

Fast quantification of uncertainty in non-linear diffusion MRI models for artifact detection and more power in group studies

R.L. Harms^a, F.J. Fritz^a, S. Schoenmakers^a, A. Roebroeck^a

^a*Dept. of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, the Netherlands*

Abstract

Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. The uncertainty in these dMRI measures is often ignored, while previous work in functional MRI has shown that incorporating uncertainty estimates can lead to group statistics with a higher statistical power. We propose the Fisher Information Matrix (FIM) as a generally applicable method for quantifying the parameter uncertainties in non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo sampling, the FIM produces similar uncertainty estimates at lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, like data complexity and signal-to-noise ratio. In individual subjects, the parameter standard deviations can help in detecting white matter artifacts as patches of relatively large standard deviations. In group statistics, we recommend using the parameter standard deviations by means of variance weighted averaging. Doing so can reduce the overall variance in group statistics and reduce the effect of data artifacts without discarding data from the analysis. Both these effects can lead to a higher statistical power in group studies.

Keywords: Uncertainty estimates, Variances, Diffusion MRI, Microstructure, Fisher Information Matrix (FIM), Cramér Rao Lower Bound (CRLB)

¹ 1 Introduction

² Diffusion Magnetic Resonance Imaging (dMRI) allows for non-invasive in-
³ vestigation of brain tissue microstructure. By fitting a dMRI model to each

4 voxel, various quantitative measures can be derived from the data, such
5 as fractional anisotropy (Basser et al., 1994), neurite density (Zhang et al.,
6 2012) and axonal radii maps (Assaf & Pasternak, 2008; Alexander et al.,
7 2010). These quantitative measures can be used in statistical group analysis.
8 For example, tract-based spatial statistics (TBSS) is a popular approach to
9 group analysis of fractional anisotropy measures (Smith et al., 2006). More
10 often than not, these approaches (including TBSS) ignore the uncertainty in
11 the quantitative measures. In functional magnetic resonance imaging, pre-
12 vious work has shown that incorporating uncertainty estimates can lead to
13 group statistics with a higher statistical power (Chen et al., 2012; Woolrich
14 et al., 2004). For linear diffusion models, a method for computing and using
15 uncertainty estimates has been shown before (Sjölund et al., 2018), but this
16 has not yet been generalized to non-linear diffusion models like NODDI
17 (Zhang et al., 2012) and CHARMED (Assaf & Basser, 2005).

18 Previous work in quantifying the parameter uncertainties include Markov
19 Chain Monte Carlo (MCMC) (Behrens et al., 2003; Wegmann et al., 2017; Gu
20 et al., 2017) and bootstrapping (Jones, 2003; Chung et al., 2006; Whitcher
21 et al., 2008) methods. Of these two techniques, bootstrapping is often not
22 applicable as it is either model specific (Whitcher et al., 2008) or requires
23 very specific additional MRI measurements (Jones, 2003; Chung et al., 2006)
24 which are often not acquired in diffusion MRI datasets. MCMC on the other
25 hand can readily be extended to all microstructure models, but often re-
26 quires long computation times, even with parallel processing on graphical
27 processing units (Harms & Roebroeck, 2018).

28 We propose the Fisher Information Matrix (FIM) as a generally applicable
29 method for quantifying the parameter uncertainties in non-linear diffusion
30 MRI models. The FIM allows for estimating the local variances around the
31 maximum likelihood point estimate, which is the point estimate typically
32 used in group statistics. Computing the FIM is a relatively fast operation,
33 requiring only a few additional model evaluations. In other fields, like for
34 example astrophysics, the Fisher Information Matrix is already recognized
35 as a useful tool for quantifying the uncertainty in parameter estimates (Val-
36 lisneri, 2008; Rodriguez et al., 2013). In diffusion MRI, the FIM has been
37 applied before, but only specific to the multi-Tensor model (Versteeg et al.,
38 2018) and has not yet been generalized to all non-linear microstructure
39 models.

40 The Fisher Information Matrix can additionally be used to compute the
41 Cramér Rao Lower Bound (CRLB; Rao, 1945; Cramer, 1946), if and only
42 if the true parameters are known (Kay, 1993). For example, in simula-
43 tion studies the CRLB can function as a ground truth lower bound on
44 the estimable variances, thereby indirectly evaluating the performance of
45 the maximum likelihood routines (Kay, 1993). Although in brain data the

46 FIM can be interpreted as an approximation to the CRLB, we follow the re-
47 sults in astrophysics and only interpret the FIM as a measure of uncertainty
48 around the estimated parameters (Vallisneri, 2008).
49 We first compare the uncertainty estimates from the Fisher Information
50 Matrix to those of MCMC, using multiple datasets and multiple dMRI mi-
51 crostructure models. We then investigate several data and model character-
52 istics that can influence the parameter variances, like data complexity and
53 Signal-to-Noise Ratio (SNR). In the end, we discuss the use of uncertainty
54 estimates in white matter artifact detection (e.g. detecting fat saturation)
55 and show how weighted averaging could lead to an increase in power in
56 group studies.

57 2 Methods

58 2.1 Parameter distribution estimates

59 We compare two different methods for summarizing the parameter poste-
60 rior distributions of a single voxel, a frequentist method using Maximum
61 Likelihood Estimation (MLE) and the Fisher Information Matrix (FIM) and
62 a Bayesian method using Markov Chain Monte Carlo (MCMC) (see fig-
63 ure 1 for a schematic overview). With both methods we summarize the
64 voxel-wise posteriors as a point estimate with a corresponding standard
65 deviation (std.).

66 In the first method we use the Powell optimization routine (Powell, 1964;
67 Harms et al., 2017) to get an MLE parameter point estimates. We estimate
68 the standard deviations around those point estimates using the theory of
69 the FIM. Standard deviations in derived parameter maps (e.g. Tensor Frac-
70 tional Anisotropy) can be obtained by propagating the uncertainty of the
71 model parameters. We refer to this method as MLE+FIM.

72 The second methodology uses MCMC sampling to approximate the full
73 posterior distribution, using the Adaptive Metropolis Within Gibbs routine
74 as discussed in (Harms & Roebroeck, 2018). From these samples we sum-
75 marize the posterior distribution using a mean and standard deviation, as
76 done before in before in dMRI modeling (Behrens et al., 2003; Sotiro-
77 los et al., 2013; Wegmann et al., 2017). Uncertainties in derived parameter
78 maps can be obtained by computing the derived parameter maps at ev-
79 ery sampled point and summarizing the result. We refer to this method as
80 MCMC.

81 The MLE+FIM provides a local variance around a mode while MCMC pro-
82 vides a global variance around the mean. As such, these methods are only
83 comparable if the posterior is unimodally Gaussian distributed, since then

84 the mean equals the mode. As in previous work (Behrens et al., 2003;
85 Sotiropoulos et al., 2013; Wegmann et al., 2017), we assume the posteriors
86 to be unimodally Gaussian distributed.

87 This assumption may not necessarily hold. For example, multi-modality
88 could arise when fitting a single fiber model to a crossing fiber voxel. In
89 such cases, different post-processing would be required on the MCMC sam-
90 ples to correctly reflect the parameter variances. The FIM would be less
91 sensitive to this issue since the FIM provides only local variances estimates.
92 That is, the MLE would choose one mode of the distribution and the FIM
93 would provide a local variance estimate around the chosen mode. This is-
94 sue could also be circumvented by applying appropriate model selection to
95 every voxel.

96 Non-Gaussian distributions can happen near parameter boundaries. For
97 instance, very low (close to zero) or very high (close to one) compartment
98 volume fractions can lead to a truncated posterior. In such cases the FIM
99 no longer applies. For MCMC different post-processing would be required,
100 like fitting a truncated normal distribution to the posterior. This could
101 again be solved by appropriate model selection. We take no special pre-
102 cautions for these boundary effects and assume these to not be present in
103 white matter.

104 Nevertheless, we expect most posteriors to be unimodally Gaussian dis-
105 tributed. This assumption is also supported by two theoretical arguments.
106 First, if the model is suitable to describe the data (e.g. if model selection was
107 successfully applied), the posterior asymptotically approaches a Gaussian
108 distribution (Gelman et al., 2013). Second, according to the central limit
109 theorem, each parameter's marginal distribution will asymptotically tend
110 to a Gaussian as the number of model parameters increases (Gelman et al.,
111 2013).

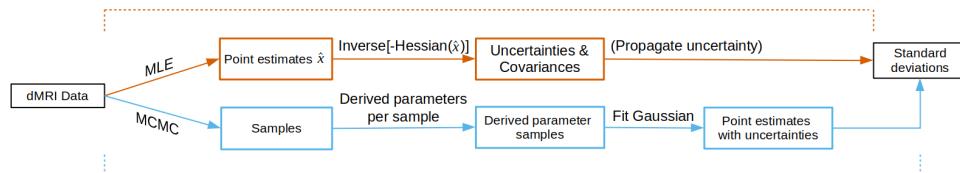


Figure 1: The uncertainty computation methods for both the Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo (MCMC) methods.

112 2.1.1 Fisher Information Matrix

113 The observed Fisher Information Matrix is defined as the negative Hessian
114 of the log-likelihood function when evaluated at the maximum likelihood
115 estimate (Pawitan, 2013; Gelman et al., 2013). The inverse of the FIM is

116 an asymptotic estimator of the covariance matrix (Pawitan, 2013; Gelman
 117 et al., 2013). Formally, let $l(\mathbf{x})$ be a log-likelihood function with maximum
 118 likelihood estimate $\hat{\mathbf{x}}$. A second order Taylor approximation of $l(\mathbf{x})$ cen-
 119 tered at $\hat{\mathbf{x}}$ is then given by:

$$l(\mathbf{x}) = l(\hat{\mathbf{x}}) + \frac{1}{2}(\mathbf{x} - \hat{\mathbf{x}})^T \frac{\partial^2}{\partial \mathbf{x}^2} l(\hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}}) \quad (1)$$

120 ignoring the higher terms and having dropped the linear term since the
 121 first derivative of a function is zero at the mode. Considering the first term,
 122 $l(\hat{\mathbf{x}})$, a constant and the second term, $\frac{1}{2}(\mathbf{x} - \hat{\mathbf{x}})^T \frac{\partial^2}{\partial \mathbf{x}^2} l(\hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}})$, proportional
 123 to the logarithm of a normal density, we get the approximation:

$$l(\mathbf{x}) \approx \mathcal{N}(\hat{\mathbf{x}}, [\mathbf{I}(\hat{\mathbf{x}})]^{-1}) \quad (2)$$

124 where $\mathbf{I}(\hat{\mathbf{x}})$ is the observed Fisher Information Matrix:

$$\mathbf{I}(\hat{\mathbf{x}}) = -\mathbf{H}(\hat{\mathbf{x}}) = -\frac{\partial^2}{\partial \mathbf{x}^2} l(\hat{\mathbf{x}}) \quad (3)$$

125 For the Hessian to be positive definite, this theory requires $\hat{\mathbf{x}}$ to lie within
 126 the boundaries of the parameter space (Gelman et al., 2013). We compute
 127 the Hessian numerically (see Appendix A) and its inverse using a direct
 128 inverse where possible with a fallback on the (Moore-Penrose) pseudo-
 129 inverse for ill-conditioned Hessians. Ill-conditioned Hessian can for exam-
 130 ple arise with parameter estimates lying at a predefined parameter bound-
 131 ary (Gelman et al., 2013).

