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Abstract 

Background: When a randomized experimental study is not possible, Mendelian randomization 

studies use genetic variants or polygenic scores as instrumental variables to control for gene-

environment correlation while estimating the association between an exposure and outcome. 

Polygenic scores have become increasingly potent predictors of their respective phenotypes, 

satisfying the relevance criteria of an instrumental variable. Evidence for pleiotropy, however, 

casts doubt on whether the exclusion criteria of an instrumental variable is likely to hold for 

polygenic scores of complex phenotypes, and a number of methods have been developed to 

adjust for pleiotropy in Mendelian randomization studies. Method: Using multiple polygenic 

scores and path analysis we implement an extension of genetic instrumental variable regression, 

genetic path analysis, and use it to test whether educational attainment is associated with two 

health-related outcomes in adulthood, body mass index and smoking initiation, while estimating 

and controlling for both gene-environment correlations and pleiotropy. Results: Genetic path 

analysis provides compelling evidence for a complex set of gene-environment transactions that 

undergird the relations between educational attainment and health-related outcomes in 

adulthood. Importantly, results are consistent with education having a protective effect on body 

mass index and smoking initiation, even after controlling for gene-environment correlations and 

pleiotropy. Conclusions: The proposed method is capable of addressing the exclusion criteria for 

a sound instrumental variable and, consequently, has the potential to help advance Mendelian 

randomization studies of complex phenotypes.  

Keywords: Mendelian randomization; pleiotropy; education; BMI; smoking;
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Using genetic path analysis to control for pleiotropy in a Mendelian randomization study 

Mendelian randomization refers to the random assortment of genes that are given to 

children by their parents at the time of conception (1). This results in distributions of genes that 

are independent of many factors that often confound associations documented in observational 

studies (2,3). Mendelian randomization studies use genetic variants or genetic propensity scores, 

also called polygenic risk scores, as instrumental variables to control for gene-environment 

correlation when testing a putatively casual relation between an exposure and outcome. The 

present study focuses on the use of polygenic scores to conduct Mendelian randomization 

studies, with emphasis placed on reviewing whether polygenic scores meet the criteria for a 

sound instrumental variable. We then present an extension of genetic instrumental variable 

regression (4), genetic path analysis, to help overcome a limitation inherent to Mendelian 

randomization studies of complex phenotypes, specifically the high potential for pleiotropic 

effects on the exposure and outcome of interest. Using genetic path analysis, we then test 

whether educational attainment is associated with body mass index (BMI) and smoking initiation 

in a large sample of adults while estimating both gene-environment correlation and pleiotropy. 

Gene-environment correlation refers to the non-random assortment of individuals into 

environments based on their genotype and is behaviorally manifest by individuals actively 

shaping and responding to their environments based, at least partly, on their heritable 

characteristics (5,6). This process results in heritable variation in measures of the environment 

(7), which, in turn, are thought to further reinforce the expression of relevant phenotypes. 

Importantly, without accounting for heritable variation in environmental exposures, one cannot 

know whether an association between an exposure and outcome reflects a true causal relation or, 

on the other hand, a niche-picking process (8). Auspiciously, as summary data from genome-
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wide association studies (GWASs) becomes readily available, it has become increasingly popular 

to use polygenic scores as instrumental variables for inferring causation in non-experimental 

studies (a.k.a. Mendelian randomization studies).  

A polygenic score may be defined “as a single value estimate of an individual’s 

propensity to a phenotype” calculated by computing the sum of risk alleles corresponding to a 

phenotype in each individual, weighted by their effect size estimate from the most powerful 

GWAS on the phenotype (9).  A polygenic score is typically calculated as PGS𝑘 =  ∑ 𝛽𝑖𝑖 SNP𝑖𝑘, 

where PGS for individual k in the target sample is calculated by the summation of each SNP 

(measured for both the person k and passing a set association threshold in the discovery GWAS) 

multiplied by the effect size, β, of that SNP in the discovery GWAS. Thus, polygenic scores 

provide an index of an individual’s genetic propensity for a given phenotype, or “an individual-

level genome-wide genetic proxy” (9). Although polygenic scores may be used for a variety of 

purposes, a lot of emphasis has been placed on using polygenic scores as instrumental variables. 

