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Abstract

Viral pathogens causing global disease burdens are often characterised by high rates of
evolutionary changes, facilitating escape from therapeutic or immune selective pressure.
Extensive viral diversity at baseline can shorten the time to resistance emergence and
alter mutational pathways, but the impact of genotypic background on the genetic
barrier can be difficult to capture, in particular for antivirals in experimental stages,
recently approved or expanded into new settings. We developed an evolutionary-based
counting method to quantify the population genetic potential to resistance and assess
differences between populations. We demonstrate its applicability to HIV-1 integrase
inhibitors, as their increasing use globally contrasts with limited availability of non-B
subtype resistant sequences and corresponding knowledge gap on drug resistance. A
large sequence dataset encompassing most prevailing subtypes and resistance mutations
of first- and second-generation inhibitors were investigated. A varying genetic potential
for resistance across HIV-1 subtypes was detected for 15 mutations at 12 positions, with
notably 140S in subtype B, while 140C was discarded to vary across subtypes. An
additional analysis for HIV-1 reverse transcriptase inhibitors identified a higher
potential for 65R. in subtype C, on the basis of a differential codon usage not reported
before. The evolutionary interpretation of genomic differences for antiviral treatment
remains challenging. Our framework advances existing counting methods with an
increased sensitivity that identified novel subtype dependencies as well as rejected
previous statements. Future applications include novel HIV-1 drug classes as well as
other viral pathogens.

1 Introduction

The advent of antiviral treatment resulted globally in significant health gains and
averted deaths by preventing viral infections and improving disease outcomes. Major
human pathogens targeted by antivirals are fast-evolving, genetically diverse

viruses [13,/19,20], allowing for rapid adaptation through the emergence of
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resistance-conferring mutations. A key concept in understanding the dynamics of 6
resistance development is the genetic barrier, which ultimately quantifies the 7
evolutionary time to viral escape from drug selective pressure [4L14}/16}[39]. The virus 8
make-up at baseline can shorten the evolutionary distance to antiviral resistance and, 0
together with treatment- and patient-related factors, alter the mode and tempo of 10
resistance emergence [20}24]. The imprint of genotypic background on viral escape 1
dynamics can be however difficult to capture. In particular for newer antivirals when 12
resistance knowledge is initially limited to in vitro selection experiments informed on 13
genetically-limited backbones and inferred from observations in well-controlled clinical = 1
studies or patient cohorts underrepresenting the full spectrum of viral diversity. 15

A notable example of success is the evolution of the management of Human 16
Immunodeficiency Virus type-1 (HIV-1) infection in the last three decades, with 17
antivirals available from multiple drug classes that drastically reduced morbidity and 18
mortality related to HIV-1. The recent class of integrase strand transfer inhibitors 19
(INSTIs), directed against the integrase enzyme by blocking the strand transfer step of 2
viral DNA integration, has considerably expanded treatment options and reduced the 2
probability of virological failure, predominantly in resource-rich settings where INSTI 2

use is widespread. To date, first-generation INSTIs raltegravir (RTG) and elvitegravir =
(EVG) and second-generation INSTIs dolutegravir (DTG) and bictegravir (BIC) are 2
approved for HIV-1 treatment and a preferred option for first-line regimens [27}36]. 2
INSTIs are anticipated to become also widespread in low- and middle-income countries 2
(LMICs), and the use of INSTIs has been shown to be cost-effective [30], although rates =
of acquired drug resistance are increasing in these settings. An impact of HIV-1 genetic 2
diversity, classified into groups and subtypes, on resistance development has been well 2

documented for the historical classes of protease and reverse transcriptase (RT) 30
inhibitors, mainly resulting from preferential codon usage across subtypes [1}/40,42]. 31
The evolutionary mechanisms underlying viral escape from INSTI selective pressure, 32

despite the identification of mutational pathways, are still being unfold in particular for s
non-B subtypes which are prevalent in LMICs [12]. A low observed complexity of INSTT s
resistance profiles has consequences for the relevance of HIV-1 diversity for the genetic 35

