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Abstract 
Whole‐brain structural networks can be constructed using diffusion MRI and probabilistic 
tractography. However, measurement noise and the probabilistic nature of the tracking procedure 
result in an unknown proportion of spurious white matter connections. Faithful disentanglement of 
spurious and genuine connections is hindered by a lack of comprehensive anatomical information at 
the network‐level. Therefore, network thresholding methods are widely used to remove ostensibly 
false connections, but it is not yet clear how different thresholding strategies affect basic network 
properties and their associations with meaningful demographic variables, such as age. In a sample of 
3,153 generally healthy volunteers from the UK Biobank Imaging Study (aged 44—77 years), we 
constructed 85 × 85 node whole‐brain structural networks and applied two principled network 
thresholding approaches (consistency and proportional thresholding). These were applied over a 
broad range of threshold levels across six alternative network weightings (streamline count, 
fractional anisotropy, mean diffusivity and three novel weightings from neurite orientation 
dispersion and density imaging) and for four common network measures (mean edge weight, 
characteristic path length, network efficiency and network clustering coefficient). We compared 
network measures against age associations and found that the most commonly‐used level of 
proportional‐thresholding from the literature (retaining 68.7% of all possible connections) yielded 
significantly weaker age‐associations (0.070 ≤ |β| ≤ 0.406) than the consistency‐based approach 
which retained only 30% of connections (0.140 ≤ |β| ≤ 0.409). However, we determined that the 
stringency of the threshold was a stronger determinant of the network‐age association than the 
choice of threshold method and the two thresholding approaches identified a highly overlapping set 
of connections (ICC = 0.84) when matched at a plausible level of network sparsity (70%). Generally, 
more stringent thresholding resulted in more age‐sensitive network measures in five of the six 
network weightings, except at the highest levels of sparsity (>90%), where crucial connections were 
then removed. At two commonly‐used threshold levels, the age‐associations of the connections that 
were discarded (mean β ≤ |0.068|) were significantly smaller in magnitude than the corresponding 
age‐associations of the connections that were retained (mean β ≤ |0.219|, p < 0.001, uncorrected). 
Given histological evidence of widespread degeneration of structural brain connectivity with 
increasing age, these results indicate that stringent thresholding methods may be most accurate in 
identifying true white matter connections. 
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Introduction 
There has been a growing enthusiasm for work seeking to construct structural brain networks, or 

structural “connectomes” (Sporns et al., 2005), which map white matter connectivity between distal 

regions of the human brain. Structural connectomes can be estimated in vivo, at a macroscopic 

scale, using diffusion magnetic resonance imaging (dMRI) and whole‐brain tractography 

(Sotiropoulos and Zalesky, 2017). This approach has been central for gauging how variation in the 

network organization of the brain relates to behaviour and health. However, the necessity of 

establishing a representative brain network for which within‐ and between‐group comparisons can 

be conducted is a non‐trivial task (de Reus and van den Heuvel, 2013). Due to the noisy and indirect 

measurement of water diffusion combined with the nature of probabilistic tractography, the 

resulting structural brain networks are known to contain many false‐positive connections (Jbabdi 

and Johansen‐Berg, 2011; Thomas et al., 2014; Yeh et al., 2018; Zalesky and Fornito, 2009). The 

unfiltered network generated by probabilistic tractography typically describes the brain as almost 

fully connected (Roberts et al., 2017). This is at odds with biological and post‐mortem investigations 

of mammalian anatomical connectivity. Roberts et al. reported estimates of connection density 

varying from < 5% (Hagmann et al., 2008) to 13–36% for the entire brain and 32–52% for cortico‐

cortical connections in the mouse (Oh et al., 2014). Consequently, it may be inferred that many of 

the ‘connections’ identified in unfiltered networks are spurious. 

Although previous research has been undertaken to map the major white matter pathways of the 
brain using dMRI and tractography (Mori et al., 2009), a fine‐grained anatomical ‘ground‐truth’, 
mapping the presence of every connection at the macroscale (typically thousands of white matter 
pathways involving millions of streamlines) has not yet been realised. A recent population‐based 
atlas of white matter connectivity, constructed by manually labelling 40 major streamline clusters 
(Yeh et al., 2018), shows promise in validating connectivity but is limited to a small proportion of 
possible network connections. 
 
In the absence of a comprehensive map of connectivity and to meet a demand for more principled 
network denoising approaches (de Reus and van den Heuvel, 2013; Maier‐Hein et al., 2017; Van Wijk 
et al., 2010), researchers have introduced inferential methods to identify and discard potentially 
spurious connections. Some researchers have advocated using raw (unthresholded) matrices 
without removal of any connections on the basis that topological network properties are not 
significantly altered by the inclusion of weak connections (Civier et al., 2019). However, many 
network studies have employed thresholding strategies, such as, absolute‐thresholding which 
applies a uniform threshold to retain only connections above a set weight (Hagmann et al., 2007), 
and density‐thresholding which applies a (relative) threshold on the connection weights such that 
the weakest connections are removed to match the same number of connections across subjects 
(Rubinov and Sporns, 2010). Although the lowest weighted network connections (e.g., those 
involving fewest streamlines) are often false‐positives, low weights do not necessarily correspond to 
implausible connections. 
 
Consequently, more sophisticated thresholding approaches have been introduced which remove 
network connections using group‐level statistics. Proportional‐thresholding (consensus‐thresholding) 
has been used to retain only the connections present in a set proportion of subjects (de Reus and 
van den Heuvel, 2013). Recent consistency‐thresholding approaches have been introduced, which 
retain connections with weights that are consistent across subjects, on the assumption that 
connections with the highest inter‐subject variability are spurious (Betzel et al., 2018; Roberts et al., 
2017). Additionally, these approaches have involved schemes which promote white matter 
connections that are strong for their physical length to compensate for the bias in overestimating 
the number of short range connections (Betzel et al., 2018; Roberts et al., 2017). These studies also 
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apply levels of network connection density based on evidence from tracing studies of the 
mammalian brain and thus may partly meet the need for more anatomically plausible measures of 
connectivity. However, a consensus on the thresholding method and range of threshold levels that 
might optimally reflect the underlying biological connectivity is currently lacking. 

 
The lack of prior information on many of the thousands of possible connections in the brain has led 
researchers to evaluate the impact of different thresholding approaches using criterion validity – 
that is, the degree to which the network metrics are associated with external outcomes of interest. 
For example, a recent study examined four thresholding approaches in Huntington's disease (138 
participants), and found that detection of group‐differences at the network level was highly 
dependent on the threshold level chosen (McColgan et al., 2018). However, the power limitation 
inherent in small samples restricts the fidelity with which the relative differences in validity across 
small changes in threshold level and network‐weighting methods can be reliably detected.  
 
