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Abstract

Canonical Correlation Analysis is a technique in multivariate data analysis for
finding linear projections that maximize the correlation between two groups
of variables. The correlations are typically defined without accounting for the
serial correlations between observations, a typical setting for time series data.
To understand the coupling dynamics and temporal variations between the two
time-varying sources, we introduce the time-dependent canonical correlation
analysis (TDCCA), a method for inferring time-dependent canonical vectors
from multilevel time series data. A convex formulation of the problem is pro-
posed, which leverages the singular value decomposition (SVD) characterization
of all solutions of the CCA problem. We use simulated datasets to validate the
proposed algorithm. Moreover, we propose a novel measure, canonical correla-
tion variation as another way to assess the dynamic pattern of brain connections
and we apply it to a real resting state fMRI dataset to study the aging effects
on brain connectivity. Additionally, we explore our proposed method in a task-
related fMRI to detect the temporal dynamics due to different motor tasks. We
show that, compared to extant methods, the TDCCA-based approach not only

detect temporal changes but also improves feature extraction. Together, this pa-
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per contributes broadly to new computational methodologies in understanding
multilevel time series.

Keywords: Canonical correlation analysis, time series, temporal dynamics,
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1. Introduction

Canonical Correlation Analysis (CCA) [I] is a powerful tool to analyze the
relationship between two sets of variables. CCA can be regarded as an extension
of ordinary correlation analysis, the difference being that CCA deals with mul-
tidimensional variables. It finds two linear transformations, one for each set of
variables, that are optimal based on their correlations. It is an especially useful
technique in data analysis as a dimensional reduction strategy that reduces the
complexity of model space by calculating the combinations of variables that are
maximally correlated. In an attempt to increase the flexibility for large dimen-
sional date, several extensions of CCA have been proposed, including kernel
Canonical Correlation Analysis (KCCA) [2] 3], Sparse Canonical Correlation
Analysis (SCCA) [, B, [0l [7, §]. Together, CCA-type methods have various
applications including analysis of neuroimage, genomic data and information
retrieval [9] 6] [10].

For multilevel data, CCA has been studied extensively by multi-view CCA
[11] and tensor CCA [I2]. However, canonical correlation analysis of multivari-
ate longitudinal data with multiple observations has received considerably less
attention, despite its importance for practical data analysis. This setting arises
from a wide range of applications, for instance, functional magnetic resonance
imaging (fMRI) and the financial market contain multivariate time-varying ob-
servations. To understand the coupling dynamics of two sets of variables with
time-stamped observations or to incorporate temporal structures, a few meth-
ods have been proposed. For instance, [I3], maximized the auto-correlation of

fMRI time series, and [I4] proposed to use KCCA to maximize the correla-
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tion between the two data sources over a certain time window. Although these
approaches do incorporate the temporal dependencies to some extent, the tem-
poral dynamics of consecutive linear transformations (vectors) have not been
considered explicitly. Furthermore, these studies focus on performing canonical
correlation analysis on two sets of variables with time lags.

A simple method to obtain the dynamic coupling between two sets of vari-
ables with time-stamped observation is to apply sparse CCA (for high dimen-
sional data) or KCCA for each timestamp and then compare the vectors. How-
ever, in this way, we will lose temporal information and possibly reach the wrong
conclusion about temporal dynamics. One such example will be discussed in de-
tail later in this paper. Although one can adopt fused lasso penalty [15] directly,
more challenges will be raised in this case. First, CCA for high dimensional data
with multiple time-varying observations will become computational expensive
(with hundreds of non-convex constraints and many possible local optimums).
Temporal incoherence [I4] is another severe problem. For example, if we have w;
and wy as our two canonical vectors, according to the definition of CCA prob-
lem, the correlation is also maximized by another two vectors —w; and —ws.
There is no guarantee that we get the same absolute sign for canonical vectors of
two adjacent timestamps even if the data from these two timestamps are same,
especially when optimizing non-convex and non-smooth objective functions for
these problems.