132 2.1.2 *Uncertainty propagation*

133 Given a function $\mathbf{y} = f(\boldsymbol{\theta})$ where $f(\cdot)$ is a known function, uncertainty
 134 propagation provides the probability distribution of \mathbf{y} given the probability
 135 distribution of $\boldsymbol{\theta}$. For example, we can use this to estimate the standard
 136 deviation of a Tensor Fractional Anisotropy (FA) estimate, by propagating
 137 the standard deviation estimates of the Tensor diffusivities. We use a first
 138 order Taylor expansion linear approximation (Arras, 1998), which states
 139 that if $\boldsymbol{\theta}$ is normally distributed with mean $\boldsymbol{\mu}_{\boldsymbol{\theta}}$ and covariance matrix $\Sigma_{\boldsymbol{\theta}}$,
 140 the distribution of \mathbf{y} can be approximated as:

$$\mathbf{y} \approx \mathcal{N}(\boldsymbol{\mu}_{\mathbf{y}}, \Sigma_{\mathbf{y}}) = \mathcal{N}(f(\boldsymbol{\theta}), \mathbf{J}_f(\boldsymbol{\theta}) \Sigma_{\boldsymbol{\theta}} \mathbf{J}_f(\boldsymbol{\theta})^T) \quad (4)$$

¹⁴¹ with \mathbf{J}_f the Jacobian matrix of f . More succinctly, the covariance matrix of
¹⁴² $\mathbf{y} = f(\boldsymbol{\theta})$ is given by:

$$\Sigma_{\mathbf{y}} = \mathbf{J}_f \Sigma_{\boldsymbol{\theta}} \mathbf{J}_f^\top \quad (5)$$

¹⁴³ which holds as a generally applicable formula for linear propagation of co-
¹⁴⁴ variances (Arras, 1998). In the case of an univariate output $y = f(\boldsymbol{\theta})$, the
¹⁴⁵ Jacobian can be formulated as a gradient vector ∇_f , leading to the follow-
¹⁴⁶ ing expression for the variance in y :

$$\sigma_y^2 = \nabla_f \Sigma_{\boldsymbol{\theta}} \nabla_f^\top \quad (6)$$

¹⁴⁷ This error propagation technique uses both the variances and the co-variances
¹⁴⁸ of all the propagated parameters. Additionally, this technique takes into ac-
¹⁴⁹ count the functional form of the propagated function, i.e. if the function is
¹⁵⁰ linear or non-linear. The Jacobian or gradient can be computed numerically
¹⁵¹ using finite-differences or can be evaluated at an analytical derivative. We
¹⁵² use analytical expressions for all uncertainty propagations. See Appendix B
¹⁵³ for worked out error propagation examples of the Tensor FA and Ball&Stick
¹⁵⁴ Fraction of Stick parameters.

¹⁵⁵ 2.2 Variance weighted average

¹⁵⁶ Variance weighted averaging makes it possible to include the variances of
¹⁵⁷ the data points when computing a mean and standard deviation. For ex-
¹⁵⁸ ample, the voxel-wise variances discussed earlier can be used in averages
¹⁵⁹ of white matter regions within a subject, or in voxel-wise averages over
¹⁶⁰ multiple subjects. First, given n data points z_i , we define the regular mean
¹⁶¹ as:

$$\bar{\mu}_{\text{regular}} = \frac{1}{n} \sum_i^n z_i \quad (7)$$

¹⁶² and regular standard deviation as:

$$\bar{\sigma}_{\text{regular}} = \sqrt{\frac{\sum_i^n (z_i - \bar{\mu}_{\text{regular}})^2}{n}} \quad (8)$$

¹⁶³ If each data point z_i has a corresponding weight w_i , we can compute a
¹⁶⁴ weighted mean as:

$$\bar{\mu}_{\text{weighted}} = \frac{\sum_i^n w_i z_i}{\sum_i^n w_i} \quad (9)$$

165 and a weighted standard deviation as:

$$\bar{\sigma}_{\text{weighted}} = \sqrt{\frac{\sum_i^n w_i(z_i - \bar{\mu}_{\text{weighted}})^2}{\frac{(m-1)}{m} \sum_i^n w_i}} \quad (10)$$

166 with m for the number of non-zero weights, included here to allow for non-
167 normalized weights. It has been shown that the weights that minimize the
168 variance of the weighted average are the reciprocals of the variances of each
169 of the data points z_i (Shahar, 2017). That is, given the variances σ_i^2 for each
170 z_i , the weights that minimize $\text{Var}(\sum_i w_i z_i)$ is given by:

$$w_i = \frac{1}{\sigma_i^2} \quad (11)$$

171 Incidentally, these weights are also the maximum likelihood estimator of
172 the weighted mean and variance under the assumption that the data points
173 z_i are independent and normally distributed with the same mean (Cochran,
174 1937).

175 2.3 *Diffusion microstructure models*

176 To capture the variety of microstructure models in diffusion MRI we chose
177 four different models, the Tensor (Basser et al., 1994), Ball&Stick (Behrens
178 et al., 2003), Bingham-NODDI (Tariq et al., 2016) and CHARMED (Assaf
179 et al., 2004) models. The Tensor model is the oldest diffusion MRI model
180 and still sees widespread usage in the literature. From the Tensor we derive
181 the Fractional Anisotropy (FA) quantity. The Ball&Stick model (Behrens
182 et al., 2003) is the first multi-compartment model and is often used as lo-
183 cal estimator for tractography. To delineate multiple fiber orientations,
184 the Ball&Stick model can feature multiple Stick compartments, but always
185 with a single Ball compartment. To differentiate between the Ball&Stick
186 models with one or more Stick compartments, we denote the specific Ball&Stick
187 model as "BallStick_in1", "BallStick_in2" and "BallStick_in3" for respec-
188 tively one, two or three Stick compartments. This is a general naming
189 scheme to denote models that can have one or more intra neuronal com-
190 partments relative to the other compartments. From the Ball&Stick model
191 we derive the Fraction of Stick (FS) quantity, which is the sum of the vol-
192 ume fractions of the Stick compartments.

193 More recent, biologically inspired, models include Bingham-NODDI and
194 CHARMED. The Bingham-NODDI model assumes that white matter con-
195 sists of restricted intra-cellular and hindered extra-cellular water compart-
196 ments, with the intra-cellular compartment capturing neurite orientation

197 dispersion. From the Bingham-NODDI model we use the Fraction of Re-
198 stricted (FR) quantity, the volume fraction of the restricted intra-cellular
199 compartment. The CHARMED model assumes a tissue model of restricted
200 intra-neuronal and hindered extra-neuronal water compartments, with the
201 intra-neuronal compartment assuming a bundle of axons. Since CHARMED
202 can be used with multiple intra-neuronal compartments we again denote
203 these with the 'in' suffix. Here, we only use CHARMED with one intra-
204 neuronal compartment, denoted as "CHARMED_in1". From the CHARMED
205 model we use the Fraction of Restricted (FR) quantity, the volume fraction
206 of the restricted intra-neuronal compartment. For implementation notes of
207 these models see (Harms et al., 2017).

208 *2.4 Software*

209 All models and routines used in this study are implemented in a Python
210 based GPU (graphical processing unit) accelerated toolbox, the Microstruc-
211 ture Diffusion Toolbox, MDT, which is freely available under an open source
212 license at <https://github.com/cbclab/MDT>. We used the models and
213 MCMC routine as implemented in MDT version 0.18.3. From this version
214 onward, MDT automatically computes the FIM after every maximum like-
215 lihood estimation operation and writes out the variances and covariances
216 alongside the parameter estimates. Scripts for reproducing the results in
217 this article can be found at https://github.com/robbert-harms/uncertainty_paper. All computations for this paper were performed
219 on a single AMD Fury X graphics card.

220 *2.5 Datasets*

221 In this study we used simulated data and imaging data from two popula-
222 tion studies. To illustrate the methods on a dataset with a clinically feasible,
223 fast to acquire, acquisition scheme, we used data from the diffusion pro-
224 tocol pilot phase of the Rhineland Study (www.rheinland-studie.de).
225 We refer to these datasets and acquisition schemes as *RLS-pilot*. To illustrate
226 the methods on a dataset with a high-end, long acquisition time, acquisition
227 scheme, we used data from the Human Connectome Project MGH-USC
228 Young Adult study. We refer to these datasets and acquisition schemes as
229 *HCP MGH*. For simulated data we used a single representative acquisition
230 scheme from both the RLS-pilot and HCP MGH studies.

231 The RLS-pilot datasets were acquired on a Siemens Magnetom Prisma (Siemens,
232 Erlangen, Germany) with the Center for Magnetic Resonance Research (CMRR)
233 multi-band (MB) diffusion sequence (Moeller et al., 2010; Xu et al., 2013).
234 These datasets had a resolution of 2.0 mm isotropic with diffusion param-
235 eters $\Delta = 45.8$ ms, $\delta = 16.3$ ms, TE = 90 ms and TR = 4500 ms, and with

236 Partial Fourier = 6/8, MB factor 3, no in-plane acceleration with 3 shells of
237 $b = 1000, 2000, 3000 \text{ s/mm}^2$, with respectively 30, 40 and 50 directions to
238 which are added 14 interleaved b0 volumes leading to 134 volumes in total
239 per subject. Additional b0 volumes were acquired with a reversed phase
240 encoding direction which were used to correct susceptibility related distor-
241 tion (in addition to bulk subject motion) with the topup and eddy tools in
242 FSL version 5.0.9 (Andersson & Sotiroopoulos, 2016). The total acquisition
243 time is 10 min 21 sec. These three-shell datasets represent a relatively short
244 time acquisition protocol that still allows many models to be fitted. From
245 this dataset we used a single representative subject (v3a_1.data_ms20).

246 The HCP MGH datasets come from the freely available fully preprocessed
247 dMRI data from the USC-Harvard consortium of the Human Connectome
248 project. Data used in the preparation of this work were obtained from the
249 MGH-USC Human Connectome Project (HCP) database (<https://ida.loni.usc.edu/login.jsp>). The data were acquired on a specialized
250 Siemens Magnetom Connectom with 300 mT/m gradient set (Siemens, Er-
251 langen, Germany). These datasets were acquired at a resolution of 1.5 mm
252 isotropic with diffusion parameters $\Delta = 21.8 \text{ ms}$, $\delta = 12.9 \text{ ms}$, $TE = 57 \text{ ms}$,
253 $TR = 8800 \text{ ms}$, Partial Fourier = 6/8, MB factor 1 (i.e. no simultaneous
254 multi-slice), in-plane GRAPPA acceleration factor 3, with 4 shells of $b =$
255 $1000, 3000, 5000, 10,000 \text{ s/mm}^2$, with respectively 64, 64, 128, 393 directions
256 to which are added 40 interleaved b0 volumes leading to 552 volumes in
257 total per subject, with an acquisition time of 89 minutes. These four-shell,
258 high number of directions, and very high maximum b-value datasets allow
259 a wide range of models to be fitted. From these datasets we used a single
260 representative subject (hcp_1003) in single subject illustrations and we used
261 all 35 subjects in the group comparisons.

