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Abstract

Whole-brain structural networks can be constructed using diffusion MRI and probabilistic
tractography. However, measurement noise and the probabilistic nature of the tracking procedure
result in an unknown proportion of spurious white matter connections. Faithful disentanglement of
spurious and genuine connections is hindered by a lack of comprehensive anatomical information at
the network-level. Therefore, network thresholding methods are widely used to remove ostensibly
false connections, but it is not yet clear how different thresholding strategies affect basic network
properties and their associations with meaningful demographic variables, such as age. In a sample of
3,153 generally healthy volunteers from the UK Biobank Imaging Study (aged 44—77 years), we
constructed 85 x 85 node whole-brain structural networks and applied two principled network
thresholding approaches (consistency and proportional thresholding). These were applied over a
broad range of threshold levels across six alternative network weightings (streamline count,
fractional anisotropy, mean diffusivity and three novel weightings from neurite orientation
dispersion and density imaging) and for four common network measures (mean edge weight,
characteristic path length, network efficiency and network clustering coefficient). We compared
network measures against age associations and found that the most commonly-used level of
proportional-thresholding from the literature (retaining 68.7% of all possible connections) yielded
significantly weaker age-associations (0.070 < |B| < 0.406) than the consistency-based approach
which retained only 30% of connections (0.140 < |B| £ 0.409). However, we determined that the
stringency of the threshold was a stronger determinant of the network-age association than the
choice of threshold method and the two thresholding approaches identified a highly overlapping set
of connections (ICC = 0.84) when matched at a plausible level of network sparsity (70%). Generally,
more stringent thresholding resulted in more age-sensitive network measures in five of the six
network weightings, except at the highest levels of sparsity (>90%), where crucial connections were
then removed. At two commonly-used threshold levels, the age-associations of the connections that
were discarded (mean B < |0.068|) were significantly smaller in magnitude than the corresponding
age-associations of the connections that were retained (mean 3 < |0.219]|, p < 0.001, uncorrected).
Given histological evidence of widespread degeneration of structural brain connectivity with
increasing age, these results indicate that stringent thresholding methods may be most accurate in
identifying true white matter connections.
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Introduction

There has been a growing enthusiasm for work seeking to construct structural brain networks, or
structural “connectomes” (Sporns et al., 2005), which map white matter connectivity between distal
regions of the human brain. Structural connectomes can be estimated in vivo, at a macroscopic
scale, using diffusion magnetic resonance imaging (dMRI) and whole-brain tractography
(Sotiropoulos and Zalesky, 2017). This approach has been central for gauging how variation in the
network organization of the brain relates to behaviour and health. However, the necessity of
establishing a representative brain network for which within- and between-group comparisons can
be conducted is a non-trivial task (de Reus and van den Heuvel, 2013). Due to the noisy and indirect
measurement of water diffusion combined with the nature of probabilistic tractography, the
resulting structural brain networks are known to contain many false-positive connections (Jbabdi
and Johansen-Berg, 2011; Thomas et al., 2014; Yeh et al., 2018; Zalesky and Fornito, 2009). The
unfiltered network generated by probabilistic tractography typically describes the brain as almost
fully connected (Roberts et al., 2017). This is at odds with biological and post-mortem investigations
of mammalian anatomical connectivity. Roberts et al. reported estimates of connection density
varying from < 5% (Hagmann et al., 2008) to 13—-36% for the entire brain and 32-52% for cortico-
cortical connections in the mouse (Oh et al., 2014). Consequently, it may be inferred that many of
the ‘connections’ identified in unfiltered networks are spurious.

Although previous research has been undertaken to map the major white matter pathways of the
brain using dMRI and tractography (Mori et al., 2009), a fine-grained anatomical ‘ground-truth’,
mapping the presence of every connection at the macroscale (typically thousands of white matter
pathways involving millions of streamlines) has not yet been realised. A recent population-based
atlas of white matter connectivity, constructed by manually labelling 40 major streamline clusters
(Yeh et al., 2018), shows promise in validating connectivity but is limited to a small proportion of
possible network connections.

In the absence of a comprehensive map of connectivity and to meet a demand for more principled
network denoising approaches (de Reus and van den Heuvel, 2013; Maier-Hein et al., 2017; Van Wijk
et al., 2010), researchers have introduced inferential methods to identify and discard potentially
spurious connections. Some researchers have advocated using raw (unthresholded) matrices
without removal of any connections on the basis that topological network properties are not
significantly altered by the inclusion of weak connections (Civier et al., 2019). However, many
network studies have employed thresholding strategies, such as, absolute-thresholding which
applies a uniform threshold to retain only connections above a set weight (Hagmann et al., 2007),
and density-thresholding which applies a (relative) threshold on the connection weights such that
the weakest connections are removed to match the same number of connections across subjects
(Rubinov and Sporns, 2010). Although the lowest weighted network connections (e.g., those
involving fewest streamlines) are often false-positives, low weights do not necessarily correspond to
implausible connections.

Consequently, more sophisticated thresholding approaches have been introduced which remove
network connections using group-level statistics. Proportional-thresholding (consensus-thresholding)
has been used to retain only the connections present in a set proportion of subjects (de Reus and
van den Heuvel, 2013). Recent consistency-thresholding approaches have been introduced, which
retain connections with weights that are consistent across subjects, on the assumption that
connections with the highest inter-subject variability are spurious (Betzel et al., 2018; Roberts et al.,
2017). Additionally, these approaches have involved schemes which promote white matter
connections that are strong for their physical length to compensate for the bias in overestimating
the number of short range connections (Betzel et al., 2018; Roberts et al., 2017). These studies also


https://doi.org/10.1101/649418
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/649418; this version posted May 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

apply levels of network connection density based on evidence from tracing studies of the
mammalian brain and thus may partly meet the need for more anatomically plausible measures of
connectivity. However, a consensus on the thresholding method and range of threshold levels that
might optimally reflect the underlying biological connectivity is currently lacking.

The lack of prior information on many of the thousands of possible connections in the brain has led
researchers to evaluate the impact of different thresholding approaches using criterion validity —
that is, the degree to which the network metrics are associated with external outcomes of interest.
For example, a recent study examined four thresholding approaches in Huntington's disease (138
participants), and found that detection of group-differences at the network level was highly
dependent on the threshold level chosen (McColgan et al., 2018). However, the power limitation
inherent in small samples restricts the fidelity with which the relative differences in validity across
small changes in threshold level and network-weighting methods can be reliably detected.

