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Abstract

Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue
microstructure. By fitting a model to the dMRI signal, various quantita-
tive measures can be derived from the data, such as fractional anisotropy,
neurite density and axonal radii maps. The uncertainty in these dMRI mea-
sures is often ignored, while previous work in functional MRI has shown
that incorporating uncertainty estimates can lead to group statistics with a
higher statistical power. We propose the Fisher Information Matrix (FIM)
as a generally applicable method for quantifying the parameter uncertain-
ties in non-linear diffusion MRI models. In direct comparison with Markov
Chain Monte Carlo sampling, the FIM produces similar uncertainty esti-
mates at lower computational cost. Using acquired and simulated data,
we then list several characteristics that influence the parameter variances,
like data complexity and signal-to-noise ratio. In individual subjects, the
parameter standard deviations can help in detecting white matter artifacts
as patches of relatively large standard deviations. In group statistics, we
recommend using the parameter standard deviations by means of variance
weighted averaging. Doing so can reduce the overall variance in group
statistics and reduce the effect of data artifacts without discarding data
from the analysis. Both these effects can lead to a higher statistical power
in group studies.

Keywords: Uncertainty estimates, Variances, Diffusion MRI,
Microstructure, Fisher Information Matrix (FIM), Cramér Rao Lower
Bound (CRLB)

1 1 Introduction

2 Diffusion Magnetic Resonance Imaging (AMRI) allows for non-invasive in-
s vestigation of brain tissue microstructure. By fitting a dMRI model to each
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+ voxel, various quantitative measures can be derived from the data, such
s as fractional anisotropy (Basser et al., 1994), neurite density (Zhang et al.,
s 2012) and axonal radii maps (Assaf & Pasternak, 2008; Alexander et al.,
7 2010). These quantitative measures can be used in statistical group analysis.
s For example, tract-based spatial statistics (TBSS) is a popular approach to
o group analysis of fractional anisotropy measures (Smith et al., 2006). More

10 often than not, these approaches (including TBSS) ignore the uncertainty in

11 the quantitative measures. In functional magnetic resonance imaging, pre-

12 vious work has shown that incorporating uncertainty estimates can lead to

13 group statistics with a higher statistical power (Chen et al., 2012; Woolrich

14 etal., 2004). For linear diffusion models, a method for computing and using

15 uncertainty estimates has been shown before (Sj6lund et al., 2018), but this

16 has not yet been generalized to non-linear diffusion models like NODDI

17 (Zhang et al., 2012) and CHARMED (Assaf & Basser, 2005).

18 Previous work in quantifying the parameter uncertainties include Markov
19 Chain Monte Carlo (MCMC) (Behrens et al., 2003; Wegmann et al., 2017; Gu
20 et al.,, 2017) and bootstrapping (Jones, 2003; Chung et al., 2006; Whitcher
21 et al., 2008) methods. Of these two techniques, bootstrapping is often not
22 applicable as it is either model specific (Whitcher et al., 2008) or requires
23 very specific additional MRI measurements (Jones, 2003; Chung et al., 2006)
2« which are often not acquired in diffusion MRI datasets. MCMC on the other
s hand can readily be extended to all microstructure models, but often re-
26 quires long computation times, even with parallel processing on graphical
27 processing units (Harms & Roebroeck, 2018).

28 We propose the Fisher Information Matrix (FIM) as a generally applicable
20 method for quantifying the parameter uncertainties in non-linear diffusion
s0  MRI models. The FIM allows for estimating the local variances around the
st maximum likelihood point estimate, which is the point estimate typically
s2 used in group statistics. Computing the FIM is a relatively fast operation,
s requiring only a few additional model evaluations. In other fields, like for
s example astrophysics, the Fisher Information Matrix is already recognized
55 as a useful tool for quantifying the uncertainty in parameter estimates (Val-
ss lisneri, 2008; Rodriguez et al., 2013). In diffusion MRI, the FIM has been
s7 applied before, but only specific to the multi-Tensor model (Versteeg et al.,
ss 2018) and has not yet been generalized to all non-linear microstructure
s models.

a0 The Fisher Information Matrix can additionally be used to compute the
s Cramér Rao Lower Bound (CRLB; Rao, 1945; Cramer, 1946), if and only
a2 if the true parameters are known (Kay, 1993). For example, in simula-
43 tion studies the CRLB can function as a ground truth lower bound on
4 the estimable variances, thereby indirectly evaluating the performance of
s the maximum likelihood routines (Kay, 1993). Although in brain data the
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s FIM can be interpreted as an approximation to the CRLB, we follow the re-
47 sults in astrophysics and only interpret the FIM as a measure of uncertainty
a8 around the estimated parameters (Vallisneri, 2008).

s We first compare the uncertainty estimates from the Fisher Information
so Matrix to those of MCMC, using multiple datasets and multiple dMRI mi-
st crostructure models. We then investigate several data and model character-
s2 istics that can influence the parameter variances, like data complexity and
ss  Signal-to-Noise Ratio (SNR). In the end, we discuss the use of uncertainty
s« estimates in white matter artifact detection (e.g. detecting fat saturation)
55 and show how weighted averaging could lead to an increase in power in
ss group studies.

57 2 Methods

ss 2.1 Parameter distribution estimates

se  We compare two different methods for summarizing the parameter poste-
s0 rior distributions of a single voxel, a frequentist method using Maximum
st Likelihood Estimation (MLE) and the Fisher Information Matrix (FIM) and
s2 a Bayesian method using Markov Chain Monte Carlo (MCMC) (see fig-
e3 ure 1 for a schematic overview). With both methods we summarize the
&« voxel-wise posteriors as a point estimate with a corresponding standard
65 deviation (std.).

s In the first method we use the Powell optimization routine (Powell, 1964;
e7 Harms et al., 2017) to get an MLE parameter point estimates. We estimate
s the standard deviations around those point estimates using the theory of
o the FIM. Standard deviations in derived parameter maps (e.g. Tensor Frac-
70 tional Anisotropy) can be obtained by propagating the uncertainty of the
71 model parameters. We refer to this method as MLE+FIM.