barrier to resistance [6}17]. 36

Extensive subtype mappings of integrase diversity in treatment-naive patients 37
revealed amino acid polymorphisms at resistance-associated positions [20,25,/35}/45]. 38
Apart from a documented subtype B INSTI resistance pathway attributed to differential s
codon usage at position 140 [17}23}32,38|, the role of baseline nucleotide variation on 40
INSTTI resistance development has been less systematically investigated. The a
probabilistic models of resistance evolution that previously quantified the genetic barrier
for the historical drug classes require sequence data of various subtypes from P
treatment-experienced patients [4L|14[39], which are limited to date in the context of a
(second-generation) INSTTs [341[35]. Alternatively, the genetic barrier can be estimated
by the number and type of required nucleotide substitutions to evolve from wild-type as
virus to a resistance mutation [43]. While this modality was applied to HIV-1 integrase
before [23}32], these studies lacked resistance mutations of second-generation INSTIs, a8
ignored subtype-specific effects or analyzed limited subtype distributions and relied on 4
arbitrary substitution cost assignments. 50

We present a novel, optimized and evolutionary-based methodology to quantify the =
genetic potential to resistance in fast-evolving viral pathogens, facilitating a priori 52
identification of an impact of varying genetic background on the emergence of resistance  s3
mutations. We demonstrate in this study our approach by the application to HIV-1 54
INSTIs. With the roll-out of INSTIs in LMICs, an increasing introduction of non-B 55
subtypes in high-income countries |15,[18}[26]28] and novel INSTIs anticipated, this 56
study addressed the need for an in-depth understanding of the dynamics underlying 57
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INSTT resistance development across HIV-1 subtypes. We derived an optimized genetic
barrier score based on empirical substitution costs, which contrasts with previous
approaches that used arbitrary costs differing from in vivo estimates [46]. Furthermore,
we advanced existing studies by considering a population-based estimate, where we take
into account the most prevailing subtypes globally and calculate subtype-tailored
summary scores. The framework can be easily applied to novel HIV-1 drug classes (e.g.
attachment or maturation inhibitors) and extended to pathogens (e.g. Zika, Influenza,
RSV, Herpes, Varicella, Dengue) which are currently targeted by antiviral drug
development efforts.

2 Methods

2.1 HIV-1 dataset and drug resistance mutations

A dataset of HIV-1 integrase sequences from INSTI-naive patients was obtained from
the Stanford HIV drug resistance database [35], aligned codon-correct using
VIRULIGN [22] and classified by REGA subtyping tool v3 [3[21L[31]. Only 1 sequence
per patient and sequences without a stop codon were retained. Additionally, sequences
with mutations 143C/H/R, 148H/K/R or 155H/S were considered a proxy for incorrect
treatment status and excluded, given that transmission of INSTI resistance is
infrequently reported to date. Integrase positions and mutations important for INSTI
resistance were defined by an association with reduced susceptibility and virological
response [6], or inclusion in HIV-1 drug resistance interpretation systems (Rega v10,
HIVdb v8.7, ANRS v29) [5[9L|44]. A total of 41 codon positions and 77 amino acid
mutations implicated in viral escape from first- or second-generation INSTIs were
investigated. In addition, Supplementary Material presents the same approach
applied to quantify the evolutionary potential to resistance of the RT enzyme.

2.2 Codon diversity

We define the genetic barrier in terms of a particular sub-epidemic, e.g. with respect to
all viruses that belong to a HIV-1 subtype in our study, and of a resistance mutation
defined by an amino acid and a given position. An overview of the procedure to
calculate the genetic barrier is given in Figure [I] using resistance mutation 140S as
example. At every position, variability at the nucleotide level was assessed by the
prevalence of nucleotide triplets (codon) in each sub-epidemic (Figure [T]A). Codons with
ambiguities consisting of >2 bases per nucleotide position or of two or more ambiguities
per codon were not considered. A nucleotide ambiguity of exactly 2 bases was resolved
in the two corresponding triplets, each counting for one half to their respective
frequencies. All triplets with a prevalence above 1% in at least one sub-epidemic were
retained, and triplets with a prevalence above 50% were defined as predominant for that
sub-epidemic. The prevalence of resistance mutations and codon entropy were inferred
from the triplet distribution.

