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Abstract

Viral pathogens causing global disease burdens are often characterised by high rates of
evolutionary changes, facilitating escape from therapeutic or immune selective pressure.
Extensive viral diversity at baseline can shorten the time to resistance emergence and
alter mutational pathways, but the impact of genotypic background on the genetic
barrier can be difficult to capture, in particular for antivirals in experimental stages,
recently approved or expanded into new settings. We developed an evolutionary-based
counting method to quantify the population genetic potential to resistance and assess
differences between populations. We demonstrate its applicability to HIV-1 integrase
inhibitors, as their increasing use globally contrasts with limited availability of non-B
subtype resistant sequences and corresponding knowledge gap on drug resistance. A
large sequence dataset encompassing most prevailing subtypes and resistance mutations
of first- and second-generation inhibitors were investigated. A varying genetic potential
for resistance across HIV-1 subtypes was detected for 15 mutations at 12 positions, with
notably 140S in subtype B, while 140C was discarded to vary across subtypes. An
additional analysis for HIV-1 reverse transcriptase inhibitors identified a higher
potential for 65R in subtype C, on the basis of a differential codon usage not reported
before. The evolutionary interpretation of genomic differences for antiviral treatment
remains challenging. Our framework advances existing counting methods with an
increased sensitivity that identified novel subtype dependencies as well as rejected
previous statements. Future applications include novel HIV-1 drug classes as well as
other viral pathogens.

1 Introduction 1

The advent of antiviral treatment resulted globally in significant health gains and 2

averted deaths by preventing viral infections and improving disease outcomes. Major 3

human pathogens targeted by antivirals are fast-evolving, genetically diverse 4

viruses [13,19,20], allowing for rapid adaptation through the emergence of 5
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resistance-conferring mutations. A key concept in understanding the dynamics of 6

resistance development is the genetic barrier, which ultimately quantifies the 7

evolutionary time to viral escape from drug selective pressure [4, 14,16,39]. The virus 8

make-up at baseline can shorten the evolutionary distance to antiviral resistance and, 9

together with treatment- and patient-related factors, alter the mode and tempo of 10

resistance emergence [20,24]. The imprint of genotypic background on viral escape 11

dynamics can be however difficult to capture. In particular for newer antivirals when 12

resistance knowledge is initially limited to in vitro selection experiments informed on 13

genetically-limited backbones and inferred from observations in well-controlled clinical 14

studies or patient cohorts underrepresenting the full spectrum of viral diversity. 15

A notable example of success is the evolution of the management of Human 16

Immunodeficiency Virus type-1 (HIV-1) infection in the last three decades, with 17

antivirals available from multiple drug classes that drastically reduced morbidity and 18

mortality related to HIV-1. The recent class of integrase strand transfer inhibitors 19

(INSTIs), directed against the integrase enzyme by blocking the strand transfer step of 20

viral DNA integration, has considerably expanded treatment options and reduced the 21

probability of virological failure, predominantly in resource-rich settings where INSTI 22

use is widespread. To date, first-generation INSTIs raltegravir (RTG) and elvitegravir 23

(EVG) and second-generation INSTIs dolutegravir (DTG) and bictegravir (BIC) are 24

approved for HIV-1 treatment and a preferred option for first-line regimens [27,36]. 25

INSTIs are anticipated to become also widespread in low- and middle-income countries 26

(LMICs), and the use of INSTIs has been shown to be cost-effective [30], although rates 27

of acquired drug resistance are increasing in these settings. An impact of HIV-1 genetic 28

diversity, classified into groups and subtypes, on resistance development has been well 29

documented for the historical classes of protease and reverse transcriptase (RT) 30

inhibitors, mainly resulting from preferential codon usage across subtypes [1, 40,42]. 31

The evolutionary mechanisms underlying viral escape from INSTI selective pressure, 32

despite the identification of mutational pathways, are still being unfold in particular for 33

non-B subtypes which are prevalent in LMICs [12]. A low observed complexity of INSTI 34

resistance profiles has consequences for the relevance of HIV-1 diversity for the genetic 35

barrier to resistance [6, 17]. 36

Extensive subtype mappings of integrase diversity in treatment-naive patients 37

revealed amino acid polymorphisms at resistance-associated positions [20,25,35,45]. 38