72 The second methodology uses MCMC sampling to approximate the full
73 posterior distribution, using the Adaptive Metropolis Within Gibbs routine
74 as discussed in (Harms & Roebroeck, 2018). From these samples we sum-
75 marize the posterior distribution using a mean and standard deviation, as
76 done before in before in dMRI modeling (Behrens et al., 2003; Sotiropou-
77 los et al., 2013; Wegmann et al., 2017). Uncertainties in derived parameter
78 maps can be obtained by computing the derived parameter maps at ev-
70 ery sampled point and summarizing the result. We refer to this method as
g0 MCMC.

st The MLE+FIM provides a local variance around a mode while MCMC pro-
s2 vides a global variance around the mean. As such, these methods are only
ss comparable if the posterior is unimodally Gaussian distributed, since then
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s« the mean equals the mode. As in previous work (Behrens et al., 2003;
&5 Sotiropoulos et al., 2013; Wegmann et al., 2017), we assume the posteriors
s to be unimodally Gaussian distributed.

&7 This assumption may not necessarily hold. For example, multi-modality
g8 could arise when fitting a single fiber model to a crossing fiber voxel. In
g0 such cases, different post-processing would be required on the MCMC sam-
o ples to correctly reflect the parameter variances. The FIM would be less
ot sensitive to this issue since the FIM provides only local variances estimates.
92 That is, the MLE would choose one mode of the distribution and the FIM
s would provide a local variance estimate around the chosen mode. This is-
s sue could also be circumvented by applying appropriate model selection to
s every voxel.

s Non-Gaussian distributions can happen near parameter boundaries. For
o7 instance, very low (close to zero) or very high (close to one) compartment
¢ volume fractions can lead to a truncated posterior. In such cases the FIM
% no longer applies. For MCMC different post-processing would be required,
10 like fitting a truncated normal distribution to the posterior. This could
101 again be solved by appropriate model selection. We take no special pre-
12 cautions for these boundary effects and assume these to not be present in
103 white matter.

14 Nevertheless, we expect most posteriors to be unimodally Gaussian dis-
105 tributed. This assumption is also supported by two theoretical arguments.
106 First, if the model is suitable to describe the data (e.g. if model selection was
107 successfully applied), the posterior asymptotically approaches a Gaussian
108 distribution (Gelman et al., 2013). Second, according to the central limit
109 theorem, each parameter’s marginal distribution will asymptotically tend
110 to a Gaussian as the number of model parameters increases (Gelman et al.,

11 2013).
Inverse[-Hessian(x inti Propagate uncertain
£ Point estimates & [ (%) Uncertainties & (Propag ty) [ Sandara
MLE_—7 Covariances deviations
/ N
dMRI Data Derived parameters
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Figure 1: The uncertainty computation methods for both the Maximum Likelihood Estima-
tion (MLE) and Markov Chain Monte Carlo (MCMC) methods.

1z 2.1.1 Fisher Information Matrix

113 The observed Fisher Information Matrix is defined as the negative Hessian
114 of the log-likelihood function when evaluated at the maximum likelihood
115 estimate (Pawitan, 2013; Gelman et al., 2013). The inverse of the FIM is
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116 an asymptotic estimator of the covariance matrix (Pawitan, 2013; Gelman
117 et al., 2013). Formally, let I(x) be a log-likelihood function with maximum
1s likelihood estimate x. A second order Taylor approximation of [(x) cen-
119 tered at X is then given by:

N VR A i
I(x) = U%) + 5 (x = %) "5 5 UX)(x — %) (1)
120 ignoring the higher terms and having dropped the linear term since the

121 first derivative of a function is zero at the mode. Considering the first term,

122 1(%X), a constant and the second term, 3 (x —%)T %l(ﬁc) (x —x), proportional

123 to the logarithm of a normal density, we get the approximation:

[(x) = N(x, [1(x)]7) )

124 where I(x) is the observed Fisher Information Matrix:

1(%) = ~H(%) = 5 1(%) ©)

125 For the Hessian to be positive definite, this theory requires x to lie within
126 the boundaries of the parameter space (Gelman et al., 2013). We compute
127 the Hessian numerically (see Appendix A) and its inverse using a direct
128 inverse where possible with a fallback on the (Moore-Penrose) pseudo-
120 inverse for ill-conditioned Hessians. Ill-conditioned Hessian can for exam-
130 ple arise with parameter estimates lying at a predefined parameter bound-
131 ary (Gelman et al., 2013).

132 2.1.2  Uncertainty propagation

133 Given a function y = f(6#) where f(-) is a known function, uncertainty
134 propagation provides the probability distribution of y given the probability
135 distribution of 8. For example, we can use this to estimate the standard
136 deviation of a Tensor Fractional Anisotropy (FA) estimate, by propagating
137 the standard deviation estimates of the Tensor diffusivities. We use a first
13¢ order Taylor expansion linear approximation (Arras, 1998), which states
130 that if @ is normally distributed with mean pgy and covariance matrix ¥g,
10 the distribution of y can be approximated as:

y ~ N(uy,Zy) = N(f(6), J;(8)SeI;(6)") 4)
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141 with J; the Jacobian matrix of f. More succinctly, the covariance matrix of
1z 'y = f(0) is given by:

Sy =JSed} (5)

13 which holds as a generally applicable formula for linear propagation of co-
144 variances (Arras, 1998). In the case of an univariate output y = f(0), the
145 Jacobian can be formulated as a gradient vector V, leading to the follow-
s ing expression for the variance in y:

op =ViLeV} (6)

17 This error propagation technique uses both the variances and the co-variances
1s of all the propagated parameters. Additionally, this technique takes into ac-
149 count the functional form of the propagated function, i.e. if the function is
150 linear or non-linear. The Jacobian or gradient can be computed numerically
151 using finite-differences or can be evaluated at an analytical derivative. We
152 use analytical expressions for all uncertainty propagations. See Appendix B
153 for worked out error propagation examples of the Tensor FA and Ball&Stick
1« Fraction of Stick parameters.

185 2.2 Variance weighted average

156 Variance weighted averaging makes it possible to include the variances of
157 the data points when computing a mean and standard deviation. For ex-
158 ample, the voxel-wise variances discussed earlier can be used in averages
5o of white matter regions within a subject, or in voxel-wise averages over
10 multiple subjects. First, given n data points z;, we define the regular mean
161 as:

1 n
Iaregular = E Z 24 (7)
i

12 and regular standard deviation as:

" o 2
6regular = \/ZZ ( : Nregular) (8)

n

163 If each data point z; has a corresponding weight w;, we can compute a
16¢ weighted mean as:

doi Wiz

ﬂweighted = Zzn w; (9)
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165 and a weighted standard deviation as:

Moo — 7 . 2
O weighted = ZZ wl(zl Mwelghted) (10)
g (m—1) Zn w;

166 with m for the number of non-zero weights, included here to allow for non-
167 normalized weights. It has been shown that the weights that minimize the
s variance of the weighted average are the reciprocals of the variances of each
160 of the data points z; (Shahar, 2017). That is, given the variances O'Z-2 for each
170 z;, the weights that minimize Var() , w;2;) is given by:

1
Wi = — (11)
g;

171 Incidentally, these weights are also the maximum likelihood estimator of
172 the weighted mean and variance under the assumption that the data points
173 z; are independent and normally distributed with the same mean (Cochran,
174 1937).