However, as noted and addressed by others, it is not clear that polygenic scores meet the 

necessary criteria for a sound instrumental variable (4,10,11).  

There are three criteria for a sound instrumental variable (12). First, sometimes called the 

relevance criteria, the instrument must be related to the environmental exposure. Second, 

according to the exclusion criteria, conditional on the relation between the exposure and 

outcome, there is no direct relation between the instrument and the outcome. Put differently, any 

relation between the instrument and outcome must be fully accounted for by its relation to the 

exposure. Third, the instrument should not be related to any unmeasured confounders. Note, 

however, that this third criteria, sometimes called the independence criteria, is not unique to 

using polygenic scores as instrumental variables, or instrumental variable analysis more 
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generally, as this concern applies to all non-experimental studies for which an unmeasured 

confounder exists. 

Nevertheless, as the size of GWASs continue to grow, polygenic scores have become 

increasingly potent predictors of their respective phenotypes, satisfying the relevance criteria. On 

the other hand, genetic correlations across related and seemingly unrelated phenotypes provides 

evidence for pleiotropic effects. This suggests that polygenic scores likely violate the exclusion 

criteria, and, therefore, casts doubt on their use as instrumental variables. In response to this 

concern, a number of methods have been developed to help correct for the presence of 

pleiotropy. For example, statistical techniques have been developed that are more robust to 

pleiotropic effects violating the exclusion criteria, including Egger regression (10) and summary 

data-based multiple regression (13), as well as pleiotropy-robust Mendelian randomization (11) 

and genetic instrumental variable regression (4). The present study intends to contribute to this 

body of work by integrating two existing methods, genetic instrumental variable regression and 

path analysis, to estimate and control for pleiotropy in a Mendelian randomization study using 

multiple polygenic scores. 

In a traditional Mendelian randomization study, two regressions are estimated 

simultaneously: the environmental exposure is regressed on the genetic instrument, and the 

outcome of interest is regressed on the environmental exposure. Unfortunately, due to pleiotropic 

effects, the association between the genetic instrument and the outcome is not fully mediated by 

the association between the genetic instrument and the exposure. Put differently, conditional on 

the association between the exposure and outcome, the genetic instrument is often predictive of 

both the environmental exposure and outcome, violating the exclusion criteria of a sound 

instrumental variable. However, as summary statistics from GWASs become available for a 
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number of social, relational, and environmental exposures, in addition to outcomes of clinical 

and epidemiological interest, a path analysis using polygenic scores for an exposure and outcome 

can provide an estimate and control for pleiotropy when conducting a Mendelian randomization 

study. 

[FIGURE 1 HERE] 

An example of a path analysis using multiple polygenic scores is depicted in Figure 1. 

Similar to a traditional instrumental variable analysis, an environment or exposure (E) is 

regressed on a genetic instrument (PRSE), which estimates and controls for gene-environment 

correlation. An outcome (Y) is then regressed on the exposure (E) free of genetic confounds that 

result from active and evocative gene-environment correlations. To estimate and control for the 

potential pleiotropic effects of the genetic instrument, a second genetic instrument is introduced 

(PRSY), which provides an index of polygenic liability for the outcome (Y). The correlation 

between the genetic instrument for the exposure (PRSE) and the genic instrument for the 

outcome (PRSY) can be freely estimated, while simultaneously regressing the exposure (E) and 

outcome (Y) on the genetic instrument for the outcome (PRSY). These parameters provide a test 

and simultaneous control for pleiotropy, while also estimating and controlling for additional 

gene-environment correlations that may not have been captured by the first genetic instrument. 

The correlation between the two genetic instruments sheds light on whether genetic liability for 

the exposure has pleiotropic effects on the outcome, and the regression of the outcome on its 

polygenic score provides a statistical control for pleiotropy. Finally, the regression of the 

exposure on the genetic instrument for the outcome tests for potential gene-environment 

correlations not fully accounted for by the genetic instrument for the exposure. Hereinafter, we 
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provide a demonstration of this method focusing on the relationship between education and two 

important health-related outcomes: body mass index (BMI) and smoking initiation.   