We believe that age‐associations, as a well‐known correlate of white matter microstructure, are a 
strong candidate against which to determine the comparative criterion validity of network 
thresholding and weighting methods. Increasing age in adulthood is one of the most consistently 
replicated and widespread correlates of brain white matter macro‐ and microstructural outcomes 
(Bastin et al., 2010; Burzynska et al., 2010; Cox et al., 2016; Damoiseaux et al., 2009). Network 
analysis of alterations in brain organisation due to both normal and abnormal ageing have been 
applied to both structural and functional MRI (Alloza et al., 2018; Gong et al., 2009; Lo et al., 2010; 
Robinson et al., 2010; Zhao et al., 2015). Such studies have consistently demonstrated associations 
with brain‐wide measures of connectivity and increasing age. Furthermore, histological studies of 
human and animal data have found evidence of the widespread degeneration of white matter 
(myelinated fibres) due to ageing and age‐associated diseases (Salat, 2011). 
 
In addition to the problem of spurious connections, there remains uncertainty about which network 

weighting best reflects the underlying biological connectivity. Various weights have been derived 

from dMRI structural networks, which reflect different notions of connection strength (Agosta et al., 

2014; Collin et al., 2014; Hagmann et al., 2008; Robinson et al., 2010; Verstraete et al., 2011). The 

most common weightings used are interregional streamline counts/densities (Hagmann et al., 2008) 

and measures of water diffusion anisotropy (Robinson et al., 2010; Verstraete et al., 2011). Some 

network studies have introduced other dMRI weightings, such as mean diffusivity (MD), to 

characterise different aspects of white matter microstructure (Agosta et al., 2014; Collin et al., 

2014). Neurite orientation dispersion and density imaging (NODDI; Zhang et al., 2012) provides a 

more sophisticated model of tissue microstructure than the conventional water diffusion tensor 

model (Cercignani and Bouyagoub, 2018). NODDI estimates neurite density (intra‐cellular volume 

fraction; ICVF), extra‐cellular water diffusion (isotropic volume fraction; ISOVF) and tract 

complexity/fanning (orientation dispersion; OD), biomarkers which can also be used as network 

weightings. Previous research has compared some conventional weightings (Buchanan et al., 2014; 

Dimitriadis et al., 2017; Qi et al., 2015), but it is not yet clear how thresholding affects differently‐

weighted networks and their relationships with external variables, such as age. 

In the current study, using a large, single‐scanner imaging sample (UK Biobank Imaging Study), we 

assessed the effect of two principled network thresholding approaches (proportional and 

consistency thresholding), both based on group‐level statistics. We chose methods which operate at 

the group‐level rather than the individual‐level, because this matches the connection density across 

subjects and permits quantitative examination of individual differences. We exploited the large 

sample size to estimate the reproducibility of the both network thresholding methods in retaining 

the same connections across split‐halves of the dataset. We also provided information with respect 
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to the effect of thresholding across network weightings (streamline count, FA, MD, ICVF, ISOVF and 

OD) and four basic graph‐theoretic measures (mean edge weight, characteristic path length, global 

network efficiency and network clustering coefficient). 

We assessed the effect of thresholding using known age‐associations in white matter (Cox et al., 

2016). We first selected relevant threshold levels for each thresholding approach, based on the 

literature, for which to draw comparisons and to illustrate the practical implications for commonly‐

used thresholds. We then compared network‐age associations over a range of threshold levels and 

assessed the individual age‐associations of both retained and discarded connections. According to 

the principles underlying consistency and proportional thresholding, we hypothesised that: 1) 

thresholding would result in more age‐sensitive network measures than unthresholded networks; 2) 

as the stringency of the threshold was increased, the magnitude of network‐age associations would 

increase as more spurious connections were removed; and 3) the age‐associations for discarded 

connections would be mainly null, based on the assumption that these were false‐positive 

connections representing measurement noise. 

 

Methods 

Participants 
The UK Biobank is a large‐scale epidemiology study which recruited approximately 500,000 

community‐dwelling, generally healthy subjects aged 40—69 years from across Great Britain 

between 2006 and 2010. Participants provided comprehensive demographic, psychosocial and 

medical information during an initial visit to a UK Biobank assessment centre. Approximately 4 years 

after initial assessment a subset of participants underwent brain MRI (44—77 years of age) at the UK 

Biobank imaging centre in Cheadle, Manchester, UK. The initial release of dMRI data included 5,455 

participants of whom 567 were excluded from the current study due to an incompatible dMRI 

acquisition used at an earlier scanning phase. A further 1,314 participants were removed by the UK 

Biobank following dMRI quality control procedures prior to release (as described in UK Biobank Brain 

Imaging Documentation). UK Biobank received ethical approval from the North West Multi‐centre 

Research Ethics Committee (REC reference 11/NW/0382). All participants provided informed 

consent to participate. The current study was conducted under approved UK Biobank application 

number 10279. 

 

MRI acquisition and processing 
Details of the MRI protocol and processing are freely available (Alfaro‐Almagro et al., 2018; Miller et 

al., 2016a). All imaging data were acquired using a single Siemens Skyra 3T scanner. 3D T1‐weighted 

volumes were acquired using a magnetization‐prepared rapid gradient‐echo sequence at 1 × 1 × 1 

mm resolution with 208 × 256 × 256 field of view. The dMRI data were acquired using a spin‐echo 

echo‐planar imaging sequence (50 b = 1000 s/mm2, 50 b = 2000 s/mm2 and 10 b = 0 s/mm2) resulting 

in 100 distinct diffusion‐encoding directions. The field of view was 104 × 104 mm with imaging 

matrix 52 × 52 and 72 slices with slice thickness of 2 mm resulting in 2 × 2 × 2 mm voxels.  

Water diffusion parameters were estimated for FA, which measures the degree of anisotropic water 

molecule diffusion, and for MD, which measures the magnitude of diffusion. The parameters 

obtained from NODDI were: ICVF which measures neurite density; ISOVF which measures 
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extracellular water diffusion; and OD which measures the degree of fanning or angular variation in 

neurite orientation (Zhang et al., 2012). 

 

Network construction 
An automated connectivity mapping pipeline was used to construct white mater structural 

networks. This framework is described below with parameters informed by findings from a previous 

test‐retest study using healthy volunteers (Buchanan et al., 2014). 

Each T1‐weighted image was segmented into 85 distinct neuroanatomical regions‐of‐interest (ROIs) 

using volumetric segmentation and cortical reconstruction (FreeSurfer v5.3.0). The Desikan-Killiany 
atlas was used to identify 34 cortical structures per hemisphere (Desikan et al., 2006). Subcortical 

segmentation was applied to obtain the brain stem and eight further grey matter structures per 

hemisphere: accumbens area, amygdala, caudate, hippocampus, pallidum, putamen, thalamus and 

ventral diencapahlon (Fischl et al., 2004, 2002). All cortical segmentations were visually quality 

checked for gross segmentation errors and 202 participants were removed. 