We believe that age-associations, as a well-known correlate of white matter microstructure, are a
strong candidate against which to determine the comparative criterion validity of network
thresholding and weighting methods. Increasing age in adulthood is one of the most consistently
replicated and widespread correlates of brain white matter macro- and microstructural outcomes
(Bastin et al., 2010; Burzynska et al., 2010; Cox et al., 2016; Damoiseaux et al., 2009). Network
analysis of alterations in brain organisation due to both normal and abnormal ageing have been
applied to both structural and functional MRI (Alloza et al., 2018; Gong et al., 2009; Lo et al., 2010;
Robinson et al., 2010; Zhao et al., 2015). Such studies have consistently demonstrated associations
with brain-wide measures of connectivity and increasing age. Furthermore, histological studies of
human and animal data have found evidence of the widespread degeneration of white matter
(myelinated fibres) due to ageing and age-associated diseases (Salat, 2011).

In addition to the problem of spurious connections, there remains uncertainty about which network
weighting best reflects the underlying biological connectivity. Various weights have been derived
from dMRI structural networks, which reflect different notions of connection strength (Agosta et al.,
2014; Collin et al., 2014; Hagmann et al., 2008; Robinson et al., 2010; Verstraete et al., 2011). The
most common weightings used are interregional streamline counts/densities (Hagmann et al., 2008)
and measures of water diffusion anisotropy (Robinson et al., 2010; Verstraete et al., 2011). Some
network studies have introduced other dMRI weightings, such as mean diffusivity (MD), to
characterise different aspects of white matter microstructure (Agosta et al., 2014; Collin et al.,
2014). Neurite orientation dispersion and density imaging (NODDI; Zhang et al., 2012) provides a
more sophisticated model of tissue microstructure than the conventional water diffusion tensor
model (Cercignani and Bouyagoub, 2018). NODDI estimates neurite density (intra-cellular volume
fraction; ICVF), extra-cellular water diffusion (isotropic volume fraction; ISOVF) and tract
complexity/fanning (orientation dispersion; OD), biomarkers which can also be used as network
weightings. Previous research has compared some conventional weightings (Buchanan et al., 2014;
Dimitriadis et al., 2017; Qi et al., 2015), but it is not yet clear how thresholding affects differently-
weighted networks and their relationships with external variables, such as age.

In the current study, using a large, single-scanner imaging sample (UK Biobank Imaging Study), we
assessed the effect of two principled network thresholding approaches (proportional and
consistency thresholding), both based on group-level statistics. We chose methods which operate at
the group-level rather than the individual-level, because this matches the connection density across
subjects and permits quantitative examination of individual differences. We exploited the large
sample size to estimate the reproducibility of the both network thresholding methods in retaining
the same connections across split-halves of the dataset. We also provided information with respect
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to the effect of thresholding across network weightings (streamline count, FA, MD, ICVF, ISOVF and
OD) and four basic graph-theoretic measures (mean edge weight, characteristic path length, global
network efficiency and network clustering coefficient).

We assessed the effect of thresholding using known age-associations in white matter (Cox et al.,
2016). We first selected relevant threshold levels for each thresholding approach, based on the
literature, for which to draw comparisons and to illustrate the practical implications for commonly-
used thresholds. We then compared network-age associations over a range of threshold levels and
assessed the individual age-associations of both retained and discarded connections. According to
the principles underlying consistency and proportional thresholding, we hypothesised that: 1)
thresholding would result in more age-sensitive network measures than unthresholded networks; 2)
as the stringency of the threshold was increased, the magnitude of network-age associations would
increase as more spurious connections were removed; and 3) the age-associations for discarded
connections would be mainly null, based on the assumption that these were false-positive
connections representing measurement noise.

Methods

Participants

The UK Biobank is a large-scale epidemiology study which recruited approximately 500,000
community-dwelling, generally healthy subjects aged 40—69 years from across Great Britain
between 2006 and 2010. Participants provided comprehensive demographic, psychosocial and
medical information during an initial visit to a UK Biobank assessment centre. Approximately 4 years
after initial assessment a subset of participants underwent brain MRI (44—77 years of age) at the UK
Biobank imaging centre in Cheadle, Manchester, UK. The initial release of dMRI data included 5,455
participants of whom 567 were excluded from the current study due to an incompatible dMRI
acquisition used at an earlier scanning phase. A further 1,314 participants were removed by the UK
Biobank following dMRI quality control procedures prior to release (as described in UK Biobank Brain
Imaging Documentation). UK Biobank received ethical approval from the North West Multi-centre
Research Ethics Committee (REC reference 11/NW/0382). All participants provided informed
consent to participate. The current study was conducted under approved UK Biobank application
number 10279.

MRI acquisition and processing

Details of the MRI protocol and processing are freely available (Alfaro-Almagro et al., 2018; Miller et
al., 2016a). All imaging data were acquired using a single Siemens Skyra 3T scanner. 3D T;-weighted
volumes were acquired using a magnetization-prepared rapid gradient-echo sequenceat 1 x1x 1
mm resolution with 208 x 256 x 256 field of view. The dMRI data were acquired using a spin-echo
echo-planar imaging sequence (50 b = 1000 s/mm?, 50 b = 2000 s/mm? and 10 b = 0 s/mm?) resulting
in 100 distinct diffusion-encoding directions. The field of view was 104 x 104 mm with imaging
matrix 52 x 52 and 72 slices with slice thickness of 2 mm resulting in 2 x 2 x 2 mm voxels.

Water diffusion parameters were estimated for FA, which measures the degree of anisotropic water
molecule diffusion, and for MD, which measures the magnitude of diffusion. The parameters
obtained from NODDI were: ICVF which measures neurite density; ISOVF which measures
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extracellular water diffusion; and OD which measures the degree of fanning or angular variation in
neurite orientation (Zhang et al., 2012).

Network construction

An automated connectivity mapping pipeline was used to construct white mater structural
networks. This framework is described below with parameters informed by findings from a previous
test-retest study using healthy volunteers (Buchanan et al., 2014).

Each Ti-weighted image was segmented into 85 distinct neuroanatomical regions-of-interest (ROIs)
using volumetric segmentation and cortical reconstruction (FreeSurfer v5.3.0). The Desikan-Killiany
atlas was used to identify 34 cortical structures per hemisphere (Desikan et al., 2006). Subcortical
segmentation was applied to obtain the brain stem and eight further grey matter structures per
hemisphere: accumbens area, amygdala, caudate, hippocampus, pallidum, putamen, thalamus and
ventral diencapahlon (Fischl et al., 2004, 2002). All cortical segmentations were visually quality
checked for gross segmentation errors and 202 participants were removed.

