

1 Host-microbe interactions in the chemosynthetic *Riftia pachyptila*

2 symbiosis

3
4 Tjorven Hinzke^{1,2,3*}, Manuel Kleiner^{3,4}, Corinna Breusing⁵, Horst Felbeck⁶, Robert Häsler⁷, Stefan M.
5 Sievert⁸, Rabea Schlüter⁹, Philip Rosenstiel⁷, Thorsten B. H. Reusch¹⁰, Thomas Schweder^{1,2}, Stephanie
6 Markert^{1,2*}

7
8 ¹ Institute of Marine Biotechnology e. V., Greifswald, Germany
9 ² Institute of Pharmacy, Department of Pharmaceutical Biotechnology, University of
10 Greifswald, Germany
11 ³ Energy Bioengineering Group, University of Calgary, Canada
12 ⁴ Department of Plant & Microbial Biology, North Carolina State University, Raleigh, USA
13 ⁵ Monterey Bay Aquarium Research Institute, Moss Landing, USA
14 ⁶ Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
15 ⁷ Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
16 ⁸ Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts,
17 USA
18 ⁹ Imaging Center of the Department of Biology, University of Greifswald, Germany
19 ¹⁰ Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel,
20 Germany

21
22 *email addresses:
23 tjorven.hinzke@outlook.com
24 stephanie.markert@uni-greifswald.de

25 **Key words:**

26 Metaproteomics, holobiont, mutualism, mutualistic association, deep sea, hydrothermal vents

27

28 **Abstract**

29 The deep-sea tubeworm *Riftia pachyptila* lacks a digestive system, but completely relies on bacterial
30 endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level,
31 such analyses were unavailable for the animal host, because sequence information was lacking. To
32 identify host-symbiont interaction mechanisms, we therefore sequenced the *Riftia* transcriptome,
33 which enabled comparative metaproteomic analyses of symbiont-containing versus symbiont-free
34 tissues, both under energy-rich and energy-limited conditions. We demonstrate that metabolic
35 interactions include nutrient allocation from symbiont to host by symbiont digestion, and substrate
36 transfer to the symbiont by abundant host proteins. Our analysis further suggests that *Riftia*
37 maintains its symbiont by protecting the bacteria from oxidative damage, while also exerting
38 symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular
39 symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and
40 increased symbiont digestion. Our study provides unprecedented insights into host-microbe
41 interactions that shape this highly efficient symbiosis.

42

43 **Introduction**

44 All animals are associated with microorganisms (Bang et al., 2018; Bosch and McFall-Ngai, 2011),
45 and consequently, animal-microbe interactions shape life on our planet. While research has
46 concentrated for decades on pathogenic associations, beneficial, i.e. mutualistic symbioses are
47 increasingly moving into the center of attention (McFall-Ngai et al., 2013).

48 Mutualistic relationships are often based on nutritional benefits for both partners: Symbionts supply
49 their host with nutrients otherwise lacking in the hosts' diet, while the host in turn provides the
50 symbionts with metabolites, shelter and optimal growth conditions (Moya et al., 2008). To establish
51 and stably maintain their alliance, the partners have to interact on the molecular level. The hosts'
52 immune system needs to control the symbiont population without erasing it altogether (Feldhaar
53 and Gross, 2009), for example by restricting the symbionts to certain organs and/or by down-
54 regulating its own immune response (reviewed in Nyholm and Graf, 2012). Symbionts, on the other
55 hand, often employ strategies resembling those of pathogens to colonize and persist in their host. For
56 example, similar protein secretion systems are employed by both, symbionts and pathogens, for
57 interactions with the host (Dale and Moran, 2006; Hentschel et al., 2000; McFall-Ngai, 2008; Moya et
58 al., 2008).

59 In many animals, host-microbe interactions are difficult to assess, due to the high number of
60 potentially involved microbes and the presence of long- and short-term associations, which are hard
61 to distinguish (McFall-Ngai, 2008). Therefore, low-complexity models are important to identify and
62 characterize interaction mechanisms (Webster, 2014). Symbioses of marine invertebrates and their
63 chemoautotrophic symbionts have emerged as suitable study systems. In these symbioses, animal
64 hosts such as gutless annelids and bivalves are often tightly associated with one or few symbiont
65 types, which enable the eukaryotes to prevail in otherwise hostile environments (Dubilier et al.,
66 2008). One of the most conspicuous representatives of these associations, and the first animal in

67 which chemoautotrophic symbionts were discovered, is the giant tube worm *Riftia pachyptila* (short
68 *Riftia*) that thrives around deep-sea hydrothermal vents of the East Pacific (Cavanaugh et al., 1981;
69 Felbeck, 1981). The host's absolute dependency on its symbiont makes *Riftia* an ideal system to study
70 beneficial host-microbe interactions in a mutualistic symbiosis.

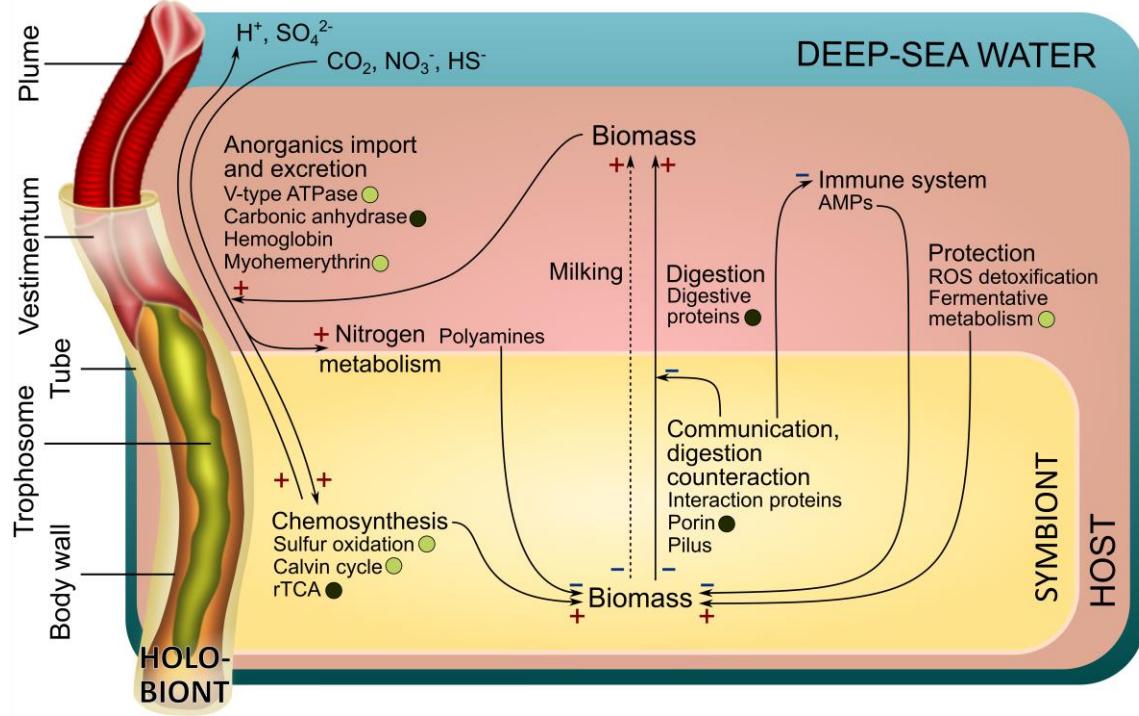
71 The worm completely lacks a digestive system, but instead receives all necessary nutrients from one
72 phylotype of chemosynthetic endosymbionts (Cavanaugh et al., 1981; Distel et al., 1988; Hand, 1987;
73 Robidart et al., 2008). The host in turn provides the endosymbionts with all necessary inorganic
74 compounds for chemosynthesis (Stewart and Cavanaugh, 2005). This association is remarkably
75 productive: *Riftia* grows extraordinarily fast (> 85 cm increase in tube length per year, Lutz et al.,
76 1994) and reaches body lengths of up to 1.5 m (Jones, 1981).

77 The uncultured gammaproteobacterial *Riftia* symbiont, tentatively named *Candidatus Endoriftia*
78 *persephone* (Robidart et al., 2008), densely populates bacteriocytes in the host trophosome, a
79 specialized organ that fills most of the worm's body cavity (Hand, 1987). The bacteria oxidize
80 inorganic reduced compounds such as hydrogen sulfide to generate energy for carbon fixation
81 (Cavanaugh et al., 1981; Fisher et al., 1989; Markert et al., 2011; Petersen et al., 2011; Robidart et al.,
82 2011; Van Dover, 2000). The symbiont can store elemental sulfur, an intermediate of sulfide
83 oxidation, in sulfur globules (Pflugfelder et al., 2005). Trophosome tissue containing high amounts of
84 stored sulfur has a light yellowish color. During sulfide limitation, i.e., when energy availability is
85 restricted, stored sulfur is consumed and the trophosome appears much darker (Pflugfelder et al.,
86 2005; Wilmot Jr. and Vetter, 1990). The energetic status of the symbiosis can thus be directly inferred
87 from the color of the trophosome.

88 *Riftia* has been extensively studied, especially with respect to its anatomy, biochemistry, symbiont
89 transmission, and substrate transfer between host, symbionts and the environment (e.g. Drozdov
90 and Galkin, 2012; Liu et al., 2017; Robidart et al., 2011; Sanchez et al., 2007b; Scott et al., 2012; see

91 Stewart and Cavanaugh, 2005 for a review). The symbiont's metabolism has been studied in detail as
92 well (Stewart and Cavanaugh, 2005), in particular by means of metagenomics and metaproteomics
93 (Gardebrecht et al., 2012; Markert et al., 2007, 2011; Robidart et al., 2008). Yet, little is known about
94 interactions between the two symbiotic partners and, particularly, about the proteins directly
95 involved in these processes.

96 Our study aimed to illuminate the underlying mechanisms of host-symbiont interactions on the
97 protein level. For this purpose, we employed a state-of-the-art global metaproteomics approach,
98 which required comprehensive sequence data for both partners. While the genome of the *Riftia*
99 symbiont was sequenced previously (Gardebrecht et al., 2012; Robidart et al., 2008), up to now no
100 such information was available for the host. Therefore, we sequenced the transcriptome of the *Riftia*
101 host *de novo*. This enabled us to build a comprehensive protein database, which we used to compare
102 protein abundance patterns in symbiont-containing and symbiont-free *Riftia* tissues. By comparing
103 sulfur-rich and sulfur-depleted specimens, we furthermore examined how host-symbiont
104 interactions vary under high- and low energy conditions. Our analysis sheds light on metabolite
105 exchange processes between both partners, on the host's symbiont maintenance strategies and on
106 the symbiont's molecular mechanisms to persist inside the host.


107

108 **Results and Discussion**

109

110 Interaction analysis of a chemosynthetic deep-sea symbiosis

111 We sequenced the *Riftia* host transcriptome *de novo* and combined it with three existing symbiont
112 genomes to create a comprehensive holobiont database for identification of *Riftia* host and symbiont
113 proteins (see Material and Methods). Our metaproteomic analysis included comparisons between
114 symbiont-containing and symbiont-free tissues of specimens with light and dark trophosomes
115 (hereafter referred to as sulfur-rich, S-rich specimens and tissues, and S-depleted specimens and
116 tissues, respectively). A fully replicated dataset and stringent experimental design enabled us to find
117 statistically significant differences in individual protein abundance between sample types, as well as
118 abundance differences between functional protein groups. For an overview of all identified proteins,
119 see Supplementary Results and Discussion Part 1 (SOM1). We identified symbiosis-specific proteins
120 and molecular interaction processes, including (i) metabolite exchange between host and symbiont,
121 (ii) host strategies of symbiont maintenance, and (iii) symbiont mechanisms to persist inside the
122 host. Furthermore, we found that (iv) S availability affects symbiotic interactions in *Riftia*. For a
123 graphical representation of the main interactions, see Figure 1. Beyond the results presented here,
124 our data sets also provide a valuable resource for future *Riftia* studies and microbe-eukaryote
125 symbiosis research in general.