Method 

Sample 

 The present study analyses data from the Study of Midlife Development in the United 

States (MIDUS). (14). Data was prepared for analyses with R version 3.5.2. Data was imported 

into R using the ‘Hmisc’ package (15), preprocessed, and then exported from R using the 

'MplusAutomation' package version 0.7.1 (16). Phenotype data and study materials are available 

on a permanent third-party archive, the 71 Inter-University Consortium for Political and Social 

Research (ICPSR). Additional information regarding participant recruitment, compensation, and 

data collection can be found elsewhere (14). Only data from participants who were genotyped 

and predominantly of European ancestry were included in the present study (N = 1296). The 

average age of participants was approximately 54 years (median = 54 years, SD = 12.46 years, 

min. = 25 years, max. = 84 years), and approximately 51% of the sample was female (~ 49% 

male). There was considerable variation in highest level of education completed by participants 

(see Table 1).  

[TABLE 1 HERE] 

Measures 

 The present study includes six focal constructs. Educational attainment was measured 

using self-reports of the highest level of education completed by participants, rated on an 

ordered-categorical scale. BMI was calculated based on participants height and weight (mean = 

28.79, median = 27.89, SD = 6.19, min. = 17.08, max. = 77.58). There was a single outlier on 

BMI that was more than 5 standard deviations above than the mean; Effect sizes are similar, and 
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results of null hypothesis significance tests remain unchanged after excluding this observation.  

Smoking initiation was measured by asking participants whether they were ever a smoker or 

currently a smoker of cigarettes (No = 59%, Yes = 41%). Polygenic scores for educational 

attainment, BMI, and smoking initiation were calculated using summary statistics from recent 

GWASs for each variable (17-19). 

Data Analytic Procedures 

Path analysis was conducted in Mplus version 8.1 (20), and missing data were handled 

using full-information maximum likelihood (21). Because a subset of sibling- and twin-pairs are 

included in the current sample (Npairs = 96), a family identification number was specified as a 

cluster variable in path models to implement a Huber-White sandwich estimator, which adjusts 

the standard errors of path coefficients for the non-independence of observations that results 

from a subset of participants being nested within the same family. Age (centered at 54 years) and 

biological sex (coded female = 0, male = 1) were included as exogenous covariates of all focal 

study variables, in addition to the first five genomic principal component scores. Thus, we report 

results from fully-saturated models (i.e. model degrees of freedom = 0). As the variance of 

certain PC scores approached zero, all PC scores were increased by a factor of 100 to avoid a 

singular observed covariance matrix of independent variables. BMI and smoking initiation are 

continuous and binary outcomes, consequently, the estimated pathways to BMI and smoking 

initiation can be interpreted as linear and Poisson regression coefficients, with linear coefficients 

standardized and Poisson coefficients exponentiated (i.e. reported as risk ratios). 99% biased-

corrected bootstrapped confidence intervals are reported below their respective point estimates. 

Polygenic scores, self-reports of educational attainment, and BMI were standardized before 

fitting path models (M = 0, SD = 1).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/650192doi: bioRxiv preprint 

https://doi.org/10.1101/650192
http://creativecommons.org/licenses/by-nc-nd/4.0/


GENETIC PATH ANALYSIS 9 

Results 

[FIGURE 2 HERE] 

Results for educational attainment and BMI are reported in Figure 2. Results for 

educational attainment and smoking initiation are reported in Figure 3. The effects of exogenous 

covariates are reported in Table 2.  Several results are noteworthy. In both models, polygenic 

propensity for educational attainment was associated with educational attainment ( = .27, SE = 

