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Quantifying glioblastoma drug penetrance from experimental data

Susan Christine Massey, Javier Urcuyo, Bianca Maria Marin, Jann Sarkaria,
Kristin R. Swanson

Abstract—Poor clinical trial outcomes for glioblastoma
(GBM) can be attributed to multiple possible causes. GBM is
heterogeneous, such that there is a chance of treatment—resistant
cells coming to predominate the tumor, and due to the blood
brain barrier (BBB) it is also possible that therapy was
inadequately delivered to the tumor. Mathematically modeling
the dynamics of therapeutic response in patient—derived
xenografts (PDX) and fitting the mathematical model to
bioluminescence imaging flux data, we may be able to assess the
degree to which both drug resistance and drug penetrance are
driving varied responses to these therapies.

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER

Glioblastoma (GBM) is an aggressive primary brain
cancer noted for its diffuse infiltration into surrounding
normal-appearing brain. This invasiveness makes GBM
notoriously difficult to treat, as diffusely invading cells cannot
be resected surgically, are difficult to target with radiation
therapy, and thus must be targeted with chemotherapy.
However, this too presents a challenge, as these invading
GBM cells reside beyond the dense tumor regions where
angiogenesis causes disruption of the blood brain barrier
(BBB) and allows drugs to more readily enter the central
portion of the tumor. Thus, failed trials involving molecularly
targeted therapies face a daunting task of understanding
whether the root cause was inadequate targeting, resistance,
or insufficient delivery across the BBB to the tumor. In order
to improve treatment outcomes, it is critical to determine
predictors of drug distribution in individual patients’ tumors
and surrounding brain tissue to ensure invading GBM cells
are adequately exposed to the therapy.

Using GBM patient-derived xenograft (PDX) lines to
recapitulate the both the inter- and intratumoral heterogeneity
seen within and across patients [1,2], several treatments were
administered across subjects implanted with different PDX
cell lines (derived from different GBM patients) implanted
either in flank or orthotopically. The size of PDXs were
determined non-invasively using bioluminescence imaging
(BLI) flux, which is directly proportional to cell number. The
most promising treatment results for the flank tumors was
ABT414 (Depatuxizumab Mafodotin), an investigational
EGFR-targeted monoclonal antibody drug conjugate [3].
However, the murine flank and orthotopic EGFRmut PDXs
treated with ABT414 showed response differences between
the two tumor locations for different PDX lines, suggesting a
BBBrole. Following these experiments, we compiled the time
series BLI data from PDXs to develop and parameterize a
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mathematical model of the observed treatment response
dynamics. Fitting our model to this data via nonlinear
regression allows us to obtain parameter estimates that can
help assess the degree to which these results might be
attributed to either the evolution of therapeutic resistance or
differences in blood brain barrier breakdown between the
tumors.

II. ILLUSTRATIVE APPLICATION OF METHODS

A. Ordinary Differential Equation Model Development

BLI data from untreated groups indicated that tumors
grew exponentially in terms of total tumor cell number. In the
treated groups, however, there was a decline in BLI flux until
there appeared to be a subsequent phase of exponential re-
growth, albeit with a slower growth rate. As this appeared to
indicate a resistant subpopulation of tumor cells, the minimal
differential model of tumor growth includes two tumor cell
populations corresponding to those that are sensitive (s) and
resistant (r) to the antibody (4), as well as the dynamics of the
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This model is schematized in Fig. 1. Model parameters and
their definitions
are outlined in
Table I.
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Figure 1. Schematic of patient—derived xenograft
response to therapy with ABT414 antibody drug
conjugate, including key variables and parameters of
the mathematical model.

B. M. Marin, and J. Sarkaria are with Mayo Clinic, Rochester, MN 55905
USA. (e-mail: sarkaria.jann@ mayo.edu).


https://doi.org/10.1101/650184
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/650184; this version posted May 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

z=/l4s to represent the degree to which the resistant cells are
less sensitive to antibody than the so-called sensitive cells:

C = Cpe (qef'yzus JA®dt | 1- q)efwsz(t)dt)

where,
N R A _ =AY g (¢ — 7
/A(t)dt _ Z 9" A ggee(n) (e e )\) (t—"Tn)
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Many parameters were unknown, but could be determined
through several steps of fitting the equations to the time series
BLI data (as described in II. B.). The only known parameters
were the doses of ABT414 delivered, including the timing of
dose pulses, as well as the half-life of the drug.

TABLE 1. PARAMETER SYMBOLS AND DEFINITIONS
Sym Parameter Details
Parameter Definition Value Units

p cellular proliferation rate 0.1t00.3 day’!

us | drug-mediated sensitive cell kill rate 2t010 mg! day’!

q resistant implanted cell proportion” Otol —

z reduced sensitivity factor in r cells” Otol —

A ABT414 decay rate® In(2)/7 day™!
Adose | ABT414 dose in a single pulse® 0.1 mg

% Fraction exposed to ABT414 ™ Otol —

a. These parameters were known, all others were found by fitting to data. b. Flank tumor has no
blood brain barrier, so =1 in that setting. (*Indicates values were constrained to this range for fitting.)

B. Parameter Estimation by Fitting Model to Data

Starting with the untreated (sham control) case, the
treatment components of the model go away, leaving a simple
exponential equation C=Cpe”, which can be fitted to the
untreated BLI data to obtain an estimate of viable implanted
cells (initial condition Cp) and the net growth rate of cells, p
for each PDX line (Fig. 2).

GBM 12 Intracranial Sham Control

1010
100
108

107

--- Data
— Fit

BLI Flux (photons/sec)

108-

105
0o 2 4 6 8 10 12 14 16 18 20
Time (days post injection)

Figure 2. Plot showing untreated tumor growth assessed by bioluminescence
imaging flux as well as the untreated model fit found by nonlinear regression.

Next, a similar fitting process was done with treated flank
tumors, using these parameter estimates from the untreated
case and setting parameter y (representing BBB permeability)
to one, since there is no BBB effect to reduce the amount of
drug and resultant effect in the tumor. Linear regression
performed well (Fig. 3) and found estimates of ¢, z and .
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Figure 3. Treated flank tumor growth assessed by bioluminescence imaging

flux as well as the individual model fits. Shaded region indicates time before
treatment initiated.

Finally, keeping 4, from the flank data (i.e., assuming that a
subpopulation remained just as sensitive intracranially as in
flank), least squares regression was used to estimate ¢, z, and
y (Fig. 4).
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Figure 4. Treated intracranial tumor growth assessed by bioluminescence
imaging flux as well as the individual model fits. Shaded region indicates
time before treatment initiated.

In spite of the noise in the BLI data, the fits in both the
intracranial and flank subjects performed reasonably well.
This suggests that we can use this method across all of the
PDX lines to quantify differences in sensitivity (including the
cell kill rates and proportion of sensitive vs resistant cells
initially implanted) and the global fraction of tumor exposed
to drug. Ultimately, we anticipate that this modeling
framework could be used for assessing the contributions of
drug resistance and penetrance in PDXs for other therapeutic
agents.
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