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Abstract

Glioblastomas are aggressive primary brain tumors known for their inter- and
intratumor heterogeneity. This disease is uniformly fatal, with intratumor
heterogeneity the major reason for treatment failure and recurrence. Just like the
nature vs nurture debate, heterogeneity can arise from heritable or environmental
influences. Whilst it is impossible to clinically separate observed behavior of cells
from their environmental context, using a mathematical framework combined with
multiscale data gives us insight into the relative roles of variation from inherited and
environmental sources.

To better understand the implications of intratumor heterogeneity on
therapeutic outcomes, we created a hybrid agent-based mathematical model that
captures both the overall tumor kinetics and the individual cellular behavior. We
track single cells as agents, cell density on a coarser scale, and growth factor diffusion
and dynamics on a finer scale over time and space. Our model parameters were fit
utilizing serial MRI imaging and cell tracking data from ex vivo tissue slices acquired
from a growth-factor driven glioblastoma murine model.

When fitting our model to serial imaging only, there was a spectrum of equally-
good parameter fits corresponding to a wide range of phenotypic behaviors. This
wide spectrum of in silico tumors also had a wide variety of responses to an
application of an antiproliferative treatment. Recurrent tumors were generally less


https://doi.org/10.1101/650150
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/650150; this version posted May 26, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

2

proliferative than pre-treatment tumors as measured via the model simulations and
validated from human GBM patient histology. When fitting our model using imaging
and cell scale data, we determined that heritable heterogeneity is required to capture
the observed migration behavior. Further, we found that all tumors increased in size
after an anti-migratory treatment, and some tumors were larger after a combination
treatment than with an anti-proliferative treatment alone. Together our results
emphasize the need to understand the underlying phenotypes and tumor
heterogeneity in designing therapeutic regimens.

I. Introduction

Glioblastoma (GBM) is the most common and deadly form of brain cancer with a
median survival rate of 12-15 months (1,2). The extensive infiltration of single cells
in and around important anatomical structures makes curative surgical resection
practically impossible, and resistance to radiation and chemotherapeutic strategies
often causes recurrence following an initial response. Magnetic resonance imaging
(MRI) serves as the primary diagnostic viewpoint into the disease state and guides
the subsequent treatment strategies that follow. However, it is often the case that
patients with similar growth patterns determined with MRI will have different post-
treatment kinetics. While patient data at smaller scales, such as histological and
genetic profiling, is known to be generally prognostic, its connection to optimal
therapeutics and clinical imaging remains an active area of research (3-8). In this
work, we investigate how phenotypic heterogeneity at the cell scale effects tumor
growth and treatment response at the imaging scale by quantitatively matching
multiscale data from an experimental rat model of GBM to a mechanistic
computational model.

It is broadly acknowledged that GBMs exhibit genetic and phenotypic
heterogeneity both spatially and temporally (9-13). However, GBM progression is
not just driven by cell autonomous genetic and epigenetic alterations but also from
larger scale non cell autonomous interactions between cells and their environment
(14-16). Data is routinely collected in the clinic, but different scales are generally
separated. Imaging gives us larger tissue scale information like size to quantify
burden or density variations that can be used to define different environmental
habitats (17-19). Histology, single cell data, and genetic profiling can be used to view
heterogeneity at the tissue and individual cell level, however, the measured
heterogeneity at the cell scale does not directly lead to predictions in tumor growth
and treatment response.

Here we examine feedback between tumor and microenvironmental
heterogeneity using a model that considers amplification of platelet-derived growth
factor (PDGF). PDGF is a potent mitogen that appears to be important for invasion
and expansion of proneural GBM (14,20-27). PDGF can stimulate proliferation,
migration, and differentiation of normal progenitor cells (28,29) and tumor cells (30).
Cells may encounter different local external PDGF signals and also have a variable
response to PDGF. While a transient PDGF signal is part of a normal injury repair
response mechanism (28,29), glioblastoma tumor cells can also overexpress PDGF to
drive tumor growth. Whilst it is impossible to separate observed cell phenotypes
from their environmental context in vivo, we can investigate this complex system
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Figure 1. Coupling multiscale data to a multiscale mathematical model. Upper: data from rat experiments
including imaging at 5, 10, and 17 days post injection, circumscribed and quantified from serial MRI images,
tissue slice image, spatial distribution of infected (green) and recruited (red) cells, and individual cell tracks.
Lower: the multiscale model represents the imaging as a spatial density map, considers the gray and white
matter distribution in the rat brain tissue, and tracks cell types (infected and recruited), measured cell
phenotypes (actual proliferation and migration), potential cell phenotypes (maximal proliferation and
migration), and the PDGF concentration field.

using a mathematical framework coupled to multiscale data to get a more complete
picture of the disease (Fig. 1). In this work, we use MRI imaging data and ex vivo time
lapse imaging of fluorescently tagged cells in tissue slices (Fig. 1 upper) to
parameterize a mechanistic hybrid agent-based model (Fig. 1 lower).

Mathematical models have been developed to study many facets of GBM
growth and response to treatment (5,30-42). There have been numerous papers
published by Swanson et al demonstrating the clinical use of a relatively simple
partial differential equation model based on net rates of proliferation and invasion.
To date they have used their models to predict therapeutic benefits from surgery and
radiation (43-46), IDH1 mutation status (47), and implications of growth kinetics
during PDGF-driven tumor progression (33,34). However, the continuum nature of
this model means it cannot capture intercellular heterogeneity which may impact
long-term post treatment behavior. Here, we consider intratumor heterogeneity in
proliferation and migration rates from inheritable phenotypes at the cell scale and
from the microenvironment. The multiscale nature of our hybrid model enables us to
tune our parameters with both imaging and cell-tracking data, thus allowing us to
predict a host of tumor behaviors from size to composition to individual cell
responses to therapy. This could be key to understanding treatment response as
single cells can cause relapse or treatment failure.

In the following sections, we introduce the experimental model by Assanah et
al of PDGF-driven GBM in which single cells were tracked. We then present a hybrid
agent-based mathematical model which is able to capture the spatial and temporal
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heterogeneity of single cells. Using this model, we first identify the sets of parameters
with which our model is able to recapitulate the observed tumor size dynamics from
the data. We then identify the sets of parameters that fit smaller scale metrics from
the data, such as the observed distribution of individual cell velocities. We investigate
how the fully parametrized model with both environmental and heritable
heterogeneity compares to a case with only environmental heterogeneity, and finally,
we show how anti-proliferative and anti-migratory drugs affect outcomes and
modulate heterogeneity within the tumor cell population.

I1. Methods

Rat model and ex vivo multiscale data analysis

The experimental rat model enabled the tracking of both cells that were infected with
the PDGF-over-expressing retrovirus, tagged with green fluorescence protein (GFP),
and normal progenitor cells, tagged with dsRed. At 2 and 10 days post infection,
brains were excised and cut into 300um thick slices, and positions of labeled cells and
their progeny were tracked by hand every 3 minutes from time-lapse tracking. For
more details on the experimental model, see (14). A total of 611 cells were tracked
(134 infected and 137 recruited at 2d and 137 infected and 203 recruited at 10d) in
the tissue slices (2 slices at 2d and 4 at 10d) over time. Proliferation rate was
calculated by dividing the number of proliferation events over the time period by the
total number of cells at the beginning of the observation period and the total
observation time in hours. For each cell we calculated a cell speed by the total
distance traveled over the total time spent moving. The persistence times for moving
and stopping, and the turning angles were also calculated (see Section S1).