.03, p < .001), providing evidence for gene-environment correlation. Providing evidence for 

pleiotropic effects, polygenic propensity for educational attainment was negatively correlated 

with polygenic risk for high BMI (r = -.17, SE = .03, p < .001) and polygenic risk for smoking 

initiation (r = -.16, SE = .03, p < .001). Providing a partial control for pleiotropic effects, 

polygenic risk for high BMI was associated with BMI ( =  SE = .03, p < .001), and 

polygenic risk for smoking initiation was associated with smoking initiation (RR = 1.16, SE = 

.04, p < .001). After accounting for these associations, the pathway from polygenic propensity 

for educational attainment to BMI approached zero ( = -.01, SE = .03, p = .691), as did the 

pathway from polygenic propensity for educational attainment to smoking initiation (RR = 0.97, 

SE = .04, p = .462. These estimates suggest that the regression of BMI and smoking initiation on 

their respective polygenic scores provided an adequate statistical control for the pleiotropic 

effects of polygenic risk for educational attainment.  

[FIGURE 3 HERE] 

Notably, after regressing educational attainment on polygenic propensity for educational 

attainment, the association between polygenic propensity for BMI and education attainment 

approached zero ( = -.03, SE = .03, p = .240). However, even after regressing educational 

attainment on polygenic propensity for educational attainment, polygenic propensity for smoking 
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initiation was negatively associated with educational attainment ( = -.08, SE = .03, p = .003). 

This direct association between polygenic propensity for smoking initiation and educational 

attainment shows that the genetic instrument for educational attainment, by itself, only provided 

a partial control for gene-environment correlations. The regression of the exposure on polygenic 

risk for the exposure and outcome, however, provides an additional test and control for gene-

environment correlations that has not traditionally been implemented in Mendelian 

randomization studies. Nevertheless, even after estimating pleiotropy and polygenic propensity 

for the exposure and outcome, there was still a protective association of educational attainment 

on BMI ( = -.11, SE = .03, p < .001) and smoking initiation (RR = 0.83, SE = .03, p < .001). 

Moreover, the association between polygenic propensity for educational attainment and BMI was 

statistically accounted for by educational attainment (indirect effect = -.03, 99% bias-corrected 

bootstrapped C.I. = -.05, -.01, p = .001), as was the association between polygenic propensity for 

educational attainment and smoking initiation (indirect effect = -.05, 99% bias-corrected 

bootstrapped C.I. = -.08, -.02, p < .001).   

[TABLE 2 HERE] 

Discussion 

 The present study proposed the integration of two existing methods, genetic instrumental 

variable regression and path analysis, to account for pleiotropy in Mendelian randomization 

studies using multiple polygenic scores. The method was then evaluated using a putatively 

important environmental exposure and two outcomes that are of interest to clinicians and 

epidemiologists alike. Importantly, the present study demonstrates that education has a protective 

association with BMI and smoking initiation, even when controlling for potential genetic 

confounds via Mendelian randomization and pleiotropic effects using multiple polygenic scores.  
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Moreover, for the two phenotypes examined, controls for pleiotropy were effective, such that the 

direct pathways from polygenic propensity for education to BMI and smoking initiation 

approached zero, indicating that the proposed method is capable of addressing the exclusion 

criteria for a sound instrumental variable. In addition, polygenic risk for smoking initiation (but 

not BMI) was directly associated with educational attainment, even after accounting for 

polygenic propensity for educational attainment. This demonstrates that, at least for some 

phenotypes, traditional Mendelian randomization studies provide only a partial genomic control 

for the environmental exposure.  The method proposed and implemented in the current study, 

however, provides an additional test and statistical control for potential gene-environment 

correlations, beyond what is typically accomplished in a Mendelian randomization study. 

 Of course, genetic path analysis is not without limitations. For one, it can only be applied 

to a Mendelian randomization study for which GWAS summary statistics are available for both 

the exposure and outcome. In addition, although polygenic scores have become potent predictors 

of their respective phenotypes, especially in comparison to single genetic variants, the arrays 

typically included in GWASs only tag point mutations (i.e. single nucleotide polymorphisms) 

and do not include insertion, deletions, and copy number variants. Further, the beta weights 

obtained from discovery GWASs are estimated with imprecision, and, consequently, polygenic 

scores provide only an imperfect proxy of genetic liability. Therefore, the strength of the 

proposed method depends on the size and overall quality of the discovery GWASs for the 

exposure and outcome of interest, though the quality of the GWASs for the phenotypes 

examined in the present study were reasonable by contemporary standards.   