175 2.3 Diffusion microstructure models

176 To capture the variety of microstructure models in diffusion MRI we chose
177 four different models, the Tensor (Basser et al., 1994), Ball&Stick (Behrens
178 et al., 2003), Bingham-NODDI (Tariq et al., 2016) and CHARMED (Assaf
179 et al., 2004) models. The Tensor model is the oldest diffusion MRI model
150 and still sees widespread usage in the literature. From the Tensor we derive
181 the Fractional Anisotropy (FA) quantity. The Ball&Stick model (Behrens
182 et al.,, 2003) is the first multi-compartment model and is often used as lo-
18s cal estimator for tractography. To delineate multiple fiber orientations,
1« the Ball&Stick model can feature multiple Stick compartments, but always
185 with a single Ball compartment. To differentiate between the Ball&Stick
18s  models with one or more Stick compartments, we denote the specific Ball&Stick
1e7 model as “BallStick_in1”, “BallStick_in2” and ”BallStick_in3” for respec-
188 tively one, two or three Stick compartments. This is a general naming
180 scheme to denote models that can have one or more intra neuronal com-
190 partments relative to the other compartments. From the Ball&Stick model
191 we derive the Fraction of Stick (FS) quantity, which is the sum of the vol-
1.2 ume fractions of the Stick compartments.

13 More recent, biologically inspired, models include Bingham-NODDI and
194 CHARMED. The Bingham-NODDI model assumes that white matter con-
195 sists of restricted intra-cellular and hindered extra-cellular water compart-
196 ments, with the intra-cellular compartment capturing neurite orientation
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197 dispersion. From the Bingham-NODDI model we use the Fraction of Re-
s stricted (FR) quantity, the volume fraction of the restricted intra-cellular
190 compartment. The CHARMED model assumes a tissue model of restricted
200 intra-neuronal and hindered extra-neuronal water compartments, with the
201 intra-neuronal compartment assuming a bundle of axons. Since CHARMED
202 can be used with multiple intra-neuronal compartments we again denote
203 these with the "_in” suffix. Here, we only use CHARMED with one intra-
20+ neuronal compartment, denoted as "CHARMED_in1”. From the CHARMED
20s model we use the Fraction of Restricted (FR) quantity, the volume fraction
206 of the restricted intra-neuronal compartment. For implementation notes of
207 these models see (Harms et al., 2017).

208 2.4  Software

200 All models and routines used in this study are implemented in a Python
210 based GPU (graphical processing unit) accelerated toolbox, the Microstruc-
211 ture Diffusion Toolbox, MDT, which is freely available under an open source
212 licenseathttps://github.com/cbclab/MDT. We used the models and
213 MCMC routine as implemented in MDT version 0.18.3. From this version
214 onward, MDT automatically computes the FIM after every maximum like-
215 lihood estimation operation and writes out the variances and covariances
216 alongside the parameter estimates. Scripts for reproducing the results in
217 this article can be found at https://github.com/robbert-harms/
218 uncertainty_paper. All computations for this paper were performed
219 on a single AMD Fury X graphics card.

220 2.5 Datasets

221 In this study we used simulated data and imaging data from two popula-
222 tion studies. To illustrate the methods on a dataset with a clinically feasible,
223 fast to acquire, acquisition scheme, we used data from the diffusion pro-
224 tocol pilot phase of the Rhineland Study (www.rheinland-studie.de).
225 We refer to these datasets and acquisition schemes as RLS-pilot. To illustrate
226 the methods on a dataset with a high-end, long acquisition time, acquisition
227 scheme, we used data from the Human Connectome Project MGH-USC
228 Young Adult study. We refer to these datasets and acquisition schemes as
220 HCP MGH. For simulated data we used a single representative acquisition
230 scheme from both the RLS-pilot and HCP MGH studies.

231 The RLS-pilot datasets were acquired on a Siemens Magnetom Prisma (Siemens,
2:2  Erlangen, Germany) with the Center for Magnetic Resonance Research (CMRR)
233 multi-band (MB) diffusion sequence (Moeller et al., 2010; Xu et al., 2013).
2ss  These datasets had a resolution of 2.0 mm isotropic with diffusion param-
235 eters A = 45.8 ms, § = 16.3 ms, TE = 90 ms and TR = 4500 ms, and with
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23 Partial Fourier = 6/8, MB factor 3, no in-plane acceleration with 3 shells of
237 b = 1000, 2000, 3000 s/ mm?2, with respectively 30, 40 and 50 directions to
238 which are added 14 interleaved b0 volumes leading to 134 volumes in total
23 per subject. Additional b0 volumes were acquired with a reversed phase
220 encoding direction which were used to correct susceptibility related distor-
2+1  tion (in addition to bulk subject motion) with the topup and eddy tools in
2.2 FSL version 5.0.9 (Andersson & Sotiropoulos, 2016). The total acquisition
243 time is 10 min 21 sec. These three-shell datasets represent a relatively short
244 time acquisition protocol that still allows many models to be fitted. From
25 this dataset we used a single representative subject (v3a_1_data_ms20).

246 The HCP MGH datasets come from the freely available fully preprocessed
247 dMRI data from the USC-Harvard consortium of the Human Connectome
a8 project. Data used in the preparation of this work were obtained from the
220 MGH-USC Human Connectome Project (HCP) database (https://ida.
250 loni.usc.edu/login. jsp). The data were acquired on a specialized
251 Siemens Magnetom Connectom with 300 mT /m gradient set (Siemens, Er-
252 langen, Germany). These datasets were acquired at a resolution of 1.5 mm
253 isotropic with diffusion parameters A = 21.8 ms, 6 = 12.9 ms, TE = 57 ms,
2s¢ TR = 8800 ms, Partial Fourier = 6/8, MB factor 1 (i.e. no simultaneous
255 multi-slice), in-plane GRAPPA acceleration factor 3, with 4 shells of b =
26 1000, 3000, 5000, 10,000 s/mm?, with respectively 64, 64, 128, 393 directions
257 to which are added 40 interleaved b0 volumes leading to 552 volumes in
258 total per subject, with an acquisition time of 89 minutes. These four-shell,
250 high number of directions, and very high maximum b-value datasets allow
20 a wide range of models to be fitted. From these datasets we used a single
261 representative subject (hcp-1003) in single subject illustrations and we used
262 all 35 subjects in the group comparisons.

