
  

  

Abstract—Poor clinical trial outcomes for glioblastoma 
(GBM) can be attributed to multiple possible causes. GBM is 
heterogeneous, such that there is a chance of treatment–resistant 
cells coming to predominate the tumor, and due to the blood 
brain barrier (BBB) it is also possible that therapy was 
inadequately delivered to the tumor. Mathematically modeling 
the dynamics of therapeutic response in patient–derived 
xenografts (PDX) and fitting the mathematical model to 
bioluminescence imaging flux data, we may be able to assess the 
degree to which both drug resistance and drug penetrance are 
driving varied responses to these therapies. 

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Glioblastoma (GBM) is an aggressive primary brain 
cancer noted for its diffuse infiltration into surrounding 
normal–appearing brain. This invasiveness makes GBM 
notoriously difficult to treat, as diffusely invading cells cannot 
be resected surgically, are difficult to target with radiation 
therapy, and thus must be targeted with chemotherapy. 
However, this too presents a challenge, as these invading 
GBM cells reside beyond the dense tumor regions where 
angiogenesis causes disruption of the blood brain barrier 
(BBB) and allows drugs to more readily enter the central 
portion of the tumor. Thus, failed trials involving molecularly 
targeted therapies face a daunting task of understanding 
whether the root cause was inadequate targeting, resistance, 
or insufficient delivery across the BBB to the tumor. In order 
to improve treatment outcomes, it is critical to determine 
predictors of drug distribution in individual patients’ tumors 
and surrounding brain tissue to ensure invading GBM cells 
are adequately exposed to the therapy.  

Using GBM patient-derived xenograft (PDX) lines to 
recapitulate the both the inter- and intratumoral heterogeneity 
seen within and across patients [1,2], several treatments were 
administered across subjects implanted with different PDX 
cell lines (derived from different GBM patients) implanted 
either in flank or orthotopically. The size of PDXs were 
determined non-invasively using bioluminescence imaging 
(BLI) flux, which is directly proportional to cell number. The 
most promising treatment results for the  flank tumors was 
ABT414 (Depatuxizumab Mafodotin), an investigational 
EGFR-targeted monoclonal antibody drug conjugate [3]. 
However, the murine flank and orthotopic EGFRmut PDXs 
treated with ABT414 showed response differences between 
the two tumor locations for different PDX lines, suggesting a 
BBB role.  Following these experiments, we compiled the time 
series BLI data from PDXs to develop and parameterize a 
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mathematical model of the observed treatment response 
dynamics. Fitting our model to this data via nonlinear 
regression allows us to obtain parameter estimates that can 
help assess the degree to which these results might be 
attributed to either the evolution of therapeutic resistance or 
differences in blood brain barrier breakdown between the 
tumors.  

II. ILLUSTRATIVE APPLICATION OF METHODS 

A. Ordinary Differential Equation Model Development 
BLI data from untreated groups indicated that tumors 

grew exponentially in terms of total tumor cell number. In the 
treated groups, however, there was a decline in BLI flux until 
there appeared to be a subsequent phase of exponential re-
growth, albeit with a slower growth rate. As this appeared to 
indicate a resistant subpopulation of tumor cells, the minimal 
differential model of tumor growth includes two tumor cell 
populations corresponding to those that are sensitive (s) and 
resistant (r) to the antibody (A), as well as the dynamics of the 
antibody itself:  

 
This model is schematized in Fig. 1. Model parameters and 

their definitions 
are outlined in 
Table I.  

Further, this 
model can be 

solved 
analytically, 

combining s 
and r cells to 
obtain the total 
population of 
tumor cells, C, 
letting q=r0/C0 
to represent the 
proportion of 
implanted cells 
that are 
resistant, and 
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Figure 1. Schematic of patient–derived xenograft 
response to therapy with ABT414 antibody drug 
conjugate, including key variables and parameters of 
the mathematical model. 
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z=µr/µs to represent the degree to which the resistant cells are 
less sensitive to antibody than the so-called sensitive cells:  

 
where,  

Many parameters were unknown, but could be determined 
through several steps of fitting the equations to the time series 
BLI data (as described in II. B.). The only known parameters 
were the doses of ABT414 delivered, including the timing of 
dose pulses, as well as the half-life of the drug. 

TABLE I.  PARAMETER SYMBOLS AND DEFINITIONS 

Sym 
Parameter Details 

Parameter Definition Value  Units 

ρ cellular proliferation rate  0.1 to 0.3 day-1 

µs drug-mediated sensitive cell kill rate  2 to 10 mg-1 day-1 

q resistant implanted cell proportion* 0 to 1 — 

z reduced sensitivity factor in r cells* 0 to 1 — 

λ  ABT414 decay rate a ln(2)/7 day-1 

Adose ABT414 dose in a single pulse a 0.1 mg 

γ Fraction exposed to ABT414 *b 0 to 1 — 

a. These parameters were known, all others were found by fitting to data.  b. Flank tumor has no 
blood brain barrier, so =1 in that setting. (*Indicates values were constrained to this range for fitting.) 

B.  Parameter Estimation by Fitting Model to Data 
Starting with the untreated (sham control) case, the 

treatment components of the model go away, leaving a simple 
exponential equation C=C0eρt, which can be fitted to the 
untreated BLI data to obtain an estimate of viable implanted 
cells (initial condition C0) and the net growth rate of cells, ρ 
for each PDX line (Fig. 2). 

 
Figure 2. Plot showing untreated tumor growth assessed by bioluminescence 
imaging flux as well as the untreated model fit found by nonlinear regression. 

Next, a similar fitting process was done with treated flank 
tumors, using these parameter estimates from the untreated 
case and setting parameter γ (representing BBB permeability) 
to one, since there is no BBB effect to reduce the amount of 
drug and resultant effect in the tumor. Linear regression 
performed well (Fig. 3) and found estimates of q, z and µs.  

 
Figure 3. Treated flank tumor growth assessed by bioluminescence imaging 
flux as well as the individual model fits. Shaded region indicates time before 
treatment initiated. 

Finally, keeping µs from the flank data (i.e., assuming that a 
subpopulation remained just as sensitive intracranially as in 
flank), least squares regression was used to estimate q, z, and 
γ (Fig. 4). 

 
Figure 4. Treated intracranial tumor growth assessed by bioluminescence 
imaging flux as well as the individual model fits. Shaded region indicates 
time before treatment initiated. 

In spite of the noise in the BLI data, the fits in both the 
intracranial and flank subjects performed reasonably well. 
This suggests that we can use this method across all of the 
PDX lines to quantify differences in sensitivity (including the 
cell kill rates and proportion of sensitive vs resistant cells 
initially implanted) and the global fraction of tumor exposed 
to drug. Ultimately, we anticipate that this modeling 
framework could be used for assessing the contributions of 
drug resistance and penetrance in PDXs for other therapeutic 
agents.  
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