A cross‐modal nonlinear registration method was used to align ROIs from T1‐weighted volume to 

diffusion space. Firstly, skull‐stripping and brain extraction was applied to the FA volume of each 

participant (Smith, 2002). As an initial alignment, an affine transform with 12 degrees of freedom 

was used to align each brain‐extracted FA volume to the corresponding FreeSurfer extracted T1‐

weighted brain using a mutual information cost function (FLIRT; Jenkinson and Smith, 2001). Local 

alignment was then refined using a nonlinear deformation method (FNIRT; Andersson et al., 2007). 

FreeSurfer segmentations were then aligned to diffusion space using nearest neighbour 

interpolation. For each participant, a binary mask used to constrain tractography, was formed in 

diffusion space from all grey and white matter voxels. 

Whole‐brain tractography was performed using an established probabilistic algorithm and a two‐

fibre model (BEDPOSTX/ProbtrackX; Behrens et al., 2007, 2003). Probability density functions, which 

describe the uncertainty in the principal directions of diffusion, were computed with a two‐fibre 

model per voxel (Behrens et al., 2007). Streamlines were then constructed by sampling from these 

distributions during tracking using 100 Markov Chain Monte Carlo iterations with a fixed step size of 

0.5 mm between successive points. Tractography was initiated from all white matter voxels and 

streamlines were constructed in two collinear directions until terminated by the following stopping 

criteria: 1) exceeding a curvature threshold of 70 degrees; 2) entering a voxel with FA below 0.1; 3) 

entering an extra‐cerebral voxel; 4) exceeding 200 mm in length; and 5) exceeding a distance ratio 

metric of 10. This tracking criteria was set to minimize the amount of anatomically implausible 

streamlines. The distance ratio metric (Bullitt et al., 2003), excludes implausibly tortuous 

streamlines, for which a streamline with a length ten times longer than the distance between end 

points was considered invalid. 

Networks were constructed by identifying connections between all ROI pairs. The endpoint of a 

streamline was recorded as the first ROI encountered (if any) when tracking from the seed location. 

Successful connections were recorded in an 85 × 85 connectivity matrix. A network weighting based 

on absolute streamline count (SC) was computed, a_ij = count(i, j), which is the count of all 

streamlines identified between nodes i and j. In order to apply the streamline length correction 

(Roberts et al., 2017), a length matrix, d_ij was computed for each participant recording the mean 

length along all interconnecting streamlines between node i and j. A group‐wide matrix of mean 

streamline lengths, l, was then constructed by taking the element‐wise mean across the set of length 
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matrices. In addition to the streamline count, five further network weightings were computed for 

FA, MD, ICVF, ISOVF and OD. For each weighting, a connectivity matrix was computed with element, 

a_ij, recording the mean value of the diffusion parameter in voxels identified along all 

interconnecting streamlines between nodes i and j. As tractography cannot distinguish between 

afferent and efferent connections, all matrices were made symmetric. Self‐connections (diagonal 

elements) were removed and set to zero for all matrices. 

 

Network thresholding and network measures 
We applied both proportional and consistency thresholding using SC‐weighted networks, which 

reflect the likelihood of connection obtained from probabilistic tractography. Proportional‐

thresholding was applied to the set of SC matrices by only retaining the network connections which 

occurred (i.e., were nonzero) in a given proportion of subjects. Consistency‐thresholding was applied 

by first correcting each SC matrix by the length matrix, a_ij/l_ij, in order to correct for the bias in 

identifying short‐range connections (Roberts et al., 2017). A threshold on the coefficient of variation 

(CoV) of the length normalised weights was then applied to retain a set of connections across 

subjects. As the threshold criteria for the proportional and consistency approaches were not directly 

comparable, we measured both against network sparsity (the proportion of zero‐weighted elements 

out of the total number of possible elements in a connectivity matrix). 

For each approach, we selected a relevant threshold level for which to draw comparisons. For 

proportional‐thresholding this level was set as the proportion of connections that were present in at 

least 50% of subjects, based on the median value obtained from a literature search of network 

studies published in the last two years (Supplementary Table 1). The consistency‐thresholding level 

was set to retain 30% of connections, based on estimates from human and animal in vivo and in vitro 

data (Roberts et al., 2017). In addition to these levels, networks were computed over 100 equally 

spaced threshold levels from 0 to 100% network sparsity. For each threshold level, the same 

threshold mask was applied to each of the five diffusion weighted networks resulting in identical 

network sparsity across weightings. 

For each network weighting (SC, FA, MD, ICVF, ISOVF and OD) and threshold level, per subject, we 

computed the mean edge weight (mean of all network connections including any zero‐weighted 

elements which survived group‐wide thresholding). In addition, three global graph‐theoretic metrics 

were computed (Rubinov and Sporns, 2010): characteristic path length (a measure of network 

integration), global network efficiency, and network clustering coefficient (reflecting the 

interconnectedness of each node’s neighbours). 

 

Statistical analysis 
We first computed the mean connectivity matrices and reported descriptive statistics for 

unthresholded networks across the six network weightings. Following network thresholding, we 

computed correlations between each of the four network measures for six weightings and for three 

threshold levels. Similarly, correlations between the six weightings, in terms of mean edge weight, 

were computed over the same threshold levels. 

We computed the group‐level statistics used by both thresholding methods and provided details on 

the proportion of subjects in which connections occurred and the number of streamlines involved. 

We measured the reproducibility of both thresholding approaches by measuring how consistently 

each retained the same network connections using different subsets of the full cohort. Split‐half 
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agreement was computed by randomly splitting the full dataset into halves (N = 1,577 and N = 

1,576), computing two independent thresholds in each half and then using the intraclass correlation 

coefficient (ICC) to compute the agreement (presence of connections) in matrix elements (85 × 85 

binary matrices) obtained from the two thresholds. We computed ICC(3,1), which applies a two‐way 

mixed model with single measures and consistency of agreement (Shrout and Fleiss, 1979). At each 

of the 100 threshold levels, this split‐half agreement procedure was repeated by resampling 1,000 

times to compute mean values and confidence intervals. 

We used age‐associations as a test bed to compare the criterion validity of proportional and 
consistency thresholding. Initially, we compared the two methods at the pre‐defined threshold 
levels alongside unthresholded matrices: connections present in 50% of participants (PT50); and 
consistency‐thresholding at 30% (CT30). We therefore have three thresholding configurations for 
comparison, termed Raw, PT50, and CT30. We recognise that the these configurations have different 
network sparsities (0.313 for PT50; and 0.700 for CT30), and thus also provide two additional 
comparators matched for sparsity (PT at 0.700 sparsity, and CT at 0.313 sparsity). This allows us to 
comment on the relative contributions of thresholding method (proportional/consistency) or 
general stringency of the threshold (i.e., network sparsity) to observed network‐age associations. For 
the set threshold levels (PT50 and CT30 and their sparsity‐matched corollaries), we tested for the 
difference between a pair of age‐associations based on dependent groups (Williams, 1959). We then 
provided a more in‐depth analysis by testing both proportional and consistency thresholding over a 
range of threshold levels. 
 
