

1 **Genetically encoded intrabody sensors illuminate structural and functional diversity in GPCR- β -
2 arrestin complexes**

3 Mithu Baidya^{1#}, Punita Kumari^{1#}, Hemlata Dwivedi¹, Eshan Ghosh¹, Badr Sokrat², Silvia Sposini³, Shubhi
4 Pandey¹, Tomek Stepniewski⁴, Jana Selent⁴, Aylin C. Hanyaloglu³, Michel Bouvier² and Arun K. Shukla^{1*}

5 ¹Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016,
6 India. ²Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal,
7 Quebec, H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de
8 Montréal, Montreal, Quebec, H3T 1J4, Canada. ³Institute of Reproductive and Developmental Biology,
9 Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, Du Cane Road,
10 London, W12 0NN, UK; ⁴Research Programme on Biomedical Informatics (GRIB), Department of
11 Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research
12 Institute (IMIM), 08003 Barcelona, Spain.

13 [#]equal contribution; ^{*}corresponding author

14 **Keywords:** G protein-coupled receptors (GPCRs), β -arrestins, cellular signaling, synthetic antibody,
15 intrabody, allosteric modulator, biased agonism, trafficking.

16

17

18

19

20

21

22

23

24 **Abstract**

25 Interaction of β -arrestins (β barrs) upon agonist-stimulation is a hallmark of G protein-coupled receptors
26 (GPCRs) resulting in receptor desensitization, endocytosis and signaling. Although overall functional
27 roles of β barrs are typically believed to be conserved across different receptors, emerging data now
28 clearly unveils receptor-specific functional contribution of β barrs. The underlying mechanism however
29 remains mostly speculative and represents a key missing link in our current understanding of GPCR
30 signaling and regulatory paradigms. Here, we develop synthetic intrabody-based conformational sensors
31 that help us visualize the assembly and trafficking of GPCR- β barr1 complexes in cellular context for a
32 broad set of receptors with spatio-temporal resolution. Surprisingly, these conformational sensors
33 reveal a previously unappreciated level of diversity in GPCR- β barr complexes that extends beyond the
34 current framework of affinity-based classification and phosphorylation-code-based interaction patterns.
35 More importantly, this conformational diversity arising from spatial signature of phosphorylation sites
36 manifests directly in the form of distinct functional outcomes, including even opposite contribution of
37 β barrs in signal-transduction for different receptors. Taken together, these findings uncover that despite
38 an overall similar interaction and trafficking patterns; critical structural and functional differences exist
39 in β barr complexes for different GPCRs that define and fine-tune receptor-specific downstream
40 responses.

41

42

43

44

45

46 β -arrestins (β arrs) are multifunctional adaptor proteins, which play a central role in regulation and
47 signaling of G protein-coupled receptors (GPCRs), the largest family of cell surface receptors in our body
48 (1, 2). β arrs are evenly distributed in the cytoplasm under basal condition, and upon agonist-stimulation,
49 they translocate to the plasma membrane to interact with activated and phosphorylated receptors (3).
50 Binding of β arrs to GPCRs at the plasma membrane results in termination of G-protein coupling and
51 desensitization of receptors through a steric hindrance based mechanism (4). Subsequently, β arrs drive
52 receptor clustering in to clathrin-coated pits, via its ability to bind receptor, the β -subunit of the adaptor
53 protein 2 (AP2) and heavy chain of clathrin, resulting in receptor internalization (5). β arrs either
54 dissociate from the receptors and re-localize back in the cytoplasm, or they traffic into endosomal
55 vesicles, in complex with the receptors, a feature associated with kinetics of post-endocytic sorting and
56 β arr-mediated signaling and has led to classification of GPCR/ β arr complexes as Class A (transient
57 association, preference for β arr2) and Class B (sustained association, equal associations with β arr1/2)
58 (6). β arrs also play a pivotal role in GPCR signaling by nucleating the components of various MAP kinase
59 cascades such as p38, ERK1/2 and JNK3 (7).

60 As agonist-induced β arr recruitment to GPCRs is a highly conserved phenomenon, it can be used
61 as a surrogate of GPCR activation, and also as a readout of β arr activation resulting in receptor
62 endocytosis and signaling. Currently, a number of approaches are in use to monitor GPCR- β arr
63 recruitment which include FRET/BRET based assays (8), enzyme complementation methods (9) and
64 TANGO assay (10). Each of these methods necessitates a significant engineering and modification of the
65 receptor, the β arr, or both. Here, we develop a set of intrabodies, which can specifically recognize
66 receptor-bound β arr1, and report agonist-induced GPCR- β arr1 interaction and subsequent trafficking
67 with spatio-temporal resolution in cellular context. Surprisingly, these intrabody sensors also reveal a
68 previously unanticipated level of conformational diversity in GPCR- β arr complexes, which goes beyond

69 the current classification of Class A vs. B, and phosphorylation-code-based β arr recruitment, and also
70 functionally linked to distinct patterns of ERK1/2 MAP kinase activation.

71 Agonist-induced receptor activation and phosphorylation are two major driving forces for β arr
72 recruitment and subsequent functional outcomes (11). A phosphorylated peptide corresponding to the
73 carboxyl-terminus of the human vasopressin receptor V2R (referred to as V2Rpp) has been used
74 extensively as a surrogate to induce active β arr conformation *in-vitro* (12-14). Previously, a set of
75 synthetic antibody fragments (Fabs) have been generated against V2Rpp-bound β arr1 which selectively
76 recognize active conformation of β arr1 as induced by V2Rpp (15). As the first step towards developing
77 these Fabs as potential sensors of β arr1 activation and trafficking, we measured the ability of these Fabs
78 to recognize β arr1 in complex with activated and phosphorylated β 2V2R (6). Here, we used a chimeric
79 version of β 2AR harboring the carboxyl-terminus of the V2R, referred to as β 2V2R which interacts with
80 β arrs strongly. We observed that these Fabs were selectively able to interact with β 2V2R- β arr1 complex
81 that is formed upon agonist-stimulation of cells (Figure S1A-D).

82 A key step in developing these Fabs into cellular sensors of β arr1 activation and trafficking is to
83 express them in a functional form in the cytoplasm as intrabodies. We therefore converted the selected
84 Fabs into ScFvs (single chain variable fragments) by connecting the variable domains of their heavy and
85 light chains through a previously optimized flexible linker (16), and then expressed them in mammalian
86 cells as intrabodies either with a carboxyl-terminal HA tag or YFP fusion (Figure 1A-C and Figure S2A).
87 We observed robust expression of two of these intrabodies namely Intrabody30 (Ib30) and intrabody4
88 (Ib4) in HEK-293 cells while others displayed relatively weaker expression (Figure 1B-C and Figure S2A).
89 We also observed a significant level of nuclear localization of the intrabodies but the underlying reasons
90 for this is currently not apparent to us. Interestingly, previous studies using intrabodies against β 2AR
91 such as nanobody 80 also reported a similar nuclear localization of fluorescently-tagged intrabodies (2).

92 We then tested whether intrabodies maintain their ability to selectively recognize receptor-
93 bound β arr1 in cellular context. For this, we first chose β 2V2R because not only it forms a complex with
94 β arr1 that is well-established to be recognized by Fab30 (14, 16), but also a set of ligands with broad
95 efficacy profiles are available to allow in-depth characterization of intrabody sensors. We co-expressed
96 β 2V2R, β arr1 and selected intrabodies in HEK-293 cells, stimulated the cells with either an agonist or an
97 inverse-agonist, and then immunoprecipitated intrabodies using carboxyl-terminal HA tag. We observed
98 that both intrabodies i.e. Ib30 and Ib4 robustly recognized receptor-bound β arr1 exclusively upon
99 agonist-stimulation (Figure 1D-E). Moreover, we also observed that the level of recognition of the
100 receptor- β arr1 complexes by Ib30 mirrors the efficacy of the ligands (Figure 1F-G), which in turn further
101 confirms the suitability of these intrabodies as a reliable sensor of β arr1 recruitment to the receptor and
102 its activation.

103 We then co-expressed the β 2V2R, β arr1-mCherry and YFP-tagged intrabodies in HEK-293 cells to
104 monitor their trafficking patterns by confocal microscopy (Figure 1H and Figure S2B-D). As expected for
105 β 2V2R which behaves like a class B GPCR, we observed plasma membrane translocation of cytosolic
106 β arr1 within a few minutes of agonist-stimulation, and interestingly, YFP-tagged intrabodies co-recruited
107 with β arr1 to the plasma membrane and colocalized (Figure 1H, middle panel and Figure S2B). After
108 prolonged agonist-exposure, β arr1 trafficked to the endosomal vesicles and once again, intrabodies
109 exhibited co-localization with β arr1 (Figure 1H, lower panel and Figure S2B). Line-scan analysis further
110 confirmed colocalization of intrabody sensors with β arr1 (Figure S2C-D). These observations taken
111 together elucidate the ability of these intrabodies to faithfully report the trafficking pattern of β arr1
112 upon agonist-stimulation.

113 As these intrabodies were originally generated against V2Rpp-bound β arr1 conformation, we
114 envisioned that they might be able to report β arr1 recruitment and trafficking for other chimeric GPCRs

115 harboring the V2R-carboxyl-terminus. We therefore generated a set of chimeric GPCRs with V2R-
116 carboxyl-terminus and measured the ability of Ib30 to recognize receptor- β Barr1 complex by
117 coimmunoprecipitation and trafficking of β Barr1 by confocal microscopy (Figure 2A-X and supplementary
118 Figures S3-S9). We observed that similar to β 2V2R, Ib30 sensor robustly recognized receptor- β Barr1
119 complexes for this broad set of chimeric receptors and also reported trafficking pattern of β Barr1 with
120 spatio-temporal resolution (Figure 2A-X and supplementary Figures S3-S9). These data establish that
121 Ib30-YFP can be used as a generic tool to visualize agonist-induced β Barr1 recruitment to the receptor
122 and its subsequent trafficking in cellular context.