Hybrid off-lattice agent-based mathematical model

Our hybrid model consists of tumor cells, represented as off-lattice agents, and a
PDGF distribution, represented as a continuous field. We used off-lattice agents to
allow single cells to migrate without the confines of a grid structure, but used a larger
scale square lattice to track the cell density matrix, which we used to check if the local
carrying capacity was reached. A smaller hexagonal lattice was used to track PDGF
dynamics and define the brain tissue in terms of white and gray matter.

Model initialization and flow.

We define the white and gray matter using a section from an 80 day old male Sprague
Dawley rat (48-50) using the Scalable Brain Atlas (51). We selected a coronal slice
near the bregma to get a representative 2D brain field involving the corpus callosum
(Fig. 1 bottom). For simplicity, any anatomical tissue feature that was not white
matter was rendered as gray matter. The final array defines an 833x573 pixel domain
corresponding to a scaled brain size of roughly 14.5x10.0 mm. There is an initial
injection of 100 infected cells, which are labeled green and produce PDGF, and 100
progenitor cells, which are labeled red and do not produce PDGF. In addition, glial
progenitors are randomly initialized throughout the brain matter at variable density
around 2% (52,53), and there is an initial bolus of PDGF, representing an injury
response caused by the injection (14). The flowchart in Fig. 2A details the major
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Figure 2. Model overview. A) Flow chart shows key decision points in the model. Tissue processes are connected
with thick black lines, while the cell loop for single cell processes are contained within the gray box and connected
with thin black lines. At the start of each time step (green arrow), we calculate the density and find the activated
and inactivated subsets of cells. All activated cells are checked for quiescence, division, migration, and PDGF
interactions as shown. Then PDGF decay and diffusion occurs before moving onto the next time step. The infected
and recruited cells respond differently to PDGF due to B) an autocrine stimulation for infected cells (Cpa in Eq. 2)
and C) a decreased activation barrier for recruited cells (§in Eq. 2). Increasing Cpa shifts the response upward at
low Cpp. Decreasing f increases the slope to achieve high response at lower Cpp, while still inactive at Cpp=0.

decisions at each time point about division (orange), migration (teal), and PDGF
(purple). All cells are assumed to be 25 pum in diameter.

Calculate cell density matrix.

We define a coarse square mesh (100pm x 100um) to check the local cell density. Each
cell is assigned a closest neighborhood, which has a carrying capacity of k in gray
matter and 2x/3 in white matter. We also check progenitor cell activation at this step,
as only activated cells go through the cell loop. The field of progenitor cells remain
inactive unless the local PDGF is greater than 5x10-4ng/mL.

Cell loop.

A. Proliferation and quiescence: A cell’s intermitotic time acts as a timer for division,
counting down at each time step until the end of the cycle. At that point, a new cell is
created at a random angle one radius away from the parent cell. However, if the
number of cells in the neighborhood mesh point exceed the carrying capacity, then it
is deemed quiescent, and it does not move forward in its cell cycle and does not divide.
If subsequently there is enough room to divide, the cell reenters the cell cycle where
it left off. The newly divided cell inherits the same proliferation rate and migration
speed as its parental cell.

B. Migration: Glioma cells migrate in a stop and go fashion (54). We randomly choose
amigration status (stop or go), and sample from the distribution of persistence times.
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For a given persistence T, a stopped cell will remain stopped and a moving cell will
continue to move at the current angle and velocity. After t time, the cell resets its
migration status (stop or move), resamples T from the data, and finds a new moving
angle. In gray matter, cells do a random walk for t sampling from a uniform
distribution of turning angles, and in white matter, cells do a persistent random walk
for 1.5t sampling from a normal distribution centered around 0 with a standard
deviation 0. A cell is not allowed to move into empty space, such as past the edges of
the brain or within the ventricles. If a cell lands in this space, it has 10 attempts to find
a suitable spot at other random angles. If unsuccessful, the distance moved is
increased by a cell diameter, and the angle search is repeated for distances of up to 3
diameters away from the original location. If an empty space is not found, the cell
remains in the original location (however, in our testing, a new location was always
found before this constraint was satisfied). If the cell is set to move into a space that
is already at carrying capacity, then it can move there only if it is less dense than the
original space. Otherwise, it remains in place. This allows the density of cells to
slightly surpass the carrying capacity but prevents much movement when above or
near the carrying capacity.

C. Response to PDGF: PDGF can stimulate glial cells to proliferate and migrate by
autocrine and paracrine signals (28,55). Since we are interested in phenotypic
heterogeneity in the tumor with regards to proliferation and migration, we need to
separate the influence of the environmental PDGF, which can change depending on
location, from the potential phenotype, which is inherited. To achieve this, we model
the cells such that their observed phenotype for proliferation rate p and migration
speed m is a product of the response to PDGF in the environment and some internal,

inheritable upper limit:
(P) _ (PpotV(Cp)> )
m mpoty(CP) '

where ppoc is the maximal potential proliferation rate, and mpo: is the maximal
potential migration rate. The function y(Cp) represents how the concentration of
PDGF Cp modulates the proliferation and migration, which ultimately takes a value
from 0-1, so that as Cp becomes saturated proliferation and migration reach their
maximum potential values (i.e. y(Cp)—1, so that p—ppoc and m—mp.). The exact
functional relationship of Cr on p and m is not well established, but a Hill function
response in compatible with the data (30,56):

Cpa + Cpp .
————— for infected cells
_ CP _ CPA + Cpp + K
V(CP) - C + K - CPP ) (2)
P _— for recruited cells

where Cpa is the PDGF contributing to the autocrine stimulation, Cpp is the PDGF
contributing to the paracrine stimulation, K is the concentration at which the
response is half maximum, and  modifies the activation barrier of recruited cells to
PDGF stimulation. While all cells can respond to PDGF produced by the infected cells
that diffuses throughout the surrounding environment Cpp, only the infected cells
have an autocrine effect, due to a portion of the PDGF Cpa that stays within and
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stimulates the infected cells. The recruited cells are also assumed to have a lowered
activation barrier to Cpp. We incorporate this into the equation by lowering the
concentration at which the response is half maximum (by modifying K by f€(0.1,1)),
which causes recruited cells to gain a larger response from Cpp than infected cells
while still being inactive when Cpp=0. The effects of changing these values are shown
in Figs. 2C-D. Because there are a large number of inactive recruited cells in the
environment, we cut off any activity from these cells in areas with Cpp<5x10-4ng/mL,
which corresponds to an upper bound of 0.1% for the response function
(¥(Cr)<=0.001) with the given parameter ranges. This cutoff reduces the
computational expense from behavior that is essentially negligible.

D. PDGF secretion and consumption: Only infected cells secrete PDGF and all cells
consume PDGF into or from the nearest hexagonal grid point. If there is less local
PDGF than the amount to be consumed for a cell during the time step, all PDGF in the
grid point will be consumed.

PDGF dynamics.

A fine hexagonal mesh with the same radius of a cell (12.5 um) is utilized for the PDGF
dynamics. Following the cell loop, the whole PDGF field is subject to decay and then
diffusion (further details in Section S2).