263 Since the CHARMED_in1 model requires relatively high b-values (>~6000
26« s/mm?), which are not present in the RLS-pilot datasets, we will only use
25 the HCP MGH dataset when showing CHARMED_in1 results. Addition-
266 ally, since the Tensor model is only valid for b-values up to about 1200
27 s/mm?, we only use the b-value 1000 s/mm? shell and b0 volumes in maxi-
268 mum likelihood estimation and MCMC sampling of the Tensor model. All
260 other models use all the data volumes.

270 For all datasets we created a white matter (WM) mask from the Tensor FA
271 estimates and, using BET from FSL (Smith, 2002), a whole brain mask. The
272 whole brain mask is used for MLE and MCMC sampling, whereas aver-
273 ages over the WM mask are used in model or data comparisons. For each
274 dataset, voxel-wise SNR is estimated using only the unweighted (b0) vol-
275 umes, by dividing the mean of the unweighted volumes by the standard
276 deviation.
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277 2.5.1 Ground truth simulations

278 We additionally created simulated data to illustrate the effects of the signal-
270 to-noise ratio (SNR) on the variance of the estimated parameters. We used a
280  single representative acquisition scheme from both the RLS-pilot and HCP
28t MGH datasets (the acquisition schemes of subject v3a_1_data_ms20 and
2.2 hcp_1003), and simulated data for each model. For each acquisition scheme
283 and each model, we simulate 10000 voxels with random volume fractions
284 in [0.2,0.8], diffusivities in [5e — 11, 5e — 9] mm? /s, and orientations in [0, 7).
265 From these, we created multiple copies with Rician noise (Gudbjartsson &
286 Patz, 1995) of SNRs 5, 10, 20, 30, 40 and 50. We then fit and sample each
257 model ten times to these simulated datasets and estimate the standard de-
288 viation using both the FIM and MCMC approach as described above. Per
280 SNR we summarize the results of these ten trials as a mean standard devi-
200 ation and its corresponding standard error of the mean.

201 2.5.2  Group statistics

202 For the group statistics we computed Tensor FA and Bingham-NODDI FR
203 and FR standard deviation maps on all 35 subjects using the MLE+FIM
20+ method. To be able to compare the subjects, we first registered the Tensor
205 FA estimates to the FMRIB58_FA_Imm template using FLIRT and FNIRT
206 from FSL (Andersson et al., 2010). Next, we used those registration tem-
207 plates to co-register the Bingham-NODDI FR and FR standard deviation
208 Maps.

200 With uncertainty maps available there are three methods to compute group
a0 statistics that are robust against subject-level artifacts. Method one, ap-
st ply variance weighted averaging using the uncertainty estimates to down-
sz weight voxels with a high standard deviation. This would automatically re-
a3 move artifacts if these artifacts lead to high parameter uncertainties. Method
s+ two, exclude outlier subjects from the group statistic. Outlier subjects could
a5 be detected using the point estimates or using the uncertainty maps. Method
a6 three, use a combination of method one and two, i.e. computing weighted
507 group estimates after removal of outliers.

a8 To illustrate these three artifact reduction methods, we first computed a
a0 baseline statistic using a simple mean and standard deviation over all 35
st0  subjects. We then used artifact reduction method one and used the FR stan-
s11 dard deviation maps as weights in the variance weighted averaging. To
siz  apply artifact reduction method two and three, we created a new subgroup
s13 with only 30 subjects, where we manually removed five subjects (mgh_-
s1a 1008, mgh_1009, mgh_1013, mgh_1017 and mgh_1032) that had a large white
s15 matter artifact over the corpus callosum. We then applied regular averag-
st6  ing and weighted averaging over these remaining 30 subjects.

10
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317 Asacomparison method between regular and weighted averaging we com-
s1s puted (,U'weighted - Mregular)/ Hregular and (U weighted — Uregular)/ Oregular a8 dif-
a9 ference measure for the mean and standard deviation estimates between
s20 regular and weighted averaging.

21 3 Results

s22 We begin by comparing the parameter estimates and parameter uncertainty
223 estimates of MLE+FIM to the corresponding estimates from MCMC. Next,
s«  we investigate the effect of SNR on the parameter standard deviations us-
325 ing both simulated and imaging data. We end with a comparison of regular
a6 versus weighted averaging in group statistics.

327 3.1 Parameter distribution estimates

s2s Figure 2 visually compares the results of MLE+FIM to those of MCMC, us-
20 ing the Bingham-NODDI Fraction of Restricted (FR) parameter, on a single
ss0  subject from the RLS-pilot dataset. Comparing results of a single transverse
ss1  slice shows high qualitative correspondence between the MLE and MCMC
sz methods (figure 2A), with both the point estimates and corresponding stan-
sss  dard deviations (stds.) in close resemblance. A single voxel illustration of
s« the estimated Gaussian distributions (figure 2B) again shows a high degree
ss5  of similarity, with both Gaussian fits capturing the characteristics of the
a6 MCMC sample distribution to a large degree.

ss7  To further quantify the correspondence between the MLE and MCMC method-
sss  ologies, we created scatter plots between the MLE and MCMC estimates of
ss9  both the point estimate and standard deviation estimate. This was per-
a0 formed over a white matter mask for a single subject from both the HCP
a1 MGH and RLS-pilot datasets. Figure 3 shows Bingham-NODDI FR mean
sz and standard deviation scatter plots. The FR point estimates are very tightly
as  confined to the identity line, illustrating a high degree of correspondence in
a4 the point estimates from MCMC and MLE. The variation of point estimates
us along the diagonal corresponds to variation of FR values over the white
as  matter mask, ranging between roughly 0.3 and 0.7. The std. estimates be-
a7 tween the MLE and MCMC methodologies again show a high correspon-
us dence, although the off-diagonal spread in the std. plot is visibly larger
a9 than that in the point estimate plot. There is also some clipping visible in
ss0 the std. plot, with MLE estimating a zero std. while MCMC provides a
ss1  range of values. This is mostly due to very low point estimates (near zero),
sz at which point the FIM is no longer applicable. The blue-green-yellow-red
sss  coded points in both plots account for 97-99.5% of the voxels and the pur-
s+ ple points account for the remaining fraction of outliers. The std. estimates
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35 for the HCP MGH data are clearly lower than for the RLS-pilot data, con-
s6  firming an expected higher precision (lower uncertainty) of point estimates
ss7  based on more dMRI data-points.