2.3 Substitution cost

A penalty score is assigned to the different types of nucleotide substitution through the
transformation of empirically estimated substitution matrices into corresponding cost
matrices. For each codon index ci € {1,2,3}, the cost matrix M, is given by the
normalized and inverted substitution matrix M?, following normalisation:

-1
M3,
i (2)
max(Msi)
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This transformation assigns the substitution with the highest rate (e.g. G—A) a cost
of 1, and the costs of the other substitutions were proportionally adapted to this
baseline cost. A cost of zero is assigned when no change occurs. For our study, a
substitution matrix for each codon position was derived from HIV-1 integrase nucleotide
sequences independently collected from the Los Alamos database, with codon-based
substitution patterns and rates estimated under the General Time Reversible model
(Supplementary Material).

2.4 Genetic barrier to resistance

Given a sub-epidemic &, the genetic barrier to resistance mutation R is a cost function
GBg(R) that quantifies the number and type of nucleotide substitutions required for

the virus to evolve from wild type diversity in the virus population of £ to R (Figure [1)).

This baseline diversity is defined by the set of wild type type triplets {WT;;}, and we
will denote their prevalences as prev (W1, ;). Furthermore, as R is an amino acid, we
enumerate all triplets that translate into R and will refer to this set as {R, ;}. First, we
determine a score for a given wild type triplet WT; to R, while considering all triplets
that translate into R (i.e., {R; ;}):

Scorew, (R) = Z exp (-Cost (WTy, Ry 5)) , (2)

J

where Cost (.) quantifies the cumulative substitution cost to mutate from a W7T; into a
particular resistance triplet R; o, as provided in Equation @ This summation
incorporates all possible evolution paths and subsequently assigns lower cumulative
costs (i.e., more likely mutation pathways) a higher contribution to the total triplet
score. Taking into account different but almost equally likely evolution paths, compared
to only considering the minimum cumulative substitution cost, results in an elevated
sensitivity to detect subtype-dependencies in the genetic barrier.

To compute the cumulative substitution cost for R, (i.e., subst (WTi, Ry ), we
compute the sum of the substitution cost for each triplet position, using substitution
matrices M, as defined in section

Cost (WTy, Ryq) = My (WTy, Ry o) + Ms (WTy, Ry o) + MS (WTy, Ry ) (3)

Finally, the genetic barrier GBg is defined as the sum of the scores (Equation [2)) of
the different wild type triplets in sub-epidemic &, weighted according to their prevalence:

GBg (R) = Y Scorewr, (R) - prev (WT ;) (4)
WT s

A GBg(R) is obtained for each resistance-associated mutation and subtype. In order
to visualise most pronounced differences between sub-epidemics, we calculated the
average distance in population genetic barrier for each sub-epidemic against other
sub-epidemics.

2.5 Statistics

The non-parametric Mann-Whitney test was used to identify differences in the genetic
barrier between HIV-1 subtypes, corrected for multiple hypothesis testing using the
Benjamini-Hochberg method [43]. Each subtype was compared against a weighted
sample (N=500) of the other subtypes, repeated one thousand times. In addition,
pairwise comparisons of subtype B with each subtype separately were performed given
that most knowledge on integrase resistance development is available for subtype B.
Significant comparisons with a difference in the barrier score above 0.1 are retained. All
analyses were done using the statistical software package R [33].
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[A] Pos WTaa : WTt : A B Cc 01_AE 02_AG D F G
140 G . GGC: 02 83.6 0.2 0.2 0 15.9 58 1.2
140 G : GGA: 566 3.2 80.3 6.3 97.6 72.6 83.9 95.3
140 G : GGG : 424 0.9 19.4 93.4 241 10.3 7.2 3.4
140 G : GGT: 07 122 0 0.1 0.2 1.2 25 0

[B] Pos WTaa : WTt : Score
140 G : GGC ; Scoressc
140 G : GGA : Scorecea
140 G : GGG : Scorecce
140 G : GGT : Scoregsr