I11. Results

Cell behavior in ex-vivo assay is influenced by multifaceted factors

In a series of experiments by Assanah et al, it was shown that infecting resident glial
progenitor cells with a retrovirus engineered to overexpress PDGF in the rat brain
can induce a massive overgrowth of cells with histologic features similar to GBM
(14,22). The tumors grow rapidly and are composed of a mixture of retrovirus
infected and uninfected/recruited progenitor cells (14). Specifically, the tumor
diameters at 5, 10, and 17 days post infection were 1.7, 2.4, and 3.2 mm, respectively,
which were determined previously from MRI images in Massey et al (33). At 174,
progenitors made up 80% of all labeled cells in the tissue section (14). Single cell
trajectories from the infected (green) and recruited (red) cells at 2d were tracked and
are displayed in the spatial plot of Fig. 3 along with births, stops, and speeds along the
tracks. Cells were mainly measured near the edge of the tumor where the density was
lower, so they could be distinguished from their neighbors. We found that there was
a high degree of phenotypic heterogeneity amongst cells, some of which may be due
to environmental influences. This is outlined below.

Phenotypic heterogeneity. From these tracks, we were able to observe where cells
moved, divided, turned, and stopped for long periods of time. They generally moved
in the same direction, but occasionally made large turns and took long stops. There
was large variation in the speeds of the cells. The average speed was slightly higher
for recruited cells, but didn’t differ much between the different time points. The long
stops and the cell divisions were scattered throughout the tissue and didn’t
significantly correlate to the local density or each other. About half of the cells divided
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Figure 3. Single cell trajectories from the rat experiment at 2 days post infection overlaid on the cell density
map. The insert shows the region of interest within the rat brain where the pink highlights the white matter.
An asterisk marks where a cell division occurred. Each track contains an arrow for the first and last half of the
track showing the average direction and speed over that time period. The arrows for the infected cells are
green for lower speeds and blue for higher speeds. The arrows for recruited cells are red for lower speeds and
yellow for higher speeds. Gray dots mark where a cell has stopped longer than 1 hour with the size
proportional to the stop time.
over the 25h track recording at 10d, and no cell during this time period divided twice.
Proliferation rate was quantified as the percentage of cells that divided over time,
which increased from 2d to 10d and was slightly higher for recruited cells (in
agreement with the analysis in (14)). Plots of the migration behavior and a table
quantifying the migration and proliferation metrics for this data from 2d and 10d are

shown in Section S3.

Possible environmental influences. Cells appeared to move generally along the
diagonal of the top-left to the bottom-right of the region, which corresponds roughly
to the white matter region highlighted in pink in the insert of Fig. 3. There is also
faster and more directional movement along the white matter tract while the denser
areas of the tumor core and the outer gray matter areas generally had shorter, less
directional paths.
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PARAMETER SYMBOL | RANGE (UNITS) SOURCES
Recruitable cell density PR 0.1-5 (%) (52,53)
tissue directionality deviation in white o 0-45 (degrees) i
matter
Initial PDGF po 100-600 (ng/mL) estimated
Diffusion coefficient for PDGF Dy 1-1000(x10-6 cm2/day) estimated
PDGF PDGF decay rate rd 0-0.500 (ng/mL.day) estimated
PDGF secretion rate Is 10-400 (ng/mL.cell.day) (14)
PDGF consumption rate re (0-1)rs (ng/mL.cell.day) -
Autocrine boost Da 0.1-50 (ng/mL) (14)
Half max proliferation response Ky 5-300 (ng/mL) (14,20,22)
PDGF Half max migration response Kn 5-300 (ng/mL) (14,20,22)
response Recruited proliferation sensitivity A 0.1-1.0 -
Recruited migration sensitivity L 0.1-1.0 -
Intermitotic time (pporl) r 20-100 (h) (14,20,22)
proliferation Std dev intermitotic time o, 0-100 (h) variable
o Migration speed (mpot) v 0-100 (um/h) (14,22)
migration Std dev migration speed oy 0-100 (um/h) variable

Table 1. List of all variable trait ranges in the mathematical model. They are categorized into tissue-related,
PDGF-related environmental effects, and cell specific values, such as response to PDGF or heterogeneity in
proliferation and migration traits.

In silico tumors with similar growth dynamics may have widely different
compositions

Using the multiscale data from the experimental model: tumor size over time, a count
of cell types, and proliferation events and migration behavior tracked from single
cells (Table S1), we calculate similar metrics in the in silico tumors (see Section S4A-
B). We focused on a set of 16 uncertain parameter values with reasonably-defined
search ranges (Table 1) and used a hybrid genetic algorithm-random sampling
technique (57) to find parameter sets that fit the model to the time course of tumor
sizes from the data at 5d, 10d, and 17d to within 10% error (Fig. S4).

The resulting tumors that fit the size dynamics encompass a broad range of
distributions, shapes, and compositions. The results are shown in Fig. 4, with plots for
metrics going from size dynamics to more smaller scale individual cell metrics (Fig.
4A-D). The diversity of best fits to the growth dynamics is plotted along with 3
examples that represent tumor densities that are more nodular (high density with a
very distinct, steep border), diffuse (the tumor core is dense but drops off slowly in
density), and intermediate. Spatial distributions for these 3 examples are shown at
17d. The size dynamics in Fig. 4A demonstrate that the best fits all have similar
trajectories with little overall variation. However, the sizes in the simulation are
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Figure 4. A wide range of in-silico tumors fit to the size dynamics from the experimental data. The top row
shows the wider variation of the whole cohort of fits, while the spatial distributions below show
representative nodular, diffuse, and intermediate density tumors at the 17d time point. The columns
correspond to the (A) growth dynamics, (B) ratio of infected to recruited cells over time, (C) measured
proliferation rate and migration speed averaged over all cells, and the (D) potential proliferation rate and
migration speed (corresponds to the maximum values allowed given a saturated PDGF environment). For each
metric, the data points are shown in black, the best fits to the size dynamics of the data are shown in gray (as
a mean and standard deviation for dynamic values), and each example tumor is represented in the plots in
color (as a mean over 10 runs). Parameter values for each tumor are given in Table S2.

determined by the average maximum diameter exceeding 10% of the carrying
capacity. The many ways that the cells can be distributed and still meet the intended
size to match the data are shown below Fig. 4A. The nodular tumor is relatively dense
with a sharp drop at the edge, whilst the diffuse and intermediate tumors have more
fuzzy borders due to a larger portion of cells distributed sparsely throughout the
brain. These density differences can be quantified by defining respective tumor core
diameters (at least 50% cell density) and rim sizes (tumor edge with at least 2% cell
density). On average, the core diameters were 2.2mm, 1.9mm, and 1.9mm for the
nodular, intermediate, and diffuse tumors, and the rim sizes were 0.4mm, 0.9mm, and
1.5mm respectively (Fig. S5).

While the size dynamics were similar amongst these tumors, smaller scale
metrics differed substantially. Fig. 4B shows the variation in infected (I) and recruited
(R) cell numbers. The nodular, intermediate, and diffuse tumors end up with I/R
values of 0.17, 0.04, and 0.55, respectively. While both the nodular and intermediate
tumors had more recruited cells along the periphery, the intermediate tumor had
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infected cells that extended farther along the white matter tracts. For the diffuse
tumor, infected cells had advanced deep into the brain tissue in all directions.

