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Abstract

Motivation: Many available genotyping microarrays do not include sufficient mitochondrial
single nucleotide variants (MtSNV's) to accurately assign sequences to their correct haplogroup.

To address this, we created an easy to use mitochondrial DNA imputation pipeline, Mitolmpute.

Results: We validated imputation accuracy by measuring haplogroup and genotype concordance
in two datasets, 1000 Genomes Project and the Alzheimer’s Disease Neuroimaging Initiative. In
both datasets, we observed a significant improvement in haplogroup concordance and excellent
genotype concordance measures. We demonstrated that Mitolmpute can be utilised by long-term
studies whose older datasets have limited mtSNV genotypes, thus making them comparable with

newer resequenced datasets.

Availability

https://github.com/sifandrews/Mitolmpute
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I ntroduction

Mitochondrial DNA (mtDNA) variation is informative about human evolution and can be
associated with disease (Gorman et al., 2016). Variation in these data is often described in the
context of established haplotype groups (haplogroups), which represent branch points in the
mtDNA phylogeny, with higher-order branch points representing major macro-haplogroups.
However, microarrays used for typing mtDNA single nucleotide variants (mtSNVs) may not
include sufficient mtSNV s to accurately define mtDNA haplogroups. A more complete approach

isrequired.

We present Mitolmpute, a pipeline to infer mtDNA haplotypes from globally-representative
reference panels of mtDNA sequences. The performance of Mitolmpute is validated using in
silico microarrays (ISMs) derived from 1,000 Genomes Project (1000 Genomes Project
Consortium et al., 2015) whole genome sequence (WGS) data, and real-world data from the

Alzheimer's Disease Neuroimaging Initiative (ADNI) (Saykin et al., 2010).

M ethods

Reference Alignment

We used publicly available PhyloTree (van Oven and Kayser, 2009) sequences to create a large
(n=7,747) reference alignment with the revised Cambridge Reference Sequence (rCRS)
(Andrews et al., 1999) site numbering convention. We aligned sequences in batches of 50 using

the L-INS-i verson of MAFFT (Katoh and Standley, 2013), then combined the batches,
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resolving inconsistent gap placements manually. rCRS site numbers were preserved by removing

sites at which gaps were introduced in the rCRS during the alignment process.

Refer ence Pandl

Whole human mtDNA sequences were downloaded from GenBank on 2018-07-18 by adapting
the MitoMap (Lott et al., 2013) search term (Supplementary Methods). This returned 44,299
complete human mtDNA sequences and excluded archaic and ancient sequences. These
sequences were aligned to the reference alignment in batches of 2,500 using the MAFFT
algorithm (Katoh and Standley, 2013) in Geneious v10.2.6 (Kearse et al., 2012). Sites

introducing gaps in the reference alignment were removed to maintain consistent nucleotide

position numbering with rCRS. To improve the quality of the Reference Panel, sequences

containing 25 ambiguous characters or 28 gaps were removed from the alignment. This

threshold was set to enable inclusion of haplogroup B sequences which averaged 7 gaps relative
to other sequences. Following this quality control, the Reference Panel contained 36,960

sequences (Supplementary Table 1).

Validation Panel

ISM's were created by subsetting mtSNV's present in 1000 Genomes Project Phase 3 WGS data
(n=2,535) to those included on existing commercially available microarrays. Microarray
information was obtained from strand orientation files available from the Wellcome Centre

(http://www.well.ox.ac.uk/~wrayner/strand/), with 101 strand files containing MtSNVs
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(Supplementary Table 2). Haplogroup assgnment for the WGS data and the ISMs was

performed using Hi-MC (Smieszek et al., 2018).

I mputation

We used the IMPUTEZ2 chromosome X protocol for imputation (Howie et al., 2009; Gongalves
et al., 2018). No recombination was assumed; therefore, we applied a uniform recombination
rate of r=0 across all sites. The Markov chain Monte Carlo step in IMPUTEZ is used to account
for phase uncertainty in recombining diploid data (Howie et al., 2009) but we did not perform
this step as our data is non-recombining and haploid.