126

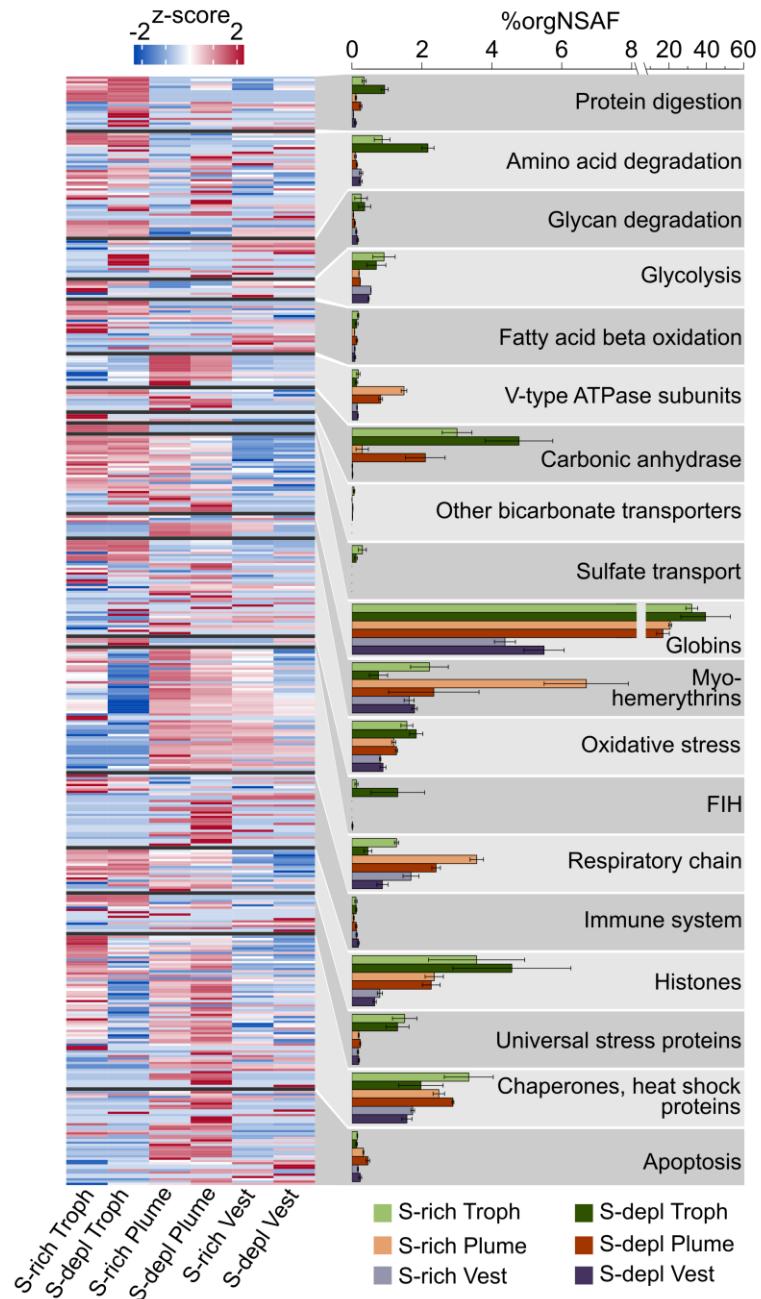
127 Figure 1: Main interactions in the *Riftia* symbiosis. "+" indicates presumably stimulating
128 interactions, "-" indicates presumably inhibiting interactions. Circles, where present, indicate that
129 the respective proteins are more abundant in S-rich (light circles) or S-depleted (dark circles)
130 specimens, respectively. Milking: Transfer of small organic compounds (see SOM3).

131

132 Metabolite exchange between host and symbiont

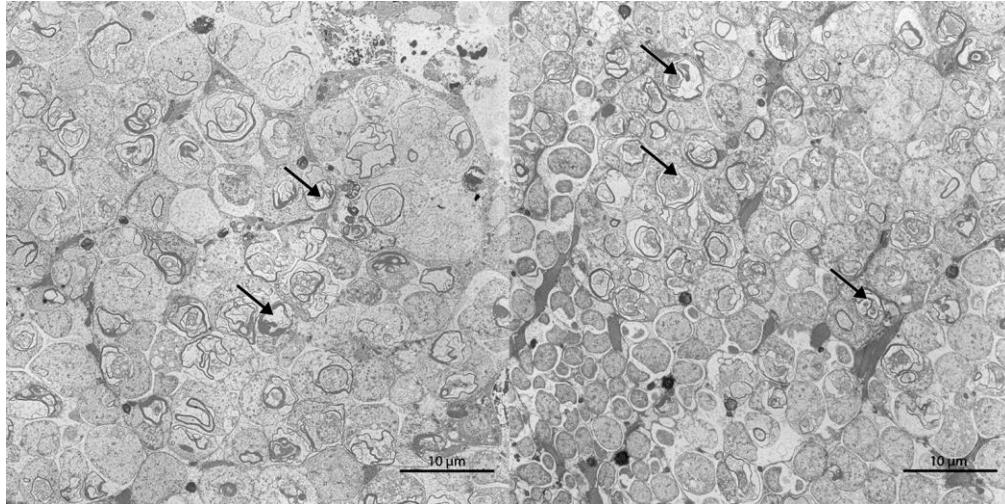
133 *Riftia* digests its symbionts for nutrition

134 Our results suggest that the main mode of nutrient transfer from symbiont to host is the active
135 digestion of symbiont cells, and that this process might involve endosome-like maturation of
136 symbiont-containing vesicles. We detected a total of 113 host enzymes involved in protein-, amino
137 acid- and glycan degradation as well as in glycolysis and fatty acid beta oxidation. 22 of these proteins
138 were significantly more abundant in trophosome samples than in the other tissues (Table 1). Overall,
139 nearly all of the respective protein groups had higher abundances (i.e. summed-up %orgNSAF) in the
140 symbiont-bearing trophosome than in other tissues, both in S-rich and S-depleted specimens (Figure
141 2). Many of the protein degradation-related proteins contain signal peptides and are thus likely either


142 contained in lysosomes or secreted into the symbiont-containing vesicles to digest the symbiont cells
143 (Table 1, Supp. Table S1).

144 Our findings are in accordance with previous biochemical, autoradiographic and microscopic studies,
145 which suggested symbiont digestion in *Riftia* trophosome (Boetius and Felbeck, 1995; Bright et al.,
146 2000; Hand, 1987; Pflugfelder et al., 2009). Moreover, abundant degradative enzymes and symbiont
147 digestion appear to be common in other mutualistic symbioses as well, including deep-sea mussels
148 (Ponnudurai et al., 2017; Streams et al., 1997, Ponnudurai et al., submitted), shallow-water clams
149 (Caro et al., 2009; König et al., 2015) and the gutless oligochaete *Olavius algarvensis* (Wippler et al.,
150 2016; Woyke et al., 2006).

151 Our metaproteome analysis suggests that symbiont digestion in *Riftia* might involve maturation of
152 symbiont-containing host vesicles in a process resembling the maturation of endosomes. Endosomes
153 form after endocytosis of extracellular compounds and mature from early to late endosomes, which
154 ultimately fuse with lysosomes. The endosome-associated proteins Rab5 and Rab7 showed
155 significantly higher abundances in trophosome samples compared to other host tissues. Rab5 and
156 Rab7 localize to early and late endosomes as well as autophagosomes, respectively, and are markers
157 for these recycling-related organelles (Chavrier et al., 1990; Hyttinen et al., 2013; Vieira et al., 2002).
158 The idea of symbiont degradation via an endosome-like maturation process in *Riftia* is additionally
159 supported by the observation of multilamellar bodies in *Riftia* bacteriocytes in our TEM images
160 (Figure 3). These multilamellar bodies can form in endosomes (Marchetti et al., 2004), but were also
161 suggested to be associated with autophagic cell death in *Riftia* trophosome (Pflugfelder 2009).
162 Although autophagy and apoptosis were suggested to be involved in cell death in *Riftia* trophosome
163 (Pflugfelder et al., 2009), our results contradict this hypothesis. We detected only two autophagy-
164 related proteins (Supp. Table S2) and only 12 of 41 detected apoptosis-related *Riftia* proteins were
165 identified in the trophosome, mostly with similar or significantly lower abundances as compared to
166 other tissues. Caspases, the main apoptotic effectors, were not detected at all on the protein level in


167 trophosome samples (see also SOM2). This is in line with previous microscopic results, which did not
168 indicate apoptosis in the trophosome (Bright and Sorgo, 2003). A non-autophagic, non-apoptotic cell
169 death mechanism was recently described in pea aphid bacteriocytes (Simonet et al., 2018). In the
170 aphids, the proposed mechanism involved hypervacuolation of host bacteriocytes, which was,
171 however, not observed in *Riftia* trophosome. Another caspase-independent cell death mechanism,
172 which involves the protease cathepsin B, has been described in cancer cells (Bröker et al., 2004). As
173 cathepsin B was significantly more abundant in trophosome than in other *Riftia* tissues, we speculate
174 that this protease, amongst other degradative enzymes, may be involved in controlled cell death in
175 *Riftia* trophosome.

176 Besides symbiont digestion, a second mode of nutrient transfer, the release of small organic carbon
177 compounds by intact symbionts, was suggested to be present in *Riftia* (Bright et al., 2000; Felbeck
178 and Jarchow, 1998). Our calculated $\delta^{13}\text{C}$ ratios might support this theory (SOM3).

179

180 Figure 2: Functional groups of selected *Riftia* host proteins and their relative abundances in tissue
181 samples. The heatmap shows log-normalized, centered and scaled protein abundances. The bar chart
182 shows summed up abundances (%orgNSAF) of the proteins in the respective category. Error bars
183 indicate standard error of the mean. Note the different scaling in the right part of the x-axis. The
184 "Chaperones, heat shock proteins" category also includes chaperonins and Clp proteases. FIH: factor
185 inhibiting hypoxia-inducible factor 1α. S-depl: S-depleted. To view the list of all identified proteins,
186 including their abundances, see Supp. Table S1. (The table can be filtered for the same main or sub
187 categories as presented in this figure; these categories are labelled with "X" in column "Figure 2").
188 Vest: vestimentum. Troph: trophosome.
189

190

191 Figure 3: Transmission electron micrographs of *Riftia* trophosome tissue sections. Cell degradation
192 is indicated by the presence of lamellar bodies (black arrows). Brightness and contrast of the
193 micrographs were adjusted for visual clarity. Scale bar: 10 μ m

194

195 Table 1: Proteins which are putatively involved in symbiont digestion and which had significantly
196 higher abundances in trophosome samples than in other tissues of S-rich and S-depleted specimens.

Accession	Description	Sig in S-rich Troph	Sig in S-depl Troph	Secreted/ membrane?*
Protein digestion				
Host_DN32373_c0_g1_i1::g.193014	Cathepsin Z	x	x	M
Host_DN34261_c0_g1_i1::g.35886	Cathepsin B	x	x	S
Host_DN38047_c1_g1_i1::g.177385	Cathepsin Z	x	x	M
Host_DN41150_c0_g1_i1::g.101468	Cathepsin L1	x	x	S
Host_DN34118_c0_g1_i3::g.155432	Digestive cysteine proteinase 2	x	x	S
Host_DN39514_c3_g1_i1::g.201492	Legumain	x	x	S
Host_DN34848_c0_g1_i1::g.215091	Dipeptidyl peptidase 1	o	x	S
Amino acid degradation				
Host_DN37934_c0_g3_i4::g.212722	4-hydroxyphenylpyruvate dioxygenase	x	x	S
Host_DN35553_c0_g1_i1::g.72896	Maleylacetoacetate isomerase	x	x	-
Host_DN37934_c0_g3_i6::g.212725	4-hydroxyphenylpyruvate dioxygenase	x	x	-
Host_DN40417_c0_g1_i7::g.93374	D-aspartate oxidase	x	x	possibly M
Host_DN41135_c1_g1_i1::g.101501	Homogentisate 1,2- dioxygenase	x	x	-
Host_DN39303_c6_g1_i3::g.66273	Urocanate hydratase OS=Mus musculus GN=Uroc1 PE=1 SV=2	x	x	-

Accession	Description	Sig in S-rich Troph	Sig in S-depl Troph	Secreted/membrane?*
Host_DN37934_c0_g3_i11::g.212729	4-hydroxyphenylpyruvate dioxygenase	o	x	-
Host_DN39293_c0_g3_i16::g.11113	Histidine ammonia-lyase	o	x	-
Host_DN41135_c1_g1_i2::g.101503	Homogentisate 1,2-dioxygenase	o	x	-
Host_DN40306_c1_g4_i8::g.129962	Aminoacylase-1	o	x	-
Glycan degradation				
Host_DN36692_c1_g2_i4::g.169924	Lysosomal alpha-glucosidase	x	x	M/possibly S
Host_DN36692_c1_g2_i3::g.169923	Glucoamylase 1	o	x	-
Host_DN37016_c0_g1_i1::g.156600	Lysosomal alpha-mannosidase	o	x	S
Fatty acid beta oxidation				
Host_DN34874_c0_g1_i9::g.215370	Propionyl-CoA carboxylase beta chain, mitochondrial	x	o	-
Host_DN41664_c1_g5_i6::g.166806	Peroxisomal bifunctional enzyme	o	x	-

197 Sig: Significance (x: significant, o: non-significant), Troph: Trophosome, S-depl: S-depleted.
 198 *Subcellular localization (M: membrane-associated, S: secreted) was predicted using Phobius,
 199 TMHMM, and SignalP. "Possibly": localization prediction based on one tool only.