123 β Barrs are capable of recognizing majority of GPCRs despite poorly conserved primary sequence
124 of these receptors via agonist-induced receptor phosphorylation that drives β Barr recruitment and
125 activation. Therefore, we hypothesized that the intrabodies described here may recognize β Barr1, and act
126 as a sensor, for native GPCRs as well, considering that structural determinants for β Barr1 recruitment and
127 activation are likely to be conserved across the receptors. Accordingly, we next set out to test the
128 intrabody30 on a broad set of native GPCRs using a combination of coimmunoprecipitation and confocal
129 microscopy (Figure 3, Figure 4A-B, and Figure S10-12). We selected these receptors to encompass not
130 only representatives of Class A and B (in terms of their interaction patterns with β Barrs) but also a broad
131 pattern of receptor phosphorylation codes proposed recently (17) (Figure 3A and Figure 4A). We started
132 with V2R first and measured the ability of these intrabodies to recognize its complex with β Barr1. We
133 observed a pattern very similar to that of β 2V2R in both, the the ability of Ib30 and Ib4 to form a
134 complex with β Barr1 via co-immunoprecipitation and co-traffic to the plasma and endomembrane
135 compartments following receptor activation-(Figure 3B, 3D and Figure S10). V2R is classified as a class B
136 GPCR based on its stable β Barr recruitment pattern and co-internalization in complex with β Barrs to
137 endosomal vesicles. Expectedly, we observed a robust co-localization of V2R in endosomal vesicles with

138 β Barr1 and β b30 which further confirms the ability of intrabodies to recognize receptor- β Barr1 complexes
139 and follow their endosomal translocation (Figure 3B and S13).

140 Our results mentioned above for V2R strongly underscore the ability of intrabody sensors to
141 report β Barr1 recruitment and trafficking without any modification of the receptor or β Barr1. As we had
142 set-out to develop these intrabodies as specific sensors of β Barr1 recruitment and trafficking, it is
143 important that they do not exhibit any significant effect on heterotrimeric G-protein coupling. To
144 confirm this, we measured agonist-induced cAMP response for V2R in presence of these intrabodies and
145 observed that intrabodies did not significantly alter the kinetics or maximal cAMP response (Figure
146 S14A-B). In addition, we also measured the effect of intrabodies on overall recruitment of β Barr1 to the
147 receptor, agonist-induced receptor endocytosis, and activation of ERK1/2 MAP kinases. As presented in
148 Figure S15A-B, intrabodies slightly inhibited the recruitment of β Barr1 to the plasma membrane but
149 enhanced agonist-induced receptor endocytosis, as measured by BRET assays. They however did not
150 significantly influence the kinetics of β Barr1 localization in early endosomes (Figure 13B) or agonist-
151 induced ERK1/2 phosphorylation (Figure S15C-F). Taken together, these data establish the suitability of
152 β b30 and β b4 as a reliable sensor of receptor- β Barr1 interaction, and subsequent trafficking of β Barr1 in
153 cellular context for native V2R.

154 We next tested the ability of β b30 sensor to report the recruitment and trafficking of β Barr1 for a
155 broad set of native class B GPCRs including the complement C5a receptor (C5aR1), the atypical
156 chemokine receptor 2 (ACKR2), the muscarinic M2 receptor (M2R), the vasopressin receptor sub-type 1b
157 (V1bR), the angiotensin II type 1s receptor (AT1aR) and the bradykinin B2 receptor (B2R) (Figure 3B and
158 Figure S11). These receptors not only couple to different sub-types of G-proteins but also harbor a
159 diverse range of phosphorylation-codes in their carboxyl-terminus and the 3rd intracellular loops (Figure
160 3A). We observed that β b30 sensor worked efficiently for a number of these receptors including C5aR1,

161 ACKR2, V1BR and M2R (Figure 3B and 3D). Interestingly however, it failed to recognize β arr1 upon
162 stimulation of several others such as the AT1aR and B2R (Figure 3C) although these receptors exhibited
163 significant level of β arr1 recruitment.

164 We also tested the ability of Ib30 sensor to report the recruitment and trafficking of β arr1 for a
165 broad set of native class A GPCRs including the muscarinic M5 receptor (M5R), the muscarinic M3
166 receptor (M3R), the β 2-adrenergic receptor (β 2AR), the dopamine D2 receptor (D2R) and the α 2-
167 adrenergic receptor (α 2BR) (Figure 4A-B and Figure S12). These receptors also couple to different sub-
168 types of G-proteins and harbor a diverse range of phosphorylation-codes in their carboxyl-terminus and
169 the 3rd intracellular loops (Figure 4A). Similar to class B GPCRs mentioned above, we observed that Ib30
170 sensor robustly recognizes β arr1 for the muscarinic M5 receptor (M5R) and the muscarinic M3 receptor
171 (M3R) but not for others. Taken together, the Ib30 reactivity pattern suggests that the conformation of
172 β arr1 in complex with various receptors can be significantly different from each other despite
173 comparable patterns of overall gross β arr1 recruitment. We note here that M3R and M5R did not induce
174 any significant endosomal localization of β arr1 even after prolonged agonist-stimulation as expected for
175 class A GPCRs.

176 An interesting observation here is the ability of Ib30 sensor to robustly recognize β arr1 upon
177 stimulation of muscarinic receptors namely M2R, M3R and M5R. This is striking because these
178 receptors, unlike V2R, possess relatively large 3rd intracellular loop and very short carboxyl-terminus
179 (Figure 4C). More importantly, they harbor the full phospho-codes exclusively in their 3rd intracellular
180 loops. The reactivity pattern of Ib30 suggests that these receptors, despite having phosphates in distinct
181 receptor domains, are able to induce a conformation in β arr1 that allows recognition by Ib30. As
182 mentioned earlier, the crystal structure of V2Rpp- β arr1 complex reveals the docking of V2Rpp on the N-
183 domain of β arr1. Thus, it is tempting to speculate that these receptors may also be able to engage an

184 identical, or at least similar, interface on β arr1 through their 3rd intracellular loops harboring the
185 phosphorylation sites. In order to test this hypothesis and further corroborate our findings, we
186 measured the interaction of M2R with β arr1 in presence and absence of V2Rpp. As presented in Figure
187 4C, pre-incubation of V2Rpp with β arr1 robustly inhibits the interaction between M2R and β arr1, and
188 therefore, suggest that M2R engages β arr1 through the N-domain interface similar to that engaged by
189 V2Rpp. This is particularly intriguing as the first step in GPCR- β arr interaction is typically considered to
190 involve the phosphorylated carboxyl-terminus followed by the core interaction involving the
191 intracellular loops of the receptors. Considering the short carboxyl-terminus of muscarinic receptors
192 typically devoid of any phosphorylation codes, coupled with much larger, phosphorylation code
193 containing 3rd intracellular loop (ICL3), it is tempting to speculate a distinct mode of receptor- β arr
194 interaction compared to other GPCRs. In fact, a recent study on M1R using optical reporters suggests
195 two distinct conformations of receptor-bound β arrs, which are also distinct from biphasic interaction
196 observed for other prototypical GPCRs (18). Furthermore, it also raises the possibility that other
197 receptors harboring short C-terminus but long ICL3 such as the dopamine D2 receptor and α -adrenergic
198 receptors, may also display distinct binding conformations compared to other prototypical GPCRs.

199 The findings described up to this point have two important implications. First, they establish the
200 utility of the intrabody sensors described here as a robust tool to visualize agonist-induced β arr1
201 recruitment and trafficking for a number of GPCRs. Second, they imply that different receptors induce
202 distinct conformations in β arr1 even if they exhibit a similar pattern of gross-recruitment (e.g. V2R vs.
203 B2R) and harbor a similar phospho-code signature in their carboxyl-terminus and 3rd intracellular loops
204 (Figure S16). This prompted us to ask if these distinct conformations of β arr1 for different receptors
205 might have different functional consequences. In order to probe this possibility, we measured agonist-
206 induced ERK1/2 MAP kinase activation for selected receptors and the role of β arr1 in this process (Figure
207 5A-B and Figure S17-18). As discussed earlier, one of the key contributions of β arrs in GPCR signaling is

208 their ability to mediate agonist-induced phosphorylation and activation of ERK1/2 MAP kinases (7). We
209 observed that knockdown of β arr1 yielded a significant reduction in ERK1/2 phosphorylation for V2R
210 while it augmented the levels of ERK1/2 phosphorylation activated by GPCRs that did not recruit the
211 arrestin intrabodies such as B2R and AT1aR (Figure 5A-B and Figure S17-18). These striking differences in
212 the functional contribution of β arr1 in agonist-induced ERK1/2 activation suggests a potential link
213 between the receptor-bound β arr1 conformation and different functional outcomes, and also provide a
214 potential structural mechanism for how receptor-specific β arr conformations encode functional
215 differences. An important implication of this data is that β arr1 conformation upon stimulation of B2R is
216 competent to drive endocytosis but suppressive towards ERK1/2 phosphorylation.

217 As mentioned above, both V2R and B2R belong to class B GPCRs, in terms of β arr recruitment
218 patterns, and they each harbor two full phosphorylation codes in their carboxyl-terminus. This suggests
219 that distinct patterns of Ib30 reactivity and ERK1/2 phosphorylation arise elsewhere. A close comparison
220 of the carboxyl-terminus of these two receptors revealed a difference in the spatial distribution of the
221 phosphorylation sites (Figure 5C). This prompted us to generate a set of B2R mutants to resemble the
222 pattern of phosphorylation in V2R (Figure S19A). These mutants exhibited comparable surface
223 expression levels similar to wild-type B2R (Figure S19B). Out of these mutants, we did not observe any
224 detectable reactivity of Ib30 for $B2R^{\Delta G368}$ and $B2R^{L374S}$ although they robustly recruited β arr1 (Figure
225 S20A-B). Interestingly however, we found robust reactivity of Ib30 in case of $B2R^{\Delta G368+L374T}$ and $B2R^{L374T}$
226 (Figure 5C, Figure S19B). These findings reveal that spatial signature of receptor phosphorylation sites
227 play a detrimental role in ensuing β arr1 conformation recognizable by Ib30. Even more strikingly, we
228 discover that β arr1 plays a positive role in phosphorylation of ERK1/2 for the $B2R^{\Delta G368+L374T}$ and $B2R^{L374T}$ as
229 the lack of β arr1 results in a substantial reduction (Figure 5D and Figure S19C-D). The pattern of ERK1/2
230 phosphorylation for $B2R^{\Delta G368+L374T}$ and $B2R^{L374T}$ is similar to that of V2R, and it is in stark contrast with the
231 wild-type B2R, thereby linking the β arr1 conformation, as read by Ib30, with subsequent functional

232 outcome. These striking observations indicate that β arr1 adopts a conformation upon stimulation of
233 B2R ^{Δ G368+L374T} and B2R^{L374} that is capable of supporting both, endocytosis and ERK1/2 phosphorylation,
234 unlike the wild-type B2R.