In order to solve the aforementioned problems, we propose a novel method for
inferring the dynamic dependence between two sets of variables. This method
integrates the SVD characterized formulation of all solutions of CCA [8] and
the fused lasso regularization [I5] in a unified optimization framework. We
introduce a convex optimization problem which can be solved efficiently. There
still exists time incoherence problem in this formulation which we will discuss
how to solve later in this paper. We note that since the focus of the paper is
on introducing temporal structure in the CCA framework, we will only consider
experiments of the first pair of canonical vectors. TDCCA and our algorithm

can also be applied in the situations of multiple pairs of canonical vectors.
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We summarize our contributions as follows:

e We incorporate temporal dependencies with (sparse) canonical correlation

analysis using a convex formulation.

e We propose a fast parallelizable algorithm (Alternating Direction Method
of Multipliers) and derive a closed-form ADMM updates to solve the non-

smooth objective function.

e Our proposal provides a heuristic method to solve the time incoherence

problem that exists in canonical vectors of adjacent timestamps.

e Experimental results on both two different simulated datasets show the
effectiveness and accuracy of our method compared with static CCA. The
experiments on the real dataset illustrate potential applications of our

method for analyzing longitudinal data [16].

2. Canonical Correlation Analysis

We first review the standard canonical correlation analysis problem as

minimize | XW, - YW,|r
subject to WIXTXW, =1 (1)
WIYTyw, =1

where X € R"*% Y ¢ R W, € Rh*! and Wy € R%=XL Let r = rank(X),
s =rank(Y) and t = min(r, s). [ is the number of pairs of canonical vectors we
attempt to compute. d; and ds are the dimension of features for X and Y. n
is the number of observations. We assume both X and Y are column centered.
Under our temporal setting, X and Y are the observations at the same time
point, see more details later.

Theorem (1| characterizes the solution of by a SVD approach. Let us
consider the SVD of X and Y,

X = Q1[1,0[U, Us)" = Q15U
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Y = Qa[%2,0)[Vi, Vo] T = Q2% Vi"

where Uy € RUX", Uy € RW*(=m) 5 € R™" Q1 € R™", Vi € R%=2x5,
Vo € Rl2x(d2=s) 53, ¢ R5%s and Qy € R™ 5. Furthermore, we consider the
SVD of QT Qs as QT Qy = PXP] where P, € R"™*", P, € R**® and X € R"*%.
Denote the distinct eigenvalues of QT Qs as o1 > g9 > ... > oq > 0 with
multiplicity for these q eigenvalues being myq, ..., mq. g = Zle m;.

The following theorem from [8] shows the conditions for (W, W) which will

be used later.

Theorem 1. [§] If | = Zle m; for some 1 < k < g, then (W,, W) is a
solution of optimization problem if and only if
W, =U ST Pi(5 1 D)W + Us By

(2)
W, =ViSy ' P, 1: DWW + Vo

where W € R is orthogonal, Fy € R =%t gnd Fy € R(%2=9)XL gre arbitrary.

3. Methodology

Before we introduce our proposed method TDCCA, we provide some mo-
tivation for our framework, which is related to sparse CCA. If [ = Zle m;
for some 1 < k < ¢, the sparse canonical correlation analysis can be stated as

solving the following problem,

minimize  |[|Wylli,, + Wyl
subject to W, = U127 Pi(5, 1 : D)W + Up Fy (3)
W, =WViSy ' P, 1: DWW + Vol

where || * ||;, is defined with element-wise {1 penalty. This formulation is non-

convex. An alternative formulation of the above is
minimize  [|Wylli,, + [|[Wylli,
subject to Ul W, = X7 'Pi(:,1:1) (4)
VW, =S5 Py(:,1: 1)
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We will further provide a justification for the simplified formulation of sparse
CCA problem . Denote the optimal value (feasible region) of problem
and as M, () and M (Q) respectively.