262 Since the CHARMED_in1 model requires relatively high b-values ($\geq \sim 6000$
263 s/mm^2), which are not present in the RLS-pilot datasets, we will only use
264 the HCP MGH dataset when showing CHARMED_in1 results. Addition-
265 ally, since the Tensor model is only valid for b-values up to about 1200
266 s/mm^2 , we only use the b-value 1000 s/mm^2 shell and b0 volumes in maxi-
267 mum likelihood estimation and MCMC sampling of the Tensor model. All
268 other models use all the data volumes.

269 For all datasets we created a white matter (WM) mask from the Tensor FA
270 estimates and, using BET from FSL (Smith, 2002), a whole brain mask. The
271 whole brain mask is used for MLE and MCMC sampling, whereas aver-
272 ages over the WM mask are used in model or data comparisons. For each
273 dataset, voxel-wise SNR is estimated using only the unweighted (b0) vol-
274 umes, by dividing the mean of the unweighted volumes by the standard
275 deviation.

277 2.5.1 *Ground truth simulations*

278 We additionally created simulated data to illustrate the effects of the signal-
279 to-noise ratio (SNR) on the variance of the estimated parameters. We used a
280 single representative acquisition scheme from both the RLS-pilot and HCP
281 MGH datasets (the acquisition schemes of subject v3a_1_data_ms20 and
282 hcp_1003), and simulated data for each model. For each acquisition scheme
283 and each model, we simulate 10000 voxels with random volume fractions
284 in $[0.2, 0.8]$, diffusivities in $[5e-11, 5e-9]$ mm 2 /s, and orientations in $[0, \pi]$.
285 From these, we created multiple copies with Rician noise (Gudbjartsson &
286 Patz, 1995) of SNRs 5, 10, 20, 30, 40 and 50. We then fit and sample each
287 model ten times to these simulated datasets and estimate the standard de-
288 viation using both the FIM and MCMC approach as described above. Per
289 SNR we summarize the results of these ten trials as a mean standard devi-
290 ation and its corresponding standard error of the mean.

291 2.5.2 *Group statistics*

292 For the group statistics we computed Tensor FA and Bingham-NODDI FR
293 and FR standard deviation maps on all 35 subjects using the MLE+FIM
294 method. To be able to compare the subjects, we first registered the Tensor
295 FA estimates to the FMRIB58_FA_1mm template using FLIRT and FNIRT
296 from FSL (Andersson et al., 2010). Next, we used those registration tem-
297 plates to co-register the Bingham-NODDI FR and FR standard deviation
298 maps.

299 With uncertainty maps available there are three methods to compute group
300 statistics that are robust against subject-level artifacts. Method one, ap-
301 ply variance weighted averaging using the uncertainty estimates to down-
302 weight voxels with a high standard deviation. This would automatically re-
303 move artifacts if these artifacts lead to high parameter uncertainties. Method
304 two, exclude outlier subjects from the group statistic. Outlier subjects could
305 be detected using the point estimates or using the uncertainty maps. Method
306 three, use a combination of method one and two, i.e. computing weighted
307 group estimates after removal of outliers.

308 To illustrate these three artifact reduction methods, we first computed a
309 baseline statistic using a simple mean and standard deviation over all 35
310 subjects. We then used artifact reduction method one and used the FR stan-
311 dard deviation maps as weights in the variance weighted averaging. To
312 apply artifact reduction method two and three, we created a new subgroup
313 with only 30 subjects, where we manually removed five subjects (mgh_-
314 1008, mgh_1009, mgh_1013, mgh_1017 and mgh_1032) that had a large white
315 matter artifact over the corpus callosum. We then applied regular averag-
316 ing and weighted averaging over these remaining 30 subjects.

317 As a comparison method between regular and weighted averaging we com-
318 puted $(\mu_{\text{weighted}} - \mu_{\text{regular}})/\mu_{\text{regular}}$ and $(\sigma_{\text{weighted}} - \sigma_{\text{regular}})/\sigma_{\text{regular}}$ as dif-
319 ference measure for the mean and standard deviation estimates between
320 regular and weighted averaging.

321 3 Results

322 We begin by comparing the parameter estimates and parameter uncertainty
323 estimates of MLE+FIM to the corresponding estimates from MCMC. Next,
324 we investigate the effect of SNR on the parameter standard deviations us-
325 ing both simulated and imaging data. We end with a comparison of regular
326 versus weighted averaging in group statistics.

327 3.1 Parameter distribution estimates

328 Figure 2 visually compares the results of MLE+FIM to those of MCMC, us-
329 ing the Bingham-NODDI Fraction of Restricted (FR) parameter, on a single
330 subject from the RLS-pilot dataset. Comparing results of a single transverse
331 slice shows high qualitative correspondence between the MLE and MCMC
332 methods (figure 2A), with both the point estimates and corresponding stan-
333 dard deviations (stds.) in close resemblance. A single voxel illustration of
334 the estimated Gaussian distributions (figure 2B) again shows a high degree
335 of similarity, with both Gaussian fits capturing the characteristics of the
336 MCMC sample distribution to a large degree.

337 To further quantify the correspondence between the MLE and MCMC method-
338 ologies, we created scatter plots between the MLE and MCMC estimates of
339 both the point estimate and standard deviation estimate. This was per-
340 formed over a white matter mask for a single subject from both the HCP
341 MGH and RLS-pilot datasets. Figure 3 shows Bingham-NODDI FR mean
342 and standard deviation scatter plots. The FR point estimates are very tightly
343 confined to the identity line, illustrating a high degree of correspondence in
344 the point estimates from MCMC and MLE. The variation of point estimates
345 along the diagonal corresponds to variation of FR values over the white
346 matter mask, ranging between roughly 0.3 and 0.7. The std. estimates be-
347 tween the MLE and MCMC methodologies again show a high correspon-
348 dence, although the off-diagonal spread in the std. plot is visibly larger
349 than that in the point estimate plot. There is also some clipping visible in
350 the std. plot, with MLE estimating a zero std. while MCMC provides a
351 range of values. This is mostly due to very low point estimates (near zero),
352 at which point the FIM is no longer applicable. The blue-green-yellow-red
353 coded points in both plots account for 97-99.5% of the voxels and the pur-
354 ple points account for the remaining fraction of outliers. The std. estimates

355 for the HCP MGH data are clearly lower than for the RLS-pilot data, con-
356 firming an expected higher precision (lower uncertainty) of point estimates
357 based on more dMRI data-points.

358 To investigate the correspondence in MCMC and MLE uncertainty esti-
359 mates for a larger number of models, figure 4 shows scatter plots for mul-
360 tiple microstructure models. Parameter point estimate comparisons are
361 not shown here, but are generally in correspondence to a very high de-
362 gree. Across all models and data, except for the CHARMED_in1 model
363 fit on RLS-pilot data, MCMC and MLE uncertainty estimates are in high
364 correspondence and located close to the identity diagonal. A relatively
365 large off-diagonal variance in standard deviation estimates is visible in the
366 CHARMED_in1 FR parameter on the RLS-pilot data. This is expected as the
367 RLS-pilot dataset is not well suited for the CHARMED_in1 model due to
368 too low b-values (the CHARMED_in1 model requires $b\text{-values} \leq 6000\text{s/mm}^2$).
369 Standard deviation estimates for CHARMED_in1 on the HCP MGH data
370 are not only much more tightly confined to the identity diagonal, the std.
371 estimates themselves are also about a factor two lower. A large spread to
372 the right is also visible in the Ball&Stick_in3 results. This might be related
373 to MLE choosing a different mode and is perhaps solved using model se-
374 lection. There is also again some clipping visible, with MLE providing a
375 zero std. with voxels with a very low point estimate.

376 Irrespective of the method (MCMC or MLE+FIM), the std. estimates on
377 the RLS-pilot data are always higher than the corresponding estimates on
378 the HCP MGH data, once again confirming the expected higher precision
379 on datasets with a larger number of direction. Conversely, one would ex-
380 pect higher complexity models (i.e. models with more compartments and
381 more parameters to fit) to have higher uncertainty when fitted on the same
382 data. This is indeed illustrated by the Ball&Stick_in{1,2,3} results, were we
383 see an increasing estimated standard deviation for an increasing number
384 of Sticks, within each of the HCP MGH and RLS-pilot datasets. Finally,
385 Tensor FA standard deviations are about a factor two higher than those of
386 the other models. This is probably related to Tensor FA being a compound
387 parameter.

388 To quantify correspondence in the MCMC and MLE std. estimates in the
389 scatter plots, table 1 shows the percentage of voxels for which the differ-
390 ence between the MLE and MCMC variances is less than two standard de-
391 viations from the mean difference. We note an average similarity of $\sim 98.7\%$
392 across six models and two datasets, even including the 97.9% similarity for
393 the CHARMED_in1 model fit on RLS-pilot data. Table 2 compares runtimes
394 between the MLE with the FIM and the MCMC methodologies, measuring
395 the time between loading the data and writing the results. Averaged over
396 six models and two subjects, the GPU-optimized MLE and FIM together

397 compute approximately 38 times faster than GPU-optimized MCMC.

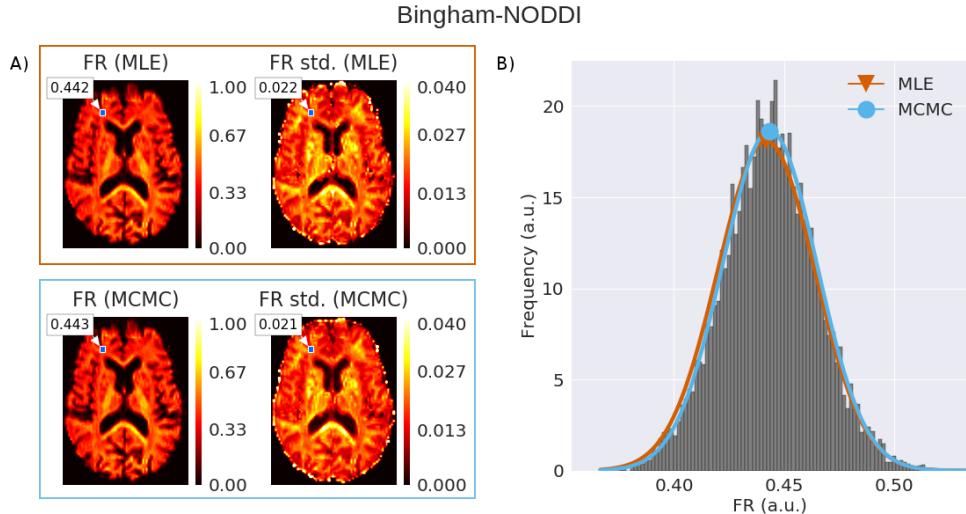


Figure 2: A) Visual comparison of parameter and standard deviation uncertainty maps between the Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo (MCMC) methodologies for the Bingham-NODDI Fraction of Restricted (FR) on an RLS-pilot dataset. B) Histogram of the 20 thousand MCMC samples of the highlighted voxel in figure A, with in red and blue the fitted Gaussian distributions of, respectively, the MLE and MCMC methodologies.