To assess the efficacy of thresholding in a sample with known age‐associations we extracted the 

network connections that were retained and discarded, to test the hypothesis that discarded 

connections would be spurious and would therefore exhibit mainly null age‐associations, and that 

the increased signal‐to‐noise in retained connections would result in stronger age‐associations. 

Unpaired two‐sample t‐tests were used to test the difference in age‐associations between the set of 

connections that were retained and the corresponding connections that were discarded. We 

compared properties between these two classes in terms of age‐associations (standardised betas) of 

the mean edge weights. In order to visualise the regions involved for both retained and discarded 

connections computed with CT30, anatomical circle plots were constructed (Irimia et al., 2012), 

which grouped related neuroanatomical nodes and plotted connections by strength of age‐

association. 

Throughout, for each of the six weightings and four network measures, multiple regression was used 

to model the associations between network measures with respect to age, age2, sex and age × sex. 

Owing to the large number of comparisons a threshold of p < 0.001 (uncorrected) was used to 

denote significant effects in each model. Uncorrected p‐values were reported because our intention 

was to use the known age‐association in white matter as a comparator (given the absence of 

ground‐truth data) between different weightings and thresholds. The above associations 

(standardised betas), standard error and adjusted R2 were computed for each weighting over all 100 

threshold levels. 

We restricted our main analyses, throughout, to streamline counts that were uncorrected for grey or 

white matter volumes. At a constant resolution, network methods may identify more inter‐regional 

streamlines in large brains than in small brains, but some have suggested that volume correction of 

streamline counts may overcompensate for volume‐driven effects on these streamline weightings 

(Van Den Heuvel and Sporns, 2011). In a supplementary analysis, we therefore investigated 

differences in the criterion validity (for both age and sex, given the well‐replicated sex differences in 

brain size; Ritchie et al., 2018) of mean edge weight when applying four variants of SC‐weighting: 
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uncorrected streamline count; network‐wise correction by the number of seed points per subject 

(count of white matter voxels); streamline density with edge‐wise correction by the count of voxels 

per ROI (Hagmann et al., 2008); and streamline density with edge‐wise correction by node surface 

area at the white matter interface (the count of voxels which directly neighbour a white matter 

voxel). 

  

Results 

Network characteristics 
3,153 participants (44.6–77.1 years of age, 1,496 male) remained after participants were excluded at 

quality checking or due to failure in processing. On average, 6.01 million streamlines were seeded 

per subject of which 1.49 million (24.9%) were found to successfully connect between nodes 

following the tracking procedure and removal of self‐connections. The mean connectivity matrices 

and corresponding histograms of edge weights computed for each network weighting (SC, FA, MD, 

ICVF, ISOVF and OD) are shown in Figure 1. In each case, the networks were produced from the 

same set of streamlines. Before any thresholding, the mean value of network sparsity (the 

proportion of zero‐weighted elements in a connectivity matrix) across subjects was 0.316 (SD = 

0.032) meaning that probabilistic tractography generated brain networks with a connection density 

of ~68% per subject. The mean connectivity matrix computed across all subjects (Figure 1) was 

almost fully connected with a sparsity of 0.002, although 69.8% of all connections in this network 

involved fewer than 50 streamlines per subject on average. We observed from the histograms of 

edge weights pooled across all subjects (Figure 1) that the distribution of SC weights approximately 

followed a power law and involved many low weighted connections but very few high weighted 

connections, whereas the five dMRI‐based weightings followed approximately normal distributions. 

The absolute values of graph‐theoretic metrics are known to be dependent on the network methods 

used (Qi et al., 2015). Whilst the absolute values of our global network measures (mean edge 

weight, characteristic path length, network efficiency and network clustering coefficient) are not key 

to our analyses, we found that the value of each measure varied considerably across weightings and 

sparsities (Supplementary Table 2). Generally, as network sparsity was increased, both mean edge 

weight and characteristic path length also increased, whereas both network efficiency and network 

clustering coefficient decreased. We found that our four global network measures were highly 

correlated with each other when assessed for each of the six network weightings and for three 

threshold levels (Raw, PT50 and CT30), with all correlations between these network measures at r ≥ 

|0.60| for SC‐weighted networks and r ≥ |0.74| for all other weightings. Similarly, the mean edge 

weights of the six network weightings were found to be highly correlated in several cases 

(Supplementary Figure 1). For example, at the most stringent level of sparsity tested (CT30), the 

strongest correlations were between FA and ICVF (r = 0.84); MD and ICVF (r = ‐0.83); FA and MD (r = 

‐0.73); MD and OD (r = ‐0.46); and MD and ISOVF (r = 0.44). 

 

Comparison of thresholding methods 
To illustrate the group‐level statistics used by the proportional and consistency thresholding 

approaches, we calculated the proportion of subjects in which each connection existed (Figure 2A) 

and the inter‐subject variability (CoV) in streamline count following length correction (Figure 2B). 

The elements of the proportional and CoV matrices were significantly correlated at r = ‐0.61. The 

relationship between the threshold on the proportion of subjects and the resulting network sparsity 
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is nonlinear (Figure 2C). The relationship between the threshold on the inter‐subject variability of 

edge weights and network sparsity (Figure 2D) shows that there are few connections with high inter‐

subject variability (CoV > 10) and most connections exhibit low inter‐subject variability (e.g., CoV < 

1.25 for the top 30% most consistent connections). Proportional‐thresholding could not be applied 

at the highest levels of network sparsity because above 81% sparsity no further connections could 

be removed by this criterion, i.e., 19% of all possible network connections were present in every 

subject. 

Whereas CT30 retained 30.0% of 3,570 possible network connections, the threshold level for PT50 

was more relaxed and retained 68.7% of all connections. Notably, the network connections removed 

by either thresholding method involved relatively few streamlines per subject. For instance, CT30 

removed 2,493 (70.0%) of the network connections but this only discarded 75 thousand streamlines 

per subject, and the majority of streamlines (approximately 1.42 million) were retained. Similarly, 

PT50 removed 1,119 (31.3%) of the network connections but this only discarded ~650 streamlines 

per subject (i.e., discarded connections had a streamline count of zero in many subjects), and 

approximately 1.49 million streamlines were retained. Therefore, most connections removed by 

either thresholding method mainly comprised very few streamlines. This is consistent with the 

hypothesis that such connections might be regarded as spurious. 

