the parameter posteriors were not fully Gaussian distributed, or that the500

posterior distributions were multi-modal. In the case of a multi-modal dis-501

tribution, the FIM will give variance estimates around a single mode only,502

the mode found by the maximum likelihood routine. Our current MCMC503

methodology would provide an average and variance over all modes. To504

proper deal with multi-modal distributions when using MCMC, would re-505

quire fitting a multi-modal normal distribution to the MCMC samples. If506

the parameters are not normally distributed, like for example near param-507

eter boundaries or with skewed posterior’s, the FIM no longer applies and508

MCMC would require different post-processing of the samples.509

Compared on signal-to-noise (SNR), we note that the FIM provides higher510

standard deviation estimates at low SNR (< 10) when compared to MCMC.511
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These differences are small and quickly vanish for SNR ≥ 10. This follows512

results from astrophysics, where they recommend a minimum SNR of 10 to513

compute variances using the FIM, in gravitational wave assessments (Ro-514

driguez et al., 2013).515

In general, both the FIM and MCMC give comparable answers and both516

can be used for computing parameter standard deviations estimates to com-517

pute uncertainty. The only essential difference is one of computation time,518

computing a maximum likelihood point estimate together with the FIM is519

about 38x faster than using MCMC. This was expected, MCMC is generally520

known to be a time-consuming process, even when run on a GPU (Harms521

& Roebroeck, 2018). MLE on the other hand can be applied very efficiently522

using a GPU (Harms et al., 2017) and computing the FIM requires only a523

few extra function evaluations (dependent on the number of parameters,524

see Appendix A).525

4.2 Effects on estimates of the standard deviations526

There are several model and data characteristics that can affect standard527

deviation estimates, like data complexity, derived parameter maps and the528

signal-to-noise ratio. In general, these effects apply equally to both the FIM529

and MCMC.530

Concerning data dependency, as expected, standard deviation estimates531

on the RLS-pilot dataset are generally higher than those on the HCP MGH532

dataset, reflecting a decrease in point estimate uncertainties with more data533

points. The same holds for the relatively large standard deviations in the534

Tensor Fractional Anisotropy (FA) estimates, since for the Tensor model we535

used only the data volumes with a low b-value.536

A higher variance can additionally be observed for parameter maps which537

are not estimated directly but derived from the estimated parameters. This538

makes the variance of such derived parameters maps also a function of539

multiple variances, often leading to a higher total variance. This can for ex-540

ample be observed in the Tensor FA measure. The same compound effect541

could apply to the variance of the Fraction of Stick (FS) of the Ball&Stick542

models. For an increasing number of Sticks, the variance in FS is also a543

function of multiple volume fractions, which could increase the total vari-544

ance.545

For all models, parameter standard deviations are influenced by the signal-546

to-noise (SNR) ratio of the data, with a low SNR (< 10) leading to a large547

increase in standard deviations. Both shown in real and simulated data, the548

effect of SNR on the standard deviation estimates seems to be more gradual549

after an SNR ≥ 20.550
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4.3 Artifact detection551

The computed parameter standard deviations (either from the FIM or MCMC)552

could be used as a tool for detecting acquisition artifacts. In one provided553

example (figure 7 top row), an artifact in the white matter was visible in554

both the parameter estimate and in the standard deviation as a patch of555

high intensity voxels. In another example (figure 7 middle row), a patch of556

high intensity voxels was visible in the standard deviation estimate but not557

in the parameter estimate itself. As such, standard deviation maps have558

the potential to be more sensitive in detecting white matter artifacts than559

point estimate maps themselves. A promising future development could560

be to include these standard deviation maps into quality control frame-561

works (Bastiani et al., 2019; Liu et al., 2010; Oguz et al., 2014).562

4.4 Increasing power in group studies563

By weighing down voxels with a high standard deviation, weighted aver-564

aging can reduce the effect of white matter artifacts, approach lower and565

more accurate estimates of group variances and increase power of group566

statistics. In theory, if the within group datapoints are distributed with567

the same mean, variance weighted averaging promises the lowest possi-568

ble variance in the group mean. We observe this in large parts of the white569

matter where weighted averaging lowers the variance in the group average570

as expected, thereby indirectly increasing power in group comparisons.571

We have shown that some white matter artifacts are visible in the parame-572

ter standard deviation maps as patches of relatively large standard devia-573

tions. Since variance weighted averaging automatically reduces the effects574

of outliers whenever they have a large variance, variance weighted averag-575

ing automatically reduces the presence of artifacts. Even after removing a576

few subjects with a similar artifact, white matter averaging still reduces the577

presence of what appears to be a lower-expressed artifact in the remaining578

subjects. Due to this mechanism, subjects no longer need to be excluded579

from analysis, thereby improving the power of one’s study.580

Near the gray-white matter border we noticed some voxels where weighted581

averaging provides a higher variance than regular averaging. Theoretically,582

weighted averaging only predicts lower standard deviations if the points583

are distributed with the same mean. Misalignment between subjects can584

cause a single voxel to contain white matter for one subject and gray mat-585

ter for another subject. Parameter estimates on such voxels will then be586

distributed with a different mean, leading to a higher group standard devi-587

ation when applying weighted averaging. This could be considered to be588

desirable, since such misalignment should not lead to high certainty group589

results and is therefore downweighted by the weighted averaging. In other590
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words, the weighted group standard deviation could diagnose alignment591