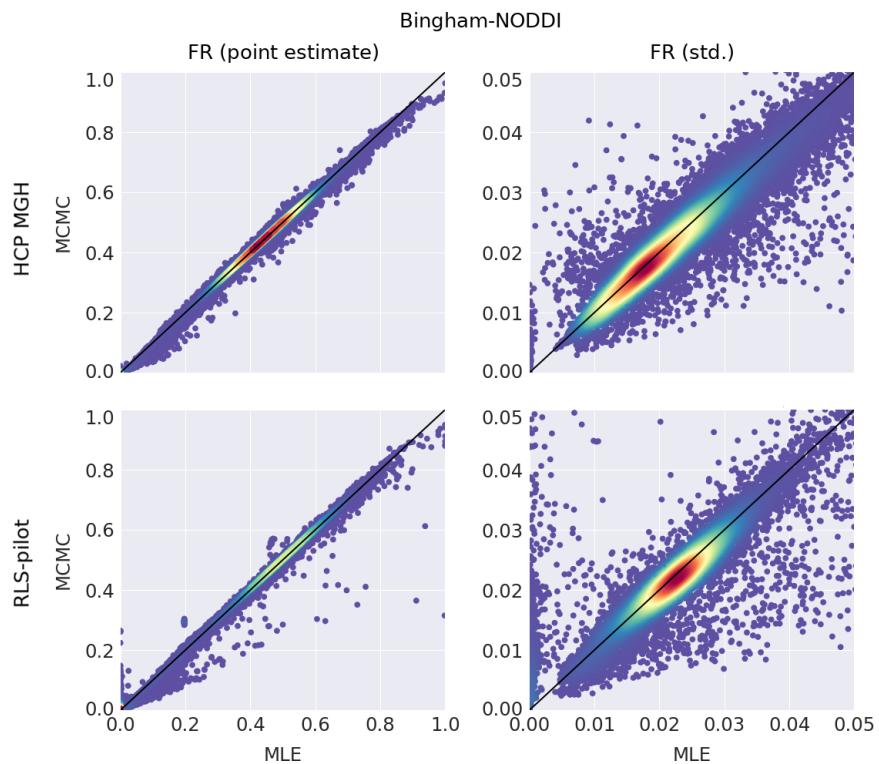


Figure 3: Scatter plots comparing Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo (MCMC) point estimates (left column) and standard deviations (right column) for the Bingham-NODDI Fraction of Restricted (FR) values over a white matter mask for both a complex, long acquisition time HCP MGH dataset and a clinically feasible RLS-pilot dataset. Plots are color coded using a kernel density estimate (a.u) from purple (low density) to red (high density). Purple points correspond to a small percentage (0.5-3%) of the data (c.f. Table 1).

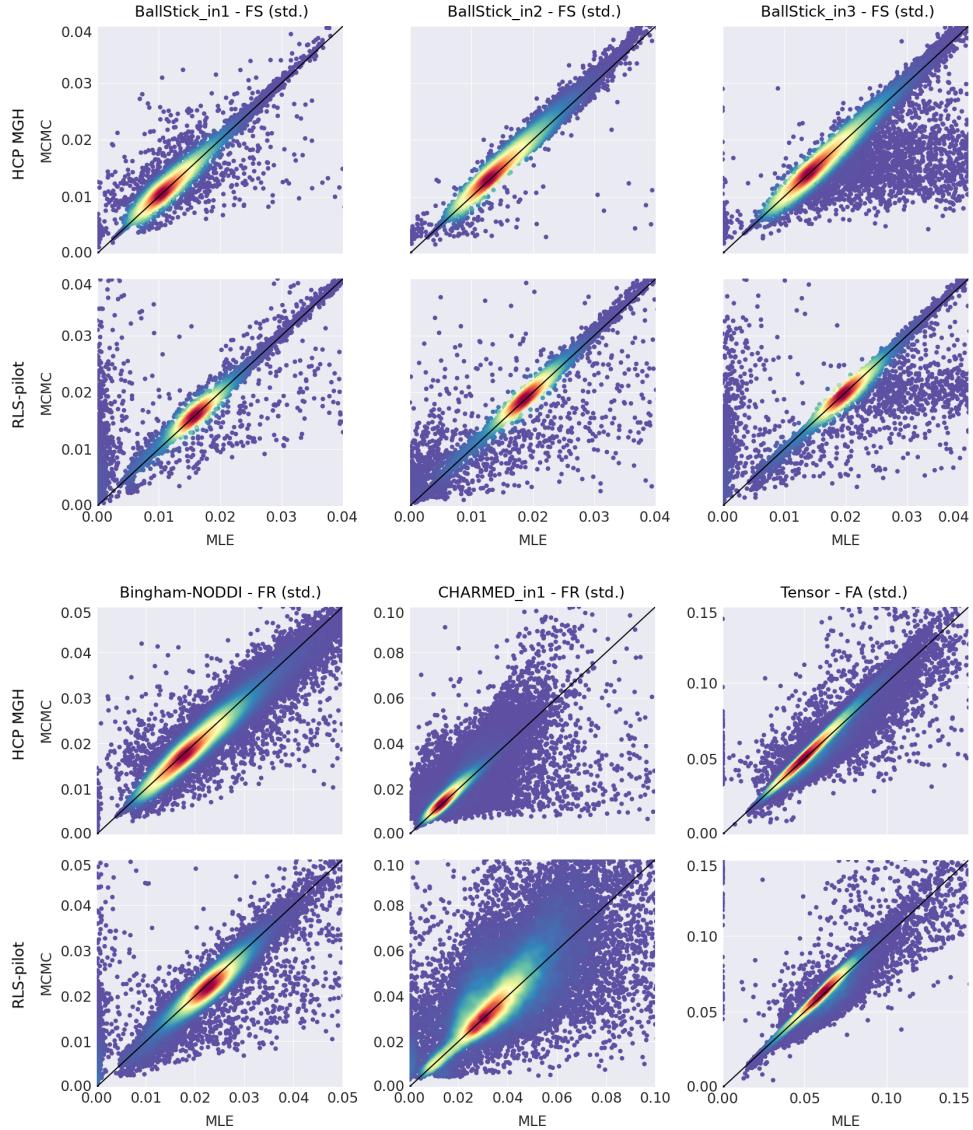


Figure 4: Scatter plots comparing Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo (MCMC) standard deviations for multiple models over a white matter mask for both an HCP MGH and an RLS-pilot dataset. Acronyms are Fraction of Stick (FS), Fraction of Restricted (FR) and Fractional Anisotropy (FA). Plots are color coded using a kernel density estimate (a.u) from purple (low density) to red (high density). Purple points correspond to a small percentage (0.5-3%) of the data (c.f. Table 1).

	HCP MGH	RLS-pilot
Ball&Stick_in1	99.5%	98.8%
Ball&Stick_in2	99.9%	99.4%
Ball&Stick_in3	98.8%	97.5%
Bingham-NODDI	98.9%	98.7%
CHARMED_in1	98.6%	96.9%
Tensor	99.0%	97.9%

Table 1: For each model and dataset the percentage of voxels where the difference between the parameter stds. from the FIM and of MCMC are within two standard deviations from the mean difference. These percentages correspond to the red/yellow high densities in figure 4.

	HCP MGH		RLS-pilot			
	MLE + FIM	MCMC	rel.	MLE + FIM	MCMC	rel.
Ball&Stick_in1	00:01:49	01:21:55	45x	00:00:30	00:20:49	42x
Ball&Stick_in2	00:04:32	02:33:18	34x	00:01:08	00:42:36	38x
Ball&Stick_in3	00:13:01	07:00:51	32x	00:03:19	01:53:33	34x
Bingham-NODDI	02:06:19	111:32:52	53x	00:28:19	26:11:47	56x
CHARMED_in1	02:09:49	53:34:47	25x	00:21:53	07:49:55	21x
Tensor	00:02:41	01:59:07	44x	00:02:18	01:02:11	27x

Table 2: Runtime comparison between the two methodologies for computing parameter statistics, Maximum Likelihood Estimation (MLE) with the Fisher Information Matrix (FIM) and Markov Chain Monte Carlo (MCMC) sampling, for six different models and using a single representative subject from both the HCP MGH and the RLS-pilot datasets. Reported run times are over the entire brain mask and are in units of (h:m:s), with next to it the relative speed advantage of the MLE + FIM over MCMC.

398 3.2 *Effect of SNR on parameter variances*

399 Lower SNR per data point (i.e. single diffusion volume) is expected to lead
400 to higher uncertainty in fitted parameter estimates. This issue is of extra im-
401 portance in brain dMRI by the fact that SNR is non-uniform over the brain,
402 especially in modern high number-of-channel phased array RF-coils. In or-
403 der to assess the effect of SNR on parameter variances, figure 5 compares
404 an estimate of SNR, its reciprocal, and the parameter standard deviation
405 estimates of multiple white matter models on a single HCP MGH dataset.
406 We observe a decreased SNR in the center of the brain and an increase of
407 SNR towards the periphery. A very similar gradient can be observed in the
408 standard deviation maps, with a decrease in parameter standard deviations
409 towards the periphery. As in the previous results, we observe an increase
410 in standard deviations for an increased number of Sticks in the Ball&Stick_-
411 in{1,2,3} models, and Tensor FA standard deviations are about a factor two
412 higher than the other standard deviation estimates.

413 To further compare SNR and standard deviation estimates, figure 6 plots
414 SNR versus parameter standard deviations, for both simulated data and
415 imaging data. In general, we observe an inverse relationship between SNR
416 and standard deviation, where an increase in SNR leads to an decrease
417 in parameter std. estimates. Standard deviations on RLS-pilot data are
418 always higher than corresponding estimates on HCP MGH data, except
419 for the imaged data analysis at an SNR of 5, where the RLS-pilot dataset
420 has a lower standard deviation. For lower SNR (< 10), MLE std. esti-
421 mates are slightly higher than the MCMC estimates. For higher SNR (>
422 10), the MLE and MCMC standard deviation estimates quickly converge,
423 except for Ball&Stick_in2, Ball&Stick_in3 and Tensor estimates on the RLS-
424 pilot dataset, where MLE standard deviations stay higher than those from
425 MCMC. For the HCP MGH dataset, results are consistent between simu-
426 lated and imaging data, with differences within the Standard Error of the
427 Mean (SEM). Results on the RLS-pilot dataset are generally also consistent,
428 except for an SNR of 5, where imaging data results are lower than those
429 on simulated data. We finally observe that the standard error of the mean
430 is generally higher for the simulated data compared to the imaging data,
431 especially for lower SNR.