A cross-modal nonlinear registration method was used to align ROIs from T;-weighted volume to
diffusion space. Firstly, skull-stripping and brain extraction was applied to the FA volume of each
participant (Smith, 2002). As an initial alignment, an affine transform with 12 degrees of freedom
was used to align each brain-extracted FA volume to the corresponding FreeSurfer extracted T;-
weighted brain using a mutual information cost function (FLIRT; Jenkinson and Smith, 2001). Local
alignment was then refined using a nonlinear deformation method (FNIRT; Andersson et al., 2007).
FreeSurfer segmentations were then aligned to diffusion space using nearest neighbour
interpolation. For each participant, a binary mask used to constrain tractography, was formed in
diffusion space from all grey and white matter voxels.

Whole-brain tractography was performed using an established probabilistic algorithm and a two-
fibre model (BEDPOSTX/ProbtrackX; Behrens et al., 2007, 2003). Probability density functions, which
describe the uncertainty in the principal directions of diffusion, were computed with a two-fibre
model per voxel (Behrens et al., 2007). Streamlines were then constructed by sampling from these
distributions during tracking using 100 Markov Chain Monte Carlo iterations with a fixed step size of
0.5 mm between successive points. Tractography was initiated from all white matter voxels and
streamlines were constructed in two collinear directions until terminated by the following stopping
criteria: 1) exceeding a curvature threshold of 70 degrees; 2) entering a voxel with FA below 0.1; 3)
entering an extra-cerebral voxel; 4) exceeding 200 mm in length; and 5) exceeding a distance ratio
metric of 10. This tracking criteria was set to minimize the amount of anatomically implausible
streamlines. The distance ratio metric (Bullitt et al., 2003), excludes implausibly tortuous
streamlines, for which a streamline with a length ten times longer than the distance between end
points was considered invalid.

Networks were constructed by identifying connections between all ROI pairs. The endpoint of a
streamline was recorded as the first ROl encountered (if any) when tracking from the seed location.
Successful connections were recorded in an 85 x 85 connectivity matrix. A network weighting based
on absolute streamline count (SC) was computed, a_ij = count(i, j), which is the count of all
streamlines identified between nodes i and j. In order to apply the streamline length correction
(Roberts et al., 2017), a length matrix, d_ij was computed for each participant recording the mean
length along all interconnecting streamlines between node i and j. A group-wide matrix of mean
streamline lengths, /, was then constructed by taking the element-wise mean across the set of length
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matrices. In addition to the streamline count, five further network weightings were computed for
FA, MD, ICVF, ISOVF and OD. For each weighting, a connectivity matrix was computed with element,
a_ij, recording the mean value of the diffusion parameter in voxels identified along all
interconnecting streamlines between nodes i and j. As tractography cannot distinguish between
afferent and efferent connections, all matrices were made symmetric. Self-connections (diagonal
elements) were removed and set to zero for all matrices.

Network thresholding and network measures

We applied both proportional and consistency thresholding using SC-weighted networks, which
reflect the likelihood of connection obtained from probabilistic tractography. Proportional-
thresholding was applied to the set of SC matrices by only retaining the network connections which
occurred (i.e., were nonzero) in a given proportion of subjects. Consistency-thresholding was applied
by first correcting each SC matrix by the length matrix, a_ij//_ij, in order to correct for the bias in
identifying short-range connections (Roberts et al., 2017). A threshold on the coefficient of variation
(CoV) of the length normalised weights was then applied to retain a set of connections across
subjects. As the threshold criteria for the proportional and consistency approaches were not directly
comparable, we measured both against network sparsity (the proportion of zero-weighted elements
out of the total number of possible elements in a connectivity matrix).

For each approach, we selected a relevant threshold level for which to draw comparisons. For
proportional-thresholding this level was set as the proportion of connections that were present in at
least 50% of subjects, based on the median value obtained from a literature search of network
studies published in the last two years (Supplementary Table 1). The consistency-thresholding level
was set to retain 30% of connections, based on estimates from human and animal in vivo and in vitro
data (Roberts et al., 2017). In addition to these levels, networks were computed over 100 equally
spaced threshold levels from 0 to 100% network sparsity. For each threshold level, the same
threshold mask was applied to each of the five diffusion weighted networks resulting in identical
network sparsity across weightings.

For each network weighting (SC, FA, MD, ICVF, ISOVF and OD) and threshold level, per subject, we
computed the mean edge weight (mean of all network connections including any zero-weighted
elements which survived group-wide thresholding). In addition, three global graph-theoretic metrics
were computed (Rubinov and Sporns, 2010): characteristic path length (a measure of network
integration), global network efficiency, and network clustering coefficient (reflecting the
interconnectedness of each node’s neighbours).

Statistical analysis

We first computed the mean connectivity matrices and reported descriptive statistics for
unthresholded networks across the six network weightings. Following network thresholding, we
computed correlations between each of the four network measures for six weightings and for three
threshold levels. Similarly, correlations between the six weightings, in terms of mean edge weight,
were computed over the same threshold levels.

We computed the group-level statistics used by both thresholding methods and provided details on
the proportion of subjects in which connections occurred and the number of streamlines involved.
We measured the reproducibility of both thresholding approaches by measuring how consistently
each retained the same network connections using different subsets of the full cohort. Split-half
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agreement was computed by randomly splitting the full dataset into halves (N =1,577 and N =
1,576), computing two independent thresholds in each half and then using the intraclass correlation
coefficient (ICC) to compute the agreement (presence of connections) in matrix elements (85 x 85
binary matrices) obtained from the two thresholds. We computed ICC(3,1), which applies a two-way
mixed model with single measures and consistency of agreement (Shrout and Fleiss, 1979). At each
of the 100 threshold levels, this split-half agreement procedure was repeated by resampling 1,000
times to compute mean values and confidence intervals.

We used age-associations as a test bed to compare the criterion validity of proportional and
consistency thresholding. Initially, we compared the two methods at the pre-defined threshold
levels alongside unthresholded matrices: connections present in 50% of participants (PT50); and
consistency-thresholding at 30% (CT30). We therefore have three thresholding configurations for
comparison, termed Raw, PT50, and CT30. We recognise that the these configurations have different
network sparsities (0.313 for PT50; and 0.700 for CT30), and thus also provide two additional
comparators matched for sparsity (PT at 0.700 sparsity, and CT at 0.313 sparsity). This allows us to
comment on the relative contributions of thresholding method (proportional/consistency) or
general stringency of the threshold (i.e., network sparsity) to observed network-age associations. For
the set threshold levels (PT50 and CT30 and their sparsity-matched corollaries), we tested for the
difference between a pair of age-associations based on dependent groups (Williams, 1959). We then
provided a more in-depth analysis by testing both proportional and consistency thresholding over a
range of threshold levels.