235 In order to gain structural insights into the recognition of B2R mutants by intrabody30 sensor,
236 we employed molecular dynamics simulation approach using the previously determined crystal
237 structure of β arr1 in presence of V₂Rpp. We carried out MD simulations with V2Rpp, B2Rpp and the
238 mutant version of B2Rpp (derived from B2R^{L374T}) (Figure S21A). We observed that in the B2Rpp mutant
239 as well as V2Rpp, L360pT together with pT359 interacts with K294 in the lariat loop via strong
240 electrostatic interactions (Figure S21B, blue bar plots). Such bifurcated contacts seem to stabilize the
241 lariat loop preferential in conformational states belonging to cluster 1 (Figure S21C, blue lines in
242 structure and blue bar plots). Cluster 1 overall resembles the conformation of the crystallized lariat loop
243 in complex with Fab30 (pdb 4JQI) with an average rmsd of 1.9 Å. Such bifurcated linkage of the lariat
244 loop to the phosphorylated receptor C-tail is lost in the B2Rpp WT as the non-polar L360 cannot
245 establish an interaction with K294 (Figure S21B, red bar plot). As a consequence, the loop conformation
246 is shifted downwards favoring cluster 2 (Figure S21C), red lines in structure and red bar plot). This yields
247 a dramatic increase of average rmsd to 4.6 Å with respect to the crystallized lariat loop. It is likely that
248 such conformational change of the lariat loop in the Fab30 binding interface contributes to a decreased
249 Fab30 binding. Overall, MD data together with site directed mutagenesis suggest that the lariat loop in
250 β arr1 may provide an important site for driving conformational differences in different GPCR- β arr1
251 complexes, at least as measured by intrabody30 reactivity.

252 Taken together, we develop intrabody-based sensors, which allow direct visualization of agonist-
253 induced recruitment of β arr1 to a broad set of GPCRs and report β arr1 trafficking with spatio-temporal
254 resolution. Interestingly, these Intrabody sensors reveal significant conformational diversity in GPCR-

255 β arr1 complexes, which manifest in distinct contribution of β arr1 in agonist-induced ERK1/2 activation.
256 Although interaction of β arrs is highly conserved across GPCRs, there are many instances of distinct
257 functional contribution of β arrs in trafficking and signaling of different GPCRs despite having an overall
258 similar recruitment and trafficking pattern (19). These examples suggest that all GPCR- β arr complexes
259 formed in cells may not have identical functional abilities and recent studies have in fact started to
260 provide evidence towards this notion (20, 21). Intrabody sensors developed here now offer direct
261 evidence for distinct conformational signatures in β arr1, and therefore, offer important insights into the
262 process of GPCR activation, trafficking and signaling. Our data with B2R mutants also underscore that
263 β arr conformations supporting receptor endocytosis vs. ERK1/2 phosphorylation are likely to be distinct
264 from each other. This has direct implications for the conceptual framework of biased-agonism at GPCRs
265 aimed at designing novel therapeutic strategies.

266 **Acknowledgment:**

267 We thank the members of our laboratories for critical reading of the manuscript. The research program
268 in our laboratory is supported by the DBT Wellcome Trust India Alliance (Intermediate Fellowship to
269 A.K.S.—IA/I/14/1/501285), Department of Biotechnology, Government of India (Innovative Young
270 Biotechnologist Award to A.K.S.—BT/08/IYBA/2014-3), LADY TATA Memorial Trust Young Researcher
271 Award to A.K.S., Science and Engineering Research Board (SERB) (SB/SO/BB-121/2013), Council of
272 Scientific and Industrial Research (CSIR) (37[1637]14/EMR-II). A.K.S. is an EMBO Young Investigator. AH
273 is supported by the Genesis Research Trust (P73441) and the Biotechnology and Biological Sciences
274 Research Council (BB/N016947/1, BB/S001565/1).

275 **Author's contribution:**

276 MB and PK carried out most of the experiments related to intrabody generation, characterization,
277 confocal microscopy, co-immunoprecipitation and ERK1/2 phosphorylation; EG performed the ERK1/2
278 phosphorylation for V2R and contributed in generation of receptor mutants; SP carried out the ERK1/2

279 phosphorylation experiment together with PK; BS performed the BRET experiments under the
280 supervision of MB; SS carried out the 3-colour confocal and endosomal co-localization experiments
281 under the supervision of AH; SS measured the colocalization of V2R, Barr1 and Ib30 under the
282 supervision of AH; BS carried out the BRET experiments under the supervision of MB; AKS supervised the
283 overall project execution and management.

284 **Materials and methods**

285 **Cell Culture and Transfection**

286 HEK293 cells (ATCC) were maintained in DMEM containing 10% FBS and penicillin/streptomycin (100
287 U/mL) at 37°C in 5%CO₂. Transient transfections of DNA were performed with Lipofectamine 2000 (Life
288 Technologies) and cells were assayed 48 hr post transfection. The DNAs used were: FLAG-V2R, HA-ScFv
289 control, HA-ScFv30, β-arrestin1-GFP. The antibodies used were: mouse anti-FLAG (M1, Sigma); rabbit
290 anti-HA (cell signaling); goat anti-rabbit Alexa-Fluor647 and goat anti-mouse Alexa-Fluor555 (Thermo
291 Fisher).

292 **Co-immunoprecipitation assay:** In order to screen for Fabs that selectively recognized active
293 conformation of Barr1, FLAG-tagged Receptor (3.5μg) along with Barr1 (3.5μg) in ratio 1:1 was
294 overexpressed in HEK-293 cells using PEI based transient transfection. 48h post-transfection, cells were
295 serum starved for at least 4 hrs, lysed by douncing and incubated with either Fab4,7,9 or 12 for 1h at
296 room temperature to allow a stable Receptor-Barr1-Fab complex. Subsequently, 20 μl of pre-
297 equilibrated Protein L (Capto L, GE Healthcare) beads (20mM HEPES, 150mM NaCl) was added to the
298 mixture and allowed to incubate for additional 1h. Beads were washed thrice with wash buffer
299 containing 20mM HEPES, 150mM NaCl supplemented with 0.01% MNG and eluted with 2X SDS loading
300 buffer. Eluted samples were run on 12% SDS-polyacrylamide gel electrophoresis and probed for receptor

301 using HRP-coupled anti-FLAG M2 antibody (Sigma, 1:2000). Fabs were visualized on gel using Coomassie
302 staining.

303 In order to assess the ability of intrabodies (Ib30 and Ib4) with only activated form of β arr1,
304 HEK-293 cells overexpressing FLAG-tagged Receptor (2.3 μ g), β arr1 (2.3 μ g) and HA-tagged Ibs (2.3 μ g)
305 were stimulated with agonist at saturated concentration 48h post-transfection. Cells were lysed in NP-
306 40 lysis buffer (Tris 50 mM; NaCl 150mM; PhosStop 1X; Protease inhibitor 1X; NP-40 1%) followed by
307 incubation with 20 μ l of pre-equilibrated HA beads (Sigma, A-2095) for 2h at 4°C. Beads were washed
308 thrice with wash buffer containing 20mM HEPES, 150mM NaCl maintaining cold conditions. For elution
309 2X SDS loading buffer was used. FLAG-tagged receptor was probed using HRP-coupled anti-FLAG M2
310 antibody (1:2000) while HA-tagged Ibs were detected using HA-probe antibody (sc-805, 1:5000). Ib-CTL
311 which does not recognize β -arr1 was used as a negative control in these experiments. In order to further
312 confirm that the Ib30 recognizes a functional Receptor- β arr1 complex, we overexpressed FLAG-tagged
313 β 2V2R, β arr1 and HA-tagged Ib30 in HEK-293 cells. 48h post-transfection cells were stimulated with
314 agonists of varying efficacies (Inverse agonist: ICI and carazolol; partial agonists: salmeterol, salbutamol,
315 clenbuterol and norepinephrine; full agonists: Isoproterenol) and co-immunoprecipitated using HA-
316 beads agarose by the same method described above.

317 To determine the conformation of β arr1 bound to C5aR1-WT receptor versus C5aR1-V2
318 chimera, surface expression of the two receptors were first optimized by Surface ELISA and
319 subsequently transfection was carried in a way that would yield almost equal surface expression for the
320 two receptors. Accordingly, HEK-293 cells were transfected with β arr1 (3.5 μ g) along with FLAG-tagged
321 C5aR1-WT (3.5 μ g) or FLAG-tagged C5aR1-V2 (2.5 μ g). 48 hrs post-transfection cells were starved for 4h
322 and stimulated with agonist (C5a, 100 nM). Cells were lysed by douncing and then further incubated
323 with 5 μ g of Fab30 for 1h at room temperature to enable Receptor- β arr1-Fab30 complex formation.

324 Subsequently, 20 μ l of pre-equilibrated Protein L (Capto L, GE Healthcare) beads (20mM HEPES, 150mM
325 NaCl) was added to the mixture and allowed to incubate for additional 1h. Beads were washed thrice
326 with wash buffer containing 20mM HEPES, 150mM NaCl supplemented with 0.01% MNG and eluted
327 with 2X SDS loading buffer. Eluted samples were run on 12% SDS-polyacrylamide gel electrophoresis and
328 probed for receptor using HRP-coupled anti-FLAG M2 antibody (Sigma, 1:2000). Fabs were visualized on
329 gel using Coomassie staining. A separate gel containing 20 μ l of the whole cell lysate was run on 12% gel
330 and probed with anti-FLAG M2 antibody to compare expression of both WT and chimeric receptors.

331 In order to determine the interacting interface of the third intracellular loop (ICL3) in M2R with β arr1,
332 purified β arr1 were pre-incubated with a 10-fold molar excess of V2Rpp or alone for 30 mins at room
333 temperature. HEK-293 cell lysate overexpressing the M2R and stimulated with its agonist carbachol
334 (20 μ M) at 0, 5 and 15 min time points were subsequently added to the β arr1 alone or β arr1 activated
335 and saturated with V2Rpp. The reaction was allowed to proceed for 1hr at room temperature. Fab30
336 (2.5 μ g/reaction) was also kept in the reaction for stabilizing the M2R- β arr1 complex. Reactions with no
337 Fab30 were kept as a negative control. Following an incubation of 1 hr, pre-equilibrated M1-Flag
338 agarose beads (20 μ L) were added to the reaction mixture supplemented with 2mM CaCl₂ and incubated
339 for an additional 1h at room temperature. Beads were extensively washed twice with low salt wash
340 buffer (20mM HEPES pH 7.4, 150mM NaCl, 2mM CaCl₂, 0.01% MNG) first followed by washes in high salt
341 buffer (20mM HEPES pH 7.4, 150mM NaCl, 2mM CaCl₂, 0.01% MNG) with additional washes (twice) in
342 low salt buffer again. Bound proteins were eluted using elution buffer containing FLAG peptide (20mM
343 HEPES pH 7.4, 150mM NaCl, 2mM EDTA, 250 μ g/ml FLAG peptide, 0.01% MNG,) and separated by
344 running on 12 % SDS-PAGE and visualized by Western Blotting (β arr antibody, 1:5000; anti-FLAG M2
345 antibody, 1:5000) (Figure 4C).