The combination of measured trait values covered a large range of values (Fig.
4C). On average, the nodular tumor was more proliferative and less migratory, the
diffuse tumor was more migratory and less proliferative, and the intermediate tumor
had low values for both proliferation and migration. However, this differs spatially
and is quantified over 10 runs for each tumor in Fig. S6A-B. High cell density, usually
in the tumor core, creates a quiescent phenotype (characterized by suspended
proliferation), which also varies amongst the tumors.

The potential phenotypes cannot be measured from the data but are of interest
as they highlight difference between the realized (measured) and the possible
(potential). The potential phenotypes are inherited over generations for each
individual cell and represent maximal possible trait values. The nodular tumor is
highly proliferative and minimally migratory throughout spatially and temporally. In
contrast, the intermediate and migratory tumors are both initialized with similar
potential phenotypes on average, however, they present as noticeably distinct tumors
due to differences in heterogeneity and other parameter values. The effects of
selection can be seen in the diffuse tumor, as the highly migratory and proliferative
cells are found at the edge of the tumor and the less migratory cells are found in the
tumor core. These effects are quantified in Fig. S6C-D.

Anti-proliferative treatment causes a range of responses in silico tumors

We examined the effect of applying an anti-proliferative drug treatment, which
represents a cytotoxic chemotherapy assumed to Kkill fast proliferating cells. We used
a threshold cutoff of 60 hours, and all cells that are not currently quiescent with
shorter intermitotic times than the threshold are killed. The drug was applied
instantaneously at day 14 and remained on continuously until the simulation was
stopped 28 days later. Figure 5 shows the results.

Using the individual tumors examined in the previous section, we found that
the nodular tumor most often showed a complete response to the anti-proliferative
treatment, whilst the intermediate and diffuse tumors both recurred (Fig. 5A).
Amongst all tumors in the cohort, there was a broad range of responses to the anti-
proliferative treatment. In general, we found that the recurrent growth rate was the
same or less than the pre-treatment growth rate.

We also examined whether any phenotype changes prior to treatment had
predictive value. Within this cohort, a slowing proliferation rate was measured in
tumors that had a complete response (Fig. 5B), but there was no significant trend in
the measured migration rates. Generally, tumors had either decreasing activity in
both proliferation and migration, no significant changes in either trait, or increased
the activity of both proliferation and migration. The largest changes prior to
treatment were observed from more heterogeneous tumors. Of the examples we
examined in the previous section, the nodular and diffuse tumors did not change
much over the observation period, but the intermediate tumor dramatically slowed
in proliferation and migration, most likely due to recruitment of a large amount of
progenitor cells.
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Figure 5. Range in long-term responses of in-silico tumors to an anti-proliferative drug. The drug was applied
continuously at 14d until 42d. We compare the same top 300 fits and 3 tumors (averaged over 10 runs) shown
in the previous figure. A) Growth dynamics before and during treatment. Change from t1=9d to t2=13d in B)
measured and C) potential phenotypes. Larger, paler dots show tumors with more proliferative heterogeneity
or and dots outlined in yellow represent complete responses to treatment. D) Density distributions of the
nodular, intermediate, and diffuse tumors before (t2) and after (t3) treatment. The measured E) and potential
F) phenotypes before (tz) and after (t3) treatment are shown spatially and as a scatter plot of phenotype
combinations of only the non-quiescent cells). Both plots use the same color key, which depends on the
proliferation rate and migration speed of the cells, but for the scatter plot the size of the circle is proportional
to the number of cells with that phenotype combination, while a white dot marks the mean of the population.

While the measured proliferation rate was seen to slow prior to treatment for
complete responses, we found that these tumors showed little to no change in the
potential proliferation rate prior to treatment (Fig. 5C), but they were also rather
homogeneous initially. Amongst the full cohort, there was a general trend toward
both faster proliferation rate and migration speed that resulted in recurrence, and
larger changes in the more initially heterogeneous tumors.
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Figure 6. The top fit in-silico tumor to the multiscale experimental data using all 16 metrics. The top 300 fits to
all data (gray) are compared to the top fits to just the size dynamics from Fig. 4 (green), the best Heterogeneous
fit, and its Homogeneous counterpart (with no variation in potential phenotypes, i.e. o7=0, ov=0). The data is in
black. The For each metric, the corresponding spatial maps are shown below. Measured metrics include A)
growth dynamics and B) infected /recruited cells over time, and at 10d the C) mean measured proliferation rate
and migration speeds, the D) mean initial potential proliferation rate and migration speed, and the E) individual
cell speed distributions in terms of mean and standard deviation. The final graphs in column E compare the 10d
distributions of speeds of individual tracked cells to the data separated by cell type.
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Changes to the representative nodular, intermediate and diffuse tumors are
also noted post-treatment (Fig. 5D-F). The density distributions of recurrent tumors
had similarly sized post-treatment images, but were more diffusely distributed than
pre-treatment images (Figs. 5D and S7). The nodular tumor had very little variance
in measured (Fig. 5E) and potential (Fig. 5F) phenotypes, and was rather
homogeneously proliferative prior to treatment, while the two recurrent tumors had
reduced mean proliferation rates upon recurrence. The intermediate tumor had less
heterogeneity in both measured and potential traits upon recurrence compared to
pre-treatment distributions, while the diffuse tumor remained heterogeneous.

Cell autonomous heterogeneity causes little difference in tumor growth
dynamics but can lead to big differences in response to treatment

To fit the model at the cell scale, we used the same parameter estimation method with
all 16 measured observations from the experimental data. While the final best
parameter set didn’t fit all metrics from the in silico model equally well to the data,
the total error was within 15% for a cohort of parameter sets (Fig. S4C-D). Given the
best fit parameter set from this group, we examined the effect of heterogeneity in the
potential phenotype, such that eliminating heterogeneity would cause all observed
heterogeneity to be environmentally driven, such as quiescence caused by high cell
density and modulation of phenotype by local PDGF concentration. We compared the
best fit parameter set (Heterogeneous) to one with the same mean potential values
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Figure 7. Range in long-term response of in-silico tumors to an anti-proliferative drug comparing fits to size vs.
fits to all 16 metrics. The Heterogeneous best fit is compared to its Homogeneous counterpart (with no variation
in potential phenotypes, i.e. 5:=0, v=0). The drug is applied continuously at 14d until 42d. A) Growth dynamics
before and during treatment are shown for the cohort of top 300 fits to all metrics, the previous cohort of 300
fits to sizes, and the heterogeneous and homogeneous tumors. Change from t1=9d to t2=13d in B) measured and
C) potential proliferation rate and migration speed. The larger paler dots show tumors with less proliferative
heterogeneity o-, and outlined in yellow are the tumors that showed a complete response to treatment. D)
Density distribution of the heterogeneous and homogeneous tumors before (tz) and after (t3) treatment. The
measured E) and potential F) phenotypes before (tz) and after (t3) treatment are shown spatially and as a scatter
plot of phenotype combinations (of only the non-quiescent cells). The phenotype plots are represented as
described in Fig. 5.