errors in group studies.592

We note that although weighted averaging is shown here over subjects,593

weighted averaging can also be applied within subjects. For example, when594

averaging voxels over a white matter tract. In essence, weighted averaging595

can be applied in all cases where variances of an estimate are available. In596

the future this could be applied to tract based microstructure or tractometry597

studies (Bells et al., 2011), for tract based summary statistics with a lower598

variance.599

5 Conclusions and recommendations600

Considering the advantages in processing time and close correspondence601

to Markov Chain Monte Carlo estimates, we recommend the use of the602

Fisher Information Matrix theory to quantify the uncertainties in parame-603

ter estimates. In individual subjects, the parameter standard deviations can604

help in detecting white matter artifacts as patches of relatively large stan-605

dard deviations. In group statistics, we recommend using the parameter606

standard deviations by means of variance weighted averaging. Doing so607

can reduce the overall variance in group statistics and reduce the effect of608

data artifacts without discarding data from the analysis. Both these effects609

can lead to a higher statistical power in group studies.610
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Appendix A Numerical Hessian815

To compute the Hessian we use a numerical differentiation routine with816

multiple step sizes and extrapolations to provide an estimate with a O(h6)817

order of accuracy. For a single step size vector d, we compute each element818

of the Hessian using a second order Taylor expansion central difference,819

Hij(x) :=
1

4didj
[ l(x + eidi + ejdj)

−l(x + eidi − ejdj)

−l(x− eidi + ejdj)

+l(x− eidi − ejdj))]

(A.1)

where x ∈ Rn is the parameter vector, l(x) is the log-likelihood function820

and ek is a zeros vector with only element k set to one. We evaluate the821

Hessian multiple times with exponentially diminishing steps and with the822

largest step size chosen such that x ± d is within bounds and d is within823

predefined upper and lower limits. In this work we evaluate the Hessian824

for five different step sizes d with each step half the previous step. We825

then apply Richardson extrapolation (Burg & Erwin, 2009) twice to produce826

three estimates with a sixth order of accuracy. These three approximations827

we extrapolate again using Wynn’s epsilon algorithm (Weniger, 1991) to828

arrive at a single final estimate.829

Appendix B Uncertainty propagation830

This appendix provides two illustrations of uncertainty propagation, one831

example using Ball&Stick Fraction of Stick and one example using Tensor832

Fractional Anisotropy.833

Uncertainty propagation of the Ball&Stick Fraction of Stick can be defined834

as follows. For a two Stick Ball&Stick model, the Fraction of Stick is defined835

as:836

FS = w0 + w1 (B.1)

The analytical gradient of this function is given by:837

∇FS = (w0, w1) (B.2)
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The covariance matrix of the weights can be defined as:838

Σw =

(
σ2w0

σw0w1

σw1w0 σ2w1

)
(B.3)

with σ2wi
denoting the variance of weight wi, and σwiwj denoting the co-839

variances of weights wi and wj . When evaluated, these quantities are taken840

from the covariance matrix provided by the FIM.841

Using equation 6, we can write the uncertainty propagation as:842

σ2FS = ∇FSΣw∇>FS (B.4)

which simplifies to:843

σ2FS = w2
0σ

2
w0

+ w2
1σ

2
w1

+ 2w0w1σw0w1 (B.5)

By evaluating expression B.5 using the point estimates, variance estimates844

and covariance estimates of the weights, we can compute the variance in845

the FS metric.846

Uncertainty propagation of Tensor FA is slightly more complex considering847

FA is not a linear function of its inputs. The Tensor FA can be defined848

in terms of the three Tensor diffusivities (the eigenvalues of the diffusion849

Tensor) as:850

FA =

√
1

2

√
(d0 − d1)2 + (d1 − d2)2 + (d0 − d2)2√

d20 + d21 + d22
(B.6)

The derivative of FA with respect to the first diffusivity can be written as:851

∂FA

∂d0
=

2d0d1d2 + d20(d1 + d2)− d21d2 − d1d22 − d31 − d32
2 3/2

√
d20 + d21 + d22

√
d20 − d0(d1 + d2) + d21 − d1d2 + d22

(B.7)

and similar derivatives can be derived for the second and third diffusivity852

by suitable permutations of the diffusivity indices. The analytical gradient853

of FA, ∇FA can now be defined as:854

∇FA =

(
∂FA

∂d0
,
∂FA

∂d1
,
∂FA

∂d2

)
(B.8)
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The covariance matrix of the diffusivities can be defined as:855

Σd =

 σ2d0 σd0d1 σd0d2
σd1d0 σ2d1 σd1d2
σd2d0 σd2d1 σ2d2

 (B.9)

with σ2di denoting the variance of diffusivity di, and σdidj denoting the co-856

variances of diffusivities di and dj .857

Using equation 6, we can define the uncertainty propagation of FA as:858

σ2FA = ∇FAΣd∇>FA (B.10)

By evaluating expression B.10 using the point estimates of the diffusivities859

together with the corresponding variance and covariance estimates from860

the FIM, we can compute the propagated variance in the FA metric.861
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