200

201 *Riftia* dedicates a substantial part of its proteome to provisioning the symbionts with O₂,
 202 sulfide and CO₂

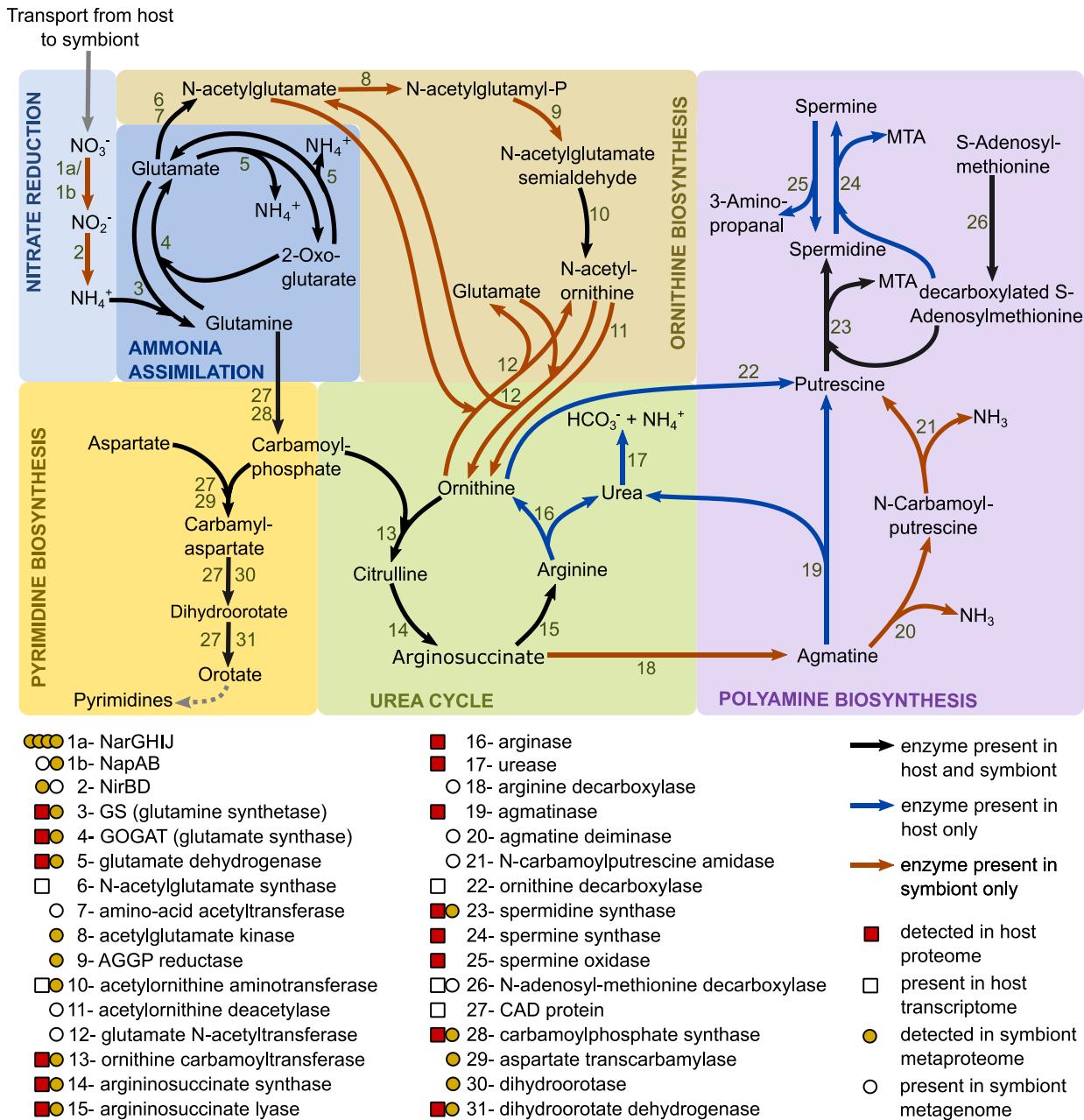
203 We found highly abundant and diverse globins, myohemerythrins, V-type ATPase subunits and
 204 carbonic anhydrases in the host proteome (Figure 2), indicating that *Riftia* dedicates a substantial
 205 part of its proteome to provisioning the symbiont with all necessary substrates for chemosynthesis.

206 Globins made up about one third of all trophosomal host proteins and one fifth of the total plume
 207 proteome (Figure 2), with extracellular hemoglobins being particularly abundant (in sum 32-
 208 40%orgNSAF in trophosome and 17-21% in plume samples). *Riftia* has three distinct extracellular
 209 hemoglobins composed of globin chains and, in the case of the hexagonal bilayer hemoglobin, globin
 210 linker chains (Flores et al., 2005; Zal et al., 1996, 1998). We detected several of these subunits,
 211 including isoforms that are (to our knowledge) hitherto undescribed (Supp. Table S1). *Riftia*'s

212 extracellular hemoglobins have been shown to bind both O₂ and sulfide (Flores et al., 2005, reviewed
213 in Bailly and Vinogradov, 2005; Hourdez and Weber, 2005). Abundant hemoglobins in the highly
214 vascularized plume therefore ensure efficient uptake of these compounds for transport to the
215 symbionts. The symbionts are microaerophilic (Fisher et al., 1989), and simultaneous reversible O₂-
216 and sulfide-binding to abundant hemoglobins in the trophosome therefore not only provides the
217 bacteria with chemosynthetic substrates and prevents spontaneous sulfide oxidation, but also
218 protects the symbionts from oxygen. (See SOM4 for hemoglobins as a means of protecting the host
219 from sulfide toxicity and for other sulfur metabolic pathways in the host.) In addition to extracellular
220 hemoglobins, we identified four low-abundance (0.002-0.084%orgNSAF) globins that are probably
221 intracellular and might store O₂ (SOM5).

222 Besides hemoglobins, myohemerythrins were detected in all tissues, with particularly high
223 abundances of 6.7%orgNSAF in S-rich plumes. With their comparatively high oxygen-binding
224 capacity (Mangum, 1992), hemerythrins could facilitate oxygen uptake from the environment into
225 the plume, and are possibly also involved in O₂ storage and intracellular transport in *Riftia*. Moreover,
226 the abundance distribution of the nine detected myohemerythrins suggests a tissue-specific function
227 (SOM6).

228 V-type ATPase subunits were found with highest total abundances of up to 1.5%orgNSAF in *Riftia*
229 plumes (Figure 2), and almost all of the detected subunits were significantly more abundant or
230 exclusively detected in the plumes. V-type ATPases have a pivotal function in regulating internal pH
231 and CO₂ uptake (De Cian et al., 2003a) and thus in symbiont provisioning. The high energy demand
232 of V-type ATPase-dependent pH regulation could be met via a relatively higher respiration activity in
233 the plume, as indicated by comparatively high total abundances of respiratory chain proteins (Figure
234 2), ATP synthase and mitochondrial ribosomes in this tissue. Additionally, carbonic anhydrase (CA),
235 another important enzyme for CO₂ uptake, was detected in all tissues. While we observed tissue-
236 specific abundance patterns of individual CAs (Supp. Figure S4, SOM7), overall CA abundance was


237 highest in the trophosome (Figure 2). CA facilitates CO₂ diffusion into the plume by converting it to
238 HCO₃⁻ (De Cian et al., 2003a; Goffredi et al., 1999), and likely back-converts the HCO₃⁻ to CO₂ for
239 fixation by the symbionts in the trophosome. Our analysis suggests that three of the *Riftia* CAs could
240 be membrane-bound (SOM7), which might facilitate CO₂ diffusion into the bacteriocytes by
241 converting HCO₃⁻ to CO₂ in the direct cell vicinity (De Cian et al., 2003b; Sanchez et al., 2007a).
242 Transport of HCO₃⁻ to the bacteriocytes could be mediated by bicarbonate exchangers, which we
243 identified in trophosome and plume samples.

244 While carbon for fixation by the *Riftia* symbiont is likely mainly transported in the form of CO₂/HCO₃⁻,
245 the host may additionally pre-fix CO₂ into organic C₄ compounds which are then transported to the
246 symbiont (Felbeck, 1985). We did identify host phosphoenolpyruvate carboxykinase and pyruvate
247 carboxylase, which could be involved in this process (SOM8).

248 *Riftia*'s nitrogen metabolism depends less on the symbiont than previously assumed
249 *Riftia* symbionts supply their host not only with carbon and energy sources, but also with ammonium
250 produced by bacterial nitrate reduction (Figure 4, SOM9). However, with regard to the subsequent
251 metabolism of organic nitrogen, the host might be more self-sufficient than previously thought:
252 Previous biochemical analyses suggested that only the symbiont, but not the host, can *de novo*
253 synthesize pyrimidines (Minic et al., 2001) and produce polyamines (Minic and Hervé, 2003). In
254 contrast to those studies, we found the multifunctional CAD protein (carbamoyl-phosphate
255 synthetase 2, aspartate transcarbamoylase, and dihydroorotate), in the *Riftia* host
256 metatranscriptome, suggesting that the host can catalyze the first steps of pyrimidine synthesis. As
257 we did not detect CAD protein on the protein level, expression levels and associated activities in the
258 host are likely rather low, and most of the pyrimidine demand could be satisfied by digesting
259 symbionts. In addition, we found key genes involved in polyamine synthesis in the hosts'
260 metatranscriptome and partially also detected the respective proteins in the hosts' metaproteome

261 (Figure 4). Our results suggest that while both *Riftia* symbiosis partners can synthesize spermidine,
262 in fact only the host is able to generate spermine. Host spermidine synthase and spermine synthase
263 were exclusively detected in trophosome samples in our study, suggesting that the polyamines
264 produced by these proteins could have a role in symbiont-host interactions. They could, for example,
265 be involved in restricting the symbiont to its cell compartment, i.e. the bacteriocyte vesicle, as
266 suggested for bacterial pathogens (SOM10). In addition, only the host seems to possess a full urea
267 cycle and might degrade not only its own, but also nitrogen-containing metabolites of the symbiont
268 (SOM9). These results show that the symbiont provides the host with necessary metabolic energy
269 and building blocks for biosynthesis, but that the host has also retained key biosynthetic capacities
270 for N-containing organic compounds.

271

272

273 Figure 4: Main nitrogen metabolic pathways in the *Riftia* symbiosis. AGGP reductase: N-acetyl-
 274 gamma-glutamyl-phosphate reductase, CAD protein: multifunctional carbamoyl-phosphate
 275 synthetase 2, aspartate transcarbamoylase, and dihydroorotase protein, MTA: 5'-
 276 methylthioadenosine. Note that the symbiont might also be capable of nitrate respiration (Hentschel
 277 and Felbeck, 1993; Markert et al., 2011), which is not depicted here.

278

279 Host strategies of symbiont maintenance

280 *Riftia* protects its symbiont from oxidative damage and may even generate hypoxic
281 conditions in the trophosome

282 We found several reactive oxygen species (ROS)-scavenging enzymes (superoxide dismutase,
283 peroxiredoxin, glutathione S-transferase), as well as proteins indicative of anaerobic metabolism and
284 universal stress proteins with significantly higher individual abundance and in higher total amounts
285 (summed %orgNSAF) in the trophosome compared to other tissues (Figure 2, SOM11). *Riftia*'s ROS-
286 detoxifying enzymes probably not only protect the host, but also the microaerophilic symbiont
287 against ROS. Upregulation of host proteins involved in ROS detoxification was previously shown in
288 the *Wolbachia* symbiosis (Brennan et al., 2008; Zug and Hammerstein, 2015). Additionally, malate
289 dehydrogenase was highly abundant in trophosomes. This enzyme is regularly observed in different
290 invertebrates under anaerobic conditions (Hourdez and Lallier, 2007) and is involved in maintaining
291 redox balance during anaerobiosis (Fields and Quinn, 1981). The trophosome might thus rely more
292 on fermentative metabolism than on respiration, as also indicated by the overall lower abundance of
293 host respiratory chain proteins in trophosome compared to other tissues of both, S-rich and S-
294 depleted specimens. We also detected hypoxia-inducible factor 1-alpha inhibitors (factor inhibiting
295 HIF1a; FIH) almost exclusively in trophosome samples, which further supports the idea that free
296 oxygen concentrations in the trophosome are low. This is in line with the high oxygen-binding
297 capacity of *Riftia* hemoglobins (Fisher et al., 1989; Hentschel and Felbeck, 1993), and with the
298 suggestion of fermentative metabolism under hypoxic and even oxic conditions in *Riftia*, based on
299 biochemical results (Arndt et al., 1998). Taken together, lower oxygen concentration in the
300 trophosome, (partial) anaerobic host metabolism, and host ROS-detoxifying enzymes in this tissue
301 would not only protect the symbionts from oxidative damage, but would additionally decrease the
302 competition between the *Riftia* host and its symbionts for oxygen.

303

304 The *Riftia* immune system might be involved in symbiont population control

305 We detected several proteins which are potentially involved in a specific immune reaction of *Riftia*

306 against its symbiont in the trophosome. Two bactericidal permeability-increasing proteins (BPIPs)

307 were detected, one exclusively in the trophosome, the other only in the plume. BPIPs act specifically

308 against Gram-negative bacteria, causing initial growth arrest and subsequent killing due to inner

309 membrane damage (Elsbach and Weiss, 1998). In *Riftia*, BPIPs could be involved in keeping the

310 symbiont population under control, e.g. as part of the digestion process or by preventing the

311 symbionts from leaving their intracellular host vesicles. Likewise, in the *Vibrio*-squid symbiosis,

312 BPIPs have been implied in restricting the symbiont population to the light organ (Chen et al., 2017).

313 In addition to BPIPs, a pathogen-related protein (PRP) was present in all replicates of S-rich

314 trophosome, but absent from all other tissues. In plants, pathogen-related proteins accumulate

315 during defense responses against pathogens (reviewed in Van Loon and Van Strien, 1999). Pathogen-

316 related proteins have also been described in nematodes (Asojo et al., 2005) and humans (Eberle et

317 al., 2002), although their function remains elusive.