To assess the efficacy of thresholding in a sample with known age-associations we extracted the
network connections that were retained and discarded, to test the hypothesis that discarded
connections would be spurious and would therefore exhibit mainly null age-associations, and that
the increased signal-to-noise in retained connections would result in stronger age-associations.
Unpaired two-sample t-tests were used to test the difference in age-associations between the set of
connections that were retained and the corresponding connections that were discarded. We
compared properties between these two classes in terms of age-associations (standardised betas) of
the mean edge weights. In order to visualise the regions involved for both retained and discarded
connections computed with CT30, anatomical circle plots were constructed (Irimia et al., 2012),
which grouped related neuroanatomical nodes and plotted connections by strength of age-
association.

Throughout, for each of the six weightings and four network measures, multiple regression was used
to model the associations between network measures with respect to age, age?, sex and age x sex.
Owing to the large number of comparisons a threshold of p < 0.001 (uncorrected) was used to
denote significant effects in each model. Uncorrected p-values were reported because our intention
was to use the known age-association in white matter as a comparator (given the absence of
ground-truth data) between different weightings and thresholds. The above associations
(standardised betas), standard error and adjusted R? were computed for each weighting over all 100
threshold levels.

We restricted our main analyses, throughout, to streamline counts that were uncorrected for grey or
white matter volumes. At a constant resolution, network methods may identify more inter-regional
streamlines in large brains than in small brains, but some have suggested that volume correction of
streamline counts may overcompensate for volume-driven effects on these streamline weightings
(Van Den Heuvel and Sporns, 2011). In a supplementary analysis, we therefore investigated
differences in the criterion validity (for both age and sex, given the well-replicated sex differences in
brain size; Ritchie et al., 2018) of mean edge weight when applying four variants of SC-weighting:
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uncorrected streamline count; network-wise correction by the number of seed points per subject
(count of white matter voxels); streamline density with edge-wise correction by the count of voxels
per ROl (Hagmann et al., 2008); and streamline density with edge-wise correction by node surface
area at the white matter interface (the count of voxels which directly neighbour a white matter
voxel).

Results

Network characteristics

3,153 participants (44.6—77.1 years of age, 1,496 male) remained after participants were excluded at
quality checking or due to failure in processing. On average, 6.01 million streamlines were seeded
per subject of which 1.49 million (24.9%) were found to successfully connect between nodes
following the tracking procedure and removal of self-connections. The mean connectivity matrices
and corresponding histograms of edge weights computed for each network weighting (SC, FA, MD,
ICVF, ISOVF and OD) are shown in Figure 1. In each case, the networks were produced from the
same set of streamlines. Before any thresholding, the mean value of network sparsity (the
proportion of zero-weighted elements in a connectivity matrix) across subjects was 0.316 (SD =
0.032) meaning that probabilistic tractography generated brain networks with a connection density
of ~68% per subject. The mean connectivity matrix computed across all subjects (Figure 1) was
almost fully connected with a sparsity of 0.002, although 69.8% of all connections in this network
involved fewer than 50 streamlines per subject on average. We observed from the histograms of
edge weights pooled across all subjects (Figure 1) that the distribution of SC weights approximately
followed a power law and involved many low weighted connections but very few high weighted
connections, whereas the five dMRI-based weightings followed approximately normal distributions.

The absolute values of graph-theoretic metrics are known to be dependent on the network methods
used (Qi et al., 2015). Whilst the absolute values of our global network measures (mean edge
weight, characteristic path length, network efficiency and network clustering coefficient) are not key
to our analyses, we found that the value of each measure varied considerably across weightings and
sparsities (Supplementary Table 2). Generally, as network sparsity was increased, both mean edge
weight and characteristic path length also increased, whereas both network efficiency and network
clustering coefficient decreased. We found that our four global network measures were highly
correlated with each other when assessed for each of the six network weightings and for three
threshold levels (Raw, PT50 and CT30), with all correlations between these network measures at r 2
|0.60]| for SC-weighted networks and r > |0.74| for all other weightings. Similarly, the mean edge
weights of the six network weightings were found to be highly correlated in several cases
(Supplementary Figure 1). For example, at the most stringent level of sparsity tested (CT30), the
strongest correlations were between FA and ICVF (r = 0.84); MD and ICVF (r =-0.83); FA and MD (r =
-0.73); MD and OD (r =-0.46); and MD and ISOVF (r = 0.44).

Comparison of thresholding methods

To illustrate the group-level statistics used by the proportional and consistency thresholding
approaches, we calculated the proportion of subjects in which each connection existed (Figure 2A)
and the inter-subject variability (CoV) in streamline count following length correction (Figure 2B).
The elements of the proportional and CoV matrices were significantly correlated at r = -0.61. The
relationship between the threshold on the proportion of subjects and the resulting network sparsity
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is nonlinear (Figure 2C). The relationship between the threshold on the inter-subject variability of
edge weights and network sparsity (Figure 2D) shows that there are few connections with high inter-
subject variability (CoV > 10) and most connections exhibit low inter-subject variability (e.g., CoV <
1.25 for the top 30% most consistent connections). Proportional-thresholding could not be applied
at the highest levels of network sparsity because above 81% sparsity no further connections could
be removed by this criterion, i.e., 19% of all possible network connections were present in every
subject.

Whereas CT30 retained 30.0% of 3,570 possible network connections, the threshold level for PT50
was more relaxed and retained 68.7% of all connections. Notably, the network connections removed
by either thresholding method involved relatively few streamlines per subject. For instance, CT30
removed 2,493 (70.0%) of the network connections but this only discarded 75 thousand streamlines
per subject, and the majority of streamlines (approximately 1.42 million) were retained. Similarly,
PT50 removed 1,119 (31.3%) of the network connections but this only discarded ~650 streamlines
per subject (i.e., discarded connections had a streamline count of zero in many subjects), and
approximately 1.49 million streamlines were retained. Therefore, most connections removed by
either thresholding method mainly comprised very few streamlines. This is consistent with the
hypothesis that such connections might be regarded as spurious.