346

347 **Confocal microscopy.** In order to visualize the role of Ib30/Ib4 as a biosensor of GPCR activation co-
348 localization of Ibs with activated β arr1 was monitored using confocal microscopy. HEK-293 cells co-
349 transfected with Receptor (2.3 μ g), β arr1-m-cherry (2.3 μ g) and Ib-YFP (2.3 μ g) each. After 24 h, cells were
350 seeded on to cell culture treated confocal dishes (GenetiX; 100350) already coated with 0.01% poly-D-
351 lysine (Sigma). 48h post-transfection cells were serum starved for at least 6h prior to stimulation with
352 indicated agonists at saturating concentrations. For confocal live imaging we used Zeiss LSM 710 NLO
353 confocal microscope and samples were housed on a motorized XY stage with a CO₂ enclosure and a
354 temperature controlled platform equipped with 32x array GaAsP descanned detector (Zeiss). YFP was
355 excited with a diode laser at 488 nm laser line while m-cherry was excited at 561 nm. Laser intensity and
356 pinhole settings were kept in the same range for parallel set of experiments and spectral overlap for any
357 two channels was avoided by adjusting proper filter excitation regions and bandwidths. Images were
358 scanned using the line scan mode and images were finally processed in ZEN lite (ZEN-blue/ZEN-black)
359 software suite from ZEISS. Line-scan analysis was performed using ImageJ plot profile plug-in to measure
360 fluorescence intensities across a drawn line. Graphs were plotted after intensities were normalized by
361 subtracting background.

362 **ERK1/2 MAP kinase phosphorylation assay.** For assessing the role of β arr1-mediated ERK2 activation on
363 V2R, AT1AR, B₂R, B₂R^{ΔG/L370T} and B₂R^{L370T}, HEK-293 cells with selective knockdown of β arr1, attained by
364 sh-RNA mediated transfections were used. shRNA mediated knockdown reduced the amount of β arr1
365 by ~50%. Stable selection was maintained by inclusion of G418 (1.5 μ g/ml) in the growth medium. About
366 3 million cells were seeded on a 10 cm cell-culture dish a day prior to transfection to achieve ~ 60%
367 confluency. For transfections, 0.5 μ g, 1 μ g and 2 μ g of V2R, B2R and AT1AR were used respectively. After
368 24 hrs, 1 million cells were split on to a 6 well plate. 48h post-transfection cells were serum starved for
369 at least 5 hrs in serum-free medium supplemented with 10mM HEPES (pH 7.4) and 0.1% Bovine serum

370 albumin. Cells were stimulated with an increasing dose of agonist (-log9, -log8 and -log7) and were lysed
371 using 2X SDS loading buffer, boiled at 95°C for 15 mins.

372 In order to examine the effect of Ib30 on β arr1 mediated ERK activation, HEK-293 cells were co-
373 transfected with human Vasopressin receptor (V2R; 3.5 μ g) and either Ib30 or Ib-CTL (3.5 μ g) using PEI
374 based transient transfection. After 24h, one million cells were plated on a six-well plate. 48h post-
375 transfection cells were serum starved for at least 4h and stimulated with agonist (AVP, 100 nM).
376 Following stimulation cells were lysed using 2X SDS loading buffer, boiled at 95°C for 15 mins and loaded
377 onto 12% SDS-polyacrylamide gel electrophoresis. All experiments were carried out on HEK-293 cells
378 with low passage and maintained in Dulbecco's modified Eagle's complete media (Sigma) supplemented
379 with 10% fetal bovine serum (Thermo Scientific) and 1% penicillin-streptomycin at 37°C under 5% CO₂.

380 For detecting phosphorylation of ERK1/2 in both HEK-293 cells and knockdown cells Western
381 blotting analysis of the whole-cell lysate was performed and transferred to polyvinylidene difluoride
382 membranes (PVDF; BioRad). The membrane was blocked with 5% BSA (SRL) for 1h and then probed with
383 anti-pERK primary antibody (CST, catalog number. 9101; 1:5,000 dilution) overnight at 4°C followed by
384 1h incubation with anti-rabbit IgG secondary antibody (Genscript, catalog number. A00098) at room
385 temperature. The membrane was then washed with 1 \times TBST thrice and developed using Chemi Doc
386 (BioRad). The anti-pERK antibody was stripped-off using 1X stripping buffer and then reprobed with anti-
387 tERK antibody (CST, catalog number. 9102 and 4695; 1:5,000 dilution).

388 **Three-channel confocal Imaging Imaging**

389 Receptor imaging of live or fixed cells was monitored by “feeding” cells with Alexa-Fluor555-conjugated
390 FLAG antibody (15 min, 37°C) in phenol-red-free DMEM prior to agonist treatment. Fixed cells were
391 washed three times in PBS/0.04% EDTA to remove FLAG antibody bound to the remaining surface
392 receptors, fixed using 4% PFA (20 min at RT), permeabilized and stained using HA primary antibody

393 followed by Alexa-Fluor647 secondary antibody. For co-localization of FLAG-V2R with endosomal
394 markers, cells were treated as above except incubated with either of the following primary antibodies
395 post-permeabilization; EEA1 (rabbit anti-EEA1 antibody from Cell Signaling Technology) or APPL1 (rabbit
396 anti-APPL1 antibody from Cell Signaling Technology). Cells were imaged using a TCS-SP5 confocal
397 microscope (Leica) with a 63x 1.4 numerical aperture (NA) objective and solid-state lasers of 488 nm,
398 561 nm, and/or 642 nm as light sources. Leica LAS AF image acquisition software was utilized. All
399 subsequent raw-image tiff files were analyzed using ImageJ or LAS AF Lite (Leica).

400 **GloSensor Assay.** To assess the role of Ib30 on G protein signalling and desensitization GloSensor assay
401 was performed with only vasopressin receptor system. HEK-293 cells were triple transfected with
402 human Vasopressin receptor (V2R receptor; 2.3 μ g), the luciferase-based cAMP biosensor (2.3 μ g;
403 pGloSensorTM-22F plasmid; Promega) and Ib30/Ib-CTL (2.3 μ g) using PEI based transient transfections.
404 14–16 h post-transfection, media was aspirated and cells were flushed and pooled together in assay
405 buffer containing 1X Hanks balanced salt solution, pH 7.4 and 20 mM of 4-(2-hydroxyethyl)-1-
406 piperazineethanesulfonic acid [HEPES]. Density of the cells was determined by counting on
407 haemocytometer and subsequently the volume of cells that should yield 125,000 cells per 100 μ l in a 96
408 well plate was calculated. Cells were pelleted at 2000 rpm for 3 mins to remove the assay buffer and the
409 pellet was resuspended in the desired volume of sodium luciferin solution prepared in the same assay
410 buffer. After seeding the cells in a 96 well plate it was allowed to incubate at 37°C for 90 min followed
411 by an additional incubation of 30 mins at room temperature. For stimulation various doses of ligand
412 (AVP) were prepared by serial dilution ranging from 0.1 pM to 1 μ M and added to the cells with help of a
413 multichannel pipette. Luminescence was recorded using a microplate reader (Victor X4; Perkin Elmer).
414 Effect of Ib30 was compared to Ib-CTL and normalized with respect to maximal stimulation by agonist
415 (treated as 100%). Data were plotted and analyzed using nonlinear regression in GraphPad Prism
416 software.

417 **BRET assay**

418 Transient transfections were performed on cells seeded (40,000 cells/100 μ l/well) in white 96-well
419 microplates (Greiner) using 25 kDa linear polyethylenimine (PEI) as transfecting agent, at a ratio of 4:1
420 PEI/DNA. To monitor receptor or β -arrestin trafficking from the cell surface or in the endosomes, we
421 used enhanced bystander BRET (ebBRET) where the BRET acceptor, a *Renilla* green fluorescent protein
422 (rGFP), is fused to either CAAX or FYVE domains from Kras and endofin proteins respectively to target
423 respectively the plasma membrane (rGFP-CAAX) or the early endosomes (rGFP-FYVE); the receptor or β -
424 arrestin are fused to the BRET donor *Renilla* luciferase II (RlucII) (22). To monitor β -arrestin interaction
425 with V2R, we used β -arrestin fused to RlucII and V2R fused to the yellow variant of the *aquaria Victoria*
426 green fluorescent protein, YFP (23). Forty-eight hours later, culture media was removed, cells were
427 washed with DPBS (Dulbecco's Phosphate Buffered Saline) and replaced by HBSS (Hank's Balanced Salt
428 Solution). For time-course experiment, after a 3 minutes pre-incubation with of 2.5 μ M coelenterazine H
429 (BRET1 for V2R β -arrestin interaction) from Goldbio or coelenterazine 400a (BRET2 for CAAX and FYVE
430 assays) from Nanolight Technology, cells were stimulated with vehicle or AVP (100 nM) and BRET was
431 measured every 45 seconds for 20 minutes. For concentration-response curves, cells were stimulated
432 with increasing concentrations of AVP for 10 minutes and 2.5 μ M coelenterazine H (BRET1) or
433 coelenterazine 400a (BRET2) was added 5 minutes before BRET measurement. BRET signals were
434 recorded on a Mithras (Berthold scientific) microplate reader equipped with the following filters:
435 480/20 \AA nm (donor) and 530/20 \AA nm (acceptor) for BRET1 or 400/70 \AA nm (donor) and 515/20 \AA nm
436 (acceptor) for BRET2. The BRET signal was determined as the ratio of the light emitted by the energy
437 acceptor over the light emitted by energy donor. The agonist-promoted BRET signal (Δ BRET) was
438 obtained by subtracting the BRET signal recorded in the presence of vehicle from that obtained
439 following AVP treatment.