For both thresholding approaches, measuring how consistently the same network connections were 

identified in separate halves of the sample, after random splitting into halves (N = 1,577 and N = 

1,576) and computing two independent thresholds, resulted in high agreement (mean ICCs > 0.81; 

Figure 2E). The agreement for PT50 (mean ICC = 0.99) was greater than the agreement for CT30 

(mean ICC = 0.93). When examined across the full range of sparsities, proportional‐thresholding was 

highly consistent (mean ICCs > 0. 97) over 20 to 60% sparsity but agreement declined above 60% 

sparsity, presumably as core white matter connections were pruned from one sample but not the 

other. Consistency‐thresholding showed a broadly linear increase in ICC scores as connections were 

removed with the highest mean ICC of 0.97 obtained with 5% of connections remaining. Although 

the proportional approach obtained higher agreement than the consistency approach over most 

levels, we observed that the crossover in their performance occurred at around 70% sparsity 

(coinciding with the 30% of connections threshold level proposed by Roberts et al., 2017). Similarly, 

when both thresholding methods were compared across the full sample when measured at a 

matched sparsity of 70% (CT30 and PT at 0.7 sparsity), the agreement in the network connections 

identified by the two methods was high (ICC = 0.84 or 948/1,190 matching connections). 

 

Network‐age associations by thresholding method 
We examined the age‐associations of global network measures obtained for PT50 (corresponding to 

a network sparsity of 31.3%) and CT30 (sparsity of 70.0%), alongside results from the set of Raw 

matrices. In order to parse apart the contributions of network sparsity to any observed differences 

between thresholding methods, we also provided age‐associations for two other threshold levels, 

for which network sparsity was matched between threshold methods. The linear component for 

age‐associations between four metrics (mean edge weight, characteristic path length, network 

efficiency and network clustering coefficient) from each of the six weightings (SC, FA, MD, ICVF, 

ISOVF, OD) across these thresholding methods are shown in Table 1 and Figure 3. Full regression 

coefficients (age, age2, sex and sex × age) are presented in Supplementary Tables 3‐5. 
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First, we compared age‐associations for Raw vs. PT50 vs. CT30 (columns 1, 2 and 5 in Table 1). The 

overarching pattern of results indicated that age‐association magnitudes were Raw < PT50 < CT30, 

with effect sizes (magnitude of standardised regression coefficients) between 0.033 and 0.409 for 

Raw, between 0.070 and 0.406 for PT50 and between 0.140 and 0.409 for CT30. The differences 

between pairs of age‐associations over these levels were significant in the majority of cases (p < 

0.001, uncorrected; the 15 nonsignificant instances are indicated in Table 1). Over these three levels, 

FA‐weighted networks showed the most pronounced increase in effect size as sparsity was increased 

(0.033 < 0.070 < 0.179). However, when the thresholding methods were matched by sparsity 

(columns 3 and 4 in Table 1), it became apparent that network sparsity rather than the specific 

thresholding approach was the main driver of differences in age‐associations with the various 

network metrics. Excluding SC and ISOVF, generally the magnitude of the age‐association increased 

as the stringency of the threshold was increased (and more uninformative network connections 

were removed). In most cases, metrics derived from Raw matrices yielded the weakest age‐

associations (0.033 ≤ |β| ≤ 0.409). However, there was little evidence that consistency‐thresholding 

yielded stronger age‐associations than the proportional method when sparsity was matched. 

 

Although various interregional streamline count weightings have previously been used, we have 

limited our analysis above to uncorrected streamlines counts. In a supplementary analysis, we also 

computed three other streamline network weightings and computed age and sex associations using 

mean edge weight (Supplementary Table 6). As expected, increasing age was associated with fewer 

streamlines for uncorrected SC (‐0.172 ≤ β ≤ ‐0.141, p < 0.001), but also with being male (0.379 ≤ β ≤ 

0.384, p < 0.001), at all thresholds tested. When SC was corrected for the number of white matter 

seed points per subject, there was no significant age‐association (‐0.005 ≤ β ≤ 0.042, all 

nonsignificant), and females had greater streamline weights (‐0.173 ≤ β ≤ ‐0.159, p < 0.001). When 

correcting streamline count for grey matter node volume or surface area, age‐associations were 

flipped, denoting higher weights with increasing age (0.067 ≤ β ≤ 0.173, p < 0.001), and yielding null 

sex differences except for Raw and PT50 thresholded networks using surface area correction (β = 

0.082, p < 0.001 in both cases), indicating males had modestly higher weights. No significant sex 

effects were found with the dMRI weightings when measuring mean edge weight (Supplementary 

Tables 3‐5). 

 

Network‐age associations by thresholding level 
Age‐associations for retained versus discarded connections were also compared across the entire 

sparsity range from 0 to 100% (Figure 4). When visualised across all threshold levels, the profile of 

age‐associations across thresholds levels (both retained and discarded connections) were very 

similar between proportional and consistency‐thresholding. However, age‐associations for the 

proportional method could not be computed at the highest levels of sparsity because of the limits of 

the thresholding criterion. Generally, more stringent thresholding (increasing sparsity) resulted in a 

greater magnitude of age‐association for retained connections in SC, FA, MD, ICVF and OD, except at 

the highest levels of sparsity (>90%) where crucial connections were then removed (though for 

ISOVF, increasing the threshold level resulted in a slight decrease in the magnitude of the age‐

association for retained connections). Whereas the range for the strongest age‐association in 

retained connections was approximately 50–95% sparsity (across weightings), age‐associations for 

the discarded connections were closest to null below 50% sparsity. Crucially, it was observed that at 

nearly every threshold level the magnitude of the age‐associations for retained connections was 

greater than the corresponding age‐association for the discarded connections (except for SC). The 

discarded connections showed null profiles for FA, ICVF and OD (but not for SC, MD and ISOVF) 
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across most of the sparsity range. Although the magnitudes of age‐associations were larger for 

retained versus discarded connections, both were significant, and in the same direction, across most 

levels of network sparsity; for ISOVF the age‐association became broadly equivalent for both 

retained and discarded connections above 70% sparsity. 

 

Age associations of retained versus discarded connections 
Given our hypothesis that connections discarded by thresholding would show mainly null age‐

associations, we identified the network connections that were both retained and discarded and 

computed age‐associations for each individual connection for both PT50 and CT30 across all six 

network weightings (Figure 5 and 6). Given that both thresholding methods are agnostic to age, the 

histograms of age‐associations show a marked difference in distribution of retained/discarded 

connections, particularly for FA, MD, ICVF and ISOVF. Apart from SC weighted networks with PT50 

(Figure 5), for all other network weightings and both thresholding approaches the age‐associations 

of the discarded connections (mean β ≤ |0.068|) were significantly smaller in magnitude than the 

corresponding retained connections (mean β ≤ |0.219|, p < 0.001, uncorrected). Interestingly, across 

all weightings, the distribution of discarded connections (Figure 5A and 6A) had a narrower spread 

for PT50 (SDs between 0.043 and 0.052) than for the more stringent CT30 method (SDs between 

0.065 and 0.085). Examination of the age‐associations for each connection (Figures 5B & 6B, bottom 

row) indicated that CT30 discarded a larger proportion of connections that showed a strong age‐

association. For CT30, the amount of discarded connections with |β| ≥ 0.20, were 8.2% for ISOVF, 

4.4% for MD and ≤ 1.9% for the other weightings. 