For both thresholding approaches, measuring how consistently the same network connections were
identified in separate halves of the sample, after random splitting into halves (N =1,577 and N =
1,576) and computing two independent thresholds, resulted in high agreement (mean ICCs > 0.81;
Figure 2E). The agreement for PT50 (mean ICC = 0.99) was greater than the agreement for CT30
(mean ICC = 0.93). When examined across the full range of sparsities, proportional-thresholding was
highly consistent (mean ICCs > 0. 97) over 20 to 60% sparsity but agreement declined above 60%
sparsity, presumably as core white matter connections were pruned from one sample but not the
other. Consistency-thresholding showed a broadly linear increase in ICC scores as connections were
removed with the highest mean ICC of 0.97 obtained with 5% of connections remaining. Although
the proportional approach obtained higher agreement than the consistency approach over most
levels, we observed that the crossover in their performance occurred at around 70% sparsity
(coinciding with the 30% of connections threshold level proposed by Roberts et al., 2017). Similarly,
when both thresholding methods were compared across the full sample when measured at a
matched sparsity of 70% (CT30 and PT at 0.7 sparsity), the agreement in the network connections
identified by the two methods was high (ICC = 0.84 or 948/1,190 matching connections).

Network-age associations by thresholding method

We examined the age-associations of global network measures obtained for PT50 (corresponding to
a network sparsity of 31.3%) and CT30 (sparsity of 70.0%), alongside results from the set of Raw
matrices. In order to parse apart the contributions of network sparsity to any observed differences
between thresholding methods, we also provided age-associations for two other threshold levels,
for which network sparsity was matched between threshold methods. The linear component for
age-associations between four metrics (mean edge weight, characteristic path length, network
efficiency and network clustering coefficient) from each of the six weightings (SC, FA, MD, ICVF,
ISOVF, OD) across these thresholding methods are shown in Table 1 and Figure 3. Full regression
coefficients (age, age?, sex and sex x age) are presented in Supplementary Tables 3-5.
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First, we compared age-associations for Raw vs. PT50 vs. CT30 (columns 1, 2 and 5 in Table 1). The
overarching pattern of results indicated that age-association magnitudes were Raw < PT50 < CT30,
with effect sizes (magnitude of standardised regression coefficients) between 0.033 and 0.409 for
Raw, between 0.070 and 0.406 for PT50 and between 0.140 and 0.409 for CT30. The differences
between pairs of age-associations over these levels were significant in the majority of cases (p <
0.001, uncorrected; the 15 nonsignificant instances are indicated in Table 1). Over these three levels,
FA-weighted networks showed the most pronounced increase in effect size as sparsity was increased
(0.033 < 0.070 < 0.179). However, when the thresholding methods were matched by sparsity
(columns 3 and 4 in Table 1), it became apparent that network sparsity rather than the specific
thresholding approach was the main driver of differences in age-associations with the various
network metrics. Excluding SC and ISOVF, generally the magnitude of the age-association increased
as the stringency of the threshold was increased (and more uninformative network connections
were removed). In most cases, metrics derived from Raw matrices yielded the weakest age-
associations (0.033 < |B| £ 0.409). However, there was little evidence that consistency-thresholding
yielded stronger age-associations than the proportional method when sparsity was matched.

Although various interregional streamline count weightings have previously been used, we have
limited our analysis above to uncorrected streamlines counts. In a supplementary analysis, we also
computed three other streamline network weightings and computed age and sex associations using
mean edge weight (Supplementary Table 6). As expected, increasing age was associated with fewer
streamlines for uncorrected SC (-0.172 < £-0.141, p < 0.001), but also with being male (0.379<B <
0.384, p < 0.001), at all thresholds tested. When SC was corrected for the number of white matter
seed points per subject, there was no significant age-association (-0.005 < 3 <0.042, all
nonsignificant), and females had greater streamline weights (-0.173 < B £-0.159, p < 0.001). When
correcting streamline count for grey matter node volume or surface area, age-associations were
flipped, denoting higher weights with increasing age (0.067 < B <0.173, p < 0.001), and yielding null
sex differences except for Raw and PT50 thresholded networks using surface area correction ( =
0.082, p < 0.001 in both cases), indicating males had modestly higher weights. No significant sex
effects were found with the dMRI weightings when measuring mean edge weight (Supplementary
Tables 3-5).

Network-age associations by thresholding level

Age-associations for retained versus discarded connections were also compared across the entire
sparsity range from 0 to 100% (Figure 4). When visualised across all threshold levels, the profile of
age-associations across thresholds levels (both retained and discarded connections) were very
similar between proportional and consistency-thresholding. However, age-associations for the
proportional method could not be computed at the highest levels of sparsity because of the limits of
the thresholding criterion. Generally, more stringent thresholding (increasing sparsity) resulted in a
greater magnitude of age-association for retained connections in SC, FA, MD, ICVF and OD, except at
the highest levels of sparsity (>90%) where crucial connections were then removed (though for
ISOVF, increasing the threshold level resulted in a slight decrease in the magnitude of the age-
association for retained connections). Whereas the range for the strongest age-association in
retained connections was approximately 50-95% sparsity (across weightings), age-associations for
the discarded connections were closest to null below 50% sparsity. Crucially, it was observed that at
nearly every threshold level the magnitude of the age-associations for retained connections was
greater than the corresponding age-association for the discarded connections (except for SC). The
discarded connections showed null profiles for FA, ICVF and OD (but not for SC, MD and ISOVF)
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across most of the sparsity range. Although the magnitudes of age-associations were larger for
retained versus discarded connections, both were significant, and in the same direction, across most
levels of network sparsity; for ISOVF the age-association became broadly equivalent for both
retained and discarded connections above 70% sparsity.

Age associations of retained versus discarded connections

Given our hypothesis that connections discarded by thresholding would show mainly null age-
associations, we identified the network connections that were both retained and discarded and
computed age-associations for each individual connection for both PT50 and CT30 across all six
network weightings (Figure 5 and 6). Given that both thresholding methods are agnostic to age, the
histograms of age-associations show a marked difference in distribution of retained/discarded
connections, particularly for FA, MD, ICVF and ISOVF. Apart from SC weighted networks with PT50
(Figure 5), for all other network weightings and both thresholding approaches the age-associations
of the discarded connections (mean B < |0.068|) were significantly smaller in magnitude than the
corresponding retained connections (mean B < |0.219], p < 0.001, uncorrected). Interestingly, across
all weightings, the distribution of discarded connections (Figure 5A and 6A) had a narrower spread
for PT50 (SDs between 0.043 and 0.052) than for the more stringent CT30 method (SDs between
0.065 and 0.085). Examination of the age-associations for each connection (Figures 5B & 6B, bottom
row) indicated that CT30 discarded a larger proportion of connections that showed a strong age-
association. For CT30, the amount of discarded connections with |B| = 0.20, were 8.2% for ISOVF,
4.4% for MD and < 1.9% for the other weightings.