318 We also found that histones had overall higher abundance in *Riftia* trophosome than in other tissues.

319 Four of these histones were significantly more abundant in trophosomes than in other tissues, and

320 three additional histones were exclusively detected in trophosome samples (Supp. Table S1). Besides

321 being crucial for DNA interactions, histones and histone-derived peptides can have antimicrobial

322 effects (Cho et al., 2009; Park et al., 1998; Rose et al., 1998). A blastp search of the detected *Riftia*

323 histones against the Antimicrobial Peptide (AMP) Database APD3 (Wang et al., 2016) gave hits for

324 four of the *Riftia* histones (Supp. Table S3), stimulating the speculation that these histones may have

325 antimicrobial properties. While AMP-like histone-derived peptides in the plume might be involved

326 in defense against environmental microbes, the high abundance of histones in the trophosome could

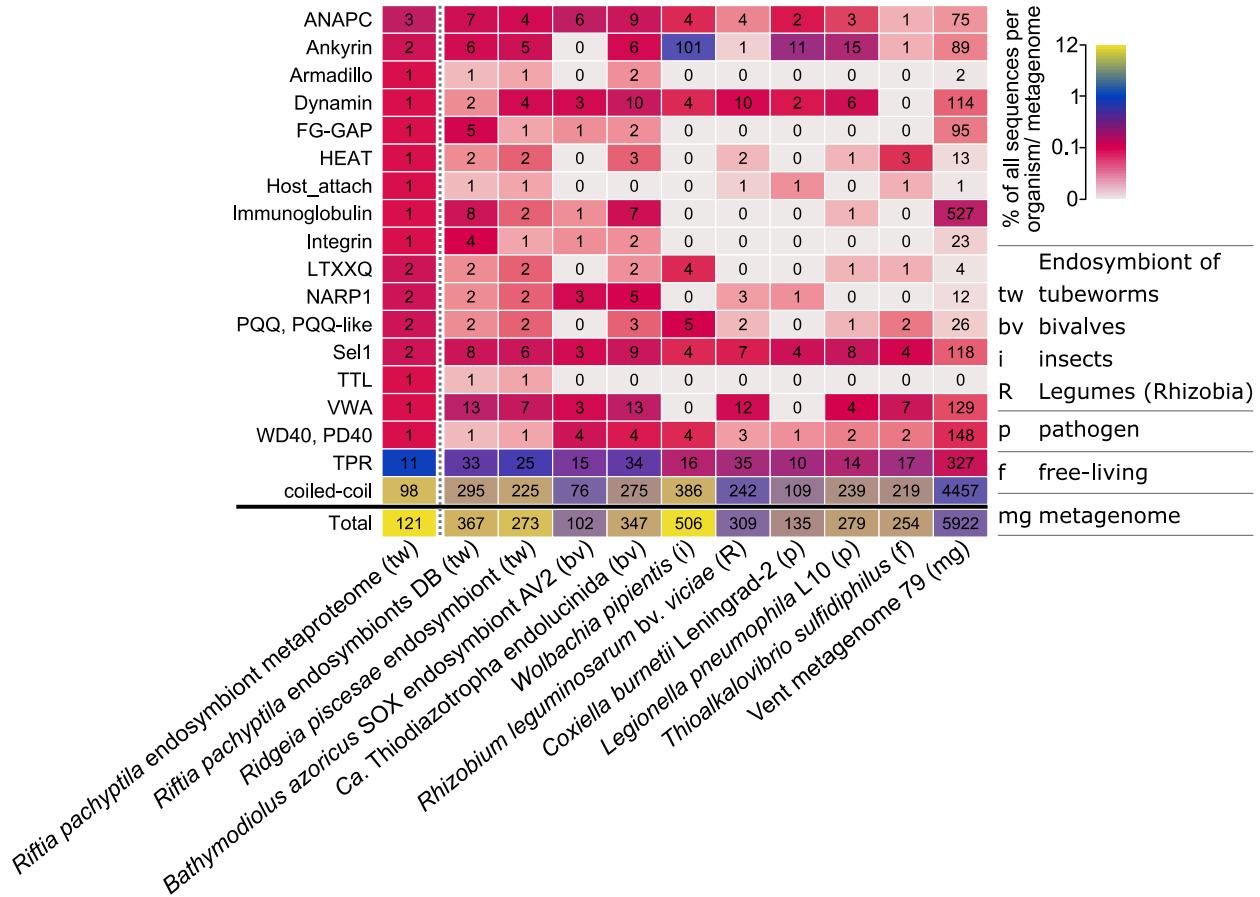
327 point to a function in host-symbiont interaction. Host-derived AMPs could, for example, be involved

328 in controlling the symbiont's cell cycle. In their life cycle, the symbionts apparently differentiate from

329 actively dividing stem cells into growing, but non-dividing larger cells (Bright and Sorgo, 2003). As
330 various AMPs were shown to inhibit cell division or septum formation and to cause filamentous cell
331 morphologies (reviewed in Brogden, 2005), we speculate that *Riftia* AMPs may inhibit cell division
332 as well, e.g. via interaction with symbiont GroEL. Interaction between a host AMP and a symbiont
333 GroEL has been proposed to lead to cell elongation of bacterial weevil symbionts (Login et al., 2011).
334 A role of histones and histone-derived peptides in immune system responses has been described or
335 suggested in various other organisms, including catfish (Park et al., 1998), Komodo dragons (Bishop
336 et al., 2017), toads (Cho et al., 2009) and humans (Rose et al., 1998).

337 Beyond individual immune system proteins, we did not observe a general immune response of *Riftia*
338 against its symbiont (which is not surprising, as the symbionts are contained inside host vesicles).
339 This indicates that the host immune system does not play a major role in controlling symbiont
340 population size. More likely, symbiont population control might to a large part be a result of digestion
341 of symbionts (a “mowing” process), which effectively prevents the symbionts from escaping their
342 compartments and/or overgrowing the host. Nevertheless, the immune system might be involved in
343 phage protection and symbiont recognition during establishment of the symbiosis (SOM12).

344


345 Symbiont persistence mechanisms

346 Eukaryote-like protein structures in the symbiont might be involved in host
347 communication

348 The metagenome of the *Riftia* symbiont *Ca. E. persephone* encodes several protein groups with
349 possible roles in symbiont-host interactions, including eukaryote-like protein (ELP) structures, as
350 revealed by our SMART analysis (Supp. Table S4). We detected more than 100 of these symbiont
351 proteins in the trophosome samples (Figure 5), which points to a symbiosis-relevant function.

352 Among the ELPs detected in the symbiont metaproteome were two ankyrin repeat-containing
353 proteins, which contain a signal peptide and are therefore likely secreted (predicted by Phobius,
354 <http://phobius.sbc.su.se/>). Ankyrin repeats were found to mediate protein-protein interactions (Li
355 et al., 2006). In the sponge *Cymbastela concentrica*, symbiont ankyrins were proposed to interact with
356 the eukaryote's phagocytosis system: The symbiont ankyrins were heterologously expressed in *E.*
357 *coli* and led to inhibition of phagocytosis by amoebae (Nguyen et al., 2014). Likewise, a secreted
358 *Legionella pneumophila* ankyrin protein apparently interferes with host endosome maturation (Pan
359 et al., 2008). The *Ca. E. persephone* ankyrin repeat-containing proteins could therefore directly
360 interact with host proteins as well, e.g. to modulate endosome maturation, and thus to interfere with
361 symbiont digestion by the host. Similarly, proteins with tetratricopeptide repeat (TPR)/Sel1
362 domains, which we also detected in the *Ca. E. persephone* metaproteome, have been shown to impact
363 phagocytosis by amoeba (Reynolds and Thomas, 2016).

364 The *Riftia* symbiont furthermore encodes eukaryote-like proteins of the tubulin-tyrosine ligase
365 family (TTL proteins). These proteins post-translationally modify tubulin and thus interact with the
366 eukaryotic cytoskeleton (Prota et al., 2013). We found one TTL protein in the *Ca. E. persephone*
367 metaproteome. Other protein groups which are involved in protein-protein interactions in
368 eukaryotes, e.g. with cytoskeletal proteins, and which we detected in *Ca. E. persephone*, include
369 armadillo repeat proteins (Coates, 2003) and HEAT repeat-containing proteins (Yoshimura and
370 Hirano, 2016). As several of the protein structures analyzed here are also found in other mutualistic
371 symbionts and pathogens (SOM13, Supp. Table S4), it is conceivable that parallels exist between
372 interaction processes of mutualistic and pathogenic associations, and that the *Riftia* symbiont
373 employs a strategy similar to that of pathogens to communicate with its host on the molecular level.

374

375 Figure 5: Selected domains with eukaryote-like structures and with putative functions in symbiont-
376 host interactions in the *Riftia* symbiont and in selected other organisms and metagenomes. Color
377 scale: percentage of genes/proteins containing the respective domain relative to all gene/protein
378 sequences in this organism or metagenome. Numbers: total number of genes/proteins containing the
379 respective domain. For an overview of all analyzed organisms and domains see Supp. Figure S5. For
380 details on the organisms see Supp. Table S5. For further information about the selected protein
381 groups see Supp. Table S4. 'Riftia pachyptila endosymbiont metaproteome' refers to the *Riftia*
382 symbiont proteins detected in this study.

383

384 Symbiont membrane proteins may export effector proteins into host cells and lead to
385 strain adaptation

386 We detected various outer membrane-related proteins in the *Ca. E. persephone* proteome, including
387 a porin (Sym_EGV52132.1), which was one of the most abundantly expressed symbiont proteins, and
388 12 type IV pilus (T4P) system proteins (PilQ, PilF, PilC, PilBTU, PilM, PilN, PilP, FimV, PilH, PilY1). Five
389 additional T4P structure proteins were encoded in the metagenome (*pilVWXE*, *pilO*). These proteins

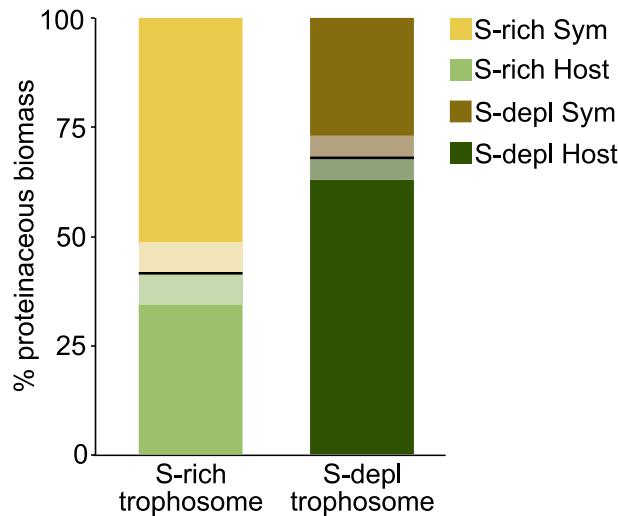
390 are in direct contact with the host cells, and therefore likely involved in interactions between both
391 symbiosis partners, including such processes that facilitate the symbiont's persistence inside the host
392 cells.

393 The abundant symbiont porins could transport effector molecules, e.g. to modulate digestion by the
394 host. A role of porins in effector transport during symbiosis has been hypothesized for the *Vibrio*
395 *fischeri* OmpU, a channel protein that is important for symbiont recognition by the squid host
396 (Nyholm et al., 2009).

397 The T4P system is a complex structure, which, in *Pseudomonas aeruginosa*, comprises more than 40
398 proteins, including structural and regulatory proteins (Leighton et al., 2015). It can have several
399 functions in different species: adhesion, secretion and natural transformation (Davidson et al., 2014;
400 Hager et al., 2006; Leighton et al., 2015; Stone and Kwaik, 1999). As the *Ca. E. persephone* T4P system
401 is likely not involved in adhesion to host cells during symbiosis (although it might be during the initial
402 infection), it could participate in protein secretion and/or natural transformation. The *Riftia*
403 symbiont's T4P system could export putative effector proteins (e.g. ankyrins, SET domain proteins,
404 SOM13, SOM14) for host interactions. Interestingly, in the pathogen *Francisella tularensis* ssp.
405 *novicida*, a T4P structure is involved in secretion of infection-moderating proteins (Hager et al.,
406 2006).

407 Besides their putative function in effector protein export, symbiont membrane proteins may also lead
408 to bacterial strain adaptation. The *Riftia* symbiont population is polyclonal, i.e. consists of several
409 distinct strains (Polzin et al., 2019). T4P system-mediated exchange of genetic material between
410 different symbiont strains would add to this diversity in the symbiosis and might additionally enable
411 exchange of symbiosis-related genes within the free-living *Ca. E. persephone* population. Natural
412 transformation in symbionts has only recently been shown for *V. fischeri* in culture (Pollack-Berti et
413 al., 2010) and the earthworm symbiont *Verminephrobacter eiseniae*, which likely employs a T4P

414 structure for DNA uptake (Davidson et al., 2014). As microbial cell densities are comparatively high
415 in eukaryote-prokaryote mutualisms, natural transformation in these systems might actually be
416 more common than previously recognized. The proposed DNA uptake by the *Riftia* symbiont may not
417 only facilitate exchange between symbiont strains, but may also promote horizontal gene transfer
418 between host and symbiont, e.g. of eukaryote-like proteins. This hypothesis, as well as the
419 speculation that *Ca. E. persephone* might be capable of conjugation (SOM14) certainly warrant
420 further investigations.


421 S availability affects symbiotic interactions in *Riftia*

422 S-depleted *Riftia* hosts digest more symbionts than S-rich specimens
423 We compared the metaproteomes of *Riftia* specimens with and without stored sulfur (i.e., energy-
424 rich vs. energy-depleted specimens) to examine how energy availability impacts symbiotic
425 interactions. Metabolite transfer is apparently especially influenced by the energy regime: The host
426 supposedly relies more on symbiont digestion in times of S shortage. Proteinaceous symbiont
427 biomass was notably lower in S-depleted trophosomes (32%) than in S-rich trophosomes (58%;
428 Figure 6). Simultaneously, overall abundances for several groups of host digestive enzymes were
429 higher in S-starved trophosomes (Figure 2), and a number of individual host proteins were
430 significantly more abundant in these S-depleted samples, such as enzymes involved in protein
431 digestion (including cathepsin B), amino acid degradation, the late-endosome protein Rab7 and
432 histones (Supp. Table S1). One reason for this supposed increase in symbiont digestion in S-depleted
433 trophosomes could be a lower nutritional value of the energy-depleted symbionts. S-depleted
434 symbionts have lower abundances of enzymes involved in sulfur oxidation, probably due to lower S
435 availability. Therefore, less energy might be available for biosynthesis under S depletion, rendering
436 the symbiont less “nutritious” for the host. S-depleted hosts may thus have less energy available,
437 despite increased symbiont digestion. This idea is supported by the observation that host proteins

438 involved in the energy-generating glycolysis, TCA cycle, respiratory chain, ATP synthesis and
439 biosynthetic pathways were less abundant in S-depleted trophosomes than in S-rich trophosomes.
440 Potentially, increased symbiont digestion under S-depleted conditions is necessary for the host to
441 satisfy its basal metabolic demand. Concomitant with the postulated lower nutritional value of S-
442 depleted symbionts, the Calvin cycle key enzyme RubisCO had an about 10-fold lower abundance in
443 S-depleted symbionts. Abundance of the rTCA cycle key enzyme ATP citrate lyase (EGV51152.1), on
444 the other hand, was slightly higher in S-depleted symbionts than in S-rich symbionts, albeit only 1.4-
445 fold. Under S-depleted conditions, symbionts apparently rely relatively more on the rTCA cycle,
446 which is more energy-efficient than the Calvin cycle (Markert et al., 2007). The Calvin cycle could be
447 used in addition to the rTCA cycle under favorable conditions to maximize overall carbon fixation.
448 Moreover, symbiont enzymes involved in translation were overall more abundant in S-rich
449 trophosomes than in S-depleted trophosomes. Less protein biosynthesis in S-depleted symbionts
450 would not only impact the nutritional value of these symbionts, but additionally directly decrease the
451 proteinaceous symbiont biomass. The reason for the lower proteinaceous biomass of symbionts in
452 S-depleted trophosomes is therefore probably two-fold: The host digests more symbionts and the
453 symbionts produce less biomass compared to energy-rich trophosomes.