Apart from a documented subtype B INSTI resistance pathway attributed to differential 39

codon usage at position 140 [17,23,32,38], the role of baseline nucleotide variation on 40

INSTI resistance development has been less systematically investigated. The 41

probabilistic models of resistance evolution that previously quantified the genetic barrier 42

for the historical drug classes require sequence data of various subtypes from 43

treatment-experienced patients [4, 14,39], which are limited to date in the context of 44

(second-generation) INSTIs [34,35]. Alternatively, the genetic barrier can be estimated 45

by the number and type of required nucleotide substitutions to evolve from wild-type 46

virus to a resistance mutation [43]. While this modality was applied to HIV-1 integrase 47

before [23,32], these studies lacked resistance mutations of second-generation INSTIs, 48

ignored subtype-specific effects or analyzed limited subtype distributions and relied on 49

arbitrary substitution cost assignments. 50

We present a novel, optimized and evolutionary-based methodology to quantify the 51

genetic potential to resistance in fast-evolving viral pathogens, facilitating a priori 52

identification of an impact of varying genetic background on the emergence of resistance 53

mutations. We demonstrate in this study our approach by the application to HIV-1 54

INSTIs. With the roll-out of INSTIs in LMICs, an increasing introduction of non-B 55

subtypes in high-income countries [15,18,26,28] and novel INSTIs anticipated, this 56

study addressed the need for an in-depth understanding of the dynamics underlying 57
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INSTI resistance development across HIV-1 subtypes. We derived an optimized genetic 58

barrier score based on empirical substitution costs, which contrasts with previous 59

approaches that used arbitrary costs differing from in vivo estimates [46]. Furthermore, 60

we advanced existing studies by considering a population-based estimate, where we take 61

into account the most prevailing subtypes globally and calculate subtype-tailored 62

summary scores. The framework can be easily applied to novel HIV-1 drug classes (e.g. 63

attachment or maturation inhibitors) and extended to pathogens (e.g. Zika, Influenza, 64

RSV, Herpes, Varicella, Dengue) which are currently targeted by antiviral drug 65

development efforts. 66

2 Methods 67

2.1 HIV-1 dataset and drug resistance mutations 68

A dataset of HIV-1 integrase sequences from INSTI-naive patients was obtained from 69

the Stanford HIV drug resistance database [35], aligned codon-correct using 70

VIRULIGN [22] and classified by REGA subtyping tool v3 [3, 21,31]. Only 1 sequence 71

per patient and sequences without a stop codon were retained. Additionally, sequences 72

with mutations 143C/H/R, 148H/K/R or 155H/S were considered a proxy for incorrect 73

treatment status and excluded, given that transmission of INSTI resistance is 74

infrequently reported to date. Integrase positions and mutations important for INSTI 75

resistance were defined by an association with reduced susceptibility and virological 76

response [6], or inclusion in HIV-1 drug resistance interpretation systems (Rega v10, 77

HIVdb v8.7, ANRS v29) [5, 9, 44]. A total of 41 codon positions and 77 amino acid 78

mutations implicated in viral escape from first- or second-generation INSTIs were 79

investigated. In addition, Supplementary Material presents the same approach 80

applied to quantify the evolutionary potential to resistance of the RT enzyme. 81

2.2 Codon diversity 82

We define the genetic barrier in terms of a particular sub-epidemic, e.g. with respect to 83

all viruses that belong to a HIV-1 subtype in our study, and of a resistance mutation 84

defined by an amino acid and a given position. An overview of the procedure to 85

calculate the genetic barrier is given in Figure 1, using resistance mutation 140S as 86

example. At every position, variability at the nucleotide level was assessed by the 87

prevalence of nucleotide triplets (codon) in each sub-epidemic (Figure 1A). Codons with 88

ambiguities consisting of >2 bases per nucleotide position or of two or more ambiguities 89

per codon were not considered. A nucleotide ambiguity of exactly 2 bases was resolved 90