In order to identify the regions involved, anatomical circle plots were constructed using CT30 which
grouped related neuroanatomical nodes and plotted connections by strength of age-association (p <
0.001, uncorrected) for FA and MD weightings (Figure 7; Supplementary Figures 2 and 3 for other
weightings). Coherent patterns involving intrahemispheric connections with strong age-associations
(IB| 20.20) were observed for FA, MD and ICVF. For these weightings, the strongest age-
associations were for connections between subcortical nodes and connections between frontal
nodes. The single strongest age-association was the connection between the left thalamus and left
caudate nucleus for MD (B = 0.50). However, SC and to a lesser extend ISOVF and OD showed several
interhemispheric connections with strong age-associations. The discarded connections for SC, FA,
ICVF and OD (Supplementary Figure 3) involved < 1.9% of connections with relatively strong age-
associations (|B| = 0.20). Discarded connections with strong age-associations occurred in somewhat
incoherent patterns when compared across weightings and many of the strongest associations
involved subcortical connections and connections between subcortical nodes and contralateral
cortical nodes.

Discussion

This study quantified the effects of principled network thresholding methods and novel network
weightings on the criterion validity (associations with age) of an array of structural network metrics.
We provided evidence that, in a large sample with previously reported age-associations in white
matter (Cox et al., 2016), principled methods to remove implausible connections resulted in the
identification of more age-sensitive network components than unthresholded networks. An initial
comparison of the group-level thresholding methods (at different levels of sparsity) showed
generally stronger age-associations with the more stringent consistency-based (rather than
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proportional) thresholding. This provides a practical illustration of how currently-used thresholding
methods can yield substantially different estimates of association with external variables. However,
our more detailed analyses indicated that the stringency of the overall threshold adopted appears to
be a stronger determinant of the age-association than the actual method of thresholding itself.
When we increased the stringency of the proportional threshold (connections present in 99.6% of
individuals, rather than 50%) to match the network sparsity achieved by the consistency-based
approach (both at ~70% network sparsity), both thresholding approaches produced a highly
overlapping set of network connections and broadly equivalent age-associations. This finding was
echoed when we examined the profile of age-associations across the full sparsity range. There is
little difference between the two thresholding approaches in terms of age-associations when
sparsity is matched. Generally, more stringent thresholding (increasing sparsity) resulted in a greater
magnitude of age-association for retained connections, which were also predominantly closer to
previously reported results using major tract-averaged measurements (Cox et al., 2016) than for Raw
matrices.

We further compared the profile of age-associations for both retained and discarded connections
across all possible network sparsities. In combination with results from multiple approaches
indicating pervasive degeneration of the brain’s white matter connections with adult age (Burzynska
et al., 2010; Cox et al., 2016; Salat, 2011), our finding that the strongest age-associations fell
between 50% and 95% network sparsity, and that the profile of age-associations within the
discarded connections were predominantly null across sparsities is consistent with: 1) prior evidence
that the human brain is likely to have a connection density of ~30% (Roberts et al., 2017); 2) that
probabilistic tractography fundamentally over-estimates the number of connections (Roberts et al.,
2017), and; 3) that these spurious connections add noise to the signal (Jbabdi and Johansen-Berg,
2011). Moreover, our results are inconsistent with previous reports that topological network
properties of connectomes are not significantly altered by the removal of weak connections (Civier
et al., 2019).

Notably, the profiles of age-associations among the discarded connections appeared distinct when
comparing the more general water diffusion parameters (MD and ISOVF) with those metrics thought
to convey more specific white matter microstructural information (e.g. FA and ICVF and OD), as
shown in Figure 4, for example. The discarded connections showed null age-associations profiles for
FA, ICVF and OD across most of the full sparsity range. This is in line with the hypothesis that
discarding spurious connections would increase the signal-to-noise ratio. Conversely, the discarded
connections weighted by metrics describing the magnitude of general water molecular diffusion (MD
and ISOVF) carried significant information about age differences across the majority of thresholds.
Diffusion metrics that describe water directional coherence (rather than its general magnitude)
should theoretically be more sensitive to the assumed phenomenon of erroneous white matter
pathway identification arising from biases in probabilistic tractography. This offers an interesting
perspective on differences in the utility of thresholding as a function of the water diffusion metric of
interest.

As network sparsity increased, we also found that a larger number of connections with stronger age-
associations were discarded. Our investigation of the comparative anatomy of these retained and
discarded tracts indicated that the former described coherent bilateral patterns of mainly
interhemispheric connectivity, particularly between subcortical nodes and between frontal nodes
(FA, MD and ICVF). In addition, age-associations with ipsilateral connections were generally stronger
than contralateral connections. In contrast, few of the discarded connections showed strong age-
associations, and these were less symmetrical and often involved connections between subcortical
and contralateral cortical nodes. Thus, the discarded connections most strongly associated with age
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were less consistent with findings from mammalian cerebral connectivity (Funnell et al., 2000;
Goulas et al., 2017; Oh et al., 2014). Nevertheless, the presence of some contralateral subcortico-
cortical connectivity in the mouse (e.g. Oh et al., 2014) could also indicate that more stringent
thresholding is increasingly likely to remove some non-spurious connections. Furthermore, some
proportion of false-positive connections were likely due to systematic limitations in processing, e.g.
an ROl lying close to a major white matter tract which is then wrongly identified as the start/end
point of a white matter connection. False continuation or premature termination of streamlines is a
known limitation of probabilistic tractography methods (Yeh et al., 2018).

Although various interregional streamline count weightings have previously been used (Buchanan et
al., 2014; Hagmann et al., 2008), we have limited our analysis to uncorrected streamlines counts.
Our results suggest that streamline-based weightings are affected by volume effects (e.g. the large
sex difference with uncorrected SC was likely due to differences in head size and tissue volume).
However, streamline count variants that correct for white matter volume and/or grey matter
volumes may overcompensate for volume driven effects resulting in age trends in opposite (and
unexpected) direction. Some researchers have previously suggested that volume correction of
streamline weightings may overcompensate for volume-driven effects on streamline counts (Van
Den Heuvel and Sporns, 2011). Therefore, it remains unclear how best to correct streamline weights
in order to measure between-subject differences in connectivity. However, the dMRI based
weightings, such as FA or MD, are largely agnostic to brain size because they measure the mean
value along interconnecting streamlines. No significant sex effects were found with dMRI weightings
when measuring mean edge weight.