 In many ways, the methodological integration that was proposed and implemented in the 

current study is an extension or specific instantiation of genomic structural equation modeling 
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(22). There are, however, important differences between genomic structural equation modeling 

and genetic path analysis as outlined in the present study. For example, genomic structural 

equation modeling is a technique that can be used to address a number of questions about the 

genetic architecture of complex phenotypes, including the search for SNPs not previously 

identified in a univariate GWAS. Alternatively, genetic path analysis using multiple polygenic 

scores was developed to address a limitation specific to Mendelian randomization studies and 

relies on the existence of discovery GWASs for the exposure and phenotype of interest.  In 

addition, genomic structural equation modeling is based on genetic correlations estimated using a 

variant of LD-Score regression (23), and genetic path analysis relies on multiple polygenic 

scores to estimate genetic correlations. Genomic structural equation modeling also includes the 

estimation of latent variables that are not directly observed but, instead, are inferred indirectly 

from the data. Genetic path analysis, on the other hand, analyses associations between observed 

variables.  

A remaining limitation to Mendelian randomization studies not addressed in the present 

study centers on the fact that, despite receiving a random assortment of genes from their parents, 

children’s genotypes depend on their parents’ genotype. Consequently, passive gene-

environment correlations remain a possibility. Implementing genetic path analysis in a sample of 

siblings or twins would provide an additional control for this potential confound.  Unfortunately, 

the sample analyzed in the present study did not include enough sibling-pairs to be adequately 

powered to fit the proposed path models to sibling-difference scores. Nevertheless, future studies 

may benefit from implementing genetic path analysis in larger samples of genotyped siblings 

with relevant exposures and outcomes measured. Finally, depicted on the top panel of Figure 1, 

the present study did not address potential threats to the independence criteria for a sound 
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instrument posed by any unmeasured confounder present in a non-experimental study. Despite 

these limitations, the present study provides compelling evidence for a complex set of gene-

environment transactions that contribute to important health-related outcomes in adulthood. 
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Table 1. Highest Level of Education Completed by Participants 
  

Order-Categorical Response  

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) NA 

Frequency 1 6 26 10 199 195 59 110 325 54 232 70 6 

Percent < 1% < 1% ~2% < 1% ~15% ~15% ~5% ~9% ~25% ~4% ~18% ~5% < 1% 

Notes. (1) = No school/some grade school (grades 1-6). (2) = Eighth grade/junior high school (grades 7-8). 

(3) = Some high school (grades 9-12, No Diploma or GED). (4) = GED (general education diploma). (5) = 

Graduated from high school. (6) = One to two years of college, no degree yet. (7) = Three or four years of 

college, no degree yet. (8) = Graduated from two years of college, vocational school, or obtained assoc. 

degree. (9) = Graduated from a four- or five-year college or obtained a bachelor’s degree. (10) = Attended 

some graduate school, no graduate degree yet. (11) = Master’s degree. (12) = PH.D., ED.D., MD, DDS, LLB, 

LLD, JD, etc. NA = missing values.  
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Figure 1. Conceptual Diagram (Top Panel) and Path Diagram (Bottom 

Panel) of a Genetic Path Analysis Using Multiple Polygenic Scores 

 
Notes. Top panel: (A) test of gene-environment correlation. (B) test of pleiotropy. (C) 

statistical control for pleiotropy. (D) additional test for gene-environment correlation. 