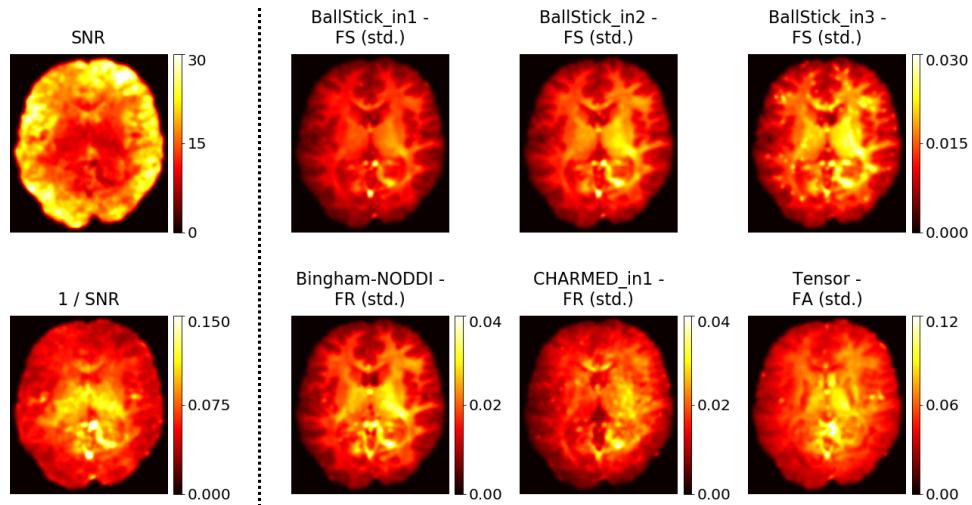


Figure 5: Illustration of the effect of Signal to Noise ratio (SNR) on parameter standard deviation estimates (using the MLE methodology), for a single HCP MGH subject (subject 1003). Maps are slightly smoothed with a 3d Gaussian filter ($\sigma = 1\text{voxel}$). Parameter acronyms are Fraction of Stick (FS), Fraction of Restricted (FR) and Fractional Anisotropy (FA).

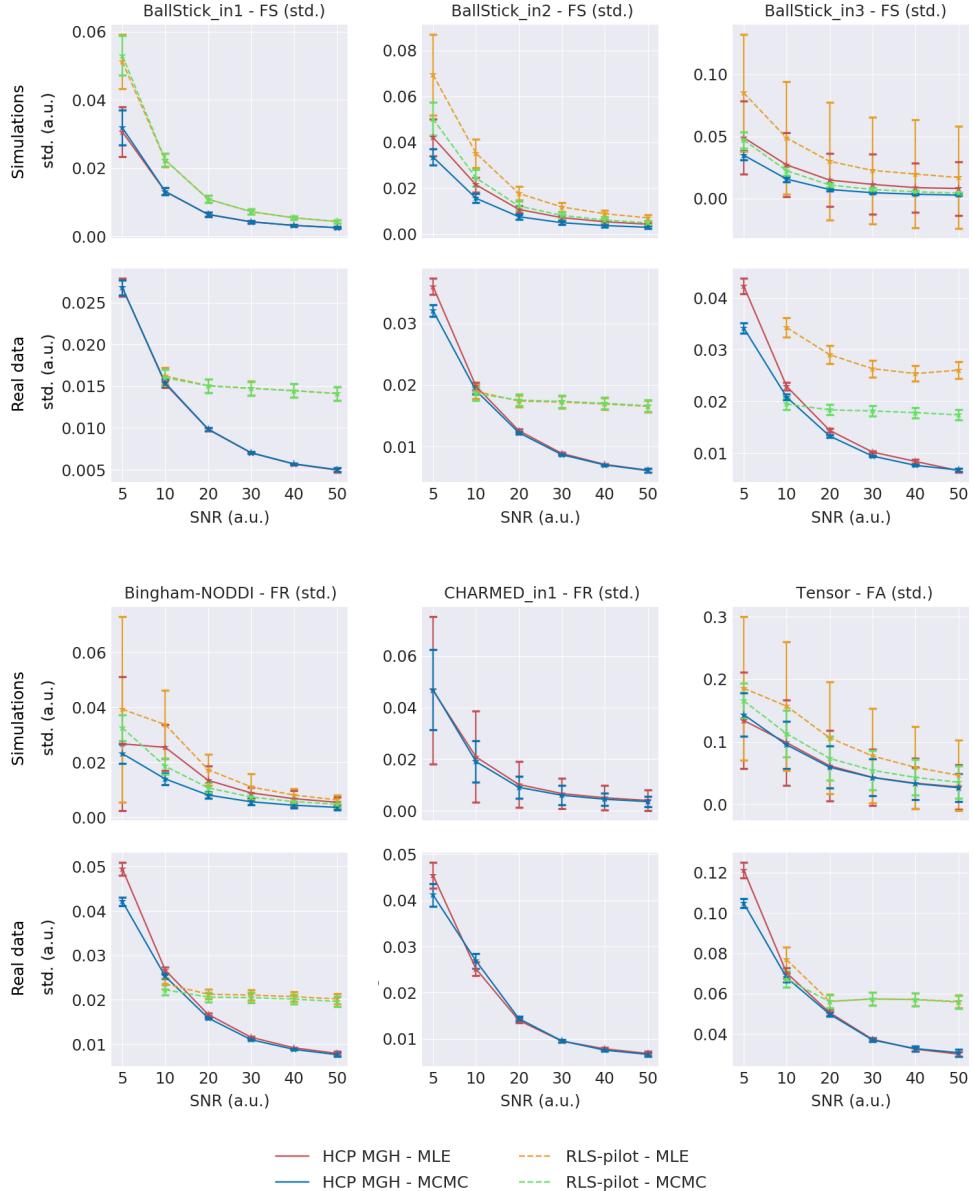


Figure 6: Effect of SNR on parameter standard deviations for simulated data and imaging data. Simulation results are over 10000 simulated voxels per SNR with a standard error of the mean (SEM) as error bar over 10 optimization and sampling trials. Real data results are for 10 subjects of the HCP MGH and 10 subjects of the RLS-pilot datasets, with SNR estimated as $\text{mean}(\text{b0_volumes})/\text{std}(\text{b0_volumes})$.

432 3.3 *Group statistics*

433 Figure 7 shows Bingham-NODDI FR results of three subjects of the HCP
434 MGH dataset after co-registration, to illustrate the behavior of standard
435 deviations in regions of white matter acquisition artifacts. The first sub-
436 ject (top row) has a clear artifact across the genu of the corpus callosum,
437 perhaps due to incomplete fat saturation. This artifact is visible in both
438 the mean parameter estimates and the standard deviation estimates. The
439 second subject (middle row) shows a patch of relatively large standard de-
440 viations in and near the splenium of the corpus callosum, without an eas-
441 ily detectable alteration in the mean parameter map. For comparison, we
442 show a third subject (bottom row) at the same contrast scaling, with no
443 visible artifacts or alterations in either the mean or standard deviation es-
444 timates. This figure illustrates that parameter std. maps can play a role
445 in detecting biased estimates resulting from imaging artifacts. In particu-
446 lar, artifacts which may not always be detectable in the parameter maps
447 themselves.

448 Figure 8 shows four group statistic estimates, a regular (baseline) and three
449 statistics using the three mentioned artifact reduction methods using the
450 parameter variances. To reiterate, these were method one, a weighted av-
451 erage on all 35 subjects, method two, remove outlier subjects and apply
452 regular averaging and method three, a weighted average with outlier sub-
453 jects removed. Between regular and weighted averaging we computed a
454 percentile difference map over a white matter mask to highlight the differ-
455 ences in estimates of both the group mean and group standard deviations.

456 For both the all-subjects and outliers-removed subject groups, the variance
457 weighted mean is approximately lower across the artifact above the corpus
458 callosum and, to a lesser degree, over the left internal and external cap-
459 sules. For both groups, standard deviation estimates vary more between
460 regular and weighted averaging, with a lower weighted average across the
461 white matter artifact, equal values in most of the white matter and higher
462 estimates near the border with gray matter. Group statistics with a few out-
463 lier subjects removed give lower averages and lower standard deviations
464 for both weighted and regular averaging. Removing the outlier subjects
465 brings the regular and weighted averages closer to each other, with per-
466 centile differences dropping by at least half.

467 The white matter artifact is most present in the regular average over all sub-
468 jects (baseline), followed by regular averaging over the reduced group (ar-
469 tifact reduction method two), then by weighted averaging over all subjects
470 (artifact reduction method one), and the artifact is least present in weighted
471 averaging over the reduced group (artifact reduction method three).

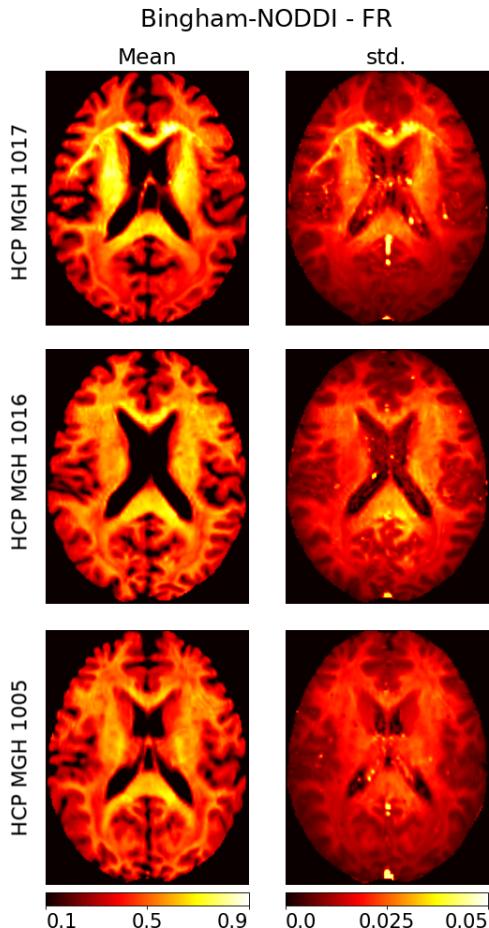


Figure 7: Illustration of artifacts in the HCP MGH datasets using the Bingham-NODDI Fraction of Restricted (FR) mean and standard deviation (std.) estimates from the MLE methodology. In the top row, estimates for HCP MGH subject 1017, with an artifact across the corpus callosum. In the middle row, estimates for HCP MGH subject 1016 with increased standard deviation estimates near a ventricle. In the bottom row, estimates for HCP MGH subject 1016 with no artifacts visible in the mean or standard deviation map.