for proliferation and migration, but without heterogeneity in these rates, :=0 and
0v=0, amongst the cells (Homogenous) along with the cohort of fits to all data within
the 15% cutoff and the previous cohort of fits to the size dynamics alone (Fig. 6).
Fitting to all data, compared to just the size dynamics, proved to narrow the
ranges to all metrics shown here with the exception of the size dynamics, which
broadened slightly. Both the heterogeneous and homogeneous tumors reasonably fit
the size dynamics (Fig. 6A) and had similar density distributions (Fig. S8). Both
tumors and the larger cohort fit to all data underestimated the infected to recruited
ratio (Fig. 6B). Both tumors had similar values for the measured proliferation and
migration rates (Fig. 6C), showing that the observed heterogeneity is largely
influenced by environmental drivers such as tumor density and PDGF concentration.
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Because the PDGF is highly concentrated at the tumor core and drops off at the tumor
edge, the measured proliferation and migration rates reduce with the PDGF
concentration (Fig. S9A-B). Both tumors were initialized with the same mean trait
values (Fig. 6D), but the spatial distribution of potential trait values shows that
heterogeneity in potential phenotypes can be present without manifesting any
noticeable differences in larger scale metrics. For the heterogeneous tumor, effects of
selection could be observed as the more migratory cells are found at the tumor
periphery along with less proliferative cells (Fig. S9C-D). We also found differences in
the distribution of individual cell speeds. The mean and standard deviation of speeds
fit better when heterogeneity is present than when it is not (Fig. 6E), and comparing
the distributions, which were averaged over 10 runs, further emphasizes this point
(column 6E, lower). The in silico measurements for the heterogeneous tumor fit the
data by not just matching to the peak, but also capturing the long tail of the
distribution. The distribution for the homogeneous tumor drops off sharply at high
cell speeds, which most likely occurs due to the maximum speed achieved at
saturated PDGF levels. Only a small number of highly migratory cells like in the
heterogeneous tumor is needed to create the long tail in this distribution.

When these tumors are treated with an anti-proliferative drug, there is enough
heterogeneity in the heterogeneous tumor to cause recurrence and enough
sensitivity in the homogeneous tumor for a complete response (Fig. 7A). The
recurrent, heterogeneous tumor was slightly more diffuse on the edge (Fig. S10).
There was a shift in both the observed (Fig. 7B) and potential phenotypes (Fig. 7C)
prior to treatment to faster proliferation rates and faster migration speeds on
average. The observed phenotypic activation increase is likely due to more sustained
PDGF responses and heterogeneity necessary to fit the individual level metrics. Prior
to treatment, the potential proliferation rates increased, while the potential migration
speeds only slightly increased. On recurrence of the heterogeneous tumor,
phenotypes with slower proliferation rates were, again, selected.

Anti-proliferative treatment leads to a less proliferative tumor at recurrence in
in silico and human tumors

Using the mathematical model, we found that antiproliferative drugs caused some
degree of tumor recession over all cases tested, but the effect was often only
temporary, and the recurring tumor had variable growth dynamics upon recurrence.
Furthermore, there was some selection for slightly less proliferative cells, which give
rise to recurrence. We also found similar results comparing the proliferating fraction
of cells (Ki-67+) before and after chemoradiation for nine GBM patients (Fig. 8, upper).
The proliferating fraction, measured through Ki67 staining, was seen to decrease
upon tumor recurrence (p = 0.012, Wilcoxon matched-pairs signed rank test). In
these cases, recurrence was defined as the first instance of measurable growth of the
lesion on MRI with a clinical determination of disease progression resulting in a
change of therapy, excluding pseudo-progression, in which the disease appears to
progress and subsequently regress without change in treatment (59,60). Patients that
demonstrated multifocal recurrence defined by multiple lesions not contiguous on
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Figure 8. Proliferation is reduced in recurrent tumors. Upper: diagnosis and recurrent tumor specimens from
9 GBM patients stained with Ki-67 antibody indicating proliferating cells. Lower: pre-treatment (14d) and
post-treatment (42d) proliferation index for the virtual cohort of fits to size dynamics. For the patient
samples, the labeling index is defined as the % of DAB-stained area out of the total nuclear area for each
patient in the region of highest staining density. For the model, we assume that Ki67 is positive only in the
last 20 hours of the cell cycle, which is counted as a % in the area of highest activity. These are shown on the
left with pre and post Tx variation and compared using a Wilcoxon matched-pairs signed rank test. The
middle shows a representative pre and post Tx sample, and the right shows the correlation between pre and
post Tx samples.

MRI were excluded. Using a similar metric in the model to Ki67, we found similar
results (Fig. 8, lower).

Anti-migratory and anti-proliferative treatment combinations may improve
outcomes in some in silico tumors

Anti-migratory drugs are an attractive option for very diffuse tumors to try to prevent
further invasion into the brain tissue. We examined the effects of an anti-migratory
treatment, represented as any agent that slows/stops the migration ability of cells
(61,62). We simulated this treatment by slowing the migration speeds of all cells to
10% of their original speed. We compared an anti-proliferative treatment alone (AP),
an anti-migratory treatment alone (AM), and an anti-proliferative and anti-migratory
combination (AP+AM). We examined the effect of these treatments on the diffuse
tumor from Fig. 4 as a prime example for an invasive tumor that could benefit from
these treatments.

The in silico results show that the AM treatment alone is not successful in
slowing the growth of most tumors, and the diffuse tumor grows especially fast under
this treatment (Fig. 9A). Compared to the AP treatment, most in silico tumors do not
do as well on AP+AM treatment at first, but appear to catch up over long applications
of treatment.

The full cohort of in silico tumors fit to the size dynamics was examined for
their response to the different treatments in Fig. 9B. We plot the change in tumor
diameter before and after each treatment and see that a reduction in diameter in
observed with 27% under AP, 0% with AM, and 36% with AP+AM. However, only 8%
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Figure 9. In-silico tumors do not respond well to an anti-migratory drug alone (AM), but may benefit from an
anti-proliferative, anti-migratory (AP+AM) combination treatment. The drug is applied continuously at 14d
until 28d. A) We show the growth dynamics for the AP, AM, and AP+AM treatments for the top 300 fits to the
size dynamics. The average response (from 10 runs) to each treatment of the same diffuse tumor from the
previous sections is also shown. B) Waterfall plot of the changes in tumor diameter from t; to t2 for the cohort
of top 300 fits to size when treated with AP (top) AM (middle), and AP+AM (bottom) treatments. The response
of the diffuse tumor to these treatments is shown as a yellow line. C) Treating just the diffuse tumor example,
we show the spatial density distributions, the core (>50% density) vs. the edge (>2% density), the measured
and potential phenotype distributions (colored according to the key), and the PDGF distribution. The plots for
the phenotype distributions are represented the same as described in Fig. 5.

actually showed a complete response with either AP or AP+AM. Although in most
cases, AP+AM resulted in better or similar outcomes than with AP alone (Fig. S11), in
some cases, such as the representative diffuse tumor, a better response was seen with
AP alone.