440 **Receptor and intrabody expression**

441 To assess the receptor and intrabodies expression levels, we took advantage of the FLAG epitope fused
442 at the N-terminus of the V2R (FLAG-V2R) and a HA epitope tag fused at the C-terminus of the
443 intrabodies. Their relative expression was monitored by ELISA using anti-FLAG-HRP (Sigma) or anti-HA-
444 HRP antibodies (Roche Diagnostics). Cells were fixed with 3% formaldehyde for 10 min and
445 permeabilized with 0.1% triton X-100 to monitor the intrabodies expression. Cells were washed three
446 times in washing buffer (1% BSA in DPBS), followed by a blocking step by incubating the cells for 1 hour
447 in washing buffer. The horse radish peroxidase-conjugated antibody was then added for 1h at room
448 temperature and the HRP activity was measured by adding o-phenylenediamine dihydrochloride
449 (Sigma–Aldrich). The reaction was stopped by adding 0.6 M HCl followed by absorbance measurement
450 at 492nm using a SpectraMax 190 plate reader (Molecular Devices).

451 **Molecular Dynamics simulation**

452 In order to generate the complexes of the B2Rpp WT, the L370pT mutant of B2Rpp and the V2Rpp
453 bound to β arr1, we used the structure of V2Rpp in complex with β arr1 (PDB code: 4JQI). Missing
454 fragments in the β arr1 and V2Rpp structures were modelled using the loop modeler module available in
455 the MOE package (<https://www.chemcomp.com>). B2Rpp and B2Rpp mutant systems were obtained by
456 converting the sequence of the V2Rpp into that of the B2Rpp and the corresponding L370pT mutant.
457 Finally, the co-crystallized FAB30 antibody was removed.

458 The complexes were solvated in TIP3P water, with the ionic strength kept at 0.15 M using NaCl
459 ions. Simulation parameters were obtained from the Charmm36M forcefield1. Systems generated this
460 way were simulated using the ACEMD software package2. To allow rearrangement of waters and
461 sidechains, we carried out a 25ns equilibration phase in NPT conditions with restraints applied to
462 backbone atoms. The timestep was set to 2 fs and the pressure was kept constant, using the Berendsen

463 barostat. After the equilibration, systems were simulated in NVT conditions for 1 μ s in 4 parallel runs
464 employing a 4fs timestep. For all runs temperature was kept at 300 K using the Langevin thermostat and
465 hydrogen bonds were restrained using the RATTLE algorithm. Non-bonded interactions were cut-off at 9
466 Å with a smooth switching function applied at 7.5 Å. Before carrying out the structural analysis,
467 simulation frames were aligned using the backbone atoms of the β arr1. To assess the magnitude of salt
468 bridge formation between phosphorylated threonines (pT) residues and K294, we quantified frames in
469 which the protonated nitrogen of K294 and oxygens of the phosphate group of each respective pT
470 adopted a distance of 3.2 Å or less. Conformational variability of the lariat loop was studied with the
471 clustering tool available in VMD3. As a clustering parameter we used RMSD (cutoff: 2.2) of the backbone
472 atoms of residues 293 to 297 within the lariat loop.

473 **Figure legends.**

474 **Figure 1. Generation and characterization of intrabody sensors for β arr1 recruitment and trafficking.**
475 **A.** Schematic representation of conversion of Fabs into ScFv format for intracellular expression (i.e.
476 intrabodies). **B.** Expression analysis of intrabodies in HEK-293 cells as visualized by Western blotting.
477 Lysate prepared from HEK-293 cells expressing the indicated intrabodies were separated on SDS-PAGE
478 followed by visualization using anti-HA antibody. **C.** Cytoplasmic distribution of selected intrabodies as
479 visualized by confocal microscopy. HEK-293 cells expressing β arr1-mCherry and YFP-tagged intrabodies
480 were subjected to live cell imaging which revealed even distribution of intrabodies in the cytoplasm and
481 nuclear localization. Scale bar is 10 μ m. **D.** Ability of intrabodies to recognize receptor-bound β arr1. HEK-
482 293 cells expressing β 2V2R, β arr1 and intrabodies were stimulated with either an inverse-agonist
483 (carazolol) or agonist (Isoproterenol) followed by co-immunoprecipitation using anti-HA antibody
484 agarose. The proteins were visualized by Western blotting using anti-Flag M2 antibody and anti-HA
485 antibody. The bottom panel shows densitometry-based quantification of the data (average \pm SEM) from

486 three independent experiments. **F.** The ability of Intrabody30 (lb30) to recognize receptor- β Barr1
487 complex mirrors the ligand efficacy. HEK-293 cells expressing β 2V2R, β Barr1 and intrabodies were
488 stimulated with indicated ligands followed by co-IP and Western blotting as mentioned above. **G.**
489 Densitometry-based quantification of the data (average \pm SEM) from three independent experiments. For
490 isoproterenol, which yields maximal signal, only 10% of the total elution is loaded to avoid signal
491 saturation. **H.** Intrabody30 reports agonist-induced β Barr1 trafficking. HEK-293 cells expressing β 2V2R,
492 β Barr1-mCherry and lb30-YFP were stimulated with agonist (isoproterenol) for indicated time-points and
493 the localization of β Barr1 and lb30 were visualized using confocal microscopy. Scale bar is 10 μ m.

494 **Figure 2. Intrabody30 as a generic sensor of β Barr1 recruitment and trafficking for a set of chimeric**
495 **GPCRs.** HEK-293 cells expressing β Barr1 (or β Barr1-mCherry) and lb30 (HA or GFP-tagged) were co-
496 transfected with plasmids encoding N-terminally-FLAG tagged α 2BV2R (**A**), CCR2V2R (**B**), D2V2R (**C**),
497 D5V2R (**D**), M5V2R (**E**) and C5aR1V2R (**F**). Subsequently, cells were stimulated with respective agonists
498 followed by co-immunoprecipitation using anti-HA antibody agarose. The proteins were visualized by
499 Western blotting using anti-Flag M2 antibody and Simply Blue protein staining reagent (CBB) (Left
500 panels). The right panels show the ability of lb30 to report agonist-induced β Barr1 trafficking for the
501 corresponding GPCRs. HEK-293 cells expressing the respective receptor, β Barr1-mCherry and lb30-YFP
502 were stimulated with agonist for indicated time-points and the localization of β Barr1 and lb30 were
503 visualized using confocal microscopy (middle panels). Scale bar is 10 μ m. Right panels show line-scan
504 analysis of images presented in the third sub-panel of confocal micrographs to demonstrate
505 colocalization of β Barr1-mCherry and IB30-YFP. Densitometry-based quantification of colP data presented
506 above (in panels B, F, J, N, R, V A – F) from three independent experiments normalized with respect to
507 maximum signal for each receptor system (treated as 100%), and analyzed using One-way-ANOVA.

508 **Figure 3. Intrabody30 sensor reveals conformational differences in β arr1 recruited to different class B**
509 **GPCRs. A.** G-protein-coupling preference and phospho-codes in a set of class B GPCRs (with respect to
510 β arr recruitment pattern). Complete phospho-codes in these receptors are identified based on a recent
511 study (17). **B.** Ib30-YFP sensor reports the recruitment and trafficking of β arr1 for several class B GPCRs
512 such as V2R, C5aR1, ACKR2 and M2R, it does not recognize β arr1 upon activation of other class B GPCRs
513 such as AT1aR and B2R as presented in panel **C**. For these experiments, HEK-293 cells expressing native
514 GPCRs (as indicated in the respective panels), β arr1-mCherry and Ib30-YFP were stimulated with
515 respective agonists for indicated time-points, and the localization of β arr1 and Ib30 were visualized
516 using confocal microscopy. Scale bar is 10 μ m. **D.** The ability of Ib30 to recognize receptor-bound β arr1 is
517 further confirmed by co-immunoprecipitation experiment. HEK-293 cells expressing either V2R or
518 C5aR1, β arr1 and HA-tagged Ib30 were stimulated with agonist (100nM followed by co-
519 immunoprecipitation using anti-HA antibody agarose. The proteins were visualized by Western blotting
520 using anti-Flag M2 antibody and anti-HA antibody. The bottom panel shows densitometry-based
521 quantification of the data (average \pm SEM) from three independent experiments normalized with respect
522 to maximum reactivity (treated as 100%). Data are analyzed using One-Way-Anova with Bonferroni post-
523 test (*p <0.05; ***p <0.001).

524 **Figure 4. Intrabody30 sensor reveals conformational differences in β arr1 recruited to different class A**
525 **GPCRs. A.** G-protein-coupling preference and phospho-codes in a set of class A GPCRs (with respect to
526 β arr recruitment pattern). Complete phospho-codes in these receptors are identified based on a recent
527 study (17). **B.** Ib30-YFP sensor reports the recruitment and trafficking of β arr1 for M3R and M5R but it
528 does not recognize β arr1 upon activation of other class A GPCRs such as β 2AR and D2R. α 2BR does not
529 exhibit agonist-induced β arr1 recruitment despite having three potential phosphorylation codes in the
530 3rd intracellular loops. For these experiments, HEK-293 cells expressing native GPCRs (as indicated in the
531 respective panels), β arr1-mCherry and Ib30-YFP were stimulated with respective agonists for indicated

532 time-points, and the localization of β arr1 and Ib30 were visualized using confocal microscopy. Scale bar
533 is 10 μ m. **C.** The interaction of M2R with β arr1 is inhibited by V2Rpp suggesting an overlapping docking
534 interface of its ICL3 with that of V2Rpp. The upper panel displays schematic representation of the V2R
535 and M2R to underline the presence of phosphorylation sites (shown in red) in the carboxyl-terminus and
536 ICL3, respectively. HEK-293 cells expressing M2R were stimulated with agonist followed by addition of
537 purified β arr1 (with or without pre-incubation of V2Rpp) and Fab30. Subsequently, the receptor is co-
538 immunoprecipitated using anti-Flag M1 agarose beads and proteins were visualized by Western blotting
539 using anti-Flag M2 antibody and anti- β arr1 antibody. The bottom panel shows densitometry-based
540 quantification of the data (average \pm SEM) from two independent experiments normalized with respect
541 to maximum reactivity (treated as 100%). Data are analyzed using One-Way-Anova with Bonferroni post-
542 test (**p <0.01).