The effect of varying the number of sequencesin the reference alignment (Knap) Was estimated by
setting kngp to 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 20,000, and 30,000. We tested the
ability of our pipeline to impute rare variants by filtering the Reference Panel to minor alee
frequencies (MAF) of 1%, 0.5% and 0.1%, resulting 409, 682 and 1874 mtSNV's, respectively
(Supplementary Tables 3). Imputation accuracy was assessed as haplogroup concordance and
genotype concordance using Matthew’s Correlation Coefficient (MCC) (Matthews, 1975), with
the WGS data used as the truth set. Linear mixed-model ANOVA was used to assess the
meaningful difference in haplogroup assignment and MCC (mean of mtSNVs per ISM) for
different parameters tested for knp and MAF. Pipelines for implementing our imputation

protocol and reproducing our results were created in SnakeMake (Koster and Rahmann, 2012).
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Results

In silico Microarrays

Parameter Tuning

When compared to un-imputed data, haplogroup concordance improved by 42.7%, 44.6%, and
43.3% for MAF = 1%, 0.5%, and 0.1%, respectively (Supplementary Table 4; Supplementary
Figure 1). Variation in this success rate was within the expected range (AVOVA, p=0.6). For
genotype concordance, the best results were obtained for MAF = 1%; here the variation in
success rate was significant (ANOV A, p<0.0001, Supplementary Table 5; Supplementary Figure
2). The number of reference haplotypes used had a noticeable effect on haplogroup and genotype
concordance (ANOVA, p<0.0001, Supplementary Table 6; Supplementary Figure 3, 4). There
was no significant difference between the top four Kna parameter settings (Knap = 100, 250, 500,
1000). Larger knap parameter settings performed comparatively poorly, displaying a reduced

ability to correctly assign haplogroups for some ISMs.

Overall Microarray Performance

Using our recommended settings (Knp = 500, MAF = 1%), the average haplogroup assignment
accuracy was 89.3% (95% Confidence Interval [CI] = 87.4, 91.2) following imputation, an
increase of 42.7% (95% CI = 40.1%, 45.23%) (Supplementary Table 7). The best-performing
ISM (lllumina HumanHap 240S) correctly assigned 99.8% of haplogroups after haplotype
imputation, a small improvement of 0.8%. The worst performing group of 1SMs (HumanOmni1-
Quads) correctly assigned 52.3% of haplogroups after imputation compared to 12.9% before

imputation. Correct assignment for the worst performing individual ISM (HumanOmni 2.5)
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increased from 4.9% to 64.0% after imputation. The greatest improvement was 64.8% for the
HumanCore ISMs. In terms of genotype concordance, the mean MCC = 0.64 (95% CI = 0.60,
0.68, Supplementary Table 7), to MCC = 0.97 for the best performing ISM (Infinium Global

Screening Array-24v2) and to MCC = 0.10 for the worst performing ISM (HumanOmni 2.5).

Overall Haplogroup Concordance

Concordance of individual haplogroups was estimated at the macro-haplogroup level. Prior to
imputation, less than 49% of sequences from haplogroups M, HV, D, L, A, H, J, W, |, V were
assigned to their correct haplogroup (Supplementary Table 8). Imputation improved haplogroup
assignment by between 30% and 83%. Microarray assignment was relatively good (>74%) for
haplogroups R, B, U, N, C, T, K, so improvement from imputation was, correspondingly, minor

to moderate (0.1%-18%). Haplogroups JT and X showed no improvement.

Alzheimer’s Disease Neuroimaging I nitiative

To illustrate the utility of Mitolmpute, we tested our pipeline on 258 participants from the ADNI
dataset who had both WGS (Ridge et al., 2018) and genotyping data (Saykin et al., 2010)
(Supplementary Table 9). The ADNI genotype data were mapped to the rCRS. Hi-MC
(Smieszek et al., 2018) was used to assign haplogroups to the WGS, genotyped, and imputed
data. Genotype data assigned the correct haplogroup to 31.4% of samples, which improved to
91.9% (Supplementary Table 10) after imputation. The corresponding improvement for macro-
haplogroups was 37.2% to 95%. Eight of nineteen macro-haplogroups showed no improvement

as the genotype data provided perfect or near-perfect haplogroup assignment. Haplogroups J, L2,
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M, V, W, X al improved from 0% to 100% correct assgnment. Haplogroup H was the most
frequently observed and showed an improvement of 5.8% to 100%. Haplogroups N & R were
the worst performing post-imputation at 25% and 36.4%, respectively (Supplementary Table 11).
Following imputation, the mean genotype concordance per mtSNV was MCC = 0.71 (95% CI =

0.66, 0.75).

Discussion

The Mitolmpute pipeline improves haplogroup assignment in many commonly used microarrays,
as demonstrated in the IMS analysis. By applying Mitolmpute to the ADNI dataset, we further
demonstrated that Mitolmpute can be utilised by long-term studies whose older datasets have
limited mtSNV genotypes, thus making them comparable with newer resequenced datasets.
Additionally, by incorporating a globally-diverse mitochondrial sequence Reference Panel, we
demonstrate Mitolmpute's utility in non-European populations. Mitolmpute provides an
opportunity for datasets with limited mitochondrial genetic variation to be analyzed with a more

complete set of genetic variants and a more accurate assignment of haplogroups.
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