Theorem 2. If] = Zle my; for some 1 < k < q, let C = %, then CM <
M, < M

Proof. First it is easy to see
W, =U 27 P, 1 )W + Us By
W, =WViSy ' P, 1: DWW + Vo
is equivalent to
UIw, =S P, 1: )W
VW, = S5 P, 1: )W
By taking W = I, we get My < M.
On the other hand, for Wy and W which satisfy 7
Urw) =S P, 1: )Wy
VIWS =55 B

we get
UYWIW =3P, 1)
VIWIWit =551 Py, 1:10)

because Wy is orthogonal. This implies (W, W, L Wyf W, 1) € Q. Furthermore,
for all W, W, € Q2 and W orthogonal,

UIW, =57 P(5,1:10)

VW, =S5 Py(;,1: 1)

UTW,W =X7'Pi(:,1: D)W

VEW,W =S Pa(:,1: )W


https://doi.org/10.1101/650101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/650101; this version posted May 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

This means (W, W, W, W, W) € Q. Specifically, we can take W, = WjWJfl,
W, = WIW; ' and W = Wy for all (W], WS Wy) € Q.. This implies
{(W. W, W,W,W)|(W,,W,) € Q, W is orthogonal} = ), and thus problem
is equivalent to @

minimize  |[|W,W||;, + [|[W,W ||,

subject to U W, = X7 Pi(:,1:1)
VIW, =55 Py(:,1: 1)
W € R™!  orthogonal

Based on the equivalences of norm of finite dimensional spaces and the orthog-

onality of W, we have

1

1 , : :
\/ZIIlelzl = XZ: Wi )iy < XZ: Wi )2 = 21: W (2, )W

< Wi )W i, = W Wy,
(7)

We can get similar result for W,. Inequality @ implies CM < M, and we
already know M; < M, thus CM < My < M where C = L O

S

3.1. Problem Formulation

Let’s now consider time-dependent views of column centered data X; €
R™*d and Y; € R™*% for t € [1,2,...,T]. We attempt to analyze dynamic
coupling canonical vectors W, € R¥*! and Wyt € R2xl in a CCA framework
which incorporate temporal information of these time-stamped observations. It
is worth mentioning that our data X; or Y; does not have to be the observations
from the same time point. They can be selected using a sliding window ap-
proach. In particular, a temporal window with length W, is chosen, and within
the temporal interval that it spans (from time t=1 to time t=W), the first set
of data are selected as X; and Y;. Then, the window is shifted by a step T, and
the same data extraction procedure is repeated over the time interval [1 + T,

W +T1]. This process is iterated until the window spans the end part of the time


https://doi.org/10.1101/650101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/650101; this version posted May 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

series. Motivated by Theorem [I| and Theorem [2| we can formulate the problem

as
minimize >, ([|[Wat|lin + [[Wyellin) + A
2o IWar = Waealln + [[Wye = Wy -1 llin)
(8)
subject to Ul W, = S, Pre(:,1: 1)
Vlt yt — Zzt Py (:,1:1)
where

Xt = Qui[214, 0][Une, Uzi]" = Quu 21, UL,
Y: = Q24 [D2r, 0][Vag, Var] ¥ = QX VL
QT Q2 = PSPy,

are SVDs for each t.
By allowing the relaxation of the constraints, we propose the TDCCA by

optimizing the following objective function

1 _
5 Z(”UtTWrt _thlPlt(:7 L: Z)H%"‘)‘Z [Waellin +MZ [Wat = Wa -1+
t t t

N[ —

S VI Wy = 23 Poy (s, 1 D5+ A I Wyellon + > Wt = Wyl
t t t
(9)

It is clear that the problem we formulate is a convex problem, which avoids the

constraints W XTXtht =1 and W YTYtWyt = I in CCA framework.

8.2. Optimization

We present an algorithm to optimize the objective function of TDCCA in
@. The estimation of W, and W), can be separated which makes it possible for
parallel computing. In addition, the estimation of different pairs of canonical
vectors can also be computed in parallel. For the ease of notation, we will ignore
the dimension number inside of P; which actually represents P (:,1l) if we try
to estimate [l-th pair of canonical vectors. Without loss of generality, we will

only discuss the algorithm for W, € R®*T the first pair of canonical vectors.
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By separating @7 we get

L o= L UIWa(5,t) — S Pulld + MW, W, D 10

z = 2Z(II ¢ We(st) i Pulle + AMWelln + plWeDli, - (10)
t

D is the time differencing operator, i.e.