454 These findings are in contrast to previous results (Scott et al., 2012), which showed no significant
455 differences in autotrophic activity and symbiont abundance between *Riftia* specimens from high- vs.
456 low-sulfide habitats. Possibly, increased symbiont digestion is a short-term adaptation to fluctuating
457 environmental conditions, whereas under long-term low-S conditions the symbiosis might adapt e.g.
458 by reduced growth rates. Decrease in symbiont abundance or total protein under energy-limiting
459 conditions has also been noted in *Bathymodiolus* (Stewart et al., 2005) and *C. orbicularis* bivalves
460 (Caro et al., 2009) as well as in *O. algarvensis* oligochaetes (Wippler et al., 2016). Relying on the
461 symbionts as nutrient source also under unfavorable conditions thus appears to be a common

462 symbiosis mechanism, which would ensure survival of the host and a subset of the symbiont
463 population, ultimately prolonging survival of the individual holobiont.

464
465 Figure 6: % proteinaceous biomass contributions of host and symbiont as calculated from our
466 metaproteomics results (Kleiner et al., 2017). Bold lines indicate the mean, semitransparent areas
467 indicate standard error of the mean. Sym: Symbiont, S-depl: S-depleted

468
469 S availability influences CO₂ uptake, pH regulation and O₂ regime in the *Riftia* host
470 S-depleted hosts seem to invest relatively more biosynthetic capacities in CO₂ uptake and less in pH
471 regulation, and their trophosomes are supposedly less hypoxic than those of S-rich hosts (SOM11,
472 SOM15). At the same time, S availability appeared to have little influence on non-symbiont-related
473 processes in the host, as only very few (i.e. < 10) individual proteins significantly differed in
474 abundance between S-rich and S-dark plume and vestimentum samples. This indicates that the host's
475 metabolism is very well buffered against changes in environmental conditions.

476 Higher digestion pressure might result in symbiont countermeasures
477 In S-depleted *Riftia* specimens, a putative *Ca. E. persephone* dodecin was significantly more abundant
478 than in S-rich specimens. This protein might be involved in protecting the symbiont against oxygen
479 and/or digestion stress (SOM14). A symbiont porin, which was also significantly more abundant in

480 S-depleted specimens, might be involved in counteracting the supposedly higher digestion pressure
481 (see above and SOM14).

482 **Conclusion**

483 To fully understand the biology of organisms, it is crucial to study them together with their symbiotic
484 partners as holobionts (Gilbert et al., 2012). Given its low complexity, high specificity and extreme
485 dependence of the host on the symbiont, the association of *Riftia* and its bacterial partner serves as
486 an excellent system to study mutualistic host-microbe interactions. While *Riftia* lives in a unique and
487 remote environment, many of the interactions we identified, like symbiont digestion by the host, high
488 host investment in substrate transfer to the symbiont, host-directed symbiont population control,
489 and eukaryote-like symbiont proteins that could interact with the hosts' molecular machinery, seem
490 to be critical in other symbiotic associations as well, including insects, mussels and oligochaetes.
491 These interactions might therefore represent common principles among evolutionarily diverse
492 mutualistic animal-microbe associations.

493 Our study provides access to the *Riftia* host transcriptome and protein sequences and thus paves the
494 way for future research on host-microbe interactions in *Riftia* and other systems. Promising research
495 directions include the elucidation of protein functions, e.g. of *Riftia* immune system proteins and
496 symbiont eukaryote-like proteins by heterologous gene expression and biochemical assays in model
497 systems. Moreover, our work stimulates future in-depth studies of the molecular mechanisms
498 involved in recognition of both partners during the initial infection of *Riftia* larvae by free-living
499 symbionts. Putative differences between *Riftia*'s short- and long-term adaptation strategies in
500 response to changing environmental conditions also warrant further investigation.

501

502

503

504 Material and Methods

505 Sampling

506 *Riftia* tissue samples were obtained during several research cruises in 2008, 2014 and 2017 with RV
507 Atlantis to the deep-sea hydrothermal vent fields on the East Pacific Rise at 9°50' N, 104°17' W. *Riftia*
508 specimens were collected by the human occupied vehicle Alvin or the remotely operated vehicle
509 Jason in approximately 2,500 m water depth. Sampling dates for all *Riftia* tissue samples for
510 proteomics, transcriptomics and transmission electron microscopy (TEM) are summarized in Supp.
511 Table S6. Different specimens were used for proteomics, transcriptomics and TEM. *Riftia* specimens
512 were dissected onboard and tissue samples stored at -80 °C. The lamellae of the tentacular crown
513 were shaved off to provide “plume” samples, trophosome samples were dissected from whole
514 trophosome, body wall samples were retrieved and washed after removal of the trophosome, and
515 vestimental samples were cut off from the lateral portions of the vestimentum. Specimens were
516 classified into sulfur-rich (S-rich), S-depleted and medium S according to their trophosome color
517 (yellow/light green, dark green/black, or medium green, respectively).

518 Extraction of whole-tissue RNA

519 RNA was extracted from a total of 22 tissue samples from 9 specimens (6 x trophosome, 6 x body
520 wall, 5 x plume, 5 x vestimentum, see Figure 1). Tissue samples were homogenized by bead-beating
521 with lysing matrix D (MP Biomedicals) in 1 ml TRIzol® (Thermo Fisher Scientific; 3x 6.5m/s for 30
522 s, 3 min cooling on ice in between). After 5 min acclimatization to room temperature, samples were
523 applied onto QIAshredder columns (Qiagen) and centrifuged (16,000 x g, 3 min, 4 °C). Afterwards,
524 RNA was isolated from the aqueous flow-through according to the TRIzol extraction protocol, with
525 the modification that samples were centrifuged for 20 min at 12,000 x g and 4 °C for phase separation.
526 Glycogen was added for RNA precipitation. RNA was washed twice with 75% ethanol and purified
527 using the Norgen RNA Clean-Up and Concentration kit according to the manufacturer’s Protocol A,

528 including DNA removal with DNase (Qiagen). Quality of extracted RNA was assessed using Nanodrop
529 (Thermo Fisher Scientific) and Bioanalyzer (Agilent) analyses.

530 Transcriptome sequencing and assembly

531 *Transcriptome sequencing*

532 Transcriptome sequencing was performed employing the TruSeq stranded mRNA (poly A-based)
533 library protocol (Illumina) on a HiSeq 4000 (Illumina), according to the manufacturer's guidelines.

534 *Transcriptome assembly*

535 High-throughput paired-end Illumina sequencing resulted in an average of about 26 million reads
536 per end per library (min 16,045,121 reads per end, max 31,318,532 reads per end, 95% CI
537 1,673,590). After de-multiplexing and quality-checking of reads in FastQC v0.11.5 (Andrews, 2010),
538 we trimmed low quality bases and adapters with Trimmomatic v0.32 (Bolger et al., 2014) using the
539 settings ILLUMINACLIP:AllAdapters.fa:2:30:10 SLIDINGWINDOW:4:20, and LEADING:5 TRAILING:5
540 HEADCROP:15 MINLEN:75. Although bacterial mRNA does not possess a polyA tail, previous
541 research has shown that bacterial reads can still be present in polyA-enriched RNA-Seq libraries
542 (Egas et al., 2012). To filter out potential symbiont contaminations from our host transcriptomes, we
543 used the Bowtie 2 v2.2.9 aligner (Langmead and Salzberg, 2012) in very-sensitive mode to map the
544 quality-filtered paired-end reads against the published genomes of the endosymbionts of *Riftia*
545 (“Riftia1”, NCBI locus tag prefix RIFP1SYM, and “Riftia2”, locus tag prefix RIFP2SYM) and *Tevnia*
546 *jerichonana* (Gardebrecht et al., 2012). Unmapped paired-end reads were subsequently extracted
547 using SAMtools v1.4.1 (Li et al., 2009). Potential environmental sequence contaminations from
548 sample handling were excluded with DeconSeq v0.4.3 (Schmieder and Edwards, 2011) using
549 coverage and identity thresholds of 0.90 and 0.95, respectively. The decontaminated host reads were
550 normalized and assembled with Trinity v2.3.2 (Grabherr et al., 2011). To optimize the transcriptome
551 assembly we performed four different assemblies with different parameters and input files: 1) only

552 paired reads, 2) paired and unpaired reads, 3) only paired reads plus jaccard-clip option (to reduce
553 chimeras), 4) paired and unpaired reads plus jaccard-clip option.

554 To assess the completeness of the different assemblies we compared our transcriptomes against the
555 BUSCO v2.0 eukaryote and metazoan orthologous datasets (Simão et al., 2015). Overall, the best
556 results in terms of transcriptome completeness and quality were obtained by the assembly approach
557 using paired and unpaired reads plus jaccard-clip option (Supp. Table S7). This dataset was used for
558 all further analyses.

559 *Open reading frame (ORF) prediction*

560 TransDecoder v3.0.1 (Haas et al., 2013) was used to identify coding regions in the assembled
561 transcripts. To improve ORF prediction, we examined all candidate ORFs for homology to known
562 proteins by searching the Swiss-Prot (<http://www.uniprot.org>) and Pfam (Finn et al., 2016)
563 databases (downloaded January 3, 2017) with BLASTP (Altschul et al., 1990, e-value 1e-05) and
564 HMMER3 (Eddy, 2009), respectively. ORFs that were longer than 100 amino acids and/or had a
565 database entry were retained. The FASTA headers of the TransDecoder output files were modified
566 with a custom PERL script to include the BLASTP protein annotations.

567 **Database generation**

568 A common database for protein identification of *Riftia* host and symbiont was generated. To this end,
569 host protein sequences were clustered at 95% identity with CD-HIT v. 4.6 (Huang et al., 2010). For
570 symbiont sequences, the three proteomes of the *Riftia1*, *Riftia2* and *Tenvia* symbiont (Gardebrecht et
571 al., 2012) were used. *Riftia1* was used as basis for clustering the symbiont protein sequences with
572 CD-Hit-2D (Huang et al., 2010). Subsequently, the combined symbiont database was clustered at 95%
573 identity. Identifier prefixes were added to distinguish between host and symbiont sequences for
574 Calis-p (Kleiner et al., 2018, see below). Host and symbiont databases were concatenated and the

575 cRAP database containing common laboratory contaminants (The Global Proteome Machine
576 Organization) was added. The final database contained 71,194 sequences.

577 Proteomics sample preparation and analysis

578 For metaproteomics analysis, we used three biological replicates per tissue (trophosome,
579 vestimentum, plume) and condition (specimens with S-rich and S-depleted trophosomes), which
580 resulted in a total of 18 samples. Tissues were disrupted by bead-beating for 45 s at 6.0 m/s with
581 lysing matrix D tubes (MP Biomedicals) in SDT buffer (4% (w/v) sodium dodecyl sulfate (SDS), 100
582 mM Tris-HCl pH 7.6, 0.1 M dithiothreitol (DTT)), followed by heating to 95 °C for 10 min. Tryptic
583 peptides were generated following the FASP protocol of Wiśniewski et al. (2009) with minor
584 modifications as described by Hamann et al. (Hamann et al., 2016). Peptide concentrations were
585 determined with the Pierce Micro BCA assay (Thermo Scientific Pierce) according to the
586 manufacturer's instructions. The tryptic digest was desalted on-line during LC-MS/MS analysis.

587 All samples were analyzed by 1D-LC-MS/MS as in Hinzke et al. (2019), using 4 h gradients. Samples
588 were analyzed in a randomized block design (Oberg and Vitek, 2009) and run in technical triplicates.
589 Two technical replicate runs were acquired with a 50 cm analytical column, one with a 75 cm
590 analytical column. To standardize the stable isotope fingerprinting (SIF) analysis (Kleiner et al.,
591 2018), human hair was measured in technical duplicate alongside the *Riftia* samples in the replicate
592 run using a 75 cm column.

593 Proteomics data evaluation

594 *Protein identification, quantification and statistical analyses*

595 For protein identification, MS/MS spectra of combined technical triplicate runs were searched
596 against the combined host and symbiont database using the Sequest HT node in Proteome Discoverer
597 version 2.0.0.802 (Thermo Fisher Scientific) as in Kleiner et al. (2018). For protein abundance
598 estimates, normalized spectral abundance factors (NSAFs, Zybailov et al., 2006) were calculated per

599 sample and organism (%orgNSAF, Mueller et al., 2010). Statistical evaluation was performed based
600 on spectral counts using the edgeR package (Robinson et al., 2010) in R (R Core Team, 2017). The
601 edgeR package uses an overdispersed Poisson model for analysis of count data. Overdispersion is
602 moderated across proteins using empirical Bayes methods (Robinson et al., 2010). We employed a
603 false-discovery rate (FDR) of 0.05 to assign statistical significance to protein abundance differences.
604 For graphical representation, heatmaps were generated with the R package ComplexHeatmaps (Gu
605 et al., 2016) and intersection plots with the R package UpsetR (Lex et al., 2014). Protein biomasses of
606 host and symbiont were calculated as in Kleiner et al. (2017).