In order to identify the regions involved, anatomical circle plots were constructed using CT30 which 

grouped related neuroanatomical nodes and plotted connections by strength of age‐association (p < 

0.001, uncorrected) for FA and MD weightings (Figure 7; Supplementary Figures 2 and 3 for other 

weightings). Coherent patterns involving intrahemispheric connections with strong age‐associations 

(|β| ≥ 0.20) were observed for FA, MD and ICVF. For these weightings, the strongest age‐

associations were for connections between subcortical nodes and connections between frontal 

nodes. The single strongest age‐association was the connection between the left thalamus and left 

caudate nucleus for MD (β = 0.50). However, SC and to a lesser extend ISOVF and OD showed several 

interhemispheric connections with strong age‐associations. The discarded connections for SC, FA, 

ICVF and OD (Supplementary Figure 3) involved ≤ 1.9% of connections with relatively strong age‐

associations (|β| ≥ 0.20). Discarded connections with strong age‐associations occurred in somewhat 

incoherent patterns when compared across weightings and many of the strongest associations 

involved subcortical connections and connections between subcortical nodes and contralateral 

cortical nodes. 

 

Discussion 
This study quantified the effects of principled network thresholding methods and novel network 

weightings on the criterion validity (associations with age) of an array of structural network metrics. 

We provided evidence that, in a large sample with previously reported age‐associations in white 

matter (Cox et al., 2016), principled methods to remove implausible connections resulted in the 

identification of more age‐sensitive network components than unthresholded networks. An initial 

comparison of the group‐level thresholding methods (at different levels of sparsity) showed 

generally stronger age‐associations with the more stringent consistency‐based (rather than 
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proportional) thresholding. This provides a practical illustration of how currently‐used thresholding 

methods can yield substantially different estimates of association with external variables. However, 

our more detailed analyses indicated that the stringency of the overall threshold adopted appears to 

be a stronger determinant of the age‐association than the actual method of thresholding itself. 

When we increased the stringency of the proportional threshold (connections present in 99.6% of 

individuals, rather than 50%) to match the network sparsity achieved by the consistency‐based 

approach (both at ~70% network sparsity), both thresholding approaches produced a highly 

overlapping set of network connections and broadly equivalent age‐associations. This finding was 

echoed when we examined the profile of age‐associations across the full sparsity range. There is 

little difference between the two thresholding approaches in terms of age‐associations when 

sparsity is matched. Generally, more stringent thresholding (increasing sparsity) resulted in a greater 

magnitude of age‐association for retained connections, which were also predominantly closer to 

previously reported results using major tract‐averaged measurements (Cox et al., 2016) than for Raw 

matrices. 

We further compared the profile of age‐associations for both retained and discarded connections 

across all possible network sparsities. In combination with results from multiple approaches 

indicating pervasive degeneration of the brain’s white matter connections with adult age (Burzynska 

et al., 2010; Cox et al., 2016; Salat, 2011), our finding that the strongest age‐associations fell 

between 50% and 95% network sparsity, and that the profile of age‐associations within the 

discarded connections were predominantly null across sparsities is consistent with: 1) prior evidence 

that the human brain is likely to have a connection density of ~30% (Roberts et al., 2017); 2) that 

probabilistic tractography fundamentally over‐estimates the number of connections (Roberts et al., 

2017), and; 3) that these spurious connections add noise to the signal (Jbabdi and Johansen‐Berg, 

2011). Moreover, our results are inconsistent with previous reports that topological network 

properties of connectomes are not significantly altered by the removal of weak connections (Civier 

et al., 2019).  

Notably, the profiles of age‐associations among the discarded connections appeared distinct when 

comparing the more general water diffusion parameters (MD and ISOVF) with those metrics thought 

to convey more specific white matter microstructural information (e.g. FA and ICVF and OD), as 

shown in Figure 4, for example. The discarded connections showed null age‐associations profiles for 

FA, ICVF and OD across most of the full sparsity range. This is in line with the hypothesis that 

discarding spurious connections would increase the signal‐to‐noise ratio. Conversely, the discarded 

connections weighted by metrics describing the magnitude of general water molecular diffusion (MD 

and ISOVF) carried significant information about age differences across the majority of thresholds. 

Diffusion metrics that describe water directional coherence (rather than its general magnitude) 

should theoretically be more sensitive to the assumed phenomenon of erroneous white matter 

pathway identification arising from biases in probabilistic tractography. This offers an interesting 

perspective on differences in the utility of thresholding as a function of the water diffusion metric of 

interest. 

As network sparsity increased, we also found that a larger number of connections with stronger age‐
associations were discarded. Our investigation of the comparative anatomy of these retained and 
discarded tracts indicated that the former described coherent bilateral patterns of mainly 
interhemispheric connectivity, particularly between subcortical nodes and between frontal nodes 
(FA, MD and ICVF). In addition, age‐associations with ipsilateral connections were generally stronger 
than contralateral connections. In contrast, few of the discarded connections showed strong age‐
associations, and these were less symmetrical and often involved connections between subcortical 
and contralateral cortical nodes. Thus, the discarded connections most strongly associated with age 
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were less consistent with findings from mammalian cerebral connectivity (Funnell et al., 2000; 
Goulas et al., 2017; Oh et al., 2014). Nevertheless, the presence of some contralateral subcortico‐
cortical connectivity in the mouse (e.g. Oh et al., 2014) could also indicate that more stringent 
thresholding is increasingly likely to remove some non‐spurious connections. Furthermore, some 
proportion of false‐positive connections were likely due to systematic limitations in processing, e.g. 
an ROI lying close to a major white matter tract which is then wrongly identified as the start/end 
point of a white matter connection. False continuation or premature termination of streamlines is a 
known limitation of probabilistic tractography methods (Yeh et al., 2018).  

 
Although various interregional streamline count weightings have previously been used (Buchanan et 

al., 2014; Hagmann et al., 2008), we have limited our analysis to uncorrected streamlines counts. 

Our results suggest that streamline‐based weightings are affected by volume effects (e.g. the large 

sex difference with uncorrected SC was likely due to differences in head size and tissue volume). 

However, streamline count variants that correct for white matter volume and/or grey matter 

volumes may overcompensate for volume driven effects resulting in age trends in opposite (and 

unexpected) direction. Some researchers have previously suggested that volume correction of 

streamline weightings may overcompensate for volume‐driven effects on streamline counts (Van 

Den Heuvel and Sporns, 2011). Therefore, it remains unclear how best to correct streamline weights 

in order to measure between‐subject differences in connectivity. However, the dMRI based 

weightings, such as FA or MD, are largely agnostic to brain size because they measure the mean 

value along interconnecting streamlines. No significant sex effects were found with dMRI weightings 

when measuring mean edge weight. 