in the two corresponding triplets, each counting for one half to their respective 91

frequencies. All triplets with a prevalence above 1% in at least one sub-epidemic were 92

retained, and triplets with a prevalence above 50% were defined as predominant for that 93

sub-epidemic. The prevalence of resistance mutations and codon entropy were inferred 94

from the triplet distribution. 95

2.3 Substitution cost 96

A penalty score is assigned to the different types of nucleotide substitution through the 97

transformation of empirically estimated substitution matrices into corresponding cost 98

matrices. For each codon index ci ∈ {1, 2, 3}, the cost matrix Mc
ci is given by the 99

normalized and inverted substitution matrix Ms
ci following normalisation: 100

M c
ci =

(
Ms

ci

max(Ms
ci)

)−1
(1)
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This transformation assigns the substitution with the highest rate (e.g. G→A) a cost 101

of 1, and the costs of the other substitutions were proportionally adapted to this 102

baseline cost. A cost of zero is assigned when no change occurs. For our study, a 103

substitution matrix for each codon position was derived from HIV-1 integrase nucleotide 104

sequences independently collected from the Los Alamos database, with codon-based 105

substitution patterns and rates estimated under the General Time Reversible model 106

(Supplementary Material). 107

2.4 Genetic barrier to resistance 108

Given a sub-epidemic E , the genetic barrier to resistance mutation R is a cost function 109

GBE(R) that quantifies the number and type of nucleotide substitutions required for 110

the virus to evolve from wild type diversity in the virus population of E to R (Figure 1). 111

This baseline diversity is defined by the set of wild type type triplets {WTt,i}, and we 112

will denote their prevalences as prev (WTt,i). Furthermore, as R is an amino acid, we 113

enumerate all triplets that translate into R and will refer to this set as {Rt,j}. First, we 114

determine a score for a given wild type triplet WTt to R, while considering all triplets 115

that translate into R (i.e., {Rt,j}): 116

ScoreWTt (R) =
∑
j

exp (-Cost (WTt, Rt,j)) , (2)

where Cost (.) quantifies the cumulative substitution cost to mutate from a WTt into a 117

particular resistance triplet Rt,a, as provided in Equation 3. This summation 118

incorporates all possible evolution paths and subsequently assigns lower cumulative 119

costs (i.e., more likely mutation pathways) a higher contribution to the total triplet 120

score. Taking into account different but almost equally likely evolution paths, compared 121

to only considering the minimum cumulative substitution cost, results in an elevated 122

sensitivity to detect subtype-dependencies in the genetic barrier. 123

To compute the cumulative substitution cost for Rt,a (i.e., subst (WTt, Rt,a)), we 124

compute the sum of the substitution cost for each triplet position, using substitution 125

matrices M c
ci as defined in section 2.3: 126

Cost (WTt, Rt,a) = M c
1 (WTt, Rt,a) + M c

2 (WTt, Rt,a) + M c
3 (WTt, Rt,a) (3)

Finally, the genetic barrier GBE is defined as the sum of the scores (Equation 2) of 127

the different wild type triplets in sub-epidemic E , weighted according to their prevalence: 128

GBE (R) =
∑

WTt,i

ScoreWTt (R) · prev (WTt,i) (4)

A GBE(R) is obtained for each resistance-associated mutation and subtype. In order 129

to visualise most pronounced differences between sub-epidemics, we calculated the 130

average distance in population genetic barrier for each sub-epidemic against other 131

sub-epidemics. 132

2.5 Statistics 133

The non-parametric Mann-Whitney test was used to identify differences in the genetic 134

barrier between HIV-1 subtypes, corrected for multiple hypothesis testing using the 135

Benjamini-Hochberg method [43]. Each subtype was compared against a weighted 136

sample (N=500) of the other subtypes, repeated one thousand times. In addition, 137

pairwise comparisons of subtype B with each subtype separately were performed given 138

that most knowledge on integrase resistance development is available for subtype B. 139