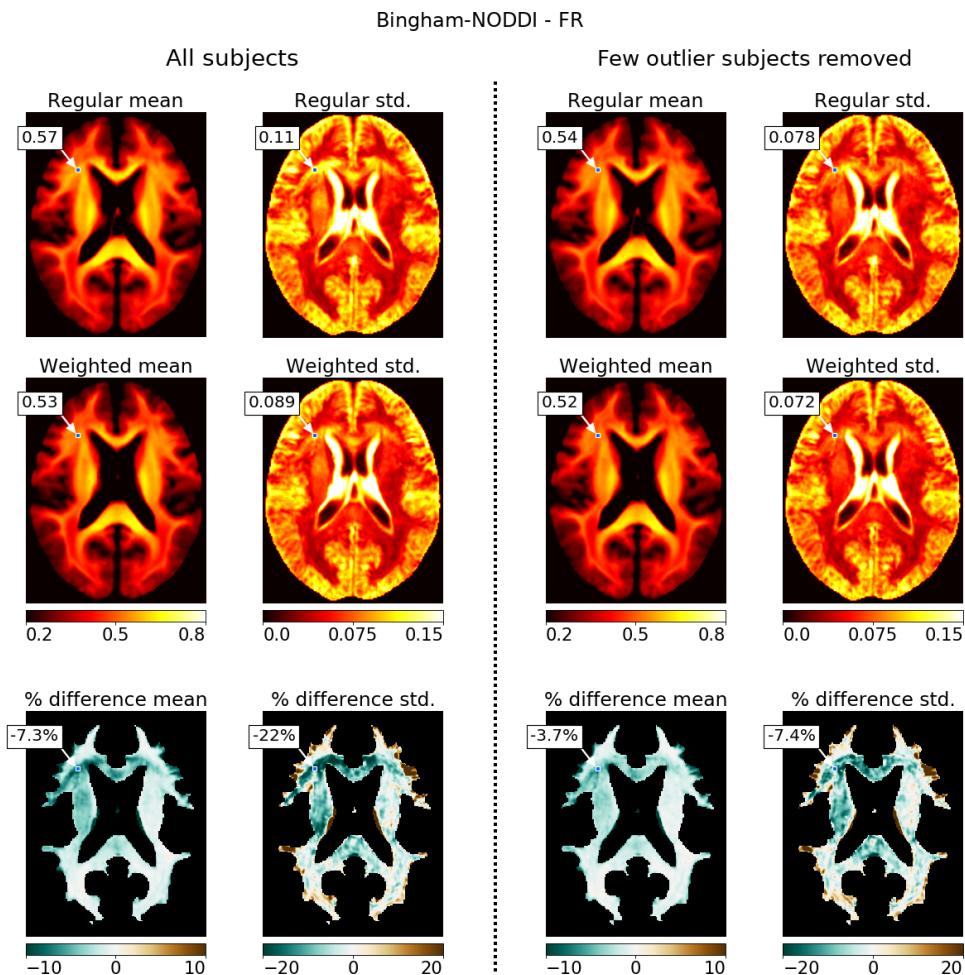


Figure 8: Group averages of Bingham-NODDI Fraction of Restricted (FR) estimates using the HCP MGH data, once over all 35 subjects (left two columns) and once over only 30 subjects where 5 outlier subjects have been removed (right two columns). First row, the regular mean and standard deviation, second row, the variance weighted mean and standard deviations, final row, percentage difference between regular and weighted averages. Point estimates and variances were computed using the MLE methodology.

472 **4 Discussion**

473 We evaluated parameter variance estimates as a quantification of parameter
474 uncertainties. We compared standard deviation estimates from Maximum
475 Likelihood Estimation (MLE) plus the Fisher Information Matrix (FIM) to those of Markov Chain Monte Carlo (MCMC) sampling and showed
476 that both results are identical in ~98.7% of the voxels. In terms of computer
477 processing time, the estimates of MLE+FIM computed about 38x faster than
478 those of MCMC. We then showed how data complexity and the signal-to-
479 noise ratio can affect the parameter variances. Finally, we illustrated how
480 the parameter variances can be applied in group studies to identify and
481 downweight the effect of outliers, thereby decreasing the variance in group
482 estimates, leading to an increase in statistical power of group studies.
483

484 *4.1 Comparison of the FIM and MCMC*

485 In general, we noted a close correspondence between the parameter dis-
486 tribution estimates from the FIM and those from MCMC sampling, with
487 an average similarity of ~98.7% across six models and two datasets. Com-
488 pared on runtime, computing MLE+FIM is about 38x faster than the use of
489 MCMC, for comparable results.

490 We made the explicit assumption that the parameter posterior distributions
491 would follow a Gaussian distribution with a single mode. Theoretically,
492 only a symmetrical distribution with a single mode would have an equal
493 mode and mean. Therefore, if the MLE point estimate, which attempts to
494 find the mode of the posterior, and the MCMC point estimate, which was
495 computed here as the mean of the sample distribution are equal, then this
496 is evidence towards symmetric single mode posteriors. Since our results
497 from the FIM and MCMC were highly comparable (i.e. up to 98.7% of
498 points estimates were indeed nearly equal), the Gaussian assumption is of-
499 ten confirmed. In the remaining 1.3% of the voxels, it could either be that
500 the parameter posteriors were not fully Gaussian distributed, or that the
501 posterior distributions were multi-modal. In the case of a multi-modal dis-
502 tribution, the FIM will give variance estimates around a single mode only,
503 the mode found by the maximum likelihood routine. Our current MCMC
504 methodology would provide an average and variance over all modes. To
505 properly deal with multi-modal distributions when using MCMC, would re-
506 quire fitting a multi-modal normal distribution to the MCMC samples. If
507 the parameters are not normally distributed, like for example near param-
508 eter boundaries or with skewed posterior's, the FIM no longer applies and
509 MCMC would require different post-processing of the samples.

510 Compared on signal-to-noise (SNR), we note that the FIM provides higher
511 standard deviation estimates at low SNR (< 10) when compared to MCMC.

512 These differences are small and quickly vanish for $\text{SNR} \geq 10$. This follows
513 results from astrophysics, where they recommend a minimum SNR of 10 to
514 compute variances using the FIM, in gravitational wave assessments (Ro-
515 driguez et al., 2013).

516 In general, both the FIM and MCMC give comparable answers and both
517 can be used for computing parameter standard deviations estimates to com-
518 pute uncertainty. The only essential difference is one of computation time,
519 computing a maximum likelihood point estimate together with the FIM is
520 about 38x faster than using MCMC. This was expected, MCMC is generally
521 known to be a time-consuming process, even when run on a GPU (Harms
522 & Roebroeck, 2018). MLE on the other hand can be applied very efficiently
523 using a GPU (Harms et al., 2017) and computing the FIM requires only a
524 few extra function evaluations (dependent on the number of parameters,
525 see Appendix A).

526 4.2 *Effects on estimates of the standard deviations*

527 There are several model and data characteristics that can affect standard
528 deviation estimates, like data complexity, derived parameter maps and the
529 signal-to-noise ratio. In general, these effects apply equally to both the FIM
530 and MCMC.

531 Concerning data dependency, as expected, standard deviation estimates
532 on the RLS-pilot dataset are generally higher than those on the HCP MGH
533 dataset, reflecting a decrease in point estimate uncertainties with more data
534 points. The same holds for the relatively large standard deviations in the
535 Tensor Fractional Anisotropy (FA) estimates, since for the Tensor model we
536 used only the data volumes with a low b-value.

537 A higher variance can additionally be observed for parameter maps which
538 are not estimated directly but derived from the estimated parameters. This
539 makes the variance of such derived parameters maps also a function of
540 multiple variances, often leading to a higher total variance. This can for ex-
541 ample be observed in the Tensor FA measure. The same compound effect
542 could apply to the variance of the Fraction of Stick (FS) of the Ball&Stick
543 models. For an increasing number of Sticks, the variance in FS is also a
544 function of multiple volume fractions, which could increase the total vari-
545 ance.

546 For all models, parameter standard deviations are influenced by the signal-
547 to-noise (SNR) ratio of the data, with a low SNR (< 10) leading to a large
548 increase in standard deviations. Both shown in real and simulated data, the
549 effect of SNR on the standard deviation estimates seems to be more gradual
550 after an $\text{SNR} \geq 20$.

551 4.3 *Artifact detection*

552 The computed parameter standard deviations (either from the FIM or MCMC)
553 could be used as a tool for detecting acquisition artifacts. In one provided
554 example (figure 7 top row), an artifact in the white matter was visible in
555 both the parameter estimate and in the standard deviation as a patch of
556 high intensity voxels. In another example (figure 7 middle row), a patch of
557 high intensity voxels was visible in the standard deviation estimate but not
558 in the parameter estimate itself. As such, standard deviation maps have
559 the potential to be more sensitive in detecting white matter artifacts than
560 point estimate maps themselves. A promising future development could
561 be to include these standard deviation maps into quality control frame-
562 works (Bastiani et al., 2019; Liu et al., 2010; Oguz et al., 2014).

563 4.4 *Increasing power in group studies*

564 By weighing down voxels with a high standard deviation, weighted aver-
565 aging can reduce the effect of white matter artifacts, approach lower and
566 more accurate estimates of group variances and increase power of group
567 statistics. In theory, if the within group datapoints are distributed with
568 the same mean, variance weighted averaging promises the lowest possi-
569 ble variance in the group mean. We observe this in large parts of the white
570 matter where weighted averaging lowers the variance in the group average
571 as expected, thereby indirectly increasing power in group comparisons.

572 We have shown that some white matter artifacts are visible in the parame-
573 ter standard deviation maps as patches of relatively large standard devi-
574 tions. Since variance weighted averaging automatically reduces the effects
575 of outliers whenever they have a large variance, variance weighted averag-
576 ing automatically reduces the presence of artifacts. Even after removing a
577 few subjects with a similar artifact, white matter averaging still reduces the
578 presence of what appears to be a lower-expressed artifact in the remaining
579 subjects. Due to this mechanism, subjects no longer need to be excluded
580 from analysis, thereby improving the power of one's study.

581 Near the gray-white matter border we noticed some voxels where weighted
582 averaging provides a higher variance than regular averaging. Theoretically,
583 weighted averaging only predicts lower standard deviations if the points
584 are distributed with the same mean. Misalignment between subjects can
585 cause a single voxel to contain white matter for one subject and gray mat-
586 ter for another subject. Parameter estimates on such voxels will then be
587 distributed with a different mean, leading to a higher group standard devi-
588 ation when applying weighted averaging. This could be considered to be
589 desirable, since such misalignment should not lead to high certainty group
590 results and is therefore downweighted by the weighted averaging. In other

591 words, the weighted group standard deviation could diagnose alignment
592 errors in group studies.

593 We note that although weighted averaging is shown here over subjects,
594 weighted averaging can also be applied within subjects. For example, when
595 averaging voxels over a white matter tract. In essence, weighted averaging
596 can be applied in all cases where variances of an estimate are available. In
597 the future this could be applied to tract based microstructure or tractometry
598 studies (Bells et al., 2011), for tract based summary statistics with a lower
599 variance.