607 $\delta^{13}\text{C}$ values of *Riftia* symbiont and host were calculated from mass spectrometry data with Calis-p
608 (Kleiner et al., 2018) using one technical replicate LC-MS/MS run (75 cm analytical column). Human
609 hair was used as reference material.

610 *Protein annotations, functional characterization and categorization*
611 Besides the annotations included in the database, proteins were further characterized using the
612 online tools described in Supp. Table S8. Proteins were manually categorized into functional groups
613 based on their annotations and the information in the Uniprot (The UniProt Consortium, 2017), NCBI
614 (<https://www.ncbi.nlm.nih.gov/>) and InterPro (Finn et al., 2017) databases. We used the
615 Transporter Automatic Annotation Pipeline (TransAAP)
616 (http://www.membranetransport.org/transportDB2/TransAAP_login.html) of the TransportDB2
617 (Elbourne et al., 2017) and TCDB (Saier Jr et al., 2016) with gblast 2
618 (<http://www.tcdb.org/labsoftware.php>) to annotate transporters in the *Riftia* symbiont
619 metagenome database. To detect possible antimicrobial peptides (AMPs) among the host proteins,
620 we searched the detected host proteins against the antimicrobial peptide database APD3 (Wang et
621 al., 2016) using BLASTP (Altschul et al., 1990) in BLAST+ 2.7.1 (Camacho et al., 2009). Results were
622 filtered for %identity >75% and e-value < 0.005. We screened the *Riftia* proteome for homologs of

623 known autophagy-related *Drosophila melanogaster* proteins (as listed in Chang and Neufeld, 2010)
624 by Blast-searching (BLASTP, Altschul et al., 1990) in BLAST+ 2.8.1, Camacho et al., 2009) the *Riftia*
625 host proteome against the respective *Drosophila* amino acid sequences (Supp. Table S2).

626 *SMART analysis of eukaryote-like and potential interaction domains*

627 We used the SMART tool (Letunic and Bork, 2018) to screen the *Riftia* symbiont protein database for
628 proteins and domains which could be involved in symbiont-host interactions. Structures which did
629 not meet the threshold required by SMART were excluded, whereas overlapping features were
630 included. We manually filtered the SMART annotations to find putative interaction-relevant
631 structures based on the Pfam and SMART database information. To compare the *Riftia* symbiont with
632 other host-associated (mutualistic or pathogenic) and free-living organisms, we also included
633 domains not present in the *Riftia* annotations, but possibly relevant for host-bacteria interactions in
634 other organisms based on the literature. All annotations we included are given in Supp. Table S4. The
635 organisms and their proteome accession numbers we used for comparison can be found in Supp.
636 Table S5. Proteins with structures that did not pass the threshold criterion in SMART were removed.

637 *Multiple sequence alignments*

638 We used the alignment tool MUSCLE provided by EMBL
639 (<https://www.ebi.ac.uk/Tools/msa/muscle/>) for multiple sequence alignment of protein sequences.
640 Alignments were verified visually.

641 Transmission electron microscopy (TEM)

642 The trophosome sample for TEM was fixed at room temperature for 1 h in fixative containing 4%
643 paraformaldehyde, 1% glutaraldehyde, 10% sucrose in 50 mM HEPES (glutaraldehyde was added
644 directly before use) and stored at 4 °C. The sample was washed three times with washing buffer (100
645 mM cacodylate buffer [pH 7.0], 1 mM CaCl₂, 0.09 M sucrose) for 10 min each step and treated with 1
646 % osmium tetroxide in washing buffer for 1 h at room temperature. After three additional washing

647 steps in washing buffer for 10 min each, the sample was dehydrated in a graded series of ethanol
648 (30%, 50%, 70%, 90%, and 100%) on ice for 30 min each step. Afterwards, the material was
649 subjected to stepwise infiltration with the acrylic resin LR White according to Hammerschmidt et al.
650 (2005). Sections were cut with a diamond knife on an ultramicrotome (Reichert Ultracut, Leica UK
651 Ltd), stained with 4 % aqueous uranyl acetate for 5 min and finally examined with a transmission
652 electron microscope LEO 906 (Carl Zeiss Microscopy GmbH) at an acceleration voltage of 80 kV. The
653 micrographs were edited using Adobe Photoshop CS6.

654 Data availability

655 The mass spectrometry proteomics data and the database have been deposited to the
656 ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the
657 dataset identifier PXD012439. Transcriptomics raw data have been deposited to the NCBI Sequence
658 Read Archive (<https://www.ncbi.nlm.nih.gov/sra>) with the BioProject accession number
659 PRJNA534438 (<https://www.ncbi.nlm.nih.gov/sra/PRJNA534438>). The datasets will be released
660 upon acceptance of the manuscript in a peer-reviewed journal.

661 **Acknowledgements**

662 We thank the captains and crews of RV Atlantis, DSV Alvin, and ROV Jason for their excellent support
663 during the cruises AT15-28, AT26-10, AT26-23, and AT37-12, which were funded through grants of
664 the US National Science Foundation. We are grateful to Ruby Ponnudurai for sampling, to Jana Matulla
665 and Annette Meuche for excellent technical assistance, to Marc Strous for supporting this project by
666 providing access to the proteomics equipment, to Xiaoli Dong for help with database annotations and
667 to Maryam Ataeian, Jackie Zorz and Angela Kouris for help with MS measurements. Sandy Gerschler
668 did preliminary SMART analyses. Målin Tietjen and Lizbeth Sayavedra gave valuable input for RNA
669 sample preparation. This work was supported by the German Research Foundation DFG (grant MA
670 6346/2-1 to S.M., grant BR 5488/1-1 to C.B.), the German Academic Exchange Service DAAD (T.H.), a
671 fellowship of the Institute of Marine Biotechnology Greifswald (T.H.), the Canada Foundation for
672 Innovation, the Government of Alberta and a Natural Sciences and Engineering Research Council of
673 Canada NSERC through a Banting fellowship (M.K.), the US National Science Foundation (grants OCE-
674 0452333, OCE-1136727, OCE-1131095, and OCE-1559198 to S.M.S) , and *The WHOI Investment in*
675 *Science Fund* (S.M.S). P.R. is supported by a grant from DFG CCGA Comprehensive Center for Genome
676 Analysis, Kiel and the DFG CRC1182 “Origin and function of metaorganisms”. R. H. and T.B.H.R. were
677 supported by the Deutsche Forschungsgemeinschaft (DFG) CRC1182 ‘Origin and Function of
678 Metaorganisms’, Subprojects B2, Z3 & INF.

679 **Author contributions**

680 T.H., S.M. and M.K. designed experiments, T.H. prepared and analyzed samples for metaproteomics
681 with input from M.K., compiled metaproteomics database with input from M.K. and S.M., performed
682 statistical analyses, prepared samples for RNA sequencing with input from C.B., prepared figures,
683 wrote manuscript. T.S. was involved in project coordination. T.R., R.H. and P.R. coordinated
684 transcriptome sequencing. H.F. helped with sampling. S.M.S. obtained funding for the research

685 cruises and coordinated sampling as chief scientist. C.B. assembled and annotated transcriptomic
686 data. All authors contributed to the final manuscript.

687

688 **Competing interests**

689 The authors declare no competing financial or non-financial interests.

690 References

691 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment
692 search tool. *J. Mol. Biol.* 215, 403–10. doi:10.1016/S0022-2836(05)80360-2.

693 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available at:
694 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

695 Arndt, C., Schiedek, D., and Felbeck, H. (1998). Metabolic responses of the hydrothermal vent tube
696 worm *Riftia pachyptila* to severe hypoxia. *Mar. Ecol. Prog. Ser.* 174, 151–158.
697 doi:10.3354/meps174151.

698 Asojo, O. A., Goud, G., Dhar, K., Loukas, A., Zhan, B., Deumic, V., et al. (2005). X-ray structure of *Na-*
699 *ASP-2*, a pathogenesis-related-1 protein from the nematode parasite, *Necator americanus*, and
700 a vaccine antigen for human hookworm infection. *J. Mol. Biol.* 346, 801–814.
701 doi:10.1016/j.jmb.2004.12.023.

702 Bailly, X., and Vinogradov, S. (2005). The sulfide binding function of annelid hemoglobins: relic of an
703 old biosystem? *J. Inorg. Biochem.* 99, 142–150. doi:10.1016/j.jinorgbio.2004.10.012.

704 Bang, C., Dagan, T., Deines, P., Dubilier, N., Duschl, W. J., Fraune, S., et al. (2018). Metaorganisms in
705 extreme environments: do microbes play a role in organismal adaptation? *Zoology* 127, 1–19.
706 doi:10.1016/j.zool.2018.02.004.

707 Bishop, B. M., Juba, M. L., Russo, P. S., Devine, M., Barksdale, S. M., Scott, S., et al. (2017). Discovery of
708 novel antimicrobial peptides from *Varanus komodoensis* (Komodo dragon) by large-scale
709 analyses and de-novo-assisted sequencing using electron-transfer dissociation mass
710 spectrometry. *J. Proteome Res.* 1641470–14. doi:10.1021/acs.jproteome.6b00857.

711 Boetius, A., and Felbeck, H. (1995). Digestive enzymes in marine invertebrates from hydrothermal
712 vents and other reducing environments. *Mar. Biol.* 122, 105–113. doi:10.1007/BF00349283.

713 Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
714 sequence data. *Bioinformatics* 30, 2114–2120. doi:10.1093/bioinformatics/btu170.

715 Bosch, T. C. G., and McFall-Ngai, M. J. (2011). Metaorganisms as the new frontier. *Zoology* 114, 185–
716 190. doi:10.1016/j.zool.2011.04.001.

717 Brennan, L. J., Keddie, B. A., Braig, H. R., and Harris, H. L. (2008). The endosymbiont *Wolbachia*
718 *piplentis* induces the expression of host antioxidant proteins in an *Aedes albopictus* cell line.
719 *PLoS One* 3, e2083. doi:10.1371/journal.pone.0002083.

720 Bright, M., Keckeis, H., and Fisher, C. R. (2000). An autoradiographic examination of carbon fixation,
721 transfer and utilization in the *Riftia pachyptila* symbiosis. *Mar. Biol.* 136, 621–632.
722 doi:10.1007/s002270050722.

723 Bright, M., and Sorgo, A. (2003). Ultrastructural reinvestigation of the trophosome in adults of *Riftia*
724 *pachyptila* (Annelida, Siboglinidae). *Invertebr. Biol.* 122, 345–366. doi:10.1111/j.1744-
725 7410.2003.tb00099.x.

726 Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?
727 *Nat. Rev. Microbiol.* 3, 238–250. doi:10.1038/nrmicro1098.

728 Bröker, L. E., Huisman, C., Span, S. W., Rodriguez, A., Kruyt, F. A., and Giaccone, G. (2004). Cathepsin
729 B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-

730 small cell lung cancer cells. *Cancer Res.* 64, 27–30. doi:10.1158/0008-5472.CAN-03-3060.

731 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+:
732 architecture and applications. *BMC Bioinformatics* 10, 421. doi:10.1186/1471-2105-10-421.

733 Caro, A., Got, P., Bouvy, M., Troussellier, M., and Gros, O. (2009). Effects of long-term starvation on a
734 host bivalve (*Codakia orbicularis*, Lucinidae) and its symbiont population. *Appl. Environ.*
735 *Microbiol.* 75, 3304–3313. doi:10.1128/AEM.02659-08.

736 Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B. (1981).
737 Prokaryotic cells in the hydrothermal vent tube worm *Riftia pachyptila* Jones: possible
738 chemoautotrophic symbionts. *Science* 213, 340–342. doi:10.1126/science.213.4505.340.

739 Chang, Y.-Y., and Neufeld, T. P. (2010). Autophagy takes flight in *Drosophila*. *FEBS Lett.* 584, 1342–
740 1349. doi:10.1016/j.febslet.2010.01.006.

741 Chavrier, P., Parton, R., Hauri, H., Simons, K., and Zerial, M. (1990). Localization of low molecular
742 weight GTP binding proteins to exocytic and endocytic compartments. *Cell* 62, 317–329.
743 doi:10.1016/0092-8674(90)90369-P.

744 Chen, F., Krasity, B. C., Peyer, S. M., Koehler, S., Ruby, E. G., Zhang, X., et al. (2017). Bactericidal
745 permeability-increasing proteins shape host-microbe interactions. *MBio* 8, e00040-17.
746 doi:10.1128/mBio.00040-17.

747 Cho, J. H., Sung, B. H., and Kim, S. C. (2009). Buforins: histone H2A-derived antimicrobial peptides
748 from toad stomach. *Biochim. Biophys. Acta* 1788, 1564–1569.
749 doi:10.1016/j.bbamem.2008.10.025.

750 Coates, J. C. (2003). Armadillo repeat proteins: beyond the animal kingdom. *Trends Cell Biol.* 13,
751 463–471. doi:10.1016/S0962-8924(03)00167-3.

752 Dale, C., and Moran, N. A. (2006). Molecular interactions between bacterial symbionts and their
753 hosts. *Cell* 126, 453–465. doi:10.1016/j.cell.2006.07.014.

754 Davidson, S. K., Dulla, G. F., Go, R. A., Stahl, D. A., and Pinel, N. (2014). Earthworm symbiont
755 *Verminephrobacter eiseniae* mediates natural transformation within host egg capsules using
756 type IV pili. *Front. Microbiol.* 5, 546. doi:10.3389/fmicb.2014.00546.