Significant comparisons with a difference in the barrier score above 0.1 are retained. All 140

analyses were done using the statistical software package R [33]. 141
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Figure 1. Overview of methodology for integrase resistance amino acid S (Raa) at
position 140 (Pos). [A] Determine the distribution wild-type triplets (WTt) naturally
present, the translated amino acid (WTaa) and their frequency across the 8 subtypes.
[B] A score is assigned to each wild-type triplet to evolve into the resistance mutation S.
[C] This score is obtained by iteratively determining the cumulative substitution cost for
the change of WTt into each resistance triplet (Rt) translating into the amino acid S,
and subsequently by the summation of the different cumulative costs. [D] Each score is
iteratively weighted by the subtype frequency of the wild-type triplet, here shown for
subtype A. [E] A population estimate of the genetic barrier is obtained for subtype A.
This procedure is done for each subtype, resulting in a subtype-specific population genetic
barrier for 140S. When all resistance-associated mutations are considered, a matrix of
genetic barrier values is created where subtypes are shown as rows and mutations as
columns. Figure 4 illustrates the visualisation of this matrix.

3 Results 142

3.1 Data 143

A total of 10235 viral sequences coding for the HIV-1 integrase enzyme fulfilled the 144

inclusion criteria, resulting in 410 sequences classified as subtype A (4%), 5174 as 145

subtype B (50.5%), 1837 as subtype C (17.9%), 1630 (15.9%) as CRF01 AE, 596 (5.8%) 146

as CRF02 AG, 170 (1.7%) as subtype D, 257 (2.5%) as subtype F and 161 (1.6%) as 147

subtype G. Nucleotide ambiguities only had a modest impact on data processing as the 148

highest percentage of codons that did not fulfil the criteria was 7.6% for the highly 149

polymorphic position 125 (Supplementary Material). The distributions of 150

within-subtype pairwise diversity were unimodal and similar across subtypes 151

(Supplementary Material). 152

3.2 Natural variability of integrase 153

Variation in genetic barrier across subtypes requires a combination of differences in WTt 154

frequencies and in associated cost scores. We first illustrate relevant integrase genetic 155

variability using triplet entropy calculations to elucidate variation within a single 156

subtype. Next, identifying predominant triplets can reveal major variation between 157

subtypes. In particular triplets associated with INSTI resistance are of interest since 158

they result in a minimal cost. 159

Figure 2 shows within-subtype entropy values for each resistance position. Some of 160
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this within-subtype variation is translated into the presence of polymorphic mutations. 161

Figure 3 shows the prevalence of resistance-associated mutations in the dataset 162

(Supplementary Material). Most prevalent mutations for subtype A were 50I 163

(25.2%), 74I (22.4%), 203M (5.5%) and 97A (5.1%); for subtype B 156N (17.6%), 230N 164

(10.4%), 50I (9.4%), 203M (6.4%), 119R (5.5%) and 151I (5.2%); for subtype C 50I 165

(35.1%) and 74I (5.0%); for CRF01 AE 165I (17.2%); for CRF02 AG 74I (18.4%), 50I 166

(10.6%), 74M (10.2%), 157Q (8.3%) and 97A (5.5%); for subtype D 203M (15.3%), 97A 167

(6.2%) and 165I (6.2%); for subtype F 165I (30.2%), 50I (9.2%), 163R (6.2%) and 163K 168

(5.4%); for subtype G 50I (15.1%), 74I (10.3%) and 165I (5.3%). These results illustrate 169

both resistance-associated mutations prevalent across subtypes (e.g. 50I and 74I) as well 170

as subtype-specific occurrences (e.g. 156N). 171

Figure 2 also provides a triplet entropy value of all subtypes combined for each 172

position. High values, compared to within-subtype values, indicate between-subtype 173

variation and suggest differences in predominant codon usage. Of the 41 integrase 174

positions investigated, 16 positions (50, 51, 66, 75, 97, 121, 138, 142, 143, 145, 146, 149, 175