600 5 Conclusions and recommendations

601 Considering the advantages in processing time and close correspondence
602 to Markov Chain Monte Carlo estimates, we recommend the use of the
603 Fisher Information Matrix theory to quantify the uncertainties in parame-
604 ter estimates. In individual subjects, the parameter standard deviations can
605 help in detecting white matter artifacts as patches of relatively large stan-
606 dard deviations. In group statistics, we recommend using the parameter
607 standard deviations by means of variance weighted averaging. Doing so
608 can reduce the overall variance in group statistics and reduce the effect of
609 data artifacts without discarding data from the analysis. Both these effects
610 can lead to a higher statistical power in group studies.

611 6 Acknowledgements

612 RLH, FJF, SS and AR were supported by an ERC Starting Grant (MULTI-
613 CONNECT, #639938), AR was additionally supported by a Dutch science
614 foundation (NWO) VIDI Grant (#14637). This paper reflects only the au-
615 thor's views and the European Union is not liable for any use that may be
616 made of the information contained therein. Data collection and sharing for
617 this project was provided, in part, by the MGH-USC Human Connectome
618 Project (HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W.
619 Toga, Ph.D., Van J. Weeden, MD). HCP funding was provided by the Na-
620 tional Institute of Dental and Craniofacial Research (NIDCR), the National
621 Institute of Mental Health (NIMH), and the National Institute of Neuro-
622 logical Disorders and Stroke (NINDS). HCP data are disseminated by the
623 Laboratory of Neuro Imaging at the University of California, Los Ange-
624 les. Collectively, the HCP is the result of efforts of co-investigators from
625 the University of California, Los Angeles, Martinos Center for Biomedical
626 Imaging at Massachusetts General Hospital (MGH), Washington Univer-
627 sity, and the University of Minnesota. Data collection and sharing for this

628 project was provided, in part, by the Rhineland Study (Principal Investigator: Monique M.B. Breteler, M.D., Ph.D.; German Center for Neurodegenerative Diseases (DZNE), Bonn).

631 **References**

- 632 Alexander, D. C., Hubbard, P. L., Hall, M. G., Moore, E. A., Ptito, M.,
633 Parker, G. J. M., & Dyrby, T. B. (2010). Orientationally invariant indices
634 of axon diameter and density from diffusion MRI. *NeuroImage*, 52, 1374–
635 1389. URL: <http://dx.doi.org/10.1016/j.neuroimage.2010.05.043>.
636 doi:10.1016/j.neuroimage.2010.05.043.
- 637 Andersson, J., Jenkinson, M., & Smith, S. (2010). *Non-linear registration, aka*
638 *spatial normalisation*. *FMRI technical report TR07JA2*. Technical Report
639 FMRIB Oxford.
- 640 Andersson, J. L., & Sotropoulos, S. N. (2016). An integrated ap-
641 proach to correction for off-resonance effects and subject move-
642 ment in diffusion MR imaging. *NeuroImage*, 125, 1063–1078. URL:
643 <http://dx.doi.org/10.1016/j.neuroimage.2015.10.019>.
644 doi:10.1016/j.neuroimage.2015.10.019.
- 645 Arras, K. O. (1998). *An Introduction To Error Propagation: Derivation, Meaning*
646 *and Examples of Equation CY = FXCXFXT*. Technical Report Swiss Federal
647 Institute of Technology Lausanne. doi:10.3929/ethz-a-010113668.
- 648 Assaf, Y., & Basser, P. J. (2005). Composite hindered and restricted model
649 of diffusion (CHARMED) MR imaging of the human brain. *NeuroImage*,
650 27, 48–58. doi:10.1016/j.neuroimage.2005.03.042.
- 651 Assaf, Y., Freidlin, R. Z., Rohde, G. K., & Basser, P. J. (2004). New
652 modeling and experimental framework to characterize hindered and
653 restricted water diffusion in brain white matter. *Magnetic Resonance*
654 *in Medicine*, 52, 965–978. URL: <http://www.ncbi.nlm.nih.gov/pubmed/15508168>. doi:10.1002/mrm.20274.
- 656 Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based
657 white matter mapping in brain research: A review. *Journal of Molecu-*
658 *lar Neuroscience*, 34, 51–61. URL: <http://www.ncbi.nlm.nih.gov/pubmed/18157658>. doi:10.1007/s12031-007-0029-0.
- 660 Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion ten-
661 sor spectroscopy and imaging. *Biophysical journal*, 66, 259–67. URL:
662 <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?artid=1275686&tool=pmcentrez&rendertype=abstract>.
663 doi:10.1016/S0006-3495(94)80775-1.

- 665 Bastiani, M., Cottaar, M., Fitzgibbon, S. P., Suri, S., Alfaro-Almagro,
666 F., Sotiroopoulos, S. N., Jbabdi, S., & Andersson, J. L. (2019).
667 Automated quality control for within and between studies dif-
668 fusion MRI data using a non-parametric framework for move-
669 ment and distortion correction. *NeuroImage*, 184, 801–812. URL:
670 <https://doi.org/10.1016/j.neuroimage.2018.09.073>.
671 doi:10.1016/j.neuroimage.2018.09.073.
- 672 Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H.,
673 Nunes, R. G., Clare, S., Matthews, P. M., Brady, J. M., & Smith, S. M.
674 (2003). Characterization and Propagation of Uncertainty in Diffusion-
675 Weighted MR Imaging. *Magnetic Resonance in Medicine*, 50, 1077–
676 1088. URL: <http://www.ncbi.nlm.nih.gov/pubmed/14587019>.
677 doi:10.1002/mrm.10609.
- 678 Bells, S., Cercignani, M., Assaf, Y., Pasternak, O., Evans, C. J., Leemans, A.,
679 & Jones, D. K. (2011). Tractometry: comprehensive multi-modal quanti-
680 tative assessment of white matter along specific tracts. In *Proc. Int. Soc.*
681 *Magn. Res. Med., Montreal.* Montreal.
- 682 Burg, C., & Erwin, T. (2009). Application of Richardson extrapolation to the
683 numerical solution of partial differential equations. *Numerical Methods for*
684 *Partial Differential ...*, 72035. URL: <http://onlinelibrary.wiley.com/doi/10.1002/num.20375/abstract>. doi:10.1002/num.
- 686 Chen, G., Saad, Z. S., Nath, A. R., Beauchamp, M. S., & Cox,
687 R. W. (2012). NeuroImage FMRI group analysis combining ef-
688 fect estimates and their variances. *NeuroImage*, 60, 747–765. URL:
689 <http://dx.doi.org/10.1016/j.neuroimage.2011.12.060>.
690 doi:10.1016/j.neuroimage.2011.12.060.
- 691 Chung, S. W., Lu, Y., & Henry, R. G. (2006). Comparison of bootstrap ap-
692 proaches for estimation of uncertainties of DTI parameters. *NeuroImage*,
693 33, 531–541. doi:10.1016/j.neuroimage.2006.07.001.
- 694 Cochran, W. G. (1937). Problems Arising in the Analysis of a Series of Simi-
695 lar Experiments. *Supplement to the Journal of the Royal Statistical Society*, 4,
696 102. URL: <https://www.jstor.org/stable/10.2307/2984123?origin=crossref>. doi:10.2307/2984123.
- 698 Cramer, H. (1946). *Mathematical methods of statistics*. Princeton: Princeton
699 University Press.
- 700 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin,
701 D. B. (2013). *Bayesian Data Analysis*. CRC Press.

- 702 Gu, X., Sidén, P., Wegmann, B., Eklund, A., Villani, M., & Knutsson, H.
703 (2017). Bayesian Diffusion Tensor Estimation with Spatial Priors. In
704 *International Conference on Computer Analysis of Images and Patterns* (pp.
705 372–383). volume 47. URL: http://link.springer.com/10.1007/978-3-319-64689-3_30. doi:10.1007/978-3-319-64689-3_30. arXiv:9809069v1.
- 708 Gudbjartsson, H., & Patz, S. (1995). The Rician distribution of noisy MRI
709 data. *Magnetic Resonance in Medicine*, 34, 910–914. URL: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254141/>. doi:10.1002/mrm.1910340618. arXiv:NIHMS150003.
- 712 Harms, R., Fritz, F., Tobisch, A., Goebel, R., & Roebroeck, A.
713 (2017). Robust and fast nonlinear optimization of diffusion
714 MRI microstructure models. *NeuroImage*, 155, 82–96. URL:
715 <http://dx.doi.org/10.1016/j.neuroimage.2017.04.064>.
716 doi:10.1016/j.neuroimage.2017.04.064.
- 717 Harms, R., & Roebroeck, A. (2018). Robust and Fast Markov Chain
718 Monte Carlo Sampling of Diffusion MRI Microstructure Models. *Frontiers in
719 Neuroinformatics*, 12, 1–18. URL: <https://www.frontiersin.org/article/10.3389/fninf.2018.00097/full>. doi:10.3389/fninf.2018.00097.
- 722 Jones, D. K. (2003). Determining and visualizing uncertainty in estimates
723 of fiber orientation from diffusion tensor MRI. *Magnetic Resonance in
724 Medicine*, 49, 7–12. doi:10.1002/mrm.10331.
- 725 Kay, S. M. (1993). *Fundamentals of Statistical Signal Processing: Estimation
726 Theory*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
- 727 Liu, Z., Wang, Y., Gerig, G., Gouttard, S., Tao, R., Fletcher, T., &
728 Styner, M. (2010). Quality control of diffusion weighted images.
729 In *Medical Imaging 2010: Advanced PACS-based Imaging
730 Informatics and Therapeutic Applications*. volume 7628. URL:
731 <http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.844748>. doi:10.1117/12.844748.
- 733 Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E. J., Strupp, J., Harel, N.,
734 & Uğurbil, K. (2010). Multiband multislice GE-EPI at 7 tesla, with 16-
735 fold acceleration using partial parallel imaging with application to high
736 spatial and temporal whole-brain fMRI. *Magnetic Resonance in Medicine*,
737 63, 1144–1153. doi:10.1002/mrm.22361.
- 738 Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G., Johnson, H. J.,
739 & Styner, M. (2014). DTIPrep: quality control of diffusion-weighted im-