1 00 0
-1 1
D= 0 c RTX(T-1)
1
0 0 0 -1

Replacing W, with Wx and Wx, is equivalent to

1 _ —~ —~
e = §Z(||UtTWw(:’t) = S5 Pullp + AMWelh, + plWeDlln (11)
t

o~

subject to W, = W,y and Wy, = Wmt.
Now we can adopt ADMM [I7] to optimize (LI). We first write down the
augmented Lagrangian for ,

1 B — ,\ —
b = 5 IUGEWa () =S5 Pull 5t MWl 41 We D, +r(07 (W= W2))
t

— 1 — —
+tr(@T (We = Wa)) + 5 (IWe = Wal[fo + [ We = Wal[7)  (12)

It can be solved by alternatively updating the five variables W, Wx, Wx, (C]
and ®.

1. Fix Ww, Wx, O and P, we get

minimize (3 32, (|Uf;Wa(:,t) = 55 PrellF + +5([Wo — Woll%
HWe = Wel|7) + tr(@T (W — Wa)) + tr(07 (W, — Wy))

Simply by setting the derivative with respect to W, to zero, we have

W, (,t) = (U UL 4 201) 7=, t) — O(:,t) + U Xy, Pyt

(Wi (1) + W (1)) (13)
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2. Fix W,, WI, O and ®, the problem is transformed to
minimize  A||W, ||, + tr(©T (W, — W,)) + %W, — W, |%

we thus get

Wy = sign(W,  + @)max(|Wm + %\ - ;,O) (14)

v
3. Fix W, Wx, © and P, becomes
minimize pul|W,Dl|i, + tr(®(W, — W,.)) + SWe — Wz”%)
which is equivalent to
minimize | W, Dls, + %(|We — W, — 2|3, (15)

It is a combination of 1-d fused lasso problems which can be solved exactly
using dynamic programming method [I§] or a taut string principle [19]
(both linear time algorithm) in parallel.

The similar process can be applied to © and ®.

0 =0+ (W, —W,) (16)

=3+ (W, — W,) (17)

We summarize our algorithm in Algorithm [1| (TDCCA-1). It is worth noting
that in our proposed algorithm, step 2 and 3 can run in parallel due to that fact

that the computation of /V[ZC and W$ only depends on W,.

3.8. Time Incoherence

In , there exists a problem called time incoherence. The reason for this
problem is that the original constraint in Theorem |l|is Uf W, = 7 Py(;, 1
)W where W is orthogonal. For [ = 1, W € R'*! can be either 1 or -1, which

causes the sign ambiguity. In previous section, we ignored the constraint on W,

10
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Algorithm 1 Algorithm of TDCCA method (TDCCA-1)
Input: X, Urs, Prg, Sags A p, v

Tnitialize W,, W, W,, © and ®

repeat
Update W, with
Update W, with
Update Wx with
Update © with
Update ¢ with
until convergence

Return W, WI, Wx

i.e the sign for the case [ = 1. The problem could be tackled by adding integer

variable b; € {—1,1} and we get a new optimization problem,

1 _
= Z (U Wt =S5 Pra Gy 1 Db | 54N Wl 10> I War =W g lln+
t t

N | —

S (VW = S5 Por (s, 1 Dbell 7+ A D IWoell 41> Wy = Wil
t t t
(18)

One naive way to solve is to compute the optimal value for every choice
of sequence [by, ...,br|. The computational burden will increase exponentially.
Problem is a non-convex mixed integer problem which is generally hard to
solve.