154, 155, 203 and 230) showed a similar predominant triplet across all subtypes. Of the 176

remaining 25 positions, 11 positions showed a consensus in predominant WTt among 7 177

subtypes (49, 54, 74, 92, 118, 148, 153, 157, 160, 170, 263), 9 positions showed a 178

consensus among 6 subtypes observed (68, 95, 119, 128, 140, 147, 156, 165, 166), and 179

finally 5 positions (114, 125, 151, 163, 232) showed a consensus at 5 subtypes. These 180

results illustrate well the extent of relevant integrate diversity within and between 181

subtypes, encompassing varying entropy, resistance mutations and codon predominance. 182

Some positions (e.g. 114 and 140) fully conserved at the amino acid level showed high 183

variability in codon usage, while other positions (e.g. 50 and 74) showed limited 184

variation in codon predominance but resistance-associated mutations occurred at 185

increased frequencies. 186
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Figure 3. Prevalence (%) of INSTI resistance-associated mutations in treatment-naive
patients. Mutations 49P, 50I, 54I, 68I/V, 74I/M, 97A, 119R, 151I, 154I, 156N, 157Q,
160N, 163K/R, 165I, 203M, 230N and 232N were observed with a frequency above 1%
in at least one subtype (Supplementary Material).

3.3 Calculated genetic barrier 187

The observed baseline differences in triplet frequency between subtypes will only impact 188

the genetic barrier to resistance when they are also accompanied by variation in triplet 189
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scores. Subtype frequencies of wild-type nucleotide triplets, translated amino acids and 190

associated cumulative substitution costs are available as Supplementary Material. 191

Triplet score variability was subsequently investigated according to patterns in 192

entropy and codon usage as described above. Limited variation in the evolutionary 193

potential between subtypes is expected for the 35 resistance-associated mutations at 16 194

integrase positions with a similar predominant triplet and consequently similar scores. 195

These positions are in addition generally characterised by a low frequency of 196

resistance-associated mutations and a high level of consistent codon usage at baseline 197

(Supplementary Material), although some exceptions exist with higher entropy 198

values at positions 50, 138 and 203 (Figure 2) or resistance-associated mutations 199

prevalent above 5% at low entropy positions 97 and 230 (Figure 3). Among the group of 200

25 positions, a larger heterogeneity in cost scores can be expected due to variable 201

predominance complementing any variation in codon usage and mutation prevalence. 202

The presence of resistance-associated mutations were 74I (subtypes A, G and 203

CRF02 AG), 74M (CRF02 AG), 119R (subtype B), 151I (subtype B), 156N (subtype 204

B), 157Q (CRF02 AG), 163K (subtype F), 163R (subtype F) an 165I (subtypes D, F, G 205

and CRF01 AE) (Figure 3). In addition, subtype variation in predominant WTt 206

resulted most strongly in a different cost score for the following mutations: 54I, 68I, 207

74I/M, 92A/G, 95K, 119R, 125K, 128T, 140S, 147G, 148H/K/R, 151I, 156N, 160N, 208

163R, 165I, 166S, 170A, 232N and 263K (Supplementary Material). 209

Finally, combining into a complex interplay, reported results on genetic diversity and 210

evolutionary costs can be captured into a single value denoting a population-based 211

genetic potential for an INSTI mutation and subtype (Figure 4 and Figure 4). 212

Significant differences in calculated genetic barrier were observed for 15 mutations at 12 213

positions (Figure 4), with a lower resistance potential for 50I (subtype D), 54I 214

(CRF01 AE), 119R (subtypes C and F), 148H (subtype C), 151I (subtypes A, G and 215

CRF02 AG) and 156N (subtype A and CRF01 AE) and 166S (CRF02 AG), while a 216

higher potential for 68I (subtype A and CRF01 AE), 119R (CRF01 AE), 125K 217

(subtype B), 140S (subtype B), 148R (subtype C), 151I (subtype B) and 156N (subtype 218

B). Pairwise comparisons with subtype B revealed additional differences for 50I 219

(subtypes A and C), 74I (subtypes A and AG), 163R (CRF01 AE) and 165I (subtype F 220

and CRF01 AE) (Supplementary Material). A similar analysis applied to the RT 221

enzyme revealed respectively a higher potential for 8 and a lower potential for 7 RTI 222

resistance-associated mutations, including mutations at positions 106 and 65. 223