543 **Figure 5. Distinct conformations of receptor-bound β arr1 are linked with different functional**
544 **outcomes.** Different conformations of receptor-bound β arr1 drive their distinct functional contribution
545 in agonist-induced ERK1/2 MAP kinase phosphorylation for V2R and B2R. Agonist-induced
546 phosphorylation of ERK1/2 in HEK-293 cells expressing either V2R (**A**) or B2R (**B**) in presence and
547 absence of β arr1 knock-down are measured using Western blotting. Densitometry-based quantification
548 of data from three independent experiments is presented as bar-graphs in the right panels normalized
549 with respect to maximal signal under control condition (treated as 100%) and analyzed using One-way-
550 ANOVA with Bonferroni post-test (**p <0.01). **C.** Comparison of spatial distribution of phosphorylation
551 sites in V2R and B2R. The double mutant of B2R, referred to as B2R ^{Δ G/L370T}, is generated to mimic the
552 spatial distribution of Ser/Thr in V2R. Confocal microscopy reveals robust recognition of β arr1 upon
553 agonist-stimulation of B2R ^{Δ G/L370T}. HEK-293 cells expressing B2R ^{Δ G/L370T}, β arr1-mCherry and Ib30-YFP were
554 stimulated with agonist (bradykinin, 1 μ M) for indicated time-points and the localization of β arr1 and
555 Ib30 were visualized using confocal microscopy. Scale bar is 10 μ m. **D.** Knock-down of β arr1 robustly

556 inhibits agonist-induced ERK1/2 phosphorylation for B2R^{ΔG/L370T}, similar to V2R and in stark contrast with
557 wild-type B2R. HEK-293 cells expressing B2R^{ΔG/L370T} in presence and absence of βarr1 knock-down were
558 stimulated with indicated doses of bradykinin for 10 min followed by detection of phosphorylated
559 ERK1/2 using Western blotting. Densitometry-based quantification of data from three independent
560 experiments is presented as bar-graphs in the lower panel normalized with respect to maximal signal
561 under control condition (treated as 100%) and analyzed using One-way-ANOVA with Bonferroni post-
562 test (*p <0.05; **p <0.01).

563

564

565

566

567

568

569

570

571

572

573

574

575 **References**

- 576 1. Y. K. Peterson, L. M. Luttrell, The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled
577 Receptor Signaling. *Pharmacol Rev* **69**, 256-297 (2017).
- 578 2. R. Iraennejad *et al.*, Conformational biosensors reveal GPCR signalling from endosomes. *Nature*
579 **495**, 534-538 (2013).
- 580 3. D. S. Kang, X. Tian, J. L. Benovic, Role of beta-arrestins and arrestin domain-containing proteins
581 in G protein-coupled receptor trafficking. *Curr Opin Cell Biol* **27**, 63-71 (2014).
- 582 4. R. Ranjan, H. Dwivedi, M. Baidya, M. Kumar, A. K. Shukla, Novel Structural Insights into GPCR-
583 beta-Arrestin Interaction and Signaling. *Trends Cell Biol* **27**, 851-862 (2017).
- 584 5. S. K. Shenoy, R. J. Lefkowitz, beta-Arrestin-mediated receptor trafficking and signal transduction.
585 *Trends Pharmacol Sci* **32**, 521-533 (2011).
- 586 6. R. H. Oakley, S. A. Laporte, J. A. Holt, M. G. Caron, L. S. Barak, Differential affinities of visual
587 arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major
588 classes of receptors. *J Biol Chem* **275**, 17201-17210 (2000).
- 589 7. S. M. DeWire, S. Ahn, R. J. Lefkowitz, S. K. Shenoy, Beta-arrestins and cell signaling. *Annu Rev
590 Physiol* **69**, 483-510 (2007).
- 591 8. R. S. Haider, A. Godbole, C. Hoffmann, To sense or not to sense-new insights from GPCR-based
592 and arrestin-based biosensors. *Curr Opin Cell Biol* **57**, 16-24 (2018).
- 593 9. D. L. Bassoni, W. J. Raab, P. L. Achacoso, C. Y. Loh, T. S. Wehrman, Measurements of beta-
594 arrestin recruitment to activated seven transmembrane receptors using enzyme
595 complementation. *Methods Mol Biol* **897**, 181-203 (2012).
- 596 10. G. Barnea *et al.*, The genetic design of signaling cascades to record receptor activation. *Proc Natl
597 Acad Sci U S A* **105**, 64-69 (2008).
- 598 11. V. V. Gurevich, E. V. Gurevich, The molecular acrobatics of arrestin activation. *Trends Pharmacol
599 Sci* **25**, 105-111 (2004).
- 600 12. K. Xiao, S. K. Shenoy, K. Nobles, R. J. Lefkowitz, Activation-dependent conformational changes in
601 {beta}-arrestin 2. *J Biol Chem* **279**, 55744-55753 (2004).
- 602 13. K. N. Nobles, Z. Guan, K. Xiao, T. G. Oas, R. J. Lefkowitz, The active conformation of beta-
603 arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational
604 differences in the active states of beta-arrestins1 and -2. *J Biol Chem* **282**, 21370-21381 (2007).
- 605 14. A. K. Shukla *et al.*, Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor
606 phosphopeptide. *Nature* **497**, 137-141 (2013).
- 607 15. E. Ghosh *et al.*, A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis.
608 *Nat Nanotechnol* **12**, 1190-1198 (2017).
- 609 16. A. K. Shukla *et al.*, Visualization of arrestin recruitment by a G-protein-coupled receptor. *Nature*
610 **512**, 218-222 (2014).
- 611 17. X. E. Zhou *et al.*, Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-
612 Coupled Receptors. *Cell* **170**, 457-469 e413 (2017).
- 613 18. S. R. Jung, C. Kushmerick, J. B. Seo, D. S. Koh, B. Hille, Muscarinic receptor regulates extracellular
614 signal regulated kinase by two modes of arrestin binding. *Proc Natl Acad Sci U S A* **114**, E5579-
615 E5588 (2017).
- 616 19. S. Ahn, H. Wei, T. R. Garrison, R. J. Lefkowitz, Reciprocal regulation of angiotensin receptor-
617 activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. *J Biol Chem* **279**, 7807-
618 7811 (2004).
- 619 20. M. H. Lee *et al.*, The conformational signature of beta-arrestin2 predicts its trafficking and
620 signalling functions. *Nature* **531**, 665-668 (2016).

621 21. S. Nuber *et al.*, beta-Arrestin biosensors reveal a rapid, receptor-dependent
622 activation/deactivation cycle. *Nature* **531**, 661-664 (2016).

623 22. Y. Namkung *et al.*, Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells
624 using enhanced bystander BRET. *Nature Communications* **7**, 12178 (2016).

625 23. M. D. Rochdi *et al.*, Functional Characterization of Vasopressin Type 2 Receptor Substitutions
626 (R137H/C/L) Leading to Nephrogenic Diabetes Insipidus and Nephrogenic Syndrome of
627 Inappropriate Antidiuresis: Implications for Treatments. *Molecular Pharmacology* **77**, 836-845
628 (2010).