Instead of diving into the non-convex problem, we propose a three-step ap-
proach. First, we will use Algorithm [I| with a very small (1e-10 chosen in our
experiments) p and thus the temporal difference is not penalized. This step
allows us to obtain an initial estimation of W,. Then we will change the sign of
P, and P; according to whether the condition is satisfied. Finally, we run
Algorithm [I]again with p chosen by grid search and obtain the final estimations.
This method allows us to detect those SVD results with the incoherent sign and

thus the temporal consistency is achieved. The intuition behind this approach

11
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is that the optimal value of @ continuously depends on p. The final algorithm
is summarized in Algorithm

Wt = 1) = W )l + [IWy (8 = 1) = Wy 8l

> Walst = 1) + Wa (Ol + Wy (8 = 1) + Wy 0 (19)

Algorithm 2 Algorithm of TDCCA method
InPUt: Xt7 }/t; U1t7 Vlta P1t7 Elh P2t7 ZQta )‘a u, v

First step: W,, I//V\y = TDCCA-1(Input(with p = e~10))

Second step: Revise the sign of P; and P,
forte[2,..,T] do
if is True then
Py = —Piy and Py = — Py
end if
end for

Third step: W,, W, = TDCCA-1(Input)

As the Algorithm [I|is computationally efficient, Algorithm [2]is still efficient,
considering we will fix p in the first step. Deflation method [6l 20} [7] can also
be easily combined with our algorithm after calculating each pair of canonical

vectors to acquire multiple pairs of canonical vectors.

8.4. Tuning Parameter Selection

In our method, TDCCA contains two tuning parameters A and p which
determine the sparsity and continuity (along temporal dimension) of canonical
vectors. We propose a cross-validation approach as follows: we partition our
data as training and validation data, and then we select the tuning parameters
that maximize the canonical correlation on the validation data, plugging the
canonical vectors solved from the training data. We also apply the grid search

to determine the optimal values of A and p.

12
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8.5. Algorithm Analysis

The convergence of ADMM under certain conditions has been analyzed and
proven in previous papers [21] 22] 23]. Our optimization problem satisfies the
conditions and thus our algorithm is guaranteed to converge to a non-empty
solution set if it exists. In each iteration, the major computation burden is in
step 1. One iteration of step 2, 3, 4, 5 is O(dT") where d is dimension of feature
space. For the first step, the inverse of (Uy,U{, + 2vI) can be precomputed
before the iterations. For each iteration, time complexity of step 1 (matrix
multiplication) is O(d?T). Another feature of our algorithm is both step 1 and

3 can run in parallel along the temporal dimension.

4. Experiments

In this section, we evaluate the performance of the proposed method on
two simulated datasets and real functional magnetic resonance imaging (fMRI)
data. We compare our method with static sparse CCA [6]. For the static sparse
CCA, we treat each t as an independent problem. We use the R package called
PMA for SCCA, which is publicly available at https://cran.r-project.org/
web/packages/PMA/index.html. The package for our method is available at

https://github.com/xuefeicao/tdccal

4.1. Simulations

Table 1: Simulation 1 results from 50 independent trials

n d T Method | CDR F1 TDR | Cosine of Angle
TDCCA | 0.0021 | 1.0000 | 97.7767 0.9800
100 40 100
SCCA | 0.0025 | 0.9488 | 5.5884 0.9693
TDCCA | 0.0008 | 1.0000 | 89.8201 0.9730
100 100 100
SCCA | 0.0021 | 0.8192 | 2.1969 0.8439
TDCCA | 0.0002 | 0.9977 | 67.5984 0.9460
100 400 100
SCCA | 0.0025 | 0.5771 | 1.6001 0.6164

13
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Table 2: Simulation 2 results from 50 independent trials

n d T Method | CDR F1 TDR | Cosine of Angle
TDCCA | 0.0599 | 0.9896 | 74.8900 0.9297
100 40 100
SCCA | 0.0398 | 0.8177 | 2.2071 0.9039
TDCCA | 0.0339 | 0.9647 | 53.1478 0.9642
100 100 100
SCCA | 0.0412 | 0.7317 | 1.3389 0.7692

We introduce four metrics to measure the accuracy of our estimates in sim-

ulations.

e Correlation Deviation Ratio (CDR): This evaluates the capability of
our method to recover the true correlation between two sets of variables.
It is defined as the ratio of I; distance between estimated correlation and

true correlation to the true correlation.

e F1 score: This measures the ability of our method to capture the true

pattern of related variables.

e Cosine of Angle between estimated and real canonical vectors:
This measures the similarity of our estimation and real canonical vectors.