Beyond our contributions to thresholding and network weighting methods literature, we also 

contribute robust estimates of associations between age and graph‐theoretic metrics which have 

not previously been reported in a sample of this size. For example, network efficiency for MD and 

ISOVF‐weighted networks were the most age‐sensitive measures across a broad range of thresholds; 

this was considerably stronger than the previously reported latent factor of microstructure from 22 

tracts in this sample for these measures (Cox et al., 2016). In addition, the mean edge weight 

measures of ISOVF and OD were also larger than these previously reported estimates. This could 

indicate that accounting for a much larger range of white matter connections might provide a clearer 

reflection of brain‐wide white matter correlates of age. Furthermore, we add to our understanding 

of age differences in white matter microstructure by assessing many more connections than 

previously reported in this large, single‐scanner sample. For example, the previously reported 

importance of the thalamic radiations for ageing (Cox et al., 2016) could well have been due to 

sampling error (i.e., bias in the selection of tracts used in the dMRI analysis method did not include 

other subcortical connections). Whereas our analyses do indicate that thalamic‐hippocampal and 

thalamo‐cortical connections exhibit among the strongest age‐associations, comparatively strong 

age‐associations were also apparent for caudate and putamen, in line with extant data on the 

neurostructural underpinnings of certain aspects of cognitive ageing (Fjell et al., 2016). 

 

Limitations 
The study has some limitations. Age‐associations are an indirect means against which to verify 
network properties and should not be used in isolation as a means to detect or prescribe an optimal 
network thresholding level (e.g., “the largest age‐association was found at X% sparsity”), and we do 
not do so here. Given that thresholding methods are agnostic to age, our use of a descriptive schema 
allowed us to compare the criterion validity of methods already in use, some of which are 
substantiated by important biological/histological evidence (Salat, 2011). We also caution that, 
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although age is a well‐known correlate of white matter microstructure, there are clearly other 
plausible explanations by which discarded connections may represent real anatomical pathways that 
simply do not show age‐associations. For comparison, a previous voxel‐wise analysis of UK Biobank 
imaging participants found that, although FA generally decreased with age, some voxels exhibited an 
increase in FA with age, which may reflect degradation of secondary fibres or reduced fibre 
dispersion (Miller et al., 2016b). The sample used here comprised generally healthy middle‐ and 
older‐age participants, who are range restricted in several ways (Fry et al., 2017), which may well 
affect the generalisability of our findings to other samples. Further methodological work comparing 
the criterion validity of different network thresholding approaches in the context of pathological 
neurodegenerative conditions would offer an additional perspective on the current findings. 

 
The value of network variables are known to be sensitive to the construction methodology applied, 
but there is not yet an agreed schema for constructing structural brain networks from dMRI data (Qi 
et al., 2015). Necessarily, we have limited our analyses to one approach, but we realise the effect of 
thresholding will likely differ with other network methods. In particular, principled methods of dMRI 
denoising, tractography (Tournier et al., 2012) and streamline filtering (Smith et al., 2015, 2013) may 
further reduce the likelihood of false connections prior to thresholding. Additionally, we selected a 
brain parcellation schema based on its common application in brain network analyses (Desikan et al., 
2006). We conjecture that the biological justification for thresholding at ~30% connection density 
(Roberts et al., 2017) will also translate to different neuroanatomical atlases and network 
resolutions. Nevertheless, the influence of biological and methodological factors remains to be 
determined across alternative atlases (Qi et al., 2015), particularly those that provide a substantially 
greater level of granularity (Glasser et al., 2016). 
 
It is challenging to ensure that an arbitrary threshold removes spurious connections while retaining 
genuine patterns of connectivity. We have limited our analyses to group‐level thresholding; 
consequently, our findings do not necessarily apply to methods that threshold at the individual level, 
such as absolute‐thresholding (Hagmann et al., 2008). Moreover, idiosyncrasies in the structural 
networks across individuals may limit the utility of such nomothetic approaches. Consistency‐
thresholding is based on the assumption that connections with the highest inter‐subject variability 
(of corrected streamline counts) are spurious (Roberts et al., 2017). Arguably, removing such 
connections could hinder the identification of individual differences to be correlated with external 
variables. Although any network thresholding method is imperfect and can remove genuine patterns 
of connectivity (at least in a subset of individuals), we believe that thresholding used at plausible 
levels of network sparsity does remove more false‐positive than genuine connections. 

Conclusions 
We used a large, single‐scanner sample of generally healthy middle‐ and older‐aged participants to 
test the effects of thresholding and novel network weightings on the criterion validity of network 
metrics with respect to age. Consistent with biological evidence that the human brain has a 
connection density of approximately 30%, and the hypothesis that discarded connections would not 
convey significant information about ageing, we found that more stringent thresholding yielded 
stronger age‐associations than unthresholded networks. This was particularly true for network 
weightings that denoted directional information (FA, ICVF, OD). Importantly, we found that the 
specific threshold level applied was a stronger driver of the age‐association than the choice of 
thresholding method.  
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Tables 
Network metric  Weighting  Raw  PT50: 

Proportional 
(50%) 

 
Consistency 
(68.6%) 

 
Proportional 

(99.6%) 

CT30: 
Consistency 

(30%) 

      sparsity = 0.002  sparsity = 0.313  sparsity = 0.313  sparsity = 0.701  sparsity = 0.700 

   
     

Mean edge weight  SC   ‐0.141 (<0.001)   ‐0.141 (<0.001)   ‐0.142 (<0.001)   ‐0.154 (<0.001)   ‐0.172 (<0.001) 

  FA   ‐0.033 (0.079)   ‐0.070 (<0.001)   ‐0.069 (<0.001)   ‐0.187 (<0.001)   ‐0.179 (<0.001) 

  MD   0.285 (<0.001)   0.346 (<0.001)b   0.340 (<0.001)   0.381 (<0.001)   0.378 (<0.001)b 

  ICVF   ‐0.097 (<0.001)   ‐0.134 (<0.001)   ‐0.133 (<0.001)   ‐0.212 (<0.001)   ‐0.206 (<0.001) 

  ISOVF   0.362 (<0.001)a   0.367 (<0.001)a   0.367 (<0.001)   0.351 (<0.001)   0.353 (<0.001) 

  OD   ‐0.101 (<0.001)   ‐0.146 (<0.001)   ‐0.146 (<0.001)   ‐0.198 (<0.001)   ‐0.198 (<0.001) 
Characteristic path 
length  SC   0.160 (<0.001)a   0.160 (<0.001)ab   0.160 (<0.001)   0.129 (<0.001)   0.160 (<0.001)b 