Beyond our contributions to thresholding and network weighting methods literature, we also
contribute robust estimates of associations between age and graph-theoretic metrics which have
not previously been reported in a sample of this size. For example, network efficiency for MD and
ISOVF-weighted networks were the most age-sensitive measures across a broad range of thresholds;
this was considerably stronger than the previously reported latent factor of microstructure from 22
tracts in this sample for these measures (Cox et al., 2016). In addition, the mean edge weight
measures of ISOVF and OD were also larger than these previously reported estimates. This could
indicate that accounting for a much larger range of white matter connections might provide a clearer
reflection of brain-wide white matter correlates of age. Furthermore, we add to our understanding
of age differences in white matter microstructure by assessing many more connections than
previously reported in this large, single-scanner sample. For example, the previously reported
importance of the thalamic radiations for ageing (Cox et al., 2016) could well have been due to
sampling error (i.e., bias in the selection of tracts used in the dMRI analysis method did not include
other subcortical connections). Whereas our analyses do indicate that thalamic-hippocampal and
thalamo-cortical connections exhibit among the strongest age-associations, comparatively strong
age-associations were also apparent for caudate and putamen, in line with extant data on the
neurostructural underpinnings of certain aspects of cognitive ageing (Fjell et al., 2016).

Limitations

The study has some limitations. Age-associations are an indirect means against which to verify
network properties and should not be used in isolation as a means to detect or prescribe an optimal
network thresholding level (e.g., “the largest age-association was found at X% sparsity”), and we do
not do so here. Given that thresholding methods are agnostic to age, our use of a descriptive schema
allowed us to compare the criterion validity of methods already in use, some of which are
substantiated by important biological/histological evidence (Salat, 2011). We also caution that,
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although age is a well-known correlate of white matter microstructure, there are clearly other
plausible explanations by which discarded connections may represent real anatomical pathways that
simply do not show age-associations. For comparison, a previous voxel-wise analysis of UK Biobank
imaging participants found that, although FA generally decreased with age, some voxels exhibited an
increase in FA with age, which may reflect degradation of secondary fibres or reduced fibre
dispersion (Miller et al., 2016b). The sample used here comprised generally healthy middle- and
older-age participants, who are range restricted in several ways (Fry et al., 2017), which may well
affect the generalisability of our findings to other samples. Further methodological work comparing
the criterion validity of different network thresholding approaches in the context of pathological
neurodegenerative conditions would offer an additional perspective on the current findings.

The value of network variables are known to be sensitive to the construction methodology applied,
but there is not yet an agreed schema for constructing structural brain networks from dMRI data (Qi
et al., 2015). Necessarily, we have limited our analyses to one approach, but we realise the effect of
thresholding will likely differ with other network methods. In particular, principled methods of dMRI
denoising, tractography (Tournier et al., 2012) and streamline filtering (Smith et al., 2015, 2013) may
further reduce the likelihood of false connections prior to thresholding. Additionally, we selected a
brain parcellation schema based on its common application in brain network analyses (Desikan et al.,
2006). We conjecture that the biological justification for thresholding at ~30% connection density
(Roberts et al., 2017) will also translate to different neuroanatomical atlases and network
resolutions. Nevertheless, the influence of biological and methodological factors remains to be
determined across alternative atlases (Qi et al., 2015), particularly those that provide a substantially
greater level of granularity (Glasser et al., 2016).

It is challenging to ensure that an arbitrary threshold removes spurious connections while retaining
genuine patterns of connectivity. We have limited our analyses to group-level thresholding;
consequently, our findings do not necessarily apply to methods that threshold at the individual level,
such as absolute-thresholding (Hagmann et al., 2008). Moreover, idiosyncrasies in the structural
networks across individuals may limit the utility of such nomothetic approaches. Consistency-
thresholding is based on the assumption that connections with the highest inter-subject variability
(of corrected streamline counts) are spurious (Roberts et al., 2017). Arguably, removing such
connections could hinder the identification of individual differences to be correlated with external
variables. Although any network thresholding method is imperfect and can remove genuine patterns
of connectivity (at least in a subset of individuals), we believe that thresholding used at plausible
levels of network sparsity does remove more false-positive than genuine connections.

Conclusions

We used a large, single-scanner sample of generally healthy middle- and older-aged participants to
test the effects of thresholding and novel network weightings on the criterion validity of network
metrics with respect to age. Consistent with biological evidence that the human brain has a
connection density of approximately 30%, and the hypothesis that discarded connections would not
convey significant information about ageing, we found that more stringent thresholding yielded
stronger age-associations than unthresholded networks. This was particularly true for network
weightings that denoted directional information (FA, ICVF, OD). Importantly, we found that the
specific threshold level applied was a stronger driver of the age-association than the choice of
thresholding method.
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Tables

Network metric Weighting

Raw

PT50:
Proportional
(50%)

Consistency
(68.6%)

Proportional
(99.6%)

CT30:
Consistency
(30%)

sparsity = 0.002

sparsity = 0.313

sparsity = 0.313

sparsity = 0.701

sparsity = 0.700

Mean edge weight SC
FA
MD
ICVF
ISOVF
oD

Characteristic path

length N

FA
MD
ICVF
ISOVF
oD

Network efficiency SC
FA
MD
ICVF
ISOVF

oD
Network clustering
coefficient SC

FA
MD
ICVF
ISOVF
oD

-0.141 (<0.001)

-0.033 (0.079)
0.285 (<0.001)
-0.097 (<0.001)
0.362 (<0.001)°
-0.101 (<0.001)

0.160 (<0.001)?
0.089 (<0.001)
-0.332 (<0.001)
0.149 (<0.001)
-0.339 (<0.001)°
0.217 (<0.001)

-0.186 (<0.001)?
-0.095 (<0.001)
0.385 (<0.001)
-0.160 (<0.001)
0.380 (<0.001)
-0.217 (<0.001)°

-0.098 (<0.001)*
-0.056 (0.002)
0.409 (<0.001)*
-0.127 (<0.001)
0.345 (<0.001)
-0.142 (<0.001)