It is defined as the absolute value of cosine angle between two vectors.

e Temporal Deviation Ratio (TDR): The temporal deviation defined
as |[Wa(:,t) = W (s, t — 1)1, + [|[Wy(:,t) — Wy(:,t — 1)||1,, illustrates how
much the estimation changes at each time step. This value is the ratio of
temporal deviation at change point (in our simulation, for simplicity, only
one change point is included) to the average temporal deviation value of
all time points. This metric serves the purpose of testing the ability of our
method to detect temporal dynamics. We notice that SCCA method does
not distinguish the absolute sign of the canonical vectors (—W or W can
both be solutions). To achieve a fair comparison, we alter the canonical

vector W; to —W; obtained in SCCA method at time ¢t if is satisfied.

14
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All the results reported in this section are the averages along temporal dimen-
sion. We denote Wy, = W,(:,t) and W, = W, (:,t). X; € R" and Y; € R%.
We fix T'= 100 and d; = ds for simplicity. Let d = d; 4 d»

4.1.1. Simulation 1

In this simulation, we generate our data according to the following model.

Xe = (Wt + €1e)ug + 14
(20)
Y, = (Wye + €2)ug + 12y

where u; ~ N(0,1), €;; ~ N(0,0.1%) and 0y ~ N(0,0.1%) for i = 1,2. For

t <100
Wi =(1,..,1,~1,...,—1,0,...,0)
S~ ——
di/4 dy /4
Wae = (0,...,0,1,..,1, 1, ..., —1)
S—~—— ——
do/4 do/4
For t > 100,
Wi = (0,..,0,—1,...,—1,1,...,1,0, ..., 0)
S~ ———
d1/4 d1/4 d1/4
War = (1,...,1,0,...,0,—1, ..., 1)
S—— —
da /4 da /4

From the model, we can see that for ¢ < 50, the first half variables of X,
and second half variables of Y; are correlated, while for ¢ > 50, variables of X,
located in [1dy, 3d;] are correlated with variables of Y; located in [1, 2d»] and
[%dQ,dg]. To test our algorithm, we conducted the estimation with different

settings:
e n=100,d =40
e n =100, d =100
e n =100, d =400

where n is the number of samples. We summarize our results of 50 independent

trials in Table[d]
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4.1.2. Simulation 2
In this section, we employ data generated from a more complicated model
called single canonical pair model [24]. The model is described in (21). We used

the same Wy, and W, as in the first simulation.

X N 0 b )\EletWy:’;Eg

7 (21)
Y, 0 AS, W, WS, I

where 0 < A < 1, WthZle =1 and WEZQth = 1. Let A = 0.9. We define
¥y = ¥ = (045)ij; where 0;; = ¢ x 0.3/"771 which indicates covariance has a cer-
tain rate of decay. The scaling factor ¢ is obtained by normalization. In addition,
we add independent noise (¢ ~ N (0, 155)) to the generated data. It is easily to
verify that for model , Wzt and Wy, are first pair of canonical vectors, which
maximizes the correlation between XtT W+ and YtTWyt. Furthermore, the cor-
responding correlation is A. We note that our method TDCCA does not depend
heavily on the Gaussian covariance assumption. However, in [24], their Sparse
CCA method utilizes the model structure (21)) (212 = ZlWfoEQ) explicitly
and then get an estimation of W, and W), directly where ¥;5 is cross-covariance

between X and Y. We used the following settings in this simulation,
e n =100, d=40
e n =100, d =100

where n is the number of samples. Table [2| showed the averaged results of 50

independent trials.