  FA   0.089 (<0.001)   0.109 (<0.001)   0.114 (<0.001)   0.152 (<0.001)   0.140 (<0.001) 

  MD   ‐0.332 (<0.001)   ‐0.358 (<0.001)b   ‐0.361 (<0.001)   ‐0.378 (<0.001)  ‐0.364 (<0.001)b 

  ICVF   0.149 (<0.001)   0.167 (<0.001)   0.167 (<0.001)   0.185 (<0.001)   0.184 (<0.001) 

  ISOVF   ‐0.339 (<0.001)a   ‐0.341 (<0.001)a   ‐0.328 (<0.001)   ‐0.269 (<0.001)   ‐0.290 (<0.001) 

  OD   0.217 (<0.001)   0.229 (<0.001)   0.225 (<0.001)b   0.216 (<0.001)   0.219 (<0.001)b 

Network efficiency  SC   ‐0.186 (<0.001)a   ‐0.186 (<0.001)a   ‐0.186 (<0.001)   ‐0.186 (<0.001)   ‐0.192 (<0.001) 

  FA   ‐0.095 (<0.001)   ‐0.117 (<0.001)   ‐0.118 (<0.001)   ‐0.168 (<0.001)   ‐0.158 (<0.001) 

  MD   0.385 (<0.001)   0.405 (<0.001)b   0.407 (<0.001)   0.418 (<0.001)  0.409 (<0.001)b 

  ICVF   ‐0.160 (<0.001)   ‐0.176 (<0.001)   ‐0.175 (<0.001)   ‐0.201 (<0.001)   ‐0.197 (<0.001) 

  ISOVF   0.380 (<0.001)   0.389 (<0.001)b   0.392 (<0.001)   0.396 (<0.001)   0.401 (<0.001)b 

  OD   ‐0.217 (<0.001)a   ‐0.225 (<0.001)ab   ‐0.223 (<0.001)   ‐0.215 (<0.001)   ‐0.215 (<0.001)b 
Network clustering 
coefficient  SC   ‐0.098 (<0.001)a   ‐0.087 (<0.001)a   ‐0.096 (<0.001)   ‐0.143 (<0.001)   ‐0.179 (<0.001) 

  FA   ‐0.056 (0.002)   ‐0.107 (<0.001)   ‐0.112 (<0.001)   ‐0.198 (<0.001)   ‐0.192 (<0.001) 

  MD   0.409 (<0.001)a   0.406 (<0.001)a   0.399 (<0.001)   0.374 (<0.001)   0.368 (<0.001) 

ICVF   ‐0.127 (<0.001)   ‐0.162 (<0.001)   ‐0.165 (<0.001)   ‐0.214 (<0.001)   ‐0.209 (<0.001) 

ISOVF   0.345 (<0.001)   0.338 (<0.001)   0.336 (<0.001)   0.313 (<0.001)   0.311 (<0.001) 

  OD   ‐0.142 (<0.001)   ‐0.178 (<0.001)b   ‐0.186 (<0.001)   ‐0.178 (<0.001)  ‐0.178 (<0.001)b 

             

Table 1. Comparison of age‐associations (standardised regression coefficients and uncorrected p‐

values) for four network metrics measured across six network weightings and five thresholding 

approaches. The five thresholding approaches are: Raw (unthresholded); proportional at 50% 

(PT50), consistency at 68.6% (matched on network sparsity to PT50 for comparison), proportional at 

99.6% (matched on sparsity with CT30) and consistency at 30% (CT30). The reported regression 

coefficients denote the linear component for age and full regression coefficients (age, age2, sex and 

sex × age) are presented in Supplementary Tables 3‐5. Emboldening indicates significance (p < 0.001, 

uncorrected). Tests for the difference in the magnitude of age‐associations were conducted for Raw 

vs. PT50 and PT50 vs. CT30; all were significantly different apart from a and b, which denote non‐

significantly different pairs of magnitudes (p < 0.001, uncorrected). SC = streamline count, FA = 

fraction anisotropy, MD = mean diffusivity, ICVF = Intracellular volume fraction, ISOVF = Isotropic 

volume fraction, OD = orientation dispersion. 
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Figures 

 

Figure 1. Top: 85 × 85 mean connectivity matrices (unthresholded) of inter‐region connection weights averaged across all participants (N = 3,153) for six 

network weightings and generated from the same set of streamlines. In each case, the two large rectangular patterns on the diagonal correspond to the left 

and right hemispheres. Bottom: the corresponding histograms of nonzero edge weights pooled across all participants for each weighting (SC is log‐scaled). 

SC = streamline count, FA = fraction anisotropy, MD = mean diffusivity, ICVF = Intracellular volume fraction, ISOVF = Isotropic volume fraction, 

OD = orientation dispersion. 
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Figure 2. A) 85 × 85 matrix showing the proportion of subjects for which each network connection was present; B) 85 × 85 matrix showing the coefficient 

of variation (CoV) in network weights following streamline count length correction used by consistency‐thresholding; C) The relationship between the 

threshold on the proportion of subjects and network sparsity; D) The relationship between the threshold on CoV of length‐corrected weights and network 

sparsity; E) Split‐half agreement of thresholded connections computed by: randomly splitting the dataset into halves, applying two independent thresholds 

and using ICC to measure the agreement (presence of connections) identified from the two thresholds (95% CIs computed over 1000 resampling iterations 

and plotted against network sparsity).
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Figure 3. Density plots of mean edge weight for six network weightings under three alternative 

thresholding approaches: unthresholded (Raw), proportional‐thresholding at 50% of subjects (PT50) 

and consistency‐thresholding at 30% (CT30), with quadratic fit and 95% CIs. 
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Figure 4. Age‐associations (standardised betas with SE) of mean edge weight computed for both connections that were retained and were discarded and 

over a range of thresholds (0 to 100%) for each of the six network weightings using: proportional‐thresholding (top), consistency‐thresholding (bottom). The 

dashed vertical line indicates the threshold levels for 50% of subjects (PT50) and consistency‐thresholding at 30% (CT30), respectively.  
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Figure 5. For the six network measures: A) histograms of the age‐associations for both connections that were retained and were discarded by proportional‐

thresholding using 50% of subjects; B) 85 × 85 heatmaps showing the individual age‐associations for both connections that were retained and were 

discarded. 
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Figure 6. For the six network measures: A) histograms of the age‐associations for both connections that were retained and were discarded by consistency‐

thresholding at 30%; B) 85 × 85 heatmaps showing the individual age‐associations for both connections that were retained and were discarded.
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Figure 7. Age‐associations (p < 0.001, uncorrected) for both retained and discarded connections 
using consistency‐thresholding at 30% for FA‐ and MD‐weighted networks. Link colour represents 

the age‐association (standardised beta) of the mean edge weight, and link thickness represents the 

magnitude of the association. Node abbreviations are listed in Supplementary Table 7. 
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