- 740 ages. *Frontiers in Neuroinformatics*, 8, 1–11. doi:10.3389/fninf.2014.00004.
- 742 Pawitan, Y. (2013). *In all likelihood*. (1st ed.). Oxford: Oxford University Press.
- 744 Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of several variables without calculating derivatives. *The Computer Journal*, 7, 155–162. URL: <http://comjnl.oxfordjournals.org/content/7/2/155.short>.
745 doi:10.1093/comjnl/7.2.155. arXiv:arXiv:1011.1669v3.
- 747 Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters. *Bulletin of the Calcutta Mathematical Society*, 37, 81–89.
- 752 Rodriguez, C. L., Farr, B., Farr, W. M., & Mandel, I. (2013). Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation. *Physical Review D*, 88, 084013. URL: <https://link.aps.org/doi/10.1103/PhysRevD.88.084013>.
753 doi:10.1103/PhysRevD.88.084013.
- 755 Shahar, D. J. (2017). Minimizing the Variance of a Weighted Average. *Open Journal of Statistics*, 7, 216–224. URL: <http://www.scirp.org/journal/ojs>. doi:10.4236/ojs.2017.72017.
- 760 Sjölund, J., Eklund, A., Özarslan, E., Herberthson, M., Båkestad, M., & Knutsson, H. (2018). Bayesian uncertainty quantification in linear models for diffusion MRI. *NeuroImage*, 175, 272–285. doi:10.1016/j.neuroimage.2018.03.059. arXiv:1711.06002.
- 764 Smith, S. M. (2002). Fast robust automated brain extraction. *Human Brain Mapping*, 17, 143–155. URL: <http://www.ncbi.nlm.nih.gov/pubmed/12391568>. doi:10.1002/hbm.10062.
- 768 Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. (2006). Tract-based spatial statistics: Voxel-wise analysis of multi-subject diffusion data. *NeuroImage*, 31, 1487–1505. URL: <http://linkinghub.elsevier.com/retrieve/pii/S1053811906001388>. doi:10.1016/j.neuroimage.2006.02.024.
- 772 Sotiroopoulos, S. N., Jbabdi, S., Andersson, J. L. R., Woolrich, M. W., Ugurbil, K., & Behrens, T. E. J. (2013). RubiX: Combining spatial resolutions for bayesian inference of crossing fibers in diffusion MRI. *IEEE Transactions on Medical Imaging*, 32, 969–982. URL: <http://www.ncbi.nlm.nih.gov/pubmed/23362247>. doi:10.1109/TMI.2012.2231873.

- 778 Tariq, M., Schneider, T., Alexander, D. C., Gandini Wheeler-Kingshott,
779 C. A., & Zhang, H. (2016). Bingham-NODDI: Mapping anisotropic orien-
780 tation dispersion of neurites using diffusion MRI. *NeuroImage*, 133, 207–
781 223. URL: <https://www.ncbi.nlm.nih.gov/pubmed/26826512>.
782 doi:10.1016/j.neuroimage.2016.01.046.
- 783 Vallisneri, M. (2008). Use and abuse of the Fisher information matrix in
784 the assessment of gravitational-wave parameter-estimation prospects.
785 *Physical Review D - Particles, Fields, Gravitation and Cosmology*, 77, 1–20.
786 doi:10.1103/PhysRevD.77.042001. arXiv:0703086.
- 787 Versteeg, E., Vos, F. M., Kwakkel, G., van der Helm, F. C. T., Arkesteijn,
788 J. A. M., & Filatova, O. (2018). Probabilistic Tractography for Com-
789 plex Fiber Orientations with Automatic Model Selection. In E. Kaden,
790 F. Grussu, L. Ning, C. M. W. Tax, & J. Veraart (Eds.), *Computational Diffu-
791 sion MRI* (pp. 117–128). Cham: Springer International Publishing.
- 792 Wegmann, B., Eklund, A., & Villani, M. (2017). Bayesian Rician regression
793 for neuroimaging. *Frontiers in Neuroscience*, 11. doi:10.3389/fnins.
794 2017.00586.
- 795 Weniger, E. J. (1991). On the derivation of iterated sequence transfor-
796 mations for the acceleration of convergence and the summation of diver-
797 gent series. *Computer Physics Communications*, 64, 19–45. doi:10.1016/
798 0010-4655(91)90047-O. arXiv:0306302.
- 799 Whitcher, B., Tuch, D. S., Wisco, J. J., Sorensen, A. G., & Wang, L. (2008). Us-
800 ing the wild bootstrap to quantify uncertainty in diffusion tensor imag-
801 ing. *Human Brain Mapping*, 29, 346–362. doi:10.1002/hbm.20395.
- 802 Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., & Smith,
803 S. M. (2004). Multilevel linear modelling for fMRI group analysis us-
804 ing Bayesian inference. *NeuroImage*, 21, 1732–1747. doi:10.1016/j.
805 neuroimage.2003.12.023.
- 806 Xu, J., Moeller, S., Auerbach, E. J., Strupp, J., Smith, S. M., Feinberg, D. A.,
807 Yacoub, E., & Uğurbil, K. (2013). Evaluation of slice accelerations using
808 multiband echo planar imaging at 3T. *NeuroImage*, 83, 991–1001. doi:10.
809 1016/j.neuroimage.2013.07.055. arXiv:NIHMS150003.
- 810 Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C.
811 (2012). NODDI: Practical in vivo neurite orientation dispersion
812 and density imaging of the human brain. *NeuroImage*, 61, 1000–
813 1016. URL: <http://dx.doi.org/10.1016/j.neuroimage.2012.03.072>.
814 doi:10.1016/j.neuroimage.2012.03.072.

815 **Appendix A Numerical Hessian**

816 To compute the Hessian we use a numerical differentiation routine with
 817 multiple step sizes and extrapolations to provide an estimate with a $\mathcal{O}(h^6)$
 818 order of accuracy. For a single step size vector \mathbf{d} , we compute each element
 819 of the Hessian using a second order Taylor expansion central difference,

$$\mathbf{H}_{ij}(\mathbf{x}) := \frac{1}{4\mathbf{d}_i\mathbf{d}_j} [\begin{aligned} & l(\mathbf{x} + \mathbf{e}_i\mathbf{d}_i + \mathbf{e}_j\mathbf{d}_j) \\ & -l(\mathbf{x} + \mathbf{e}_i\mathbf{d}_i - \mathbf{e}_j\mathbf{d}_j) \\ & -l(\mathbf{x} - \mathbf{e}_i\mathbf{d}_i + \mathbf{e}_j\mathbf{d}_j) \\ & +l(\mathbf{x} - \mathbf{e}_i\mathbf{d}_i - \mathbf{e}_j\mathbf{d}_j) \end{aligned}] \quad (\text{A.1})$$

820 where $\mathbf{x} \in \mathcal{R}^n$ is the parameter vector, $l(\mathbf{x})$ is the log-likelihood function
 821 and \mathbf{e}_k is a zeros vector with only element k set to one. We evaluate the
 822 Hessian multiple times with exponentially diminishing steps and with the
 823 largest step size chosen such that $\mathbf{x} \pm \mathbf{d}$ is within bounds and \mathbf{d} is within
 824 predefined upper and lower limits. In this work we evaluate the Hessian
 825 for five different step sizes \mathbf{d} with each step half the previous step. We
 826 then apply Richardson extrapolation (Burg & Erwin, 2009) twice to produce
 827 three estimates with a sixth order of accuracy. These three approximations
 828 we extrapolate again using Wynn's epsilon algorithm (Weniger, 1991) to
 829 arrive at a single final estimate.

830 **Appendix B Uncertainty propagation**

831 This appendix provides two illustrations of uncertainty propagation, one
 832 example using Ball&Stick Fraction of Stick and one example using Tensor
 833 Fractional Anisotropy.

834 Uncertainty propagation of the Ball&Stick Fraction of Stick can be defined
 835 as follows. For a two Stick Ball&Stick model, the Fraction of Stick is defined
 836 as:

$$\text{FS} = w_0 + w_1 \quad (\text{B.1})$$

837 The analytical gradient of this function is given by:

$$\nabla_{\text{FS}} = (w_0, w_1) \quad (\text{B.2})$$

838 The covariance matrix of the weights can be defined as:

$$\Sigma_w = \begin{pmatrix} \sigma_{w_0}^2 & \sigma_{w_0 w_1} \\ \sigma_{w_1 w_0} & \sigma_{w_1}^2 \end{pmatrix} \quad (B.3)$$

839 with $\sigma_{w_i}^2$ denoting the variance of weight w_i , and $\sigma_{w_i w_j}$ denoting the co-
840 variances of weights w_i and w_j . When evaluated, these quantities are taken
841 from the covariance matrix provided by the FIM.

842 Using equation 6, we can write the uncertainty propagation as:

$$\sigma_{FS}^2 = \nabla_{FS} \Sigma_w \nabla_{FS}^\top \quad (B.4)$$

843 which simplifies to:

$$\sigma_{FS}^2 = w_0^2 \sigma_{w_0}^2 + w_1^2 \sigma_{w_1}^2 + 2w_0 w_1 \sigma_{w_0 w_1} \quad (B.5)$$

844 By evaluating expression B.5 using the point estimates, variance estimates
845 and covariance estimates of the weights, we can compute the variance in
846 the FS metric.

847 Uncertainty propagation of Tensor FA is slightly more complex considering
848 FA is not a linear function of its inputs. The Tensor FA can be defined
849 in terms of the three Tensor diffusivities (the eigenvalues of the diffusion
850 Tensor) as:

$$FA = \sqrt{\frac{1}{2} \frac{\sqrt{(d_0 - d_1)^2 + (d_1 - d_2)^2 + (d_0 - d_2)^2}}{\sqrt{d_0^2 + d_1^2 + d_2^2}}} \quad (B.6)$$

851 The derivative of FA with respect to the first diffusivity can be written as:

$$\frac{\partial FA}{\partial d_0} = \frac{2d_0 d_1 d_2 + d_0^2 (d_1 + d_2) - d_1^2 d_2 - d_1 d_2^2 - d_1^3 - d_2^3}{2 \sqrt[3/2]{d_0^2 + d_1^2 + d_2^2} \sqrt{d_0^2 - d_0(d_1 + d_2) + d_1^2 - d_1 d_2 + d_2^2}} \quad (B.7)$$

852 and similar derivatives can be derived for the second and third diffusivity
853 by suitable permutations of the diffusivity indices. The analytical gradient
854 of FA, ∇_{FA} can now be defined as:

$$\nabla_{FA} = \left(\frac{\partial FA}{\partial d_0}, \frac{\partial FA}{\partial d_1}, \frac{\partial FA}{\partial d_2} \right) \quad (B.8)$$

855 The covariance matrix of the diffusivities can be defined as:

$$\Sigma_d = \begin{pmatrix} \sigma_{d_0}^2 & \sigma_{d_0d_1} & \sigma_{d_0d_2} \\ \sigma_{d_1d_0} & \sigma_{d_1}^2 & \sigma_{d_1d_2} \\ \sigma_{d_2d_0} & \sigma_{d_2d_1} & \sigma_{d_2}^2 \end{pmatrix} \quad (B.9)$$

856 with $\sigma_{d_i}^2$ denoting the variance of diffusivity d_i , and $\sigma_{d_i d_j}$ denoting the co-
857 variances of diffusivities d_i and d_j .

858 Using equation 6, we can define the uncertainty propagation of FA as:

$$\sigma_{FA}^2 = \nabla_{FA} \Sigma_d \nabla_{FA}^\top \quad (B.10)$$

859 By evaluating expression B.10 using the point estimates of the diffusivities
860 together with the corresponding variance and covariance estimates from
861 the FIM, we can compute the propagated variance in the FA metric.