The response of diffuse tumor to each treatment is further examined in Fig. 9C.
Prior to treatment, the tumor had a mean core diameter (d¢) of 1.5mm with a mean
rim size (dr) of 1.4 mm. With the AP treatment alone, the tumor appears to stay
smaller for longer after treatment, but this measurement ignores many cells that
invaded deep into the brain tissue under the imaging density threshold (at 41d,
dc=2.6mm d;=2.8mm). With the AP treatment cells continue to migrate into the tissue,
and slower proliferating cells are selected. With the AM treatment, the tumor grows
very large since there is no killing taking place, but since the migration has essentially
been turned off, growth is driven by proliferation alone rather than proliferation and
dispersion (at 41d, dc=6.3mm d,=0.5mm). AM treatment selects for cells with high
proliferative and migratory potential since they were previously selected for during
growth and already populate the outer edges when migration is shut off. The PDGF
concentration also becomes saturated in the tissue mediated by lack of cell dispersal,
which further drives tumor growth. With the AP+AM treatment, the tumor is
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observed to be about the same size as the AP treatment (at 41d, dc=2.3mm
dr=1.3mm), but the tumor was more cohesive and less diffuse. There was selection,
again, for less proliferative cells after the AP+AM treatment, but the PDGF
concentration was saturated within the tumor core. While the AP+AM treatment
worked well over this time period for this tumor, a balance that needs to be made
between preventing the widespread distribution of cells into the brain tissue and
preventing the buildup of growth factor concentrations to such saturated levels that
causes aggressive cell proliferation at the tumor core.

Discussion

Tumor heterogeneity is fundamental to treatment success or failure. When predicting
a tumor’s long-term response to treatment (observed on serial clinical imaging such
as MRI), it is imperative to consider not just the change in the tumor size but also the
variation in single cell phenotypes and heterogeneity in the environment. Our results
suggest that growth rates alone are not enough to predict drug response; the tumor
shape, density, and phenotypic and genotypic compositions can all signify
characteristics of the underlying dynamics that affect longer term responses to
therapy.

A tumor’s environmental context can play a huge role in malignant
progression (5,38). We found through experiment and simulation that phenotypic
heterogeneity is highly modulated by the environmental context. The local
environment creates larger scale variations in the observed phenotypes that might
be inhibiting, from factors such as lack of space or resources caused by a high cell
density, or stimulatory, such as an overabundance of growth factors. These large-
scale variations can give insight on environmental niches formed throughout the
tumor. At the imaging scale, spatial variations can be quantified to reveal habitats and
predict treatment response. Radiomic imaging does just that, because nuances in the
shape, morphology, and texture of tumor density maps gives more information than
size dynamics alone (3,6-8,18).

Knowledge of intratumoral heterogeneity is required to predict patterns of
treatment response and recurrence

Our results suggest that tumor heterogeneity is also not strictly a factor determined
by the microenvironment, but a combination of cell autonomous drivers and the
environmental context. In silico tumors that were fit to the same growth dynamics
with similar density distributions displayed a huge variation in underlying
phenotypes (Fig. 4). Furthermore, measurements at the single cell level do not
necessarily match up with the potential behavior that cells could achieve given a
different environmental context. It is often only after big changes in the tumor
microenvironment, such as during therapy, that intrinsic variations at the single cell
scale become apparent through natural selection (Fig. 5). Importantly, our data
suggest that more information on single cell heterogeneity before treatment can lead
to better treatment decisions. By fitting the in silico model to all of the experimental
data, from bulk to single cell metrics, we found a best fit parameter set that resulted
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in a tumor with heterogeneity in the proliferative and migratory potential (Fig. 6).
The best fit responded to an anti-proliferative drug but ultimately resulted in
recurrence (Fig. 7). Eliminating the potential phenotypic heterogeneity in the best fit
tumor did not drastically alter the resulting growth dynamics, yet upon exposure to
the anti-proliferative treatment there was a complete response. Only at the single cell
scale level (Fig. 6E) were we able to distinguish these two tumors that ultimately had
divergent fates. From this result, it is clear that some degree of single cell observation
could aid in the prediction of recurrence and a possible alteration of treatment
strategy.

Model prediction for response to anti-proliferative treatment is recapitulated
in human patients

Based on our mathematical modeling results suggesting a diversity of phenotypes in
response to treatment, we carefully investigated the role of anti-proliferative
treatments since they form the basis of the vast majority of traditional anti-cancer
treatments (e.g. radiation and chemotherapies). When fitting the mathematical model
to the cell level and tissue level data, we found a consistent pattern of decreased
proliferation in simulated recurrent tumors. This finding was recapitulated when we
compared a histological marker for proliferation in human GBM patients at diagnosis
and recurrence following chemoradiation (Fig. 8).

Model predicts anti-migratory therapy may have limited impact as a
monotherapy

Due to the invasiveness of GBM, the use of anti-migratory drugs is appealing (61,63~
66). However, the in silico model suggests that anti-migratory drugs do not help when
the tumor is largely driven by environmental factors (Fig. 9). Moreover, stopping
migration also prevented the widespread dispersal of PDGF, leading to more
proliferative tumors due to local accumulation of PDGF. This result indicates that, for
this type of tumor, anti-migratory therapy alone is not significantly helpful. However,
under the right conditions, it might be useful in combination with an anti-proliferative
treatment or as a primer for an anti-proliferative drug. The anti-migratory drug was
seen to select for more proliferative cells, so perhaps it could be used prior to an anti-
proliferative treatment to select for more sensitive cells. Combining these treatments
with an anti-PDGF drug could also help, to stop the response to environmental driving
force in the first place (67).

Model design limits interpretation of other biological mechanisms

In our model system we focused on phenotypic heterogeneity within a population of
individual cells, which are modulated by the environment through cell density
variation, the white/gray matter environment, and PDGF gradients. In order to
simplify an already complex model that focuses on the relationship between cell
autonomous heterogeneity and environmentally driven heterogeneity due to the
growth factor, we excluded some significant drivers of environmental variation such
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as the angiogenic response, hypoxia, and necrosis (5,68,69). These are important
components in the formation and progression of GBM in particular, however, in order
to fit to the experimental data, we assumed that these factors played a backseat
compared to the driving force of PDGF. While the ex vivo model allows for collection
of data on multiple scales, it also represents an extreme case compared to human
glioblastoma. The PDGF-driven rat model grows incredibly fast and recruits a large
portion of resident progenitor cells by paracrine growth factor stimulation. The most
sensitive parameter in the in silico model was the consumption rate of PDGF, which
was quickly pushed to low values by the parameter estimation algorithm, a necessary
component to promote a rapidly growing tumor. In the context of a slower growing
tumor with less progenitor recruitment, which might be more accurate of human
GBM, the growth, distribution, and evolution of cells could be quite different.

A proliferation-migration dichotomy was not observed in the experimental
data

We also made assumptions on the available phenotypes in this model, focusing on the
most apparently important traits in GBM: proliferation rate and migration speed. A
number of models and experiments find a limit to achieving both fast proliferating
and fast migrating phenotypes, the idea of go-or-grow (70,71). However, even though
it makes sense from a limited resource standpoint that cells have to divert energy
from one task to another we found no dichotomy in the experimental data to warrant
this assumption and perhaps an environment rich in growth factors caused no
tradeoff. However, we found that in silico tumors with the same size dynamics tended
to have measured proliferation and migration values that were not often both
simultaneously high. It is possible that the proliferation-migration dichotomy is
actually a consequence of environmental variation rather than a cell autonomous
feature as seen in the model of Scribner et al (37). We also did not consider the impact
of phenotypic evolution (13,41). The ex vivo data showed that the recruited cells,
driven at least initially by the environment, proliferate and migrate faster than
infected cells, which was found in the fully fit in silico model, but the rate of
proliferation and migration of progenitor cells also increase over time. This could not
be reiterated in the in silico model like the rest of the observations quantified here. If
we were to consider phenotypic drift or transformation in the progenitor population,
which has been reported to occur in other PDGF-driven glioma models (72), it is
possible that the model would have fit the data better.