© WTt :  Scorecsc Rt Raa  Cost
[C] . GGC= TCT S Costeac-tct
. . TCC S Costeac-rce
: . TCA S Costeac-Tea
E - TCG S Costeac-Tca
: : AGT S Costaeac-aat
H H AGC S Costeac-acc
101 Pos WTaa WTt : A Score [E]
140 G GGC: 0.2 Scoresac
140 G GGA: 56.6 Scoresea==> population estimate of subtype A for G140S
140 G GGG : 424 Scoreces
140 G GGT: 0.7  Scoresar

Figure 1. Overview of methodology for integrase resistance amino acid S (Raa) at
position 140 (Pos). [A] Determine the distribution wild-type triplets (WTt) naturally
present, the translated amino acid (WTaa) and their frequency across the 8 subtypes.

[B] A score is assigned to each wild-type triplet to evolve into the resistance mutation S.

[C] This score is obtained by iteratively determining the cumulative substitution cost for
the change of WTYt into each resistance triplet (Rt) translating into the amino acid S,
and subsequently by the summation of the different cumulative costs. [D] Each score is
iteratively weighted by the subtype frequency of the wild-type triplet, here shown for

subtype A. [E] A population estimate of the genetic barrier is obtained for subtype A.

This procedure is done for each subtype, resulting in a subtype-specific population genetic
barrier for 140S. When all resistance-associated mutations are considered, a matrix of
genetic barrier values is created where subtypes are shown as rows and mutations as
columns. Figure E| illustrates the visualisation of this matrix.

3 Results

3.1 Data

A total of 10235 viral sequences coding for the HIV-1 integrase enzyme fulfilled the
inclusion criteria, resulting in 410 sequences classified as subtype A (4%), 5174 as
subtype B (50.5%), 1837 as subtype C (17.9%), 1630 (15.9%) as CRF01_AE, 596 (5.8%)
as CRF02_AG, 170 (1.7%) as subtype D, 257 (2.5%) as subtype F and 161 (1.6%) as
subtype G. Nucleotide ambiguities only had a modest impact on data processing as the
highest percentage of codons that did not fulfil the criteria was 7.6% for the highly
polymorphic position 125 (Supplementary Material). The distributions of
within-subtype pairwise diversity were unimodal and similar across subtypes
(Supplementary Material).

3.2 Natural variability of integrase

Variation in genetic barrier across subtypes requires a combination of differences in WT;
frequencies and in associated cost scores. We first illustrate relevant integrase genetic
variability using triplet entropy calculations to elucidate variation within a single
subtype. Next, identifying predominant triplets can reveal major variation between
subtypes. In particular triplets associated with INSTI resistance are of interest since
they result in a minimal cost.

Figure [2] shows within-subtype entropy values for each resistance position. Some of
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this within-subtype variation is translated into the presence of polymorphic mutations.
Figure [3| shows the prevalence of resistance-associated mutations in the dataset
(Supplementary Material). Most prevalent mutations for subtype A were 501
(25.2%), 741 (22.4%), 203M (5.5%) and 97A (5.1%); for subtype B 156N (17.6%), 230N
(10.4%), 501 (9.4%), 203M (6.4%), 119R (5.5%) and 1511 (5.2%); for subtype C 501
(35.1%) and 741 (5.0%); for CRFO1_AE 1651 (17.2%); for CRF02_AG 741 (18.4%), 501
(10.6%), 74M (10.2%), 157Q (8.3%) and 97A (5.5%); for subtype D 203M (15.3%), 97A
(6.2%) and 1651 (6.2%); for subtype F 1651 (30.2%), 501 (9.2%), 163R (6.2%) and 163K
(5.4%); for subtype G 50I (15.1%), 741 (10.3%) and 1651 (5.3%). These results illustrate
both resistance-associated mutations prevalent across subtypes (e.g. 50I and 74I) as well
as subtype-specific occurrences (e.g. 156N).