629

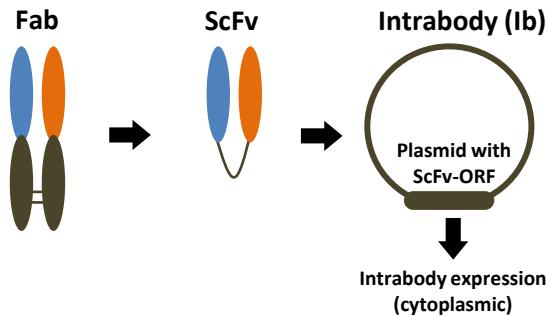
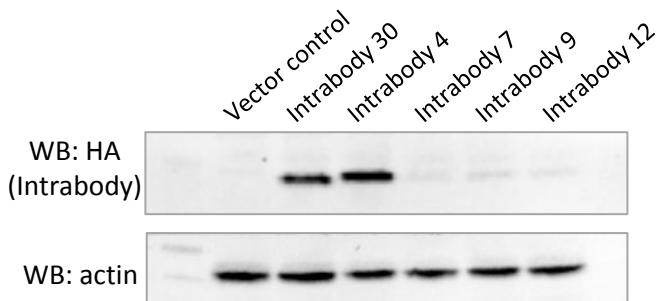
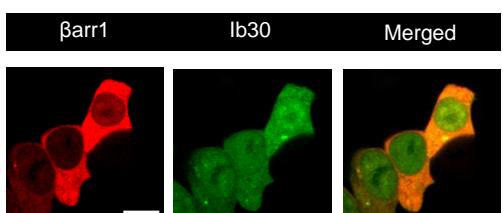
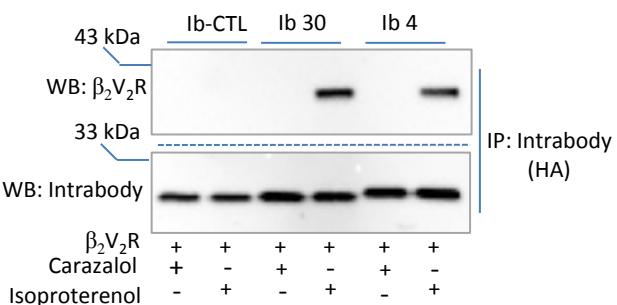
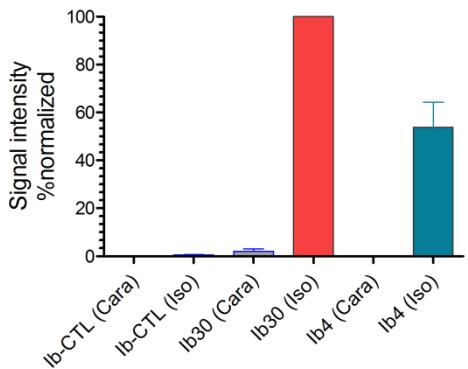
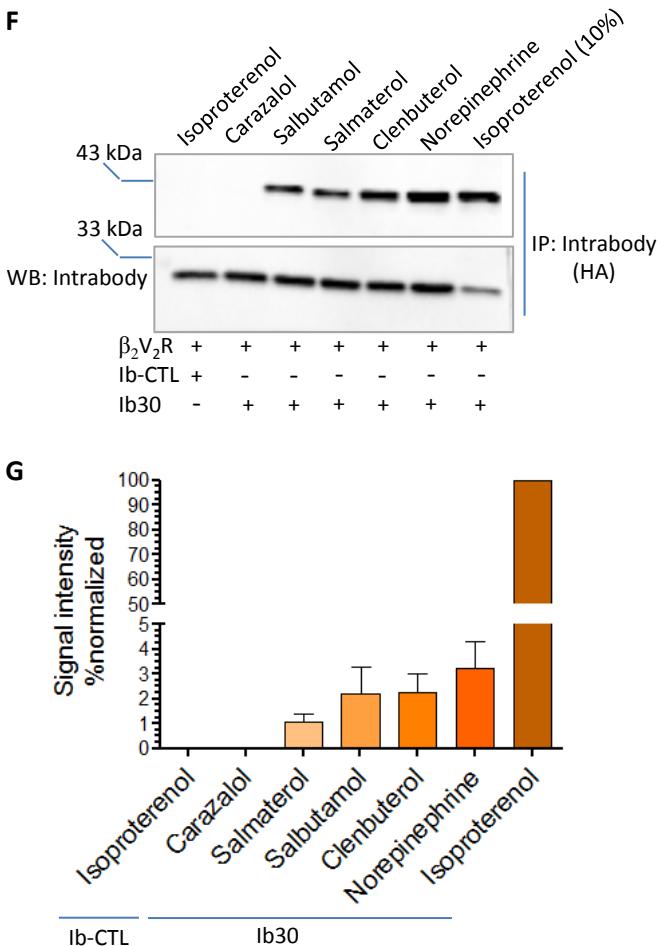
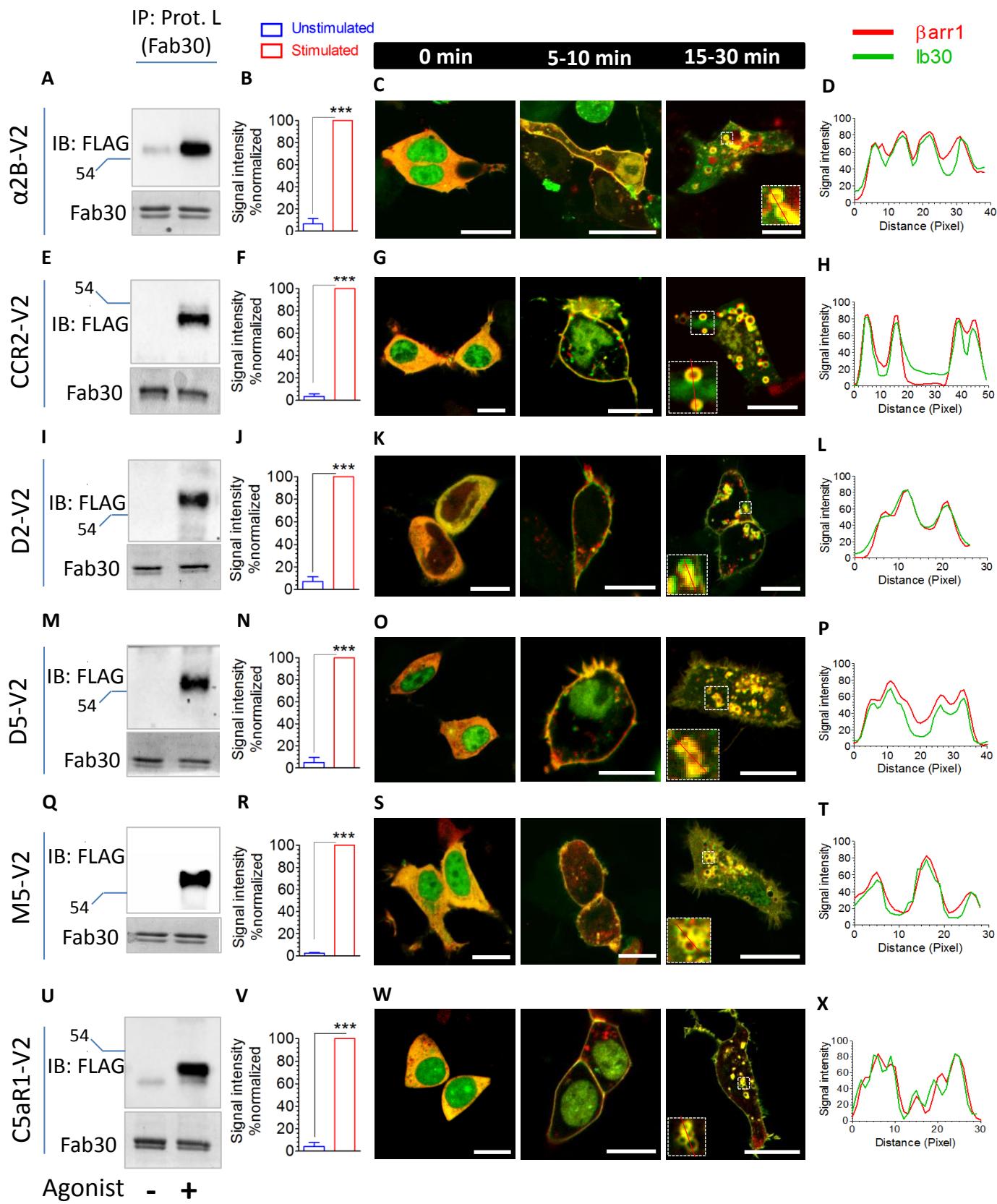
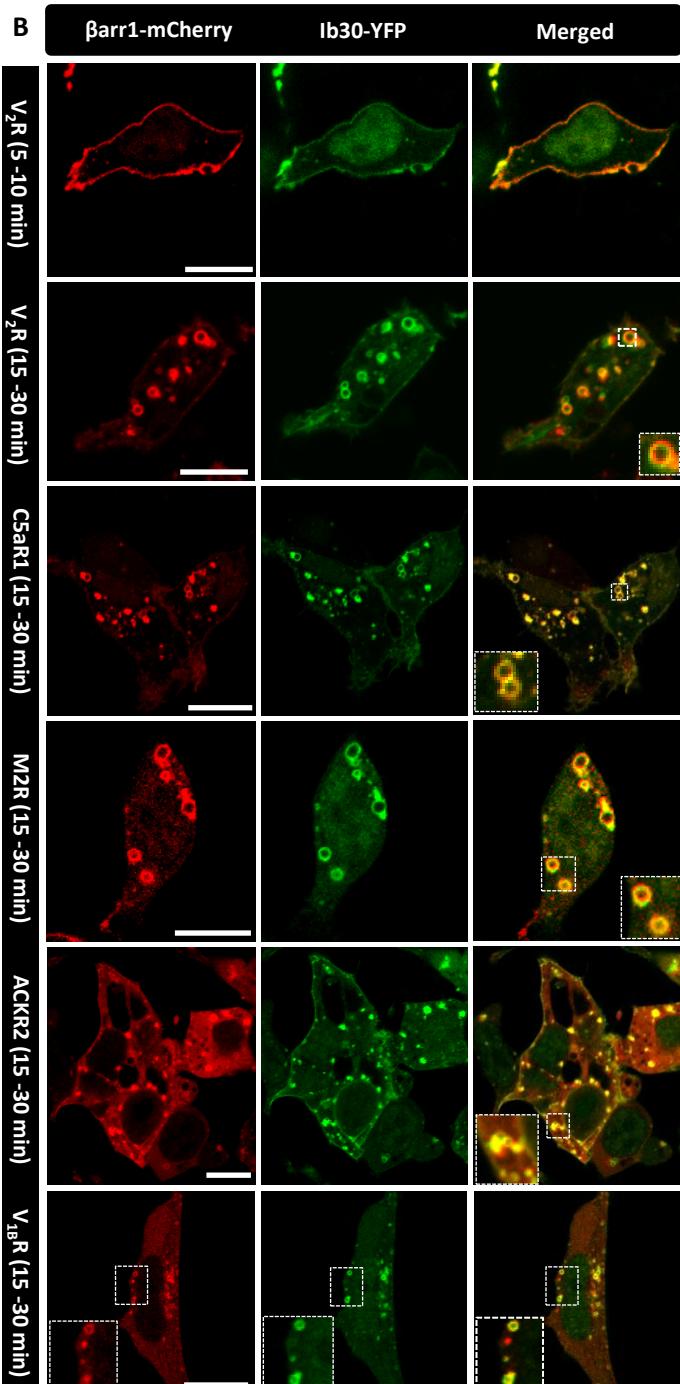
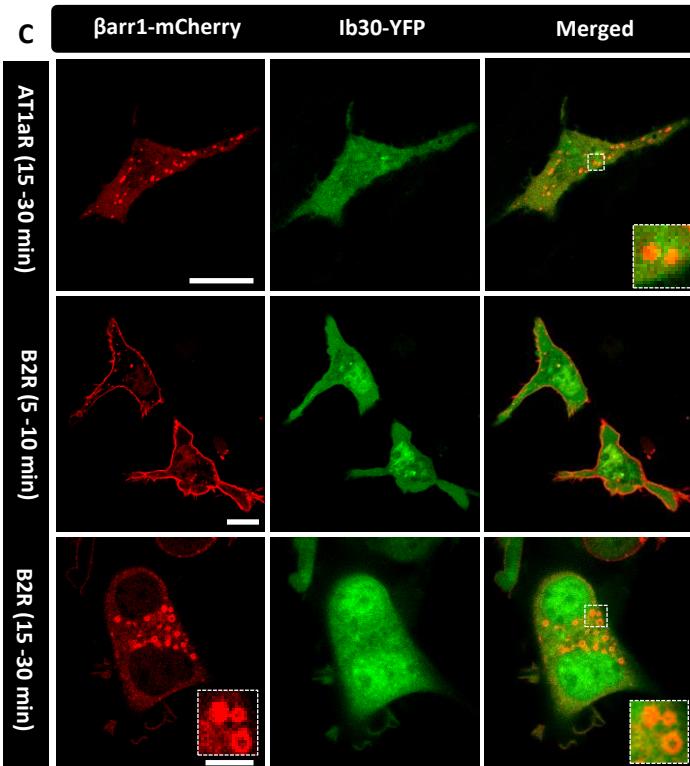
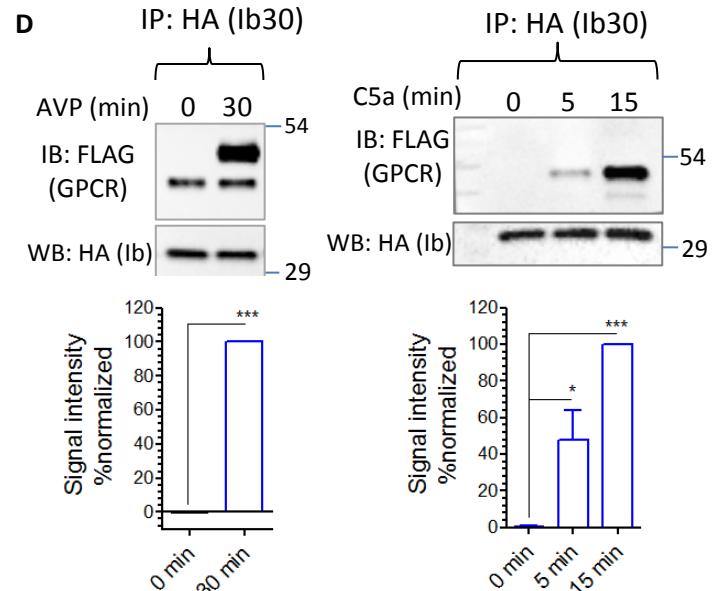
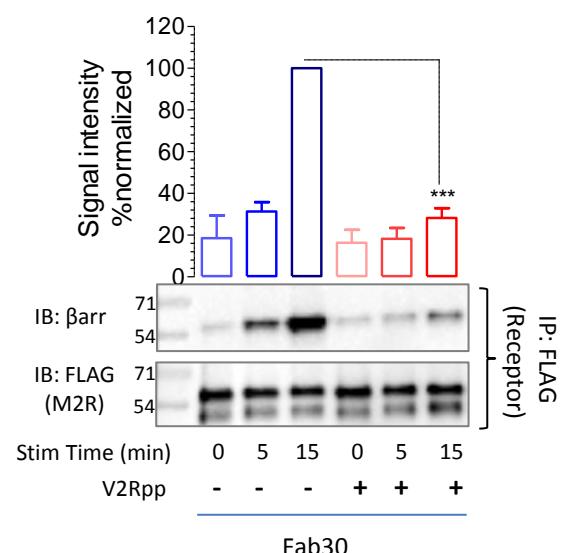
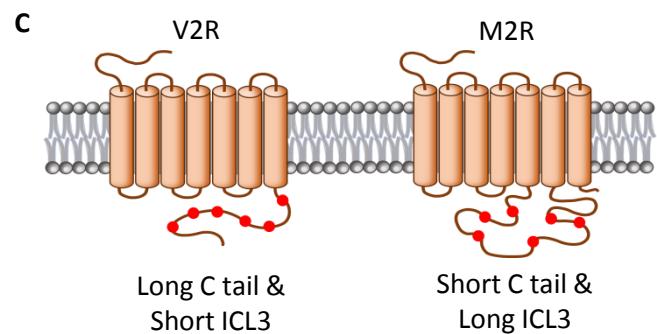
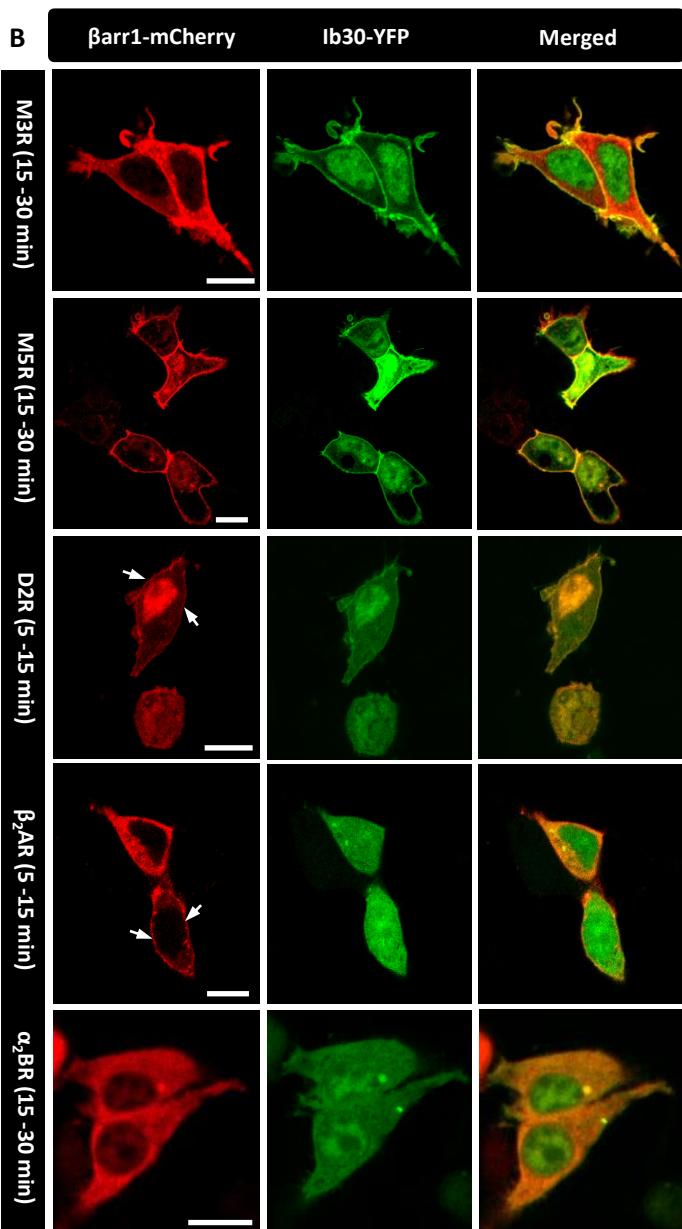
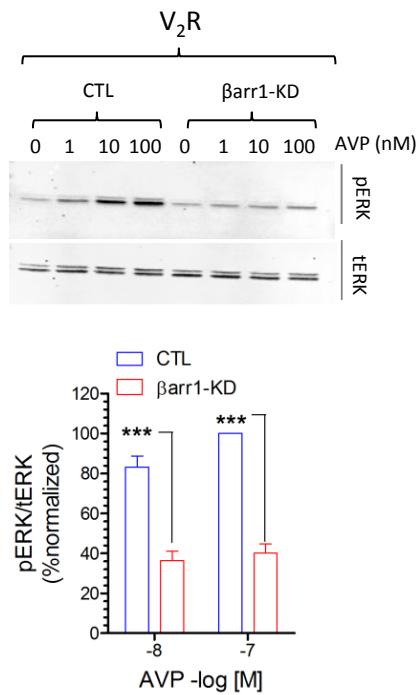
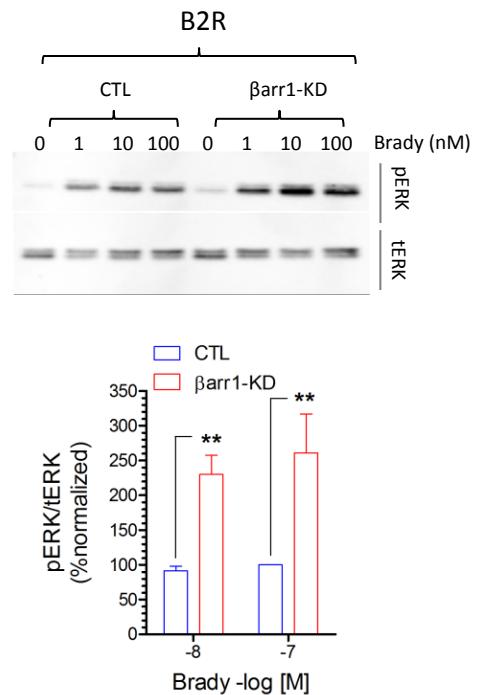
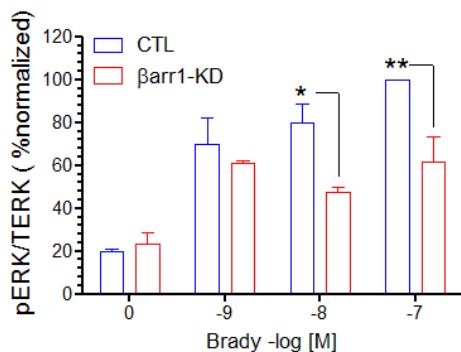
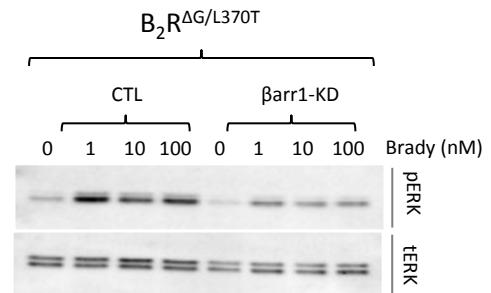