Model suggests knowledge of intratumoral heterogeneity is required to
effectively predict response to treatment

The in silico model allowed us to explore spatial dynamics of a tumor as a population
and as individual cells to track heterogeneity over time and match to the experimental
model. It showed that there likely needs to be both environmental and cell
autonomous heterogeneity in order to fit to the smaller scale data, but these
components are difficult if not impossible to separate by observation alone in a
clinical setting. Specifically, there is no easy way to disentangle the drivers of
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observed phenotypic behaviors, since intrinsic cell autonomous drivers are modified
by cell extrinsic environmental signals that themselves are modified by the cells. Here
we have attempted to tackle this question through an integrated approach and
hopefully shed light on this complex feedback. Using the hybrid agent-based model,
we were able to combine data at different scales to study the environment and
phenotypic heterogeneity separately and observe how single cell behavior influenced
measurements at different scales. Although the anti-proliferative treatments showed
variable responses in the in silico model, most were not sustaining and resulted in
recurrence with slower proliferating, drug resistant phenotypes. Smarter strategies
can be employed when more information is known about the tumor heterogeneity on
all scales.
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Supplement

$1. Single cell analysis

From the single cell tracks we quantified the migration behavior as depicted in Fig.
S1. The speed for each cell over the time period was calculated as the total distance
travelled over the total time spent moving. Since the cells frequently stopped for long
periods of time, we excluded this from the calculation. Due to uncertainty in the cell’s
center we defined a stopped cell as moving less than 5 um over the sampling time.
The turning angles and persistence times were calculated by defining run times
punctuated by frequent stops. We defined a single run as i) traveling a distance
greater than 5 microns during the sampling time, and ii) continuing in the same
direction to within 15 degrees of the original trajectory. A single stop time is just the
amount of time spent before moving more than 5 yum. The sampling frequency
matters when capturing the observed speed and angle distributions (73,74). Due to
the noisy data, which was recorded every 3 minutes, we sampled in 30-minute
intervals, starting at different initial 3-minute time point within the 30-minute time
interval, so no data was missed. Using these rules, we calculated turning angles, and
persistence times.

t=7

O labeled as stopped
labeled as moving

t=2
Figure S1. The cell track data analysis algorithm. Stops, runs, and turning angles are defined from each cell’s 2D
track. The cell speed was calculated from the total distance travelled over the total time travelled (trajectory
from solid black lines). If the cell moves greater than 5 um and does not turn more than 15 degrees during its
trajectory, it is considered a single run (two runs and one turning angle labeled in blue).
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S2. Hexagonal lattice diffusion

We create a hexagonal lattice to store information on the type of tissue (gray or white
matter) and the concentration of PDGF. Since the lattice has a staggered layout, it is
indexed according to the scheme shown in Fig. S2. The concentration of PDGF at any
time point is determined by adding to the concentration at the previous time point
the sum of the differences between all the neighboring lattice sites times the diffusion
coefficient and the time step over the distance travelled from the center of one lattice
site to its neighbor. For each lattice point i, we write the concentration of PDGF as:

D,At
Pay(t+80) = pey (0 + 2 ) pey(© = pi(0) (s1)
n=1

where is At the time step, and Ax is the distance from one lattice point to a neighboring
one, which is just twice the apothem, so Ax = rV/3/2 where r is the radius of the
hexagon, which in this model is also the same size as the radius of a cell. There is no
flux at the boundaries, so there is no contribution from off-grid neighbors.

Figure S2. Hexagonal lattice diffusion. The lattice points are indexed as shown, with the even columns (black
center dots) shifted down halfway in between the even rows (white center dots). Diffusion occurs at each lattice
point pxy between the nearest neighbors only within the boundary of the domain. Off-grid lattice points (gray
region) do not contribute to any flux.
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S3. Single cell data analysis

Using the detailed spatial movement behavior analysis explained in Section 1, we
analyzed the data to learn more about migration patterns. The results are shown in
Fig. S3 and described in detail here.

4
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Figure S3. Behavior of single cells from rat data. A) Wind-Rose plot for infected and progenitor cells at 10d, B)
Mean squared distance (MSD) for infected and recruited cells at both 2d and 10d, C) distribution of migration
speeds at 10d, D) distribution of turning angles averaged over infected and recruited cells at 10d, and E)
distribution of moving and stopping persistence times at 10d averaged over all cells.

Cell trajectories and distribution. To visualize the general distribution of cells over the
time period of the movie, we show a Wind Rose plot of the trajectories (Fig. S3A). This
plot shows the trajectories of all cells in one slice of data at 10d with all of the starting
points for each cell placed at the same origin. It is observed that the cells have a
variety of paths with a variety of distances travelled. The red progenitor cells appear
to move farther over the same time period.

Mean squared distances. To quantify how far the population of cells moved over the
length of time of the movie, we calculated the mean squared distances (MSDs) for
each population at each time point (Fig. S3-B). At both time points, the red progenitor
cells are seen to have a greater MSD slope. However, while the green infected cells
have similar slopes at both time points, the red progenitor cells appear to slow down
at the later time point.
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Migration speeds. We calculated the migration speeds for each cell using the method
in Section S1 and found that there is a large variation in the cell speeds, going up to
100 pm/h but peaking round 10 pm/h (Fig. S3-C). Because the both time points had
similar distributions, we grouped the two time points into one plot, but the
distribution of progenitor cells speeds is slightly shifted toward higher values.

Turning angles. The turning angles are calculated to have a narrow peak at 0 degrees,
indicating that there is a lot of persistent movement, but there is also a broad uniform
coverage of larger angles (see Fig. S3-D).

Persistence times. The cells move and stop often over the 25-hour time period of the
movie. We found that the overall time spent moving and not moving is not
significantly different between infected and progenitor cells. However, on average,
cells are more often stopped than moving (Fig. S4-E).

Values for model fitting. The values gathered from the data from which we matched to
the model are summarized in Table S1. This contains tumor scale data from imaging,
and single cell scale data from the tissue slice data.

PARAMETER SCALE TIME POINT (d) VALUE SOURCES
tumor 5 1.7 (14,33)
Diameter (mm) tumor 10 24 (14,33)
tumor 17 3.2 (14,33)
Ratio I/R tumor 17 0.2 (14)
infected cells 2 0.33 calculated
mean proliferation recruited cells 2 0.85 calculated
E‘%ecells/h) infected cells 10 0.83 calculated
recruited cells 10 1.89 calculated
infected cells 2 21.3 calculated
mean migration rate recruited cells 2 24.9 calculated
(um/h) infected cells 10 20.6 calculated
recruited cells 10 25.2 calculated
infected cells 2 5.7 calculated
standard deviation recruited cells 2 7.6 calculated
migration (um/h) infected cells 10 5.7 calculated
recruited cells 10 8.8 calculated

Table S1. Data measured from the rat experiment that was used to fit the model. The larger scale data was
taken from Assanah et al (12) and Massey et al (44), whilst the single cell data was calculated from the cell
tracks as stated in the methods.
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S4. Parameter estimation

Matching model to data metrics

Tumor size.