sss  To investigate the correspondence in MCMC and MLE uncertainty esti-
sse mates for a larger number of models, figure 4 shows scatter plots for mul-
s0 tiple microstructure models. Parameter point estimate comparisons are
st not shown here, but are generally in correspondence to a very high de-
s2 gree. Across all models and data, except for the CHARMED_in1 model
ses  fit on RLS-pilot data, MCMC and MLE uncertainty estimates are in high
s« correspondence and located close to the identity diagonal. A relatively
ss large off-diagonal variance in standard deviation estimates is visible in the
ss CHARMED_inl FR parameter on the RLS-pilot data. This is expected as the
s7 RLS-pilot dataset is not well suited for the CHARMED_in1 model due to
s too low b-values (the CHARMED_in1 model requires b-values < 6000s/mm?).
s0  Standard deviation estimates for CHARMED_in1 on the HCP MGH data
s70 are not only much more tightly confined to the identity diagonal, the std.
a1 estimates themselves are also about a factor two lower. A large spread to
sz the right is also visible in the Ball&Stick_in3 results. This might be related
a3 to MLE choosing a different mode and is perhaps solved using model se-
a7+ lection. There is also again some clipping visible, with MLE providing a
a5 zero std. with voxels with a very low point estimate.

a6 Irrespective of the method (MCMC or MLE+FIM), the std. estimates on
a7 the RLS-pilot data are always higher than the corresponding estimates on
ars the HCP MGH data, once again confirming the expected higher precision
s7e  on datasets with a larger number of direction. Conversely, one would ex-
se0  pect higher complexity models (i.e. models with more compartments and
ss1 more parameters to fit) to have higher uncertainty when fitted on the same
se2 data. This is indeed illustrated by the Ball&Stick_in{1,2,3} results, were we
se3  see an increasing estimated standard deviation for an increasing number
ss« of Sticks, within each of the HCP MGH and RLS-pilot datasets. Finally,
ses Tensor FA standard deviations are about a factor two higher than those of
sss  the other models. This is probably related to Tensor FA being a compound
37 parameter.

sss  To quantify correspondence in the MCMC and MLE std. estimates in the
ss0 scatter plots, table 1 shows the percentage of voxels for which the differ-
a0 ence between the MLE and MCMC variances is less than two standard de-
so1 viations from the mean difference. We note an average similarity of ~98.7%
se2  across six models and two datasets, even including the 97.9% similarity for
ses  the CHARMED_in1 model fit on RLS-pilot data. Table 2 compares runtimes
s+ between the MLE with the FIM and the MCMC methodologies, measuring
s5 the time between loading the data and writing the results. Averaged over
36 six models and two subjects, the GPU-optimized MLE and FIM together
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s7 compute approximately 38 times faster than GPU-optimized MCMC.

Bingham-NODDI

A) FR std. (MLE) B)
7 0.040 ¥~ MLE
20
0.027
0.013 —~15
3
s
0.000 >
[}
c
g 10
b
0.040 2
0.027 5
0.013
0
0.000 0.40 0.45 0.50

FR (a.u.)

Figure 2: A) Visual comparison of parameter and standard deviation uncertainty maps
between the Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo
(MCMC) methodologies for the Bingham-NODDI Fraction of Restricted (FR) on an RLS-
pilot dataset. B) Histogram of the 20 thousand MCMC samples of the highlighted voxel in
figure A, with in red and blue the fitted Gaussian distributions of, respectively, the MLE
and MCMC methodologies.
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Figure 3: Scatter plots comparing Maximum Likelihood Estimation (MLE) and Markov
Chain Monte Carlo (MCMC) point estimates (left column) and standard deviations (right
column) for the Bingham-NODDI Fraction of Restricted (FR) values over a white matter
mask for both a complex, long acquisition time HCP MGH dataset and a clinically feasible
RLS-pilot dataset. Plots are color coded using a kernel density estimate (a.u) from purple
(low density) to red (high density). Purple points correspond to a small percentage (0.5-3%)
of the data (c.f. Table 1).
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Figure 4: Scatter plots comparing Maximum Likelihood Estimation (MLE) and Markov
Chain Monte Carlo (MCMC) standard deviations for multiple models over a white matter
mask for both an HCP MGH and an RLS-pilot dataset. Acronyms are Fraction of Stick (FS),
Fraction of Restricted (FR) and Fractional Anisotropy (FA). Plots are color coded using a
kernel density estimate (a.u) from purple (low density) to red (high density). Purple points
correspond to a small percentage (0.5-3%) of the data (c.f. Table 1).
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HCP MGH RLS-pilot

Ball&Stick_in1 99.5% 98.8%
Ball&Stick_in2 99.9% 99.4%
Ball&Stick_in3 98.8% 97.5%
Bingham-NODDI 98.9% 98.7%
CHARMED_in1 98.6% 96.9%
Tensor 99.0% 97.9%

Table 1: For each model and dataset the percentage of voxels where the difference between
the parameter stds. from the FIM and of MCMC are within two standard deviations from
the mean difference. These percentages correspond to the red/yellow high densities in

figure 4.
HCP MGH RLS-pilot
MLE + FIM MCMC rel. MLE+FIM MCMC rel
Ball&Stick_in1 00:01:49 01:21:55 45x 00:00:30 00:20:49 42x
Ball&Stick_in2 00:04:32 02:33:18  34x 00:01:08 00:42:36 38x
Ball&Stick_in3 00:13:01 07:00:51 32x 00:03:19 01:53:33 34x

Bingham-NODDI 02:06:19 111:32:52  53x 00:28:19 26:11:47 56x
CHARMED._inl 02:09:49 53:34:47  25x 00:21:53 07:49:55 21x
Tensor 00:02:41 01:59:07  44x 00:02:18 01:02:11  27x