(E) test of statistical control for pleiotropy. (F) test of quasi-causal effect of the 

exposure. The “X” on the pathway to unmeasured confounders reflects the 

independence criteria of a sound instrument. Bottom panel: PRS = polygenic score. E 

= measure of exposure. Y = measure of outcome. PC = principal component. b1 – b28 

= effects of covariates on focal variables truncated to ease presentation. bA = regression 

of exposure on polygenic risk for the exposure. rPRS = correlation between polygenic 

risk for the exposure and polygenic risk for the outcome. bC =  regression of the 

outcome on polygenic risk for the outcome. bD = regression of the exposure 

on polygenic risk for the outcome. bE = regression of the outcome on polygenic risk 

for the exposure. bF = regression of the outcome on the exposure.  
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Figure 2. Results of a Genetic Path Analysis of Educational Attainment and Body Mass 

Index Using Multiple Polygenic Scores.  

 
Notes. The double-headed arrow represents a correlation. Single-headed arrows represent regressions. All focal 

variables were standardized (M = 0, SD = 1). Therefore, coefficents are intrepetted as the predicted standard deviation 

increase in BMI given a standard deviation increase in polygenic risk or education. 99% bias-corrected bootstrapped 

confidence intervals are reported below parameter estimates. p = probability of the observed data if the null hypothesis 

is true (i.e.  = 0). All focal variables are regressed on age, sex, and PCs, but these pathways are omitted to ease 

visualization.  See Table 2 for the effects of exogenous covariates. 
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Figure 3. Results of a Genetic Path Analysis of Educational Attainment and Smoking 

Initiation Using Multiple Polygenic Scores. 

 
Notes. The double-headed arrow represents a correlation. Single-headed arrows represent regressions. All focal 

variables are standardized (M = 0, SD = 1). To help ease interpretation of results, estimates for pathways to smoking 

initiation are reported as risk ratios, intrepetted as the increased risk of having initiated smoking given a one unit 

increase in the predictor (i.e. a standard deviation increase in polygenic risk or education). 99% bias-corrected 

bootstrapped confidence intervals for risk ratios (RR) and betas [] are reported in parentheses and brackets, 

respectively. p = probability of the observed data if the null hypothesis is true (i.e.  = 0 or RR = 1). All focal 

variables are regressed on age, sex, and PCs, but these pathways are omitted to ease visualization.  See Table 2 for 

the effects of exogenous covariates
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Table 2. Effects of Exogenous Covariates on Focal Study Variables 

  

Outcome = BMI 

PRSE PRSY Exposure (E) Outcome (Y) 

b SE p b SE p b SE p b SE p 

Age .00 .00 .617 -.01 .00 .026 -.01 .00 .005 .00 .00 .892 

Sex .09 .06 .120 -.09 .05 .121 .16 .06 .006 .19 .06 .001 

PC1 -.69 .78 .376 .55 .73 .448 .23 .71 .746 .06 .60 .923 

PC2 -.72 .76 .345 -2.44 .69 < .001 .29 .66 .665 .65 .66 .322 

PC3 -.11 .12 .364 .17 .12 .153 .09 .09 .346 .25 .09 .008 

PC4 .00 .15 .467 -.11 .15 .467 -.10 .14 .438 -.03 .14 .837 

PC5 .01 .03 .799 -.15 .03 < .001 -.04 .03 .123 .04 .023 .074 

  

Outcome = Smoking 

PRSE PRSY Exposure (E) Outcome (Y) 

b SE p b SE p b SE p b SE p 

Age .00 .00 .617 .00 .00 .070 -.01 .00 .010 .01 .00 < .001 

Sex .09 .06 .120 -.05 .06 .360 .15 .06 .007 .21 .07 .003 

PC1 -.69 .78 .375 .70 .75 .351 .26 .70 .709 .99 .79 .210 

PC2 -.72 .76 .342 .19 .68 .780 .38 .65 .556 1.21 .79 .124 

PC3 -.11 .14 .452 .03 .11 .759 .09 .09 .366 .10 .13 .438 

PC4 .00 .15 .999 -.11 .14 .452 -.10 .14 .464 -.08 .17 .654 

PC5 .01 .03 .799 -.04 .03 .206 -.04 .03 .137 -.02 .03 .536 
Notes. b = multiple regression coefficient. SE = standard error. p = probability of the observed data if the null 

hypothesis is true (i.e. b = 0).  
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