Since the tumor consists of cells often spread out with no clear boundary, the tumor
size was measured by finding the maximum distance from the center of mass where
the cell density is >= 10% of the carrying capacity (averaged over 12 angles).

I/R.
The ratio of infected to recruited cells is calculated, as with the data, by observing the
number of each cell type within the tumor core.

Single cell metrics.

For the single cell metrics, a randomly chosen subset of up to 200 cells were tracked
of the initially injected and labeled subset (as opposed to native inactive progenitors)
outside of the densest regions (less than 25% of the carrying capacity). These criteria
bias the tracks to the tumor edge where it is not too dense to agree with the
experimental tracking limitations. Proliferation events and positions of the cells were
tracked every 3 min. The measured proliferation rate and migration speeds were
calculated by recording the percent of divisions over the observation period and the
total distance traveled over the time spent moving, respectively. These values were
averaged for infected and recruited cells.

Convergence scheme

There are 16 free parameters that are either a) not measured, b) not well determined
by experimental estimates, or c) variables in the simulation. These are listed in Table
1 of the main text.

To converge on reasonable parameter estimates that result in good fits to the
data in Table S1, we start by drawing 5000 sets of random values for each parameter
within the determined ranges. From each parameter set we run the simulation,
calculate the output values for each metric, and compare to the data output to get a
total error. We then sort these from least to most error and take the top 10%,
excluding any set of parameters that have more than 50% of the total error in one
metric, and transfer these directly to the next iteration. For the next 40% of the next
iteration, we tweak all of the parameters in the top 10% by a random value sampled
from a normal distribution with a standard deviation of 10% of the parameter range.
For the final 50% of the next parameter set, we draw randomly from the parameter
distribution of the top 10% to introduce new combinations of values. We iterate this
procedure until the output error is within 10% for fitting the size dynamics, which
turns out to be after 5 iterations, and within 15% for fitting all metrics, which is after
13 iterations. The distributions at each iteration are shown in Fig. S4 and the final
parameter values used for each tumor type are given in Table S2.
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Figure S4. Parameter estimation by matching to data. Values over iterations of the convergence are shown for
A) metrics of top 300 fits fit to size dynamics only, B) parameters from the top 300 fits to size dynamics only, C)
metrics of top 300 fits using all data, and D) parameters from the top 300 fits using all data. Each iteration is
shown starting at light gray and going to black for the final fit. The red dashed line for the metrics indicates the
measured data values, while the blue lines and error bars show the mean and standard deviation over iterations

for each parameter.
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SYMBOL (UNITS) RANGE Nodular Intermediate Diffuse Hetero Homo
or (%) 0.1-5 33 3.2 4.8 3.8 3.8
os(degrees) 0-45 23 15 29 41 41
po (ng/mL) 100-600 425 425 499 400 400
Dy (x10-¢ cm2/day) 1-1000 67 165 187 301 301
ra (ng/mL.day) 0-0.500 0.343 0.299 0.064 0.025 0.025
rs (ng/mL.cell.day) 10-400 169 190 115 361 361
re (% of rs) 0-100 2 5 20 5 5
pa (ng/mL) 0.1-50 36.7 47.9 375 7.6 7.6
K, (ng/mL) 5-300 55 183 56 94 94
Km (ng/mL) 5-300 25 162 56 256 256

0.1-1.0 0.66 0.10 0.93 0.47 0.47
Vs
L 0.1-1.0 0.63 0.72 0.71 0.51 0.51
z(h) 20-100 24 45 40 48 48
o+ (h) 0-100 3 12 51 5 0
v (um/h) 0-100 12 51 62 60 60
oy (um/h) 0-100 2 9 58 25 0

Table S2. Parameter sets used for the example tumors in main text. The parameter ranges are used to search for fits to the
data. The nodular, intermediate, and diffuse tumors are found by fitting only to the tumor size data, and the heterogeneous
tumor is found by fitting to all of the data. The homogeneous tumor is just the heterogeneous tumor with the variation in
proliferation and migration set to zero.
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S5. Supplemental Results
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Figure S5. Tumor density profiles. A) For the nodular, intermediate, and diffuse tumors, the core (yellow) is defined
as having a cell density of at least 50% of the carrying capacity, while the rim (green) is defined as having a cell
density of at least 2% of the carrying capacity. B) Stacked bar plot of average core diameter and average rim diameter
over 10 runs. We define the average rim size as the difference between the average rim diameter and the average
core diameter. The average core diameters were 2.2mm, 1.9mm and 1.9mm for the nodular, intermediate, and diffuse
tumors, and the average rim sizes were 0.4mm, 0.9mm, and 1.5mm, respectively.
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Figure S6. Spatial phenotype distributions along the radius of the tumor are shown at 17d. The average values over
10 runs are plotted: A) measured proliferation rate, B) measured migration speed, C) potential proliferation rate, and
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D) potential migration speed.
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Figure S7. Changes in density profiles of nodular, intermediate, and diffuse in-silico tumors before and after an anti-
proliferative treatment application. A) For the nodular, intermediate, and diffuse tumors, the core and rim as defined
in Fig. S5 are shown. B) Stacked bar plot of average core diameter and average rim diameter over 10 runs. The average
core diameter pre-treatment was 1.7mm, 1.8mm and 1.6mm for the nodular, intermediate, and diffuse tumors, and
post-treatment were Omm, 1.5mm, and 1.5mm, respectively. The average rim size pre-treatment was 0.4mm, 0.7mm,

and 1.3mm for the nodular, intermediate, and diffuse tumors, and post-treatment were Omm, 2.2mm, and 3.1mm,
respectively.
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Figure S8. Density profiles of the heterogeneous and homogeneous in-silico tumors. A) The core and rim as
defined in Fig. S5 are shown. B) Stacked bar plot of average core diameter and average rim diameter over 10
runs. The average core diameters were both 1.9mm, and the average rim sizes were both 0.5mm.
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Figure S9. Spatial phenotype distributions along the radius of the tumor are shown at 17d. The average values
over 10 runs are plotted: A) measured proliferation rate, B) measured migration speed, C) potential
proliferation rate, and D) potential migration speed.
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Figure S10. Changes in density profiles of the heterogeneous and homogeneous in-silico tumors before and
after an anti-proliferative treatment application. A) The core and rim as defined in Fig. S5 are shown. B)
Stacked bar plot of average core diameter and average rim diameter over 10 runs. The average core diameter
pre-treatment was 1.6mm for both, and the post-treatment heterogeneous tumor was 1.9mm. The average
rim size pre-treatment was 0.7mm for both, and the post-treatment heterogeneous tumor was 1.0mm.
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Figure S11. Correlation between treatment outcomes over cohort of simulated tumors. We show the
distribution of response as A) a waterfall plot with each treatment sorted ranked from best to worst response
and B) a waterfall plot for AP treatment sorted ranked from best to worst response but preserving the
correlation of how each tumor responds to the other treatments. The yellow line shows the responses for the
diffuse tumor from Fig. 9. C) Comparison of the responses for AP treatment alone to AP+AM combination
treatment. The red line shows where the response is the same for both treatments.
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