Figure [2] also provides a triplet entropy value of all subtypes combined for each
position. High values, compared to within-subtype values, indicate between-subtype
variation and suggest differences in predominant codon usage. Of the 41 integrase
positions investigated, 16 positions (50, 51, 66, 75, 97, 121, 138, 142, 143, 145, 146, 149,
154, 155, 203 and 230) showed a similar predominant triplet across all subtypes. Of the
remaining 25 positions, 11 positions showed a consensus in predominant WT; among 7
subtypes (49, 54, 74, 92, 118, 148, 153, 157, 160, 170, 263), 9 positions showed a
consensus among 6 subtypes observed (68, 95, 119, 128, 140, 147, 156, 165, 166), and
finally 5 positions (114, 125, 151, 163, 232) showed a consensus at 5 subtypes. These
results illustrate well the extent of relevant integrate diversity within and between

subtypes, encompassing varying entropy, resistance mutations and codon predominance.

Some positions (e.g. 114 and 140) fully conserved at the amino acid level showed high
variability in codon usage, while other positions (e.g. 50 and 74) showed limited
variation in codon predominance but resistance-associated mutations occurred at
increased frequencies.
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Figure 2. Triplet Entropy per position within each subtype, and also for all subtypes
combined (All)
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Figure 3. Prevalence (%) of INSTI resistance-associated mutations in treatment-naive
patients. Mutations 49P, 501, 541, 681/V, 741/M, 97A, 119R, 1511, 1541, 156N, 157Q),
160N, 163K /R, 1651, 203M, 230N and 232N were observed with a frequency above 1%
in at least one subtype (Supplementary Material).

3.3 Calculated genetic barrier

The observed baseline differences in triplet frequency between subtypes will only impact
the genetic barrier to resistance when they are also accompanied by variation in triplet
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scores. Subtype frequencies of wild-type nucleotide triplets, translated amino acids and
associated cumulative substitution costs are available as Supplementary Material.

Triplet score variability was subsequently investigated according to patterns in
entropy and codon usage as described above. Limited variation in the evolutionary
potential between subtypes is expected for the 35 resistance-associated mutations at 16
integrase positions with a similar predominant triplet and consequently similar scores.
These positions are in addition generally characterised by a low frequency of
resistance-associated mutations and a high level of consistent codon usage at baseline
(Supplementary Material), although some exceptions exist with higher entropy
values at positions 50, 138 and 203 (Figure |2)) or resistance-associated mutations
prevalent above 5% at low entropy positions 97 and 230 (Figure . Among the group of
25 positions, a larger heterogeneity in cost scores can be expected due to variable
predominance complementing any variation in codon usage and mutation prevalence.
The presence of resistance-associated mutations were 741 (subtypes A, G and
CRF02_AG), 74M (CRF02_AG), 119R (subtype B), 1511 (subtype B), 156N (subtype
B), 157Q (CRF02_AG), 163K (subtype F), 163R (subtype F) an 1651 (subtypes D, F, G
and CRF01_AE) (Figure . In addition, subtype variation in predominant WT;
resulted most strongly in a different cost score for the following mutations: 541, 681,
741/M, 92A/G, 95K, 119R, 125K, 128T, 140S, 147G, 148H/K/R, 1511, 156N, 160N,
163R, 1651, 166S, 170A, 232N and 263K (Supplementary Material).

Finally, combining into a complex interplay, reported results on genetic diversity and
evolutionary costs can be captured into a single value denoting a population-based
genetic potential for an INSTT mutation and subtype (Figure 4| and Figure [4)).
Significant differences in calculated genetic barrier were observed for 15 mutations at 12
positions (Figure [4)), with a lower resistance potential for 501 (subtype D), 541
(CRF01_AE), 119R (subtypes C and F), 148H (subtype C), 1511 (subtypes A, G and
CRF02_AG) and 156N (subtype A and CRF01_AE) and 166S (CRF02_AG), while a
higher potential for 68 (subtype A and CRF01_AE), 119R (CRF01_AE), 125K
(subtype B), 140S (subtype B), 148R (subtype C), 1511 (subtype B) and 156N (subtype
B). Pairwise comparisons with subtype B revealed additional differences for 501
(subtypes A and C), 741 (subtypes A and AG), 163R (CRF01_AE) and 1651 (subtype F
and CRF01_AE) (Supplementary Material). A similar analysis applied to the RT
enzyme revealed respectively a higher potential for 8 and a lower potential for 7 RTI
resistance-associated mutations, including mutations at positions 106 and 65.