Table 2: Runtime comparison between the two methodologies for computing parameter
statistics, Maximum Likelihood Estimation (MLE) with the Fisher Information Matrix (FIM)
and Markov Chain Monte Carlo (MCMC) sampling, for six different models and using a
single representative subject from both the HCP MGH and the RLS-pilot datasets. Reported
run times are over the entire brain mask and are in units of (h:m:s), with next to it the relative
speed advantage of the MLE + FIM over MCMC.
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ss 3.2 Effect of SNR on parameter variances

seo Lower SNR per data point (i.e. single diffusion volume) is expected to lead
a0 to higher uncertainty in fitted parameter estimates. This issue is of extra im-
401 portance in brain dMRI by the fact that SNR is non-uniform over the brain,
a2 especially in modern high number-of-channel phased array RF-coils. In or-
403 der to assess the effect of SNR on parameter variances, figure 5 compares
s04 an estimate of SNR, its reciprocal, and the parameter standard deviation
405 estimates of multiple white matter models on a single HCP MGH dataset.
w06  We observe a decreased SNR in the center of the brain and an increase of
4«07 SNR towards the periphery. A very similar gradient can be observed in the
w8 standard deviation maps, with a decrease in parameter standard deviations
w9 towards the periphery. As in the previous results, we observe an increase
s0 in standard deviations for an increased number of Sticks in the Ball&Stick_-
a1 in{1,2,3} models, and Tensor FA standard deviations are about a factor two
a1z higher than the other standard deviation estimates.

s13 To further compare SNR and standard deviation estimates, figure 6 plots
s1a SNR versus parameter standard deviations, for both simulated data and
«5  imaging data. In general, we observe an inverse relationship between SNR
416 and standard deviation, where an increase in SNR leads to an decrease
s17 in parameter std. estimates. Standard deviations on RLS-pilot data are
ss always higher than corresponding estimates on HCP MGH data, except
s for the imaged data analysis at an SNR of 5, where the RLS-pilot dataset
a0 has a lower standard deviation. For lower SNR (< 10), MLE std. esti-
21 mates are slightly higher than the MCMC estimates. For higher SNR (>
422 10), the MLE and MCMC standard deviation estimates quickly converge,
423 except for Ball&Stick_in2, Ball&Stick_in3 and Tensor estimates on the RLS-
424 pilot dataset, where MLE standard deviations stay higher than those from
425 MCMC. For the HCP MGH dataset, results are consistent between simu-
426 lated and imaging data, with differences within the Standard Error of the
27 Mean (SEM). Results on the RLS-pilot dataset are generally also consistent,
w28 except for an SNR of 5, where imaging data results are lower than those
429 on simulated data. We finally observe that the standard error of the mean
s30 is generally higher for the simulated data compared to the imaging data,
431 especially for lower SNR.
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Figure 5: Illustration of the effect of Signal to Noise ratio (SNR) on parameter standard
deviation estimates (using the MLE methodology), for a single HCP MGH subject (subject
1003). Maps are slightly smoothed with a 3d Gaussian filter (¢ = lvowxel). Parameter
acronyms are Fraction of Stick (FS), Fraction of Restricted (FR) and Fractional Anisotropy
(FA).
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Figure 6: Effect of SNR on parameter standard deviations for simulated data and imaging
data. Simulation results are over 10000 simulated voxels per SNR with a standard error of
the mean (SEM) as error bar over 10 optimization and sampling trials. Real data results
are for 10 subjects of the HCP MGH and 10 subjects of the RLS-pilot datasets, with SNR
estimated as mean(b0_volumes) /std(b0_volumes).
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w2 3.3  Group statistics

433 Figure 7 shows Bingham-NODDI ER results of three subjects of the HCP
s MGH dataset after co-registration, to illustrate the behavior of standard
435 deviations in regions of white matter acquisition artifacts. The first sub-
436 ject (top row) has a clear artifact across the genu of the corpus callosum,
37 perhaps due to incomplete fat saturation. This artifact is visible in both
s8  the mean parameter estimates and the standard deviation estimates. The
430 second subject (middle row) shows a patch of relatively large standard de-
so viations in and near the splenium of the corpus callosum, without an eas-
w1 ily detectable alteration in the mean parameter map. For comparison, we
sz show a third subject (bottom row) at the same contrast scaling, with no
us visible artifacts or alterations in either the mean or standard deviation es-
ws timates. This figure illustrates that parameter std. maps can play a role
ws  in detecting biased estimates resulting from imaging artifacts. In particu-
ue lar, artifacts which may not always be detectable in the parameter maps
w7 themselves.

us Figure 8 shows four group statistic estimates, a regular (baseline) and three
wo  statistics using the three mentioned artifact reduction methods using the
w0 parameter variances. To reiterate, these were method one, a weighted av-
ss1 erage on all 35 subjects, method two, remove outlier subjects and apply
sz regular averaging and method three, a weighted average with outlier sub-
a3 jects removed. Between regular and weighted averaging we computed a
44 percentile difference map over a white matter mask to highlight the differ-
455 ences in estimates of both the group mean and group standard deviations.

46 For both the all-subjects and outliers-removed subject groups, the variance
s57 weighted mean is approximately lower across the artifact above the corpus
s callosum and, to a lesser degree, over the left internal and external cap-
sse  sules. For both groups, standard deviation estimates vary more between
w0 regular and weighted averaging, with a lower weighted average across the
st white matter artifact, equal values in most of the white matter and higher
w2 estimates near the border with gray matter. Group statistics with a few out-
43 lier subjects removed give lower averages and lower standard deviations
s+ for both weighted and regular averaging. Removing the outlier subjects
45 brings the regular and weighted averages closer to each other, with per-
a6 centile differences dropping by at least half.

467 The white matter artifact is most present in the regular average over all sub-
48 jects (baseline), followed by regular averaging over the reduced group (ar-
a0 tifact reduction method two), then by weighted averaging over all subjects
470 (artifact reduction method one), and the artifact is least present in weighted
471 averaging over the reduced group (artifact reduction method three).
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Figure 7: Illustration of artifacts in the HCP MGH datasets using the Bingham-NODDI
Fraction of Restricted (FR) mean and standard deviation (std.) estimates from the MLE
methodology. In the top row, estimates for HCP MGH subject 1017, with an artifact across
the corpus callosum. In the middle row, estimates for HCP MGH subject 1016 with in-
creased standard deviation estimates near a ventricle. In the bottom row, estimates for
HCP MGH subject 1016 with no artifacts visible in the mean or standard deviation map.
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Figure 8: Group averages of Bingham-NODDI Fraction of Restricted (FR) estimates using
the HCP MGH data, once over all 35 subjects (left two columns) and once over only 30 sub-
jects where 5 outlier subjects have been removed (right two columns). First row, the regular
mean and standard deviation, second row, the variance weighted mean and standard de-
viations, final row, percentage difference between regular and weighted averages. Point
estimates and variances were computed using the MLE methodology.
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472 4 Discussion