757 De Cian, M.-C., Andersen, A. C., Bailly, X., and Lallier, F. H. (2003a). Expression and localization of
758 carbonic anhydrase and ATPases in the symbiotic tubeworm *Riftia pachyptila*. *J. Exp. Biol.* 206,
759 399–409. doi:10.1242/jeb.00074.

760 De Cian, M.-C., Andersen, A. C., Toullec, J.-Y., Biegala, I., Caprais, J.-C., Shillito, B., et al. (2003b).
761 Isolated bacteriocyte cell suspensions from the hydrothermal-vent tubeworm *Riftia*
762 *pachyptila*, a potent tool for cellular physiology in a chemoautotrophic symbiosis. *Mar. Biol.*
763 142, 141–151. doi:10.1007/s00227-002-0931-5.

764 Distel, D. L., Lane, D. J., Olsen, G. J., Giovannoni, S. J., Pace, B., Pace, N. R., et al. (1988). Sulfur-oxidizing
765 bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. *J.*
766 *Bacteriol.* 170, 2506–2510. doi:10.1128/jb.170.6.2506-2510.1988.

767 Drozdov, A. L., and Galkin, S. V. (2012). Morphology of gametes and insemination in the
768 vestimentiferan *Riftia pachyptila*. *Open J. Mar. Sci.* 2, 96–102. doi:10.4236/ojms.2012.23013.

769 Dubilier, N., Bergin, C., and Lott, C. (2008). Symbiotic diversity in marine animals: the art of

770 harnessing chemosynthesis. *Nat. Rev. Microbiol.* 6, 725–740. doi:10.1038/nrmicro1992.

771 Eberle, H. B., Serrano, R. L., Füllekrug, J., Schlosser, A., Lehmann, W. D., Lottspeich, F., et al. (2002).
772 Identification and characterization of a novel human plant pathogenesis-related protein that
773 localizes to lipid-enriched microdomains in the Golgi complex. *J. Cell Sci.* 115, 827–838.

774 Eddy, S. R. (2009). A new generation of homology search tools based on probabilistic inference.
775 *Genome Informatics* 2009, 205–211. doi:10.1142/9781848165632_0019.

776 Egas, C., Pinheiro, M., Gomes, P., Barroso, C., and Bettencourt, R. (2012). The transcriptome of
777 *Bathymodiolus azoricus* gill reveals expression of genes from endosymbionts and free-living
778 deep-sea bacteria. *Mar. Drugs* 10, 1765–1783. doi:10.3390/MD10081765.

779 Elbourne, L. D. H., Tetu, S. G., Hassan, K. A., and Paulsen, I. T. (2017). TransportDB 2.0: a database for
780 exploring membrane transporters in sequenced genomes from all domains of life. *Nucleic
781 Acids Res.* 45, D320–D324. doi:10.1093/nar/gkw1068.

782 Elsbach, P., and Weiss, J. (1998). Role of the bactericidal/permeability-increasing protein in host
783 defence. *Curr. Opin. Immunol.* 10, 45–49. doi:10.1016/S0952-7915(98)80030-7.

784 Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm, *Riftia*
785 *pachyptila* Jones (Vestimentifera). *Science* 213, 336–338. doi:10.1126/science.213.4505.336.

786 Felbeck, H. (1985). CO₂ fixation in the hydrothermal vent tube worm *Riftia pachyptila* (Jones).
787 *Physiol. Zool.* 58, 272–281. doi:10.1086/physzool.58.3.30155998.

788 Felbeck, H., and Jarchow, J. (1998). Carbon release from purified chemoautotrophic bacterial
789 symbionts of the hydrothermal vent tubeworm *Riftia pachyptila*. *Physiol. Zool.* 71, 294–302.
790 doi:10.1086/515931.

791 Feldhaar, H., and Gross, R. (2009). Insects as hosts for mutualistic bacteria.
792 *International Journal of Medical Microbiology* 299, 1–8. doi:10.1016/j.ijmm.2008.05.010.

793 Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., et al. (2017). InterPro in
794 2017–beyond protein family and domain annotations. *Nucleic Acids Res.* 45, D190–D199.
795 doi:10.1093/nar/gkw1107.

796 Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., et al. (2016). The Pfam
797 protein families database: towards a more sustainable future. *Nucleic Acids Res.* 44, D279–
798 D285. doi:10.1093/nar/gkv1344.

799 Fisher, C. R., Childress, J. J., and Minnich, E. (1989). Autotrophic carbon fixation by the
800 chemoautotrophic symbionts of *Riftia pachyptila*. *Biol. Bull.* 177, 372–385.
801 doi:10.2307/1541597.

802 Flores, J. F., Fisher, C. R., Carney, S. L., Green, B. N., Freytag, J. K., Schaeffer, S. W., et al. (2005). Sulfide
803 binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent
804 tubeworm hemoglobin. *Proc. Natl. Acad. Sci. U. S. A.* 102, 2713–2718.
805 doi:10.1073/pnas.0407455102.

806 Gardebrecht, A., Markert, S., Sievert, S. M., Felbeck, H., Thürmer, A., Albrecht, D., et al. (2012).
807 Physiological homogeneity among the endosymbionts of *Riftia pachyptila* and *Tevnia
808 jerichonana* revealed by proteogenomics. *ISME J.* 6, 766–776. doi:10.1038/ismej.2011.137.

809 Gilbert, S. F., Sapp, J., and Tauber, A. I. (2012). A symbiotic view of life: we have never been

810 individuals. *Q. Rev. Biol.* 87, 325–341. doi:10.1086/668166.

811 Goffredi, S. K., Girguis, P. R., Childress, J. J., and Desaulniers, N. T. (1999). Physiological functioning of
812 carbonic anhydrase in the hydrothermal vent tubeworm *Riftia pachyptila*. *Biol. Bull.* 196, 257–
813 264. doi:10.2307/1542950.

814 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length
815 transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29,
816 644–652. doi:10.1038/nbt.1883.

817 Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in
818 multidimensional genomic data. *Bioinformatics* 32, 2847–2849.
819 doi:10.1093/bioinformatics/btw313.

820 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., et al. (2013). *De novo*
821 transcript sequence reconstruction from RNA-seq using the Trinity platform for reference
822 generation and analysis. *Nat. Protoc.* 8, 1494–1512. doi:10.1038/nprot.2013.084.

823 Hager, A. J., Bolton, D. L., Pelletier, M. R., Brittnacher, M. J., Gallagher, L. A., Kaul, R., et al. (2006).
824 Type IV pili-mediated secretion modulates *Francisella* virulence. *Mol. Microbiol.* 62, 227–237.
825 doi:10.1111/j.1365-2958.2006.05365.x.

826 Hamann, E., Gruber-Vodicka, H., Kleiner, M., Tegetmeyer, H. E., Riedel, D., Littmann, S., et al. (2016).
827 Environmental Breviatea harbour mutualistic *Arcobacter* epibionts. *Nature* 534, 254–258.
828 doi:10.1038/nature18297.

829 Hammerschmidt, S., Wolff, S., Hocke, A., Rousseau, S., Müller, E., and Rohde, M. (2005). Illustration of
830 pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. *Infect.*
831 *Immun.* 73, 4653–4667. doi:10.1128/IAI.73.8.4653.

832 Hand, S. C. (1987). Trophosome ultrastructure and the characterization of isolated bacteriocytes
833 from invertebrate-sulfur bacteria symbioses. *Biol. Bull.* 173, 260–276. doi:10.2307/1541878.

834 Hentschel, U., and Felbeck, H. (1993). Nitrate respiration in the hydrothermal vent tubeworm *Riftia*
835 *pachyptila*. *Nature* 366, 338–340. doi:10.1038/366338a0.

836 Hentschel, U., Steinert, M., and Hacker, J. (2000). Common molecular mechanisms of symbiosis and
837 pathogenesis. *TRENDS Microbiol.* 8, 226–231. doi:10.1016/S0966-842X(00)01758-3.

838 Hinzke, T., Kouris, A., Hughes, R.-A., Strous, M., and Kleiner, M. (2019). More is not always better:
839 evaluation of 1D and 2D-LC-MS/MS methods for metaproteomics. *Front. Microbiol.* 10, 238.
840 doi:10.3389/fmicb.2019.00238.

841 Hourdez, S., and Lallier, F. H. (2007). Adaptations to hypoxia in hydrothermal-vent and cold-seep
842 invertebrates. *Rev. Environ. Sci. Bio/Technology* 6, 143–159. doi:10.1007/s11157-006-9110-3.

843 Hourdez, S., and Weber, R. E. (2005). Molecular and functional adaptations in deep-sea
844 hemoglobins. *J. Inorg. Biochem.* 99, 130–141. doi:10.1016/j.jinorgbio.2004.09.017.

845 Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT Suite: a web server for clustering and
846 comparing biological sequences. *Bioinformatics* 26, 680–682.
847 doi:10.1093/bioinformatics/btq003.

848 Hyttinen, J. M. T., Niittykoski, M., Salminen, A., and Kaarniranta, K. (2013). Maturation of
849 autophagosomes and endosomes: a key role for Rab7. *Biochim. Biophys. Acta* 1833, 503–510.

850 doi:10.1016/j.bbamcr.2012.11.018.

851 Jones, M. L. (1981). *Riftia pachyptila* Jones: observations on the vestimentiferan worm from the
852 Galápagos Rift. *Science* 213, 333–336. doi:10.1126/science.213.4505.333.

853 Kleiner, M., Dong, X., Hinzke, T., Wippler, J., Thorson, E., Mayer, B., et al. (2018). Metaproteomics
854 method to determine carbon sources and assimilation pathways of species in microbial
855 communities. *Proc. Natl. Acad. Sci. U. S. A.* 115, E5576–E5584. doi:10.1073/pnas.1722325115.

856 Kleiner, M., Thorson, E., Sharp, C. E., Dong, X., Liu, D., Li, C., et al. (2017). Assessing species biomass
857 contributions in microbial communities via metaproteomics. *Nat. Commun.* 8, 1558.
858 doi:10.1038/s41467-017-01544-x.

859 König, S., Le Guyader, H., and Gros, O. (2015). Thioautotrophic bacterial endosymbionts are
860 degraded by enzymatic digestion during starvation: Case study of two lucinids *Codakia*
861 *orbicularis* and *C. orbiculata*. *Microsc. Res. Tech.* 78, 173–179. doi:10.1002/jemt.22458.

862 Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat. Methods* 9,
863 357–359. doi:10.1038/nmeth.1923.

864 Leighton, T. L., Buensuceso, R. N. C., Howell, P. L., and Burrows, L. L. (2015). Biogenesis of
865 *Pseudomonas aeruginosa* type IV pili and regulation of their function. *Environ. Microbiol.* 17,
866 4148–4163. doi:10.1111/1462-2920.12849.

867 Letunic, I., and Bork, P. (2018). 20 years of the SMART protein domain annotation resource. *Nucleic
868 Acids Res.* 46, D493–D496. doi:10.1093/nar/gkx922.

869 Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H. (2014). UpSet: visualization of
870 intersecting sets. *IEEE Transcations Vis. Comput. Graph.* 20, 1983–1992.
871 doi:10.1109/TVCG.2014.2346248.

872 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence
873 alignment/map format and SAMtools. *Bioinformatics* 25, 2078–2079.
874 doi:10.1093/bioinformatics/btp352.

875 Li, J., Mahajan, A., and Tsai, M.-D. (2006). Ankyrin repeat: a unique motif mediating protein-protein
876 interactions. *Biochemistry* 45, 15168–15178. doi:10.1021/bi062188q.

877 Liu, H., Wang, H., Cai, S., and Zhang, H. (2017). A novel ω 3-desaturase in the deep sea giant
878 tubeworm *Riftia pachyptila*. *Mar. Biotechnol.* 19, 345–350. doi:10.1007/s10126-017-9753-9.

879 Login, F. H., Balmand, S., Vallier, A., Vincent-Monégat, C., Vigneron, A., Weiss-Gayet, M., et al. (2011).
880 Antimicrobial peptides keep insect endosymbionts under control. *Science* 334, 362–365.
881 doi:10.1126/science.1209728.

882 Lutz, R. A., Shank, T. M., Fornari, D. J., Haymon, R. M., Lilley, M. D., Von Damm, K. L., et al. (1994).
883 Rapid growth at deep-sea vents. *Nature* 371, 663–664. doi:10.1038/371663a0.

884 Mangum, C. P. (1992). “Physiological function of the hemerythrins,” in *Blood and Tissue Oxygen
885 Carriers. Advances in Comparative and Environmental Physiology*, vol 13, ed. M. C.P. (Berlin,
886 Heidelberg: Springer), 173–192. doi:10.1007/978-3-642-76418-9_7.

887 Marchetti, A., Mercanti, V., Cornillon, S., Alibaud, L., Charette, S. J., and Cosson, P. (2004). Formation
888 of multivesicular endosomes in *Dictyostelium*. *J. Cell Sci.* 117, 6053–6059.
889 doi:10.1242/jcs.01524.

890 Markert, S., Arndt, C., Felbeck, H., Becher, D., Sievert, S. M., Hügler, M., et al. (2007). Physiological
891 proteomics of the uncultured endosymbiont of *Riftia pachyptila*. *Science* 315, 247–250.
892 doi:10.1126/science.1132913.

893 Markert, S., Gardebrecht, A., Felbeck, H., Sievert, S. M., Klose, J., Becher, D., et al. (2011). Status quo in
894 physiological proteomics of the uncultured *Riftia pachyptila* endosymbiont. *Proteomics* 11,
895 3106–3117. doi:10.1002/pmic.201100059.

896 McFall-Ngai, M. (2008). Are biologists in 'future shock'? Symbiosis integrates biology across
897 domains. *Nat. Rev. Microbiol.* 6, 789–792. doi:10.1038/nrmicro1982.