-0.141 (<0.001)
-0.070 (<0.001)
0.346 (<0.001)
-0.134 (<0.001)
0.367 (<0.001)°
-0.146 (<0.001)

0.160 (<0.001)
0.109 (<0.001)
-0.358 (<0.001)"
0.167 (<0.001)
-0.341 (<0.001)"
0.229 (<0.001)

-0.186 (<0.001)°
-0.117 (<0.001)
0.405 (<0.001)®
-0.176 (<0.001)
0.389 (<0.001)°

-0.225 (<0.001)

-0.087 (<0.001)°
-0.107 (<0.001)
0.406 (<0.001)°
-0.162 (<0.001)

0.338 (<0.001)

-0.178 (<0.001)°

-0.142 (<0.001)
-0.069 (<0.001)
0.340 (<0.001)
-0.133 (<0.001)
0.367 (<0.001)
-0.146 (<0.001)

0.160 (<0.001)
0.114 (<0.001)
-0.361 (<0.001)
0.167 (<0.001)
-0.328 (<0.001)
0.225 (<0.001)"

-0.186 (<0.001)
-0.118 (<0.001)
0.407 (<0.001)
-0.175 (<0.001)
0.392 (<0.001)
-0.223 (<0.001)

-0.096 (<0.001)
-0.112 (<0.001)
0.399 (<0.001)
-0.165 (<0.001)
0.336 (<0.001)
-0.186 (<0.001)

-0.154 (<0.001)
-0.187 (<0.001)
0.381 (<0.001)
-0.212 (<0.001)
0.351 (<0.001)
-0.198 (<0.001)

0.129 (<0.001)
0.152 (<0.001)
-0.378 (<0.001)
0.185 (<0.001)
-0.269 (<0.001)
0.216 (<0.001)

-0.186 (<0.001)
-0.168 (<0.001)
0.418 (<0.001)
-0.201 (<0.001)
0.396 (<0.001)
-0.215 (<0.001)

-0.143 (<0.001)
-0.198 (<0.001)
0.374 (<0.001)
-0.214 (<0.001)
0.313 (<0.001)
-0.178 (<0.001)

-0.172 (<0.001)
-0.179 (<0.001)
0.378 (<0.001)°
-0.206 (<0.001)
0.353 (<0.001)
-0.198 (<0.001)

0.160 (<0.001)°
0.140 (<0.001)
-0.364 (<0.001)®
0.184 (<0.001)
-0.290 (<0.001)
0.219 (<0.001)"

-0.192 (<0.001)
-0.158 (<0.001)
0.409 (<0.001)°
-0.197 (<0.001)
0.401 (<0.001)°
-0.215 (<0.001)°

-0.179 (<0.001)
-0.192 (<0.001)
0.368 (<0.001)
-0.209 (<0.001)
0.311 (<0.001)
-0.178 (<0.001)°

Table 1. Comparison of age-associations (standardised regression coefficients and uncorrected p-
values) for four network metrics measured across six network weightings and five thresholding
approaches. The five thresholding approaches are: Raw (unthresholded); proportional at 50%
(PT50), consistency at 68.6% (matched on network sparsity to PT50 for comparison), proportional at
99.6% (matched on sparsity with CT30) and consistency at 30% (CT30). The reported regression
coefficients denote the linear component for age and full regression coefficients (age, age?, sex and
sex x age) are presented in Supplementary Tables 3-5. Emboldening indicates significance (p < 0.001,
uncorrected). Tests for the difference in the magnitude of age-associations were conducted for Raw
vs. PT50 and PT50 vs. CT30; all were significantly different apart from = and ¢, which denote non-
significantly different pairs of magnitudes (p < 0.001, uncorrected). SC = streamline count, FA =
fraction anisotropy, MD = mean diffusivity, ICVF = Intracellular volume fraction, ISOVF = Isotropic

volume fraction, OD = orientation dispersion.
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Figure 1. Top: 85 x 85 mean connectivity matrices (unthresholded) of inter-region connection weights averaged across all participants (N = 3,153) for six
network weightings and generated from the same set of streamlines. In each case, the two large rectangular patterns on the diagonal correspond to the left
and right hemispheres. Bottom: the corresponding histograms of nonzero edge weights pooled across all participants for each weighting (SC is log-scaled).
SC = streamline count, FA = fraction anisotropy, MD = mean diffusivity, ICVF = Intracellular volume fraction, ISOVF = Isotropic volume fraction,
OD = orientation dispersion.
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Figure 2. A) 85 x 85 matrix showing the proportion of subjects for which each network connection was present; B) 85 x 85 matrix showing the coefficient
of variation (CoV) in network weights following streamline count length correction used by consistency-thresholding; C) The relationship between the
threshold on the proportion of subjects and network sparsity; D) The relationship between the threshold on CoV of length-corrected weights and network
sparsity; E) Split-half agreement of thresholded connections computed by: randomly splitting the dataset into halves, applying two independent thresholds
and using ICC to measure the agreement (presence of connections) identified from the two thresholds (95% Cls computed over 1000 resampling iterations

and plotted against network sparsity).
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Figure 3. Density plots of mean edge weight for six network weightings under three alternative
thresholding approaches: unthresholded (Raw), proportional-thresholding at 50% of subjects (PT50)
and consistency-thresholding at 30% (CT30), with quadratic fit and 95% Cls.
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Figure 4. Age-associations (standardised betas with SE) of mean edge weight computed for both connections that were retained and were discarded and
over a range of thresholds (0 to 100%) for each of the six network weightings using: proportional-thresholding (top), consistency-thresholding (bottom). The
dashed vertical line indicates the threshold levels for 50% of subjects (PT50) and consistency-thresholding at 30% (CT30), respectively.
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Figure 5. For the six network measures: A) histograms of the age-associations for both connections that were retained and were discarded by proportional-
thresholding using 50% of subjects; B) 85 x 85 heatmaps showing the individual age-associations for both connections that were retained and were

discarded.
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Figure 6. For the six network measures: A) histograms of the age-associations for both connections that were retained and were discarded by consistency-
thresholding at 30%; B) 85 x 85 heatmaps showing the individual age-associations for both connections that were retained and were discarded.
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Figure 7. Age-associations (p < 0.001, uncorrected) for both retained and discarded connections
using consistency-thresholding at 30% for FA- and MD-weighted networks. Link colour represents
the age-association (standardised beta) of the mean edge weight, and link thickness represents the
magnitude of the association. Node abbreviations are listed in Supplementary Table 7.
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