a3 We evaluated parameter variance estimates as a quantification of parame-
a7+ ter uncertainties. We compared standard deviation estimates from Max-
475 imum Likelihood Estimation (MLE) plus the Fisher Information Matrix
476 (FIM) to those of Markov Chain Monte Carlo (MCMC) sampling and showed
477 that both results are identical in ~98.7% of the voxels. In terms of computer
478 processing time, the estimates of MLE+FIM computed about 38x faster than
79 those of MCMC. We then showed how data complexity and the signal-to-
40 noise ratio can affect the parameter variances. Finally, we illustrated how
481 the parameter variances can be applied in group studies to identify and
sz downweight the effect of outliers, thereby decreasing the variance in group
43 estimates, leading to an increase in statistical power of group studies.

ss 4.1  Comparison of the FIM and MCMC

85 In general, we noted a close correspondence between the parameter dis-
a6 tribution estimates from the FIM and those from MCMC sampling, with
467 an average similarity of ~98.7% across six models and two datasets. Com-
48 pared on runtime, computing MLE+FIM is about 38x faster than the use of
s89  MCMC, for comparable results.

w0  We made the explicit assumption that the parameter posterior distributions
s01 would follow a Gaussian distribution with a single mode. Theoretically,
sz only a symmetrical distribution with a single mode would have an equal
43 mode and mean. Therefore, if the MLE point estimate, which attempts to
s04  find the mode of the posterior, and the MCMC point estimate, which was
495 computed here as the mean of the sample distribution are equal, then this
a6 is evidence towards symmetric single mode posteriors. Since our results
497 from the FIM and MCMC were highly comparable (i.e. up to 98.7% of
48 points estimates were indeed nearly equal), the Gaussian assumption is of-
490 ten confirmed. In the remaining 1.3% of the voxels, it could either be that
so0 the parameter posteriors were not fully Gaussian distributed, or that the
so1 posterior distributions were multi-modal. In the case of a multi-modal dis-
so2 tribution, the FIM will give variance estimates around a single mode only,
503 the mode found by the maximum likelihood routine. Our current MCMC
s+ methodology would provide an average and variance over all modes. To
sos proper deal with multi-modal distributions when using MCMC, would re-
so6 quire fitting a multi-modal normal distribution to the MCMC samples. If
so7 the parameters are not normally distributed, like for example near param-
sos eter boundaries or with skewed posterior’s, the FIM no longer applies and
soo  MCMC would require different post-processing of the samples.

sto.  Compared on signal-to-noise (SNR), we note that the FIM provides higher
st standard deviation estimates at low SNR (< 10) when compared to MCMC.
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stz These differences are small and quickly vanish for SNR > 10. This follows
s13 results from astrophysics, where they recommend a minimum SNR of 10 to
st compute variances using the FIM, in gravitational wave assessments (Ro-
si5 driguez et al., 2013).

si6 In general, both the FIM and MCMC give comparable answers and both
st7  can be used for computing parameter standard deviations estimates to com-
sis  pute uncertainty. The only essential difference is one of computation time,
ste  computing a maximum likelihood point estimate together with the FIM is
s20 about 38x faster than using MCMC. This was expected, MCMC is generally
s2t - known to be a time-consuming process, even when run on a GPU (Harms
s22 - & Roebroeck, 2018). MLE on the other hand can be applied very efficiently
s23  using a GPU (Harms et al., 2017) and computing the FIM requires only a
s24 few extra function evaluations (dependent on the number of parameters,
25 see Appendix A).

s26 4.2 Effects on estimates of the standard deviations

527 There are several model and data characteristics that can affect standard
s28 deviation estimates, like data complexity, derived parameter maps and the
s20  signal-to-noise ratio. In general, these effects apply equally to both the FIM
s30 and MCMC.

ss1  Concerning data dependency, as expected, standard deviation estimates
s2 on the RLS-pilot dataset are generally higher than those on the HCP MGH
sss  dataset, reflecting a decrease in point estimate uncertainties with more data
sss  points. The same holds for the relatively large standard deviations in the
ss5  Tensor Fractional Anisotropy (FA) estimates, since for the Tensor model we
s3 used only the data volumes with a low b-value.

ss7 A higher variance can additionally be observed for parameter maps which
sss  are not estimated directly but derived from the estimated parameters. This
ss9 makes the variance of such derived parameters maps also a function of
ss0 multiple variances, often leading to a higher total variance. This can for ex-
s«1 ample be observed in the Tensor FA measure. The same compound effect
se2 could apply to the variance of the Fraction of Stick (FS) of the Ball&Stick
sss models. For an increasing number of Sticks, the variance in FS is also a
ses  function of multiple volume fractions, which could increase the total vari-
545 ance.

ss6  For all models, parameter standard deviations are influenced by the signal-
s47  to-noise (SNR) ratio of the data, with a low SNR (< 10) leading to a large
s48  increase in standard deviations. Both shown in real and simulated data, the
ss0  effect of SNR on the standard deviation estimates seems to be more gradual
ss0  after an SNR > 20.
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ss1 4.3 Artifact detection

ss2 The computed parameter standard deviations (either from the FIM or MCMC)
ss3  could be used as a tool for detecting acquisition artifacts. In one provided
s5¢  example (figure 7 top row), an artifact in the white matter was visible in
s55  both the parameter estimate and in the standard deviation as a patch of
ss6 high intensity voxels. In another example (figure 7 middle row), a patch of
ss7 high intensity voxels was visible in the standard deviation estimate but not
s58  in the parameter estimate itself. As such, standard deviation maps have
sse  the potential to be more sensitive in detecting white matter artifacts than
ss0 point estimate maps themselves. A promising future development could
ss1  be to include these standard deviation maps into quality control frame-
ss2  works (Bastiani et al., 2019; Liu et al., 2010; Oguz et al., 2014).

ses 4.4 Increasing power in group studies

s64+ By weighing down voxels with a high standard deviation, weighted aver-
ses aging can reduce the effect of white matter artifacts, approach lower and
ses more accurate estimates of group variances and increase power of group
se7 statistics. In theory, if the within group datapoints are distributed with
sss the same mean, variance weighted averaging promises the lowest possi-
seo  ble variance in the group mean. We observe this in large parts of the white
s matter where weighted averaging lowers the variance in the group average
st as expected, thereby indirectly increasing power in group comparisons.