4.1.8. Simulation Results

We show results for both models in Table [I] and Table 2l In terms of F1
score, Temporal Deviation Ratio and Cosine of Angle between estimated and
real canonical vectors, our TDCCA approach significantly outperforms SCCA
method (i.e the CCA method without considering time series structure). The F1

score of TDCCA stays above 0.9 in different settings of two simulations while the
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F'1 score of SCCA can be less than 0.6 when the ratio % increases. The cosine
of Angle of our approach is close to 1 which indicates the high similarity between
estimated and real canonical vectors. In addition, the temporal deviation ratio
of TDCCA is up to 40 times higher than the SCCA method, which shows a big
advantage of TDCCA in detecting change points. Furthermore, our estimated
value of correlation is closer to the true correlation of simulated data than the

SCCA method.

4.2. Canonical Correlation Variation for resting state fMRI

In this section, we apply our method on the resting state fMRI data and
we propose that the canonical correlation variation (CCV), a new metric ob-
tained from our method can provide clues for the connectivity patterns that
transfer and present aging features. Canonical correlation variability (CCV) is
defined as the standard deviation of time-dependent canonical correlation from
our method.

Recent work has shown that functional connectivity is temporally dynamic
and functional connectivity fluctuates across shorter time-windows for resting
state fMRI [25] 26]. Unlike conventional FC analysis, which assumes static
connectivity over several minutes, the dynamic functional connectivity variation
(FCV) is calculated as the standard variation of the dynamic FC series. In
this approach, the stability of the FC fluctuation over time is quantitatively
measured and compared between brain region pairs. The basic sliding window
framework has been used widely and is repeatedly applied by researchers to
investigate how functional brain dynamics relates to our cognitive abilities [27].
Age-related dynamic pattern of functional connectivity has been also explored
in [28] 22] 29].

Canonical correlation is another way to characterize the strength of the
functional connectivity for each region pair which has been used to construct
a region-level functional connectivity network for predicting major depressive
disorder [30]. In our experiment, two groups of individuals (N = 156, ages

22-25 for the first group; N = 226, ages 31-35 for the second group) were
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recruited from the public data of the Human Connectome Project (http://
www . humanconnectomeproject.org/). In particular, we are interested in the
connectivity patterns inside of default mode network (DMN) which contains
Precuneus (pC), Posterior cingulate (PCC), Ventral anterior cingulate (vACC),
and Medial prefrontal cortex (mPFC). For each subject, we used a fixed-length
rectangle window (width = 60 TRs) and the window was shifted by 2 TRs.
These parameters are chosen based on the rule of choosing parameters for dy-
namic functional connectivity [27]. Thus we can obtain the time-dependent
canonical correlation estimated for each pair of ROIs from our method for every
subject from two groups.

Additionally, we use two popular measurements of connectivity pattern:
static functional connectivity (FC), functional connectivity variation (FCV). As
a baseline method, we compute the sparse canonical correlation for each rectan-
gle window and calculate its standard deviation which we will call it CCVB in
the remaining paper. The canonical correlation coefficient (CCC) for the entire
time series is also included for each subject. These features are summarized in

table Bl

Table 3: Features of connectivity pattern used in our experiment

Method | Description

CcCcv Canonical Correlation Variation calculated from TD-
CCA
FC Static Functional Connectivity (Fisher-transformed

correlations) of entire time series

FCV Functional Connectivity Variation using sliding win-

dow approach

CCVB Canonical Correlation Variation calculated from

SCCA for each sliding window

cCcC Canonical Correlation Coefficient (Fisher-transformed

correlations) of entire time series
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Table 4: Adjusted p—value for each pair of ROIs chosen from default mode network. Values
in bold represent significant p—value with threshold 0.05.