898 McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., et al.
899 (2013). Animals in a bacterial world, a new imperative for the life sciences. *Proc. Natl. Acad.
900 Sci.* 110, 3229–3236. doi:10.1073/pnas.1218525110.

901 Minic, Z., and Hervé, G. (2003). Arginine metabolism in the deep sea tube worm *Riftia pachyptila*
902 and its bacterial endosymbiont. *J. Biol. Chem.* 278, 40527–40533.
903 doi:10.1074/jbc.M307835200.

904 Minic, Z., Simon, V., Penverne, B., Gaill, F., and Hervé, G. (2001). Contribution of the bacterial
905 endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tube worm *Riftia*
906 *pachyptila*. *J. Biol. Chem.* 276, 23777–23784. doi:10.1074/jbc.M102249200.

907 Moya, A., Peretó, J., Gil, R., and Latorre, A. (2008). Learning how to live together: genomic insights
908 into prokaryote–animal symbioses. *Nat. Rev. Genet.* 9, 218–229. doi:10.1038/nrg2319.

909 Mueller, R. S., Denef, V. J., Kalnejais, L. H., Suttle, K. B., Thomas, B. C., Wilmes, P., et al. (2010).
910 Ecological distribution and population physiology defined by proteomics in a natural
911 microbial community. *Mol. Syst. Biol.* 6, 374. doi:10.1038/msb.2010.30.

912 Nguyen, M. T. H. D., Liu, M., and Thomas, T. (2014). Ankyrin-repeat proteins from sponge symbionts
913 modulate amoebal phagocytosis. *Mol. Ecol.* 23, 1635–1645. doi:10.1111/mec.12384.

914 Nyholm, S. V., Stewart, J. J., Ruby, E. G., and McFall-Ngai, M. J. (2009). Recognition between symbiotic
915 *Vibrio fischeri* and the haemocytes of *Euprymna scolopes*. *Environ. Microbiol.* 11, 483–493.
916 doi:10.1111/j.1462-2920.2008.01788.x.

917 Nyholm, S. V., and Graf, J. (2012). Knowing your friends: invertebrate innate immunity fosters
918 beneficial bacterial symbioses. *Nat. Rev. Microbiol.* 10, 815–827. doi:10.1038/nrmicro2894.

919 Oberg, A. L., and Vitek, O. (2009). Statistical design of quantitative mass spectrometry-based
920 proteomic profiling experiments. *J. Proteome Res.* 8, 2144–2156. doi:10.1021/pr8010099.

921 Pan, X., Lührmann, A., Satoh, A., Laskowski-Arce, M., and R, R. C. (2008). Ankyrin repeat proteins
922 comprise a diverse family of bacterial type IV effectors. *Science* 320, 1651–1654.
923 doi:10.1126/science.1158160.

924 Park, I. Y., Park, C. B., Kim, M. S., and Kim, S. C. (1998). Parasin I, an antimicrobial peptide derived
925 from histone H2A in the cat fish, *Parasilurus asotus*. *FEBS Lett.* 437, 258–262.
926 doi:10.1016/S0014-5793(98)01238-1.

927 Petersen, J. M., Zielinski, F. U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2011). Hydrogen is an
928 energy source for hydrothermal vent symbioses. *Nature* 476, 176–180.
929 doi:10.1038/nature10325.

930 Pflugfelder, B., Cary, S. C., and Bright, M. (2009). Dynamics of cell proliferation and apoptosis reflect
931 different life strategies in hydrothermal vent and cold seep vestimentiferan tubeworms. *Cell*
932 *Tissue Res.* 337, 149–165. doi:10.1007/s00441-009-0811-0.

933 Pflugfelder, B., Fisher, C. R., and Bright, M. (2005). The color of the trophosome: elemental sulfur
934 distribution in the endosymbionts of *Riftia pachyptila* (Vestimentifera; Siboglinidae). *Mar. Biol.*
935 146, 895–901. doi:10.1007/s00227-004-1500-x.

936 Pollack-Berti, A., Wollenberg, M. S., and Ruby, E. G. (2010). Natural transformation of *Vibrio fischeri*
937 requires tfoX and tfoY. *Environ. Microbiol.* 12, 2302–2311. doi:10.1111/j.1462-
938 2920.2010.02250.x.

939 Polzin, J., Arevalo, P., Nussbaumer, T., Polz, M. F., and Bright, M. (2019). Polyclonal symbiont
940 populations in hydrothermal vent tubeworms and the environment. *Proc. R. Soc. B Biol. Sci.*
941 286, 20181281. doi:10.1098/rspb.2018.1281.

942 Ponnudurai, R., Kleiner, M., Sayavedra, L., Petersen, J. M., Moche, M., Otto, A., et al. (2017). Metabolic
943 and physiological interdependencies in the *Bathymodiolus azoricus* symbiosis. *ISME J.* 11, 463–
944 477. doi:10.1038/ismej.2016.124.

945 Prota, A. E., Magiera, M. M., Kuijpers, M., Bargsten, K., Frey, D., Wieser, M., et al. (2013). Structural
946 basis of tubulin tyrosination by tubulin tyrosine ligase. *J. Cell Biol.* 200, 259–270.
947 doi:10.1083/jcb.201211017.

948 R Core Team (2017). R: A language and environment for statistical computing. <http://www.R-project.org/>. *R Found. Stat. Comput.*

949 Reynolds, D., and Thomas, T. (2016). Evolution and function of eukaryotic-like proteins from
950 sponge symbionts. *Mol. Ecol.* 25, 5242–5253. doi:10.1111/mec.13812.

952 Robidart, J. C., Bench, S. R., Feldman, R. A., Novoradovsky, A., Podell, S. B., Gaasterland, T., et al.
953 (2008). Metabolic versatility of the *Riftia pachyptila* endosymbiont revealed through
954 metagenomics. *Environ. Microbiol.* 10, 727–737. doi:10.1111/j.1462-2920.2007.01496.x.

955 Robidart, J. C., Roque, A., Song, P., and Girguis, P. R. (2011). Linking hydrothermal geochemistry to
956 organismal physiology: physiological versatility in *Riftia pachyptila* from sedimented and
957 basalt-hosted vents. *PLoS One* 6, e21692. doi:10.1371/journal.pone.0021692.

958 Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor package for
959 differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139–140.
960 doi:10.1093/bioinformatics/btp616.

961 Rose, F. R. A. J., Bailey, K., Keyte, J. W., Chan, W. C., Greenwood, D., and Mahida, Y. R. (1998). Potential
962 role of epithelial cell-derived histone H1 proteins in innate antimicrobial defense in the human
963 gastrointestinal tract. *Infect. Immun.* 66, 3255–3263.

964 Saier Jr, M. H., Reddy, V. S., Tsu, B. V., Ahmed, M. S., Li, C., and Moreno-Hagelsieb, G. (2016). The
965 transporter classification database (TCDB): recent advances. *Nucleic Acids Res.* 44, D372–
966 D379. doi:10.1093/nar/gkv1103.

967 Sanchez, S., Andersen, A. C., Hourdez, S., and Lallier, F. H. (2007a). Identification, sequencing, and
968 localization of a new carbonic anhydrase transcript from the hydrothermal vent tubeworm
969 *Riftia pachyptila*. *FEBS J.* 274, 5311–5324. doi:10.1111/j.1742-4658.2007.06050.x.

970 Sanchez, S., Hourdez, S., and Lallier, F. H. (2007b). Identification of proteins involved in the

971 functioning of *Riftia pachyptila* symbiosis by Subtractive Suppression Hybridization. *BMC*
972 *Genomics* 8, 337. doi:10.1186/1471-2164-8-337.

973 Schmieder, R., and Edwards, R. (2011). Fast identification and removal of sequence contamination
974 from genomic and metagenomic datasets. *PLoS One* 6, e17288.
975 doi:10.1371/journal.pone.0017288.

976 Scott, K. M., Boller, A. J., Dobrinski, K. P., and Le Bris, N. (2012). Response of hydrothermal vent
977 vestimentiferan *Riftia pachyptila* to differences in habitat chemistry. *Mar. Biol.* 159, 435–442.
978 doi:10.1007/s00227-011-1821-5.

979 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. (2015). BUSCO:
980 assessing genome assembly and annotation completeness with single-copy orthologs.
981 *Bioinformatics* 31, 3210–3212. doi:10.1093/bioinformatics/btv351.

982 Simonet, P., Gaget, K., Balmand, S., Ribeiro Lopes, M., Parisot, N., Buhler, K., et al. (2018).
983 Bacteriocyte cell death in the pea aphid/*Buchnera* symbiotic system. *Proc. Natl. Acad. Sci. U. S.*
984 A. 115, E1819–E1828. doi:10.1073/pnas.1720237115.

985 Stewart, F. J., and Cavanaugh, C. M. (2005). "Symbiosis of thioautotrophic bacteria with *Riftia*
986 *pachyptila*," in *Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology*, vol
987 41, ed. J. Overmann (Springer, Berlin, Heidelberg), 197–225.

988 Stewart, F. J., Newton, I. L. G., and Cavanaugh, C. M. (2005). Chemosynthetic endosymbioses:
989 adaptations to oxic-anoxic interfaces. *TRENDS Microbiol.* 13, 439–448.
990 doi:10.1016/j.tim.2005.07.007.

991 Stone, B. J., and Kwaik, Y. A. B. U. (1999). Natural competence for DNA transformation by *Legionella*
992 *pneumophila* and its association with expression of type IV pili. *J. Bacteriol.* 181, 1395–1402.

993 Streams, M. E., Fisher, C. R., and Fiala-Médioni, A. (1997). Methanotrophic symbiont location and
994 fate of carbon incorporated from methane in a hydrocarbon seep mussel. *Mar. Biol.* 129, 465–
995 476. doi:10.1007/s002270050187.

996 The Global Proteome Machine Organization The Global Proteome Machine: cRAP protein
997 sequences. Available at: <http://thegpm.org/crap/> [Accessed November 28, 2017].

998 The UniProt Consortium (2017). UniProt: the universal protein knowledgebase. *Nucleic Acids Res.*
999 45, D158–D169. doi:10.1093/nar/gkw1099.

1000 Van Dover, C. L. (2000). *The Ecology of Deep-Sea Hydrothermal Vents*. Princeton, New Jersey:
1001 Princeton University Press.

1002 Van Loon, C. L., and Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their
1003 activities, and comparative analysis of PR-1 type proteins. *Physiol. Mol. Plant Pathol.* 55, 85–97.
1004 doi:10.1006/pmpp.1999.0213.

1005 Vieira, O. V., Botelho, R. J., and Grinstein, S. (2002). Phagosome maturation: aging gracefully.
1006 *Biochem. J.* 366, 689–704. doi:10.1042/BJ20020691.

1007 Wang, G., Li, X., and Wang, Z. (2016). APD3: the antimicrobial peptide database as a tool for research
1008 and education. *Nucleic Acids Res.* 44, D1087–D1093. doi:10.1093/nar/gkv1278.

1009 Webster, N. S. (2014). Cooperation, communication, and co-evolution: grand challenges in microbial
1010 symbiosis research. *Front. Microbiol.* 5, 164. doi:10.3389/fmicb.2014.00164.

1011 1012 1013 Wilmot Jr., D. B., and Vetter, R. D. (1990). The bacterial symbiont from the hydrothermal vent
tubeworm *Riftia pachyptila* is a sulfide specialist. *Mar. Biol.* 106, 273–283.
doi:10.1007/BF01314811.

1014 1015 1016 1017 Wippler, J., Kleiner, M., Lott, C., Gruhl, A., Abraham, P. E., Giannone, R. J., et al. (2016). Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm *Olavius algarvensis*. *BMC Genomics* 17, 942.
doi:10.1186/s12864-016-3293-y.

1018 1019 Wiśniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. *Nat. Methods* 6, 359–362. doi:10.1038/nmeth.1322.

1020 1021 1022 Woyke, T., Teeling, H., Ivanova, N. N., Huntemann, M., Richter, M., Gloeckner, F. O., et al. (2006). Symbiosis insights through metagenomic analysis of a microbial consortium. *Nature* 443, 950–955. doi:10.1038/nature05192.

1023 1024 Yoshimura, S. H., and Hirano, T. (2016). HEAT repeats – versatile arrays of amphiphilic helices working in crowded environments? *J. Cell Sci.* 129, 3963–3970. doi:10.1242/jcs.185710.

1025 1026 1027 1028 Zal, F., Lallier, H., Green, B. N., and Vinogradov, S. N. (1996). The multi-hemoglobin system of the hydrothermal vent tube worm *Riftia pachyptila*. II. Complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra. *J. Biol. Chem.* 271, 8875–8881.
doi:10.1074/jbc.271.15.8869.

1029 1030 1031 1032 Zal, F., Leize, E., Lallier, F. H., Toulmond, A., Van Dorsselaer, A., and Childress, J. (1998). S-sulfohemoglobin and disulfide exchange: The mechanisms of sulfide binding by *Riftia pachyptila* hemoglobins. *Proc. Natl. Acad. Sci. USA* 95, 8997–9002.
doi:10.1073/pnas.95.15.8997.

1033 1034 1035 Zug, R., and Hammerstein, P. (2015). *Wolbachia* and the insect immune system: what reactive oxygen species can tell us about the mechanisms of *Wolbachia*-host interactions. *Front. Microbiol.* 6, 1201. doi:10.3389/fmicb.2015.01201.

1036 1037 1038 Zybalov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L., and Washburn, M. P. (2006). Statistical analysis of membrane proteome expression changes in *Saccharomyces cerevisiae*. *J. Proteome Res.* 5, 2339–2347. doi:10.1021/pr060161n.

1039