52 We have shown that some white matter artifacts are visible in the parame-
s73  ter standard deviation maps as patches of relatively large standard devia-
s7+  tions. Since variance weighted averaging automatically reduces the effects
575 of outliers whenever they have a large variance, variance weighted averag-
s76  ing automatically reduces the presence of artifacts. Even after removing a
577 few subjects with a similar artifact, white matter averaging still reduces the
578 presence of what appears to be a lower-expressed artifact in the remaining
s7o  subjects. Due to this mechanism, subjects no longer need to be excluded
se0 from analysis, thereby improving the power of one’s study.

ss1  Near the gray-white matter border we noticed some voxels where weighted
ss2 averaging provides a higher variance than regular averaging. Theoretically,
sss  weighted averaging only predicts lower standard deviations if the points
se« are distributed with the same mean. Misalignment between subjects can
se5 cause a single voxel to contain white matter for one subject and gray mat-
ss6 ter for another subject. Parameter estimates on such voxels will then be
se7 distributed with a different mean, leading to a higher group standard devi-
ses ation when applying weighted averaging. This could be considered to be
ss0 desirable, since such misalignment should not lead to high certainty group
so0 results and is therefore downweighted by the weighted averaging. In other
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so1  words, the weighted group standard deviation could diagnose alignment
se2  errors in group studies.

ses We note that although weighted averaging is shown here over subjects,
s« weighted averaging can also be applied within subjects. For example, when
se5 averaging voxels over a white matter tract. In essence, weighted averaging
se6 can be applied in all cases where variances of an estimate are available. In
so7 the future this could be applied to tract based microstructure or tractometry
ses  studies (Bells et al., 2011), for tract based summary statistics with a lower
599 variance.

00 5 Conclusions and recommendations

ot Considering the advantages in processing time and close correspondence
sz to Markov Chain Monte Carlo estimates, we recommend the use of the
s0s Fisher Information Matrix theory to quantify the uncertainties in parame-
e+ ter estimates. In individual subjects, the parameter standard deviations can
e0s help in detecting white matter artifacts as patches of relatively large stan-
s0s dard deviations. In group statistics, we recommend using the parameter
07 standard deviations by means of variance weighted averaging. Doing so
s can reduce the overall variance in group statistics and reduce the effect of
s00 data artifacts without discarding data from the analysis. Both these effects
10 can lead to a higher statistical power in group studies.
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sis Appendix A Numerical Hessian

si6  To compute the Hessian we use a numerical differentiation routine with
g7 multiple step sizes and extrapolations to provide an estimate with a O(hS)
sis order of accuracy. For a single step size vector d, we compute each element
sto  of the Hessian using a second order Taylor expansion central difference,

[ l(x + e;d; +ej
—Il(x + e;d;

( )

( d;) (A1)
—l(x — e,d +e;d;)

( d;)

+l(x —

)]

s20 where x € R" is the parameter vector, [(x) is the log-likelihood function
g2t and ey, is a zeros vector with only element k set to one. We evaluate the
s22  Hessian multiple times with exponentially diminishing steps and with the
s2s largest step size chosen such that x £ d is within bounds and d is within
s2« predefined upper and lower limits. In this work we evaluate the Hessian
s2s for five different step sizes d with each step half the previous step. We
s2s then apply Richardson extrapolation (Burg & Erwin, 2009) twice to produce
s27 three estimates with a sixth order of accuracy. These three approximations
g8 we extrapolate again using Wynn’s epsilon algorithm (Weniger, 1991) to
s20 arrive at a single final estimate.

ss0 Appendix B Uncertainty propagation
g3t This appendix provides two illustrations of uncertainty propagation, one

g2 example using Ball&Stick Fraction of Stick and one example using Tensor
sss  Fractional Anisotropy.

sas  Uncertainty propagation of the Ball&Stick Fraction of Stick can be defined
835 as follows. For a two Stick Ball&Stick model, the Fraction of Stick is defined
83 aS:

FS = wg + wy (B.1)

ss7 The analytical gradient of this function is given by:

Vrs = (wo, wy) (B.2)
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sss  The covariance matrix of the weights can be defined as:

2
Y, = < Two Uwg““) (B.3)

Owiwg Oy

g0 with 0'121;1- denoting the variance of weight w;, and 0y,,; denoting the co-
a0 variances of weights w; and w;. When evaluated, these quantities are taken
a1 from the covariance matrix provided by the FIM.

sz Using equation 6, we can write the uncertainty propagation as:

ops = VisEwVis (B.4)
a3 Which simplifies to:

2 2 2 2 2
OFs = W0y, + W0y, + 2Wow1 T wow, (B.5)

sas By evaluating expression B.5 using the point estimates, variance estimates

a5 and covariance estimates of the weights, we can compute the variance in
a6 the FS metric.

a7 Uncertainty propagation of Tensor FA is slightly more complex considering
ss FA is not a linear function of its inputs. The Tensor FA can be defined
a0 in terms of the three Tensor diffusivities (the eigenvalues of the diffusion
gs0 lensor) as:

FA — \/ do —d1)? + (di — d2)? + (do — d2)? (B.6)
VA + &+ d3 '

&5t The derivative of FA with respect to the first diffusivity can be written as:

OFA _ 2dydydy + d3(di + dy) — d3dy — dyd3 — df — dj B7)

Odo 9 3Rz + & + B/ — do(dr + o) + & — vy + 3

ss2 and similar derivatives can be derived for the second and third diffusivity
53 by suitable permutations of the diffusivity indices. The analytical gradient
ssa  Oof FA, VEa can now be defined as:

OFA OFA OFA
Via = < ) (B.8)

ddy’ ddy " ddy
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gss  The covariance matrix of the diffusivities can be defined as:

2
04y  Ododi  OTdods
2
Ya=|0ddy 0y  Odds (B.9)
2
Odady  Odadr 9y,

g6 with agi denoting the variance of diffusivity d;, and 04,4, denoting the co-
57 variances of diffusivities d; and d;.

&8 Using equation 6, we can define the uncertainty propagation of FA as:

02y = VEASq VA (B.10)
sso By evaluating expression B.10 using the point estimates of the diffusivities

g0 together with the corresponding variance and covariance estimates from
g1 the FIM, we can compute the propagated variance in the FA metric.
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