Figure 1.**A****B****C****D****E****F****H**

Figure 2.




Figure 3.**A**





Receptor	Class A/B	G-protein	Phospho-code
V ₂ R	Class B	G α s	[02] [C-term] [³⁵⁷ SCTTAS ³⁶²] [³⁵⁷ SCTTASS ³⁶³]
B ₂ R	Class B	G α q	[02] [C-term] [³²⁵ SMGTLRT ³³¹] [³²⁸ TLRTSIS ³³⁴]
AT _{1a} R	Class B	G α q	[02] [C-term] [³²⁶ SHSNLS ³³¹] [³³² TKMSTLS ³³⁸]
M2R	Class B	G α i	[02] [ICL3] [³³⁸ TPTNTT ³⁴³] [³⁴⁰ TNTTVE ³⁴⁵]
C5aR1	Class B	G α i	[03] [C-term] [³¹⁹ SFTRST ³²⁴] [³²¹ TRSTVD ³²⁶] [³²¹ TRSTVDT ³²⁷]
ACKR2	Class B	None	[06] [C-term] [³⁴³ SLSSCS ³⁴⁸] [³⁴³ SLSSCSE ³⁴⁹] [³⁴⁵ SSCSESS ³⁵²] [³⁴⁶ SCSESS ³⁵¹] [³⁴⁸ SESSILT ³⁵⁴] [³⁵¹ SILTAQE ³⁵⁷]
V _{1b} R	Class B	G α q	[03] [C-term] [³⁶⁸ SDGSLSS ³⁷⁴] [³⁷¹ SLSSRHT ³⁷⁷] [³⁷⁸ TLLTRSS ³⁸⁴]

B**C****D**

Figure 4.

Receptor	Class A/B	G-protein	Phospho-code
β_2 AR	Class A	G α s	None
D $_2$ R	Class A	G α i	[01] [ICL3] [351 TRTSLKT 357]
α 2BR	Class A	G α i	[03] [ICL3] [239 SVASARE 245] [250 SKSTGE 255] [315 SPASACS 321]
M $_3$ R	Class A	G α q	[08] [ICL3] [271 SGTEAE 276] [283 TGSSRS 289] [286 SSRSCSS 292] [287 SRSCSS 292] [289 SCSSYE 294] [349 SASSDE 354] [349 SASSDEE 355] [371 TRSQT 376]
M $_5$ R	Class A	G α q	[03] [ICL3] [235 SVTKAE 240] [272 SSRRS 277] [274 SRRSTST 280]

Figure 5.**A****B****C****D**