The calculation of a wild type triplet score is based on the summation of all possible 224

triplet cumulative costs, rather than only considering the minimum triplet cumulative 225

cost. To illustrate the effect of this strategy, Figure 5 provides a comparison of the 226

evolutionary potential calculated by our strategy and a simplified version which only 227

considers the lowest cost for determine the cost. A modest impact on resistance 228

potential was observed for a large number of resistance mutations, although for some 229

mutations a large increase can be detected when almost equally likely paths were 230

accounted for. Positions with high level of triplet variability (e.g. 119, 163, 230) are 231

primarily expected to be affected across all subtypes, but important subtype-specific 232

effects were also observed (e.g. 140S in subtype B, 148R and 263K in subtype C). 233

Supplementary Material provides more comparative analyses on the impact of using 234

empirically versus arbitrary defined substitution matrices. 235
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Figure 4. The upper panel shows the estimated population genetic barrier for each
combination of a resistance-associated mutation and a subtype. A higher value (red)
represents an increased potential for adaptation and is indicative for a lower genetic
barrier to resistance. A subtype-specific value of this population genetic barrier is
calculated by first assigning each wild-type triplet with a score that indicates the ease to
evolve into the resistance amino acid (See the Methods section for a detailed description
how this cost score for a wild-type triplet is derived). Next, the sum of all triplet scores
is weighted by the triplet prevalence so that most frequent triplets have a larger impact
on the population genetic barrier estimate. The lower panel shows for each subtype the
average difference in population genetic barrier from the other subtypes. A lower genetic
barrier to resistance for that subtype compared to the other subtypes is shown in red
while a higher genetic barrier is shown in green.

4 Discussion: 236

We developed an intuitive and novel methodology to quantify the evolutionary potential 237

for viral escape from selective pressure in fast-evolving viruses, and presented an 238

application evaluating the impact of genetic background in HIV-1 integrase on INSTI 239

resistance development. The integrase enzyme has proven a successful drug target, and 240

the objective of maximising the benefits of INSTIs is being translated into their global 241

roll-out. However, as for other drug classes, the effectiveness of INSTIs can be 242

challenged by HIV-1’s high rates of evolution when treatment options are 243

non-optimal [2, 11,29]. Viral adaptation to INSTI pressure through mutational 244

pathways has been well reported, but the role of natural nucleotide variation on 245

resistance development is less well understood [10,17]. Additionally to resistance 246

mutations present at baseline, differential codon usage can affect the mode and tempo 247

of INSTI resistance pathways [23,38]. This study presented here provided new insights 248

into the processes underlying INSTI resistance development by quantifying the genetic 249

barrier to resistance. 250

A large dataset of globally prevailing HIV-1 subtypes was investigated for their 251

evolutionary potential for viral escape from all INSTIs available for HIV-1 treatment. 252

This study confirms the non-polymorphic amino acid nature of most INSTI resistance 253

positions [25,35], as primarily single subtype-specific occurrences of 254

resistance-associated mutations at low frequencies were detected. By contrast, variable 255

codon predominance across subtypes was more pronounced and consequently we 256

detected 15 resistance-associated mutations included in this study that significantly 257

varied in estimated barrier in one or more subtypes. Modest variability in genetic 258

barrier was observed for major INSTI resistance mutations except for 148H/R in 259

subtype C which causes high-level resistance to all INSTIs [37]. More minor INSTI 260

mutations, i.e. having an impact on drug activity in presence of a major mutation or 261
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Figure 5. Each of 8 panels shows the estimated population genetic barrier for a single
subtype, with the estimate either calculated as described in the Methods section (blue)
or calculated by a simpler but similar methodology (red). Instead of obtaining the cost
score for each wild-type triplet by summing all possible cumulative costs (blue), thereby
taking into account almost equally likely substitution pathways of a wild-type triplet to
the resistance amino acid, a cost score can also be calculated by only using the minimum
cumulative cost (red) and therefore only considering the shortest substitution pathway
to the resistance amino acid and ignoring other but almost equally likely mutational
pathways to resistance. To increase the comparability of the two measures, we also took
the negative exponential of the minimum score. Only increases in values are possible
due to the summation, and we restricted the figure to the subset of mutations with a
difference larger than 0.01.