The calculation of a wild type triplet score is based on the summation of all possible
triplet cumulative costs, rather than only considering the minimum triplet cumulative
cost. To illustrate the effect of this strategy, Figure [5| provides a comparison of the
evolutionary potential calculated by our strategy and a simplified version which only
considers the lowest cost for determine the cost. A modest impact on resistance
potential was observed for a large number of resistance mutations, although for some
mutations a large increase can be detected when almost equally likely paths were
accounted for. Positions with high level of triplet variability (e.g. 119, 163, 230) are
primarily expected to be affected across all subtypes, but important subtype-specific
effects were also observed (e.g. 140S in subtype B, 148R and 263K in subtype C).
Supplementary Material provides more comparative analyses on the impact of using
empirically versus arbitrary defined substitution matrices.
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Figure 4. The upper panel shows the estimated population genetic barrier for each
combination of a resistance-associated mutation and a subtype. A higher value (red)
represents an increased potential for adaptation and is indicative for a lower genetic
barrier to resistance. A subtype-specific value of this population genetic barrier is
calculated by first assigning each wild-type triplet with a score that indicates the ease to
evolve into the resistance amino acid (See the Methods section for a detailed description
how this cost score for a wild-type triplet is derived). Next, the sum of all triplet scores
is weighted by the triplet prevalence so that most frequent triplets have a larger impact
on the population genetic barrier estimate. The lower panel shows for each subtype the
average difference in population genetic barrier from the other subtypes. A lower genetic
barrier to resistance for that subtype compared to the other subtypes is shown in red
while a higher genetic barrier is shown in green.

4 Discussion: 2

We developed an intuitive and novel methodology to quantify the evolutionary potential 23
for viral escape from selective pressure in fast-evolving viruses, and presented an 238
application evaluating the impact of genetic background in HIV-1 integrase on INSTI 23
resistance development. The integrase enzyme has proven a successful drug target, and 20
the objective of maximising the benefits of INSTIs is being translated into their global 2a

roll-out. However, as for other drug classes, the effectiveness of INSTIs can be 22
challenged by HIV-1’s high rates of evolution when treatment options are 23
non-optimal . Viral adaptation to INSTT pressure through mutational 204
pathways has been well reported, but the role of natural nucleotide variation on 25
resistance development is less well understood . Additionally to resistance 246

mutations present at baseline, differential codon usage can affect the mode and tempo 27
of INSTT resistance pathways . This study presented here provided new insights 2
into the processes underlying INSTTI resistance development by quantifying the genetic 2w

barrier to resistance. 250

A large dataset of globally prevailing HIV-1 subtypes was investigated for their 251
evolutionary potential for viral escape from all INSTIs available for HIV-1 treatment. 252
This study confirms the non-polymorphic amino acid nature of most INSTI resistance 23
positions , as primarily single subtype-specific occurrences of 254
resistance-associated mutations at low frequencies were detected. By contrast, variable 2ss
codon predominance across subtypes was more pronounced and consequently we 256
detected 15 resistance-associated mutations included in this study that significantly 257
varied in estimated barrier in one or more subtypes. Modest variability in genetic 258
barrier was observed for major INSTI resistance mutations except for 148H/R in 250
subtype C which causes high-level resistance to all INSTTs . More minor INSTI 260

mutations, i.e. having an impact on drug activity in presence of a major mutation or 261

T
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Population Genetic Barrier

Figure 5. Each of 8 panels shows the estimated population genetic barrier for a single
subtype, with the estimate either calculated as described in the Methods section (blue)
or calculated by a simpler but similar methodology (red). Instead of obtaining the cost
score for each wild-type triplet by summing all possible cumulative costs (blue), thereby
taking into account almost equally likely substitution pathways of a wild-type triplet to
the resistance amino acid, a cost score can also be calculated by only using the minimum
cumulative cost (red) and therefore only considering the shortest substitution pathway
to the resistance amino acid and ignoring other but almost equally likely mutational
pathways to resistance. To increase the comparability of the two measures, we also took
the negative exponential of the minimum score. Only increases in values are possible
due to the summation, and we restricted the figure to the subset of mutations with a
difference larger than 0.01.

compensating for defects in replication capacity [37], were characterised by increased
variability in diversity and associated scores. Most notably was the varying potential for

o/

262

263


https://doi.org/10.1101/647297
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/647297; this version posted May 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

140S in subtype B viruses, confirming previous findings [23/32], which is an accessory
mutation often occurring in combination with 148H. We and others have indeed
previously reported the preference of the 148H pathway in treatment-experienced
patients infected with subtype B viruses [17},38].

Our framework improves related counting studies at several stages. Previous studies
calculated the genetic barrier by only distinguishing between transitions and
transversions, following an approach developed for the HIV-1 protease and reverse
transcriptase enzymes [43]. We applied an empirically-derived and evolutionary-based
cost for each possible substitution and triplet position, which resulted in an increased
detection sensitivity, in particular transversions displayed substantial variation in costs
compared to the arbitrary defined values in other studies. Furthermore, we take into
account cost scores from all possible pathways, compared to restricting to the minimum
score. This approach allowed to detect relevant increases in the estimated evolutionary
potential (e.g. 74I), in particular for positions with high level of codon variability. To
illustrate the improved sensitivity, the suggested subtype effect on the potential for 140C
could not be confirmed in our study, as this mutation requires a substitution at the first
triplet position, known to be evolutionary costly. In contrast to 140S, the prevalence of
140C in patients failing INSTT-based treatment does not differ across subtypes in the
Stanford HIV drug resistance database [35], which strengthens our finding. A complete
in-depth comparison of our findings with these studies is hindered by their limited
number of HIV-1 subtypes and INSTT resistance mutations included. As most genetic
barrier information to date has been established for the historical drug class of RTIs, we
also applied our approach to the RT enzyme. Subtype-dependencies in genetic barrier
both previously predicted and observed in clinical practice could be confirmed (e.g.
106M in subtype C). However, compared to related RTI counting studies [43], the
increased sensitivity of our method also resulted in the identification of a higher
potential for 65R in subtype C. A higher selection rate of 65R in this subtype has been
well established |40] and attributed to a mechanistic basis of template factors [7].
However, an explanation by codon usage has been discarded [7], although we suggest an
additional impact of codon usage when all possible paths are taken into account.

While our framework provides a population-based cost for a single position, it only
represents a simplified estimate of the actual in vivo genetic barrier, which results from

a multi-modal interplay that eventually defines the evolutionary time to drug resistance.

Selection of a mutation and its rate of fixation heavily depend on factors such as patient
adherence, treatment potency, impact on viral fitness and (non-additive) epistatic
mutational interactions. Positions implicated in immune escape (e.g. 125) can also
further influence the rate of resistance accumulation [8l/41]. It can be difficult to obtain
information on all these influencing factors in a timely manner and hence to construct
an accurate model capturing resistance evolutionary dynamics. When such an adequate
model is lacking, our distance-based method offers a valuable alternative to assess the
genetic barrier to resistance. Our methodology however can not predict novel
resistance-associated mutations or subtype-specific pathways. A cost matrix was used
for all subtypes assuming that substitution rates are equal between subtypes, however,
the use of group-specific cost matrices can be accommodated by our framework.

In conclusion, the findings presented in this study are important in the context of
up-scaled introduction of DTG and novel INSTIs in LMICs, where non-B subtypes
prevail, although more studies are needed to further validate our results. Future
applications of this reproducible framework do not only relate to novel HIV-1 drug
classes or subtypes but, as principles of HIV-1 drug resistance are generally shared with
other pathogens known to escape selective pressure, our methodology can be easily
transferred to identify a role of genetic diversity of these pathogens, in particular for
antivirals which are being evaluated in early development or clinical trials.
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