ROI1 ROI2 | CCV  FC FCV CCVB CCC

vACC pC 0.5197 0.8092 0.9452 0.9498 0.7419
vACC PCC 0.0138 0.9725 0.9452 0.4273 0.7419
PCC pC 0.5197 0.8092 0.9452 0.2464 0.7419
mPFC vACC | 0.4224 0.9725 0.9452 0.4273 0.7419
mPFC pC 0.1593 0.8092 0.9452 0.2464 0.7419
mPFC PCC 0.5197 0.9725 0.9452 0.2464 0.7419

ROIs = vVACC_PCC

FCV CCVB CCC
Method

value

Figure 1:

Table [d] shows the p—value of two sample t-test of different features for each
pair of ROIs compared between two different groups. Multiple testing correction
is performed using the FDR method [31]. From table 4] we can see the only one
significant difference for metrics calculated based on two different groups are
from our proposed canonical correlation variation measurement. It is between
vACC and PCC. Figure [I] illustrates the group differences of different features
for the ROI pair with a significant p—value. The values are scaled for better
visualization. It shows CCV (between vACC and PCC) in the age group 31—
35 is higher than the age group 22-25. This example shows promising results

by applying CCV as a novel way to measure dynamic functional connectivity
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pattern using resting state fMRI.

4.83. Task-based fMRI: motor task detection and feature extraction

In this section, we apply the TDCCA method to analyze task-related fMRI
motor data obtained from the Human Connectome Project [32]. This example
will show how our method can spot change points due to different tasks.

This motor task fMRI is composed of five most basic motor tasks including
tapping left /right fingers, squeezing left /right toes and moving tongue. Partici-
pants were presented with visual cues which asked them to either tap their left
or right fingers, or squeeze their left or right toes, or move their tongue to map
motor areas. Each block of a movement type lasted 12 seconds (5 movements),
and was preceded by a 3-second cue.

Based on the prior scientific findings on the motor task experiment [33],
we select six brain regions corresponding to these different tasks according to
MNI coordinates: left/right hand coordinates (+41, 20, 62), left/right foot
coordinates(+6, 26, 76), tongue coordinates (55, 4, 26), thalamus (MNI: -
12, -13, 7). We extracted voxels around these coordinates, depending on the
availability of voxels centered around these coordinates. Thus we combine data
from these six regions as our one set of data. We set the length of the sliding
window as 20 TRs according to the length of each task and the window was
shifted by 1 TR (0.72 s). Our TDCCA method is applied to a pair of subjects.

We should mention that brain electrical activity is not directly measured,
instead, the human hemodynamic responses to the short period of neural ac-
tivity are delayed in time. Thus fMRI measures the subsequent demand for
oxygenated blood that follows about several seconds after the neuronal activa-

tions [34].
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—— our method —CUE = right foot — tONgue
—— SCCA = |eft foot right hand = resting
—— BOLD = |eft hand

6 2‘0 4‘0 6‘0 8‘0 160 liO

Frames(1 frame = 0.72s)

Figure 2: Plot of the temporal deviation of TDCCA, SCCA and original BOLD signal, in
which TDCCA detect six significant shift of tasks. The straight line above the plot uses

different colors to indicate the different tasks during the experiment.

We estimate the leading canonical vectors and elaborate on how the W,
varies with time periods of the different task activation. We also compared the
SCCA (sparse CCA method) with TDCCA. Figure |2 shows the scaled tempo-
ral deviation ||W(:,t) — W(: t — 1)||;; estimated from two methods. Figure
elaborates the ability of our approach in detecting temporal dynamics. From
the results of SCCA and original BOLD signal, one can barely see the dynamic

change point for different motor tasks. However, our method detects six signif-
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icant shift of tasks and a clear time delay from task commands to the peak of

temporal deviation.

5. Conclusions and future work

In this paper, a convex framework for combining temporal structure with
canonical correlation analysis is proposed. The proposed framework incorpo-
rates temporal information explicitly. Furthermore, our algorithm is computa-
tionally efficient with guaranteed convergence and has the advantage of parallel
computing. Finally, we introduce a heuristic method to solve the time incoher-
ence problem without using a mixed integer optimization algorithm. The pro-
posed method outperforms the (static) sparse CCA algorithm both in accuracy
and ability to recover temporal variations. Our proposed canonical correlation
variation (CCV) can also provide clues for brain connectivity patterns. Our
method introduces an additional tool to determine change points and extract
critical features in multivariate analysis. In future work, we will explore the the-
oretical property of our proposed algorithm. It would be also promising to apply

our method to analyze multivariate longitudinal data from medical images.
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