compensating for defects in replication capacity [37], were characterised by increased 262

variability in diversity and associated scores. Most notably was the varying potential for 263
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140S in subtype B viruses, confirming previous findings [23,32], which is an accessory 264

mutation often occurring in combination with 148H. We and others have indeed 265

previously reported the preference of the 148H pathway in treatment-experienced 266

patients infected with subtype B viruses [17,38]. 267

Our framework improves related counting studies at several stages. Previous studies 268

calculated the genetic barrier by only distinguishing between transitions and 269

transversions, following an approach developed for the HIV-1 protease and reverse 270

transcriptase enzymes [43]. We applied an empirically-derived and evolutionary-based 271

cost for each possible substitution and triplet position, which resulted in an increased 272

detection sensitivity, in particular transversions displayed substantial variation in costs 273

compared to the arbitrary defined values in other studies. Furthermore, we take into 274

account cost scores from all possible pathways, compared to restricting to the minimum 275

score. This approach allowed to detect relevant increases in the estimated evolutionary 276

potential (e.g. 74I), in particular for positions with high level of codon variability. To 277

illustrate the improved sensitivity, the suggested subtype effect on the potential for 140C 278

could not be confirmed in our study, as this mutation requires a substitution at the first 279

triplet position, known to be evolutionary costly. In contrast to 140S, the prevalence of 280

140C in patients failing INSTI-based treatment does not differ across subtypes in the 281

Stanford HIV drug resistance database [35], which strengthens our finding. A complete 282

in-depth comparison of our findings with these studies is hindered by their limited 283

number of HIV-1 subtypes and INSTI resistance mutations included. As most genetic 284

barrier information to date has been established for the historical drug class of RTIs, we 285

also applied our approach to the RT enzyme. Subtype-dependencies in genetic barrier 286

both previously predicted and observed in clinical practice could be confirmed (e.g. 287

106M in subtype C). However, compared to related RTI counting studies [43], the 288

increased sensitivity of our method also resulted in the identification of a higher 289

potential for 65R in subtype C. A higher selection rate of 65R in this subtype has been 290

well established [40] and attributed to a mechanistic basis of template factors [7]. 291

However, an explanation by codon usage has been discarded [7], although we suggest an 292

additional impact of codon usage when all possible paths are taken into account. 293

While our framework provides a population-based cost for a single position, it only 294

represents a simplified estimate of the actual in vivo genetic barrier, which results from 295

a multi-modal interplay that eventually defines the evolutionary time to drug resistance. 296

Selection of a mutation and its rate of fixation heavily depend on factors such as patient 297

adherence, treatment potency, impact on viral fitness and (non-additive) epistatic 298

mutational interactions. Positions implicated in immune escape (e.g. 125) can also 299

further influence the rate of resistance accumulation [8, 41]. It can be difficult to obtain 300

information on all these influencing factors in a timely manner and hence to construct 301

an accurate model capturing resistance evolutionary dynamics. When such an adequate 302

model is lacking, our distance-based method offers a valuable alternative to assess the 303

genetic barrier to resistance. Our methodology however can not predict novel 304

resistance-associated mutations or subtype-specific pathways. A cost matrix was used 305

for all subtypes assuming that substitution rates are equal between subtypes, however, 306

the use of group-specific cost matrices can be accommodated by our framework. 307

In conclusion, the findings presented in this study are important in the context of 308

up-scaled introduction of DTG and novel INSTIs in LMICs, where non-B subtypes 309

prevail, although more studies are needed to further validate our results. Future 310

applications of this reproducible framework do not only relate to novel HIV-1 drug 311

classes or subtypes but, as principles of HIV-1 drug resistance are generally shared with 312

other pathogens known to escape selective pressure, our methodology can be easily 313

transferred to identify a role of genetic diversity of these pathogens, in particular for 314

antivirals which are being evaluated in early development or clinical trials. 315
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