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Abstract

The interaction between human immunodeficiency virus (HIV) and the antibody
repertoire (AbR) during chronic infection can provide important information for
HIV vaccine research, yet has not been well-characterized on a systems level.
We deeply sequenced the HIV population and the AbR of ten HIV-infected,
antiretroviral (ART)-naive individuals, each with 10-20 longitudinal samples
spanning 4-14 years. Our unbiased sequencing approach identified partitions of
AbRs showing evidence of interaction with autologous HIV populations. We show
that these HIV-associated partitions are enriched for the V gene segments of
known HIV broadly neutralizing antibodies (bnAbs), indicating that the HIV-
responding component of the AbR can be identified via time-series genetic data.
Despite this evidence for larger-scale AbR/HIV interactions at the sub-population
level, we found little to no evidence for antagonistic coevolution (i.e. an arms
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race). This suggests that antagonistic coevolution is either rare, or hard to detect,
which has important vaccine design implications.

Introduction

Since the beginning of the modern pandemic in 1981 (Faria et al., 2014; Gottlieb
et al., 1981), human immunodeficiency virus (HIV) has been the source of
incredible scientific scrutiny. While there has been great progress in the
development of antiretroviral therapy (ART), which can now manage the disease
indefinitely (albeit only for those who have access to them), a cure remains
elusive (Stein, Storcksdieck genannt Bonsmann, & Streeck, 2016), and little
progress has been made toward a preventative vaccine (Trovato, D’Apice,
Prisco, & De Berardinis, 2018). Prevention efforts have recently made significant
headway by implementing preexposure prophylaxis (PrEP) to high risk
individuals. However, in its current form, this strategy has its downsides, such as
a reliance on daily self-administration, significant financial burden, and health
side effects (Weinstein, Yang, & Cohen, 2017). Thus, cure and vaccine
strategies remain the elusive goal for HIV research. Together, the distinct gains
in treatment, yet relative lack of gains in HIV prevention, has resulted in a
stalemate of sorts, where instead of HIV being triumphantly eradicated by
modern science, it has settled into a persistent, yet treatable reality of human life.

The fervent hope for progress is particularly palpable in HIV vaccine research.
This fervor is mainly fueled by the fact that effective HIV immunity is entirely
possible and well documented, as a broadly neutralizing humoral immune
response against HIV occurs naturally in 10-20% of those chronically infected
(Binley et al., 2008; Hraber et al., 2014; Sather et al., 2009). It seems that while
humans universally cannot clear an HIV infection, some can develop immunity to
future infections. Moreover, potent humoral immunity has been associated with
spontaneous immunological suppression of HIV following disease acquisition in
the absence of ART (Freund et al., 2017). If a vaccine were to be designed that
could somehow recapitulate the broad and potent anti-HIV humoral immune
responses observed in naturally resistant individuals, then effective protective
immunity may be achievable. While a good deal of progress has been made in
this avenue of research, it has not yet resulted in an effective vaccine. Among the
promising discoveries are broadly neutralizing antibodies (bnAbs), which are
monoclonal antibodies (Abs) that can single-handedly neutralize up to 90% of
heterologous HIV strains (McCoy & Burton, 2017; X. Wu et al., 2011). To study
the development of these bnAbs, researchers have utilized a post-hoc deep-
sequencing approach by which a set of primers are developed that will
preferentially amplify a subset of the antibody repertoire (AbR)—the population of
antibodies in an organism—that is known to contain a bnAb lineage (Bhiman et
al., 2015; Liao et al., 2013; X. Wu et al., 2011). The advantage of this approach is
that one can cut through the incredible noise and complexity of the AbR to focus
on a particular lineage of importance. However, such approaches miss the
diversity of Ab lineages interacting with HIV that may have important effects on
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immunity outcomes. To our knowledge, only 2 studies (Hoehn et al., 2015; Setliff
et al., 2018) have deeply sequenced the AbR in an unbiased fashion in the
context of HIV infection, but they did not collect paired HIV sequence data to
directly study genetic interactions.

The common narrative of bnAb development is that they are in a coevolutionary
arms race (Dawkins & Krebs, 1979) with the autologous HIV population
(Rantalainen et al., 2018; Zhou, Ton, Morriss, Nguyen, & Fera, 2018). This
relationship specifically refers to ‘antagonistic coevolution’, which for simplicity,
we will here to refer to as ‘coevolution’. There is good reason to suspect that this
coevolutionary hypothesis is true: bnAbs tend to be quite derived relative to their
inferred naive ancestors (Bhiman et al., 2015), they tend to take a long time to
develop (years), and there tends to be a time dependence on neutralization
capabilities (i.e. HIV-neutralizing Abs are more likely to neutralize autologous
virus from the past, and less likely to neutralize contemporaneous or future
autologous virus) (Gray et al., 2011; Liao et al., 2013). However, there is also
evidence contrary to the arms race hypothesis: bnAbs can arise relatively
quickly, and with few mutations (Nicole A. Doria-Rose et al., 2014; Goo, Chohan,
Nduati, & Overbaugh, 2014; MacLeod et al., 2016; Simonich et al., 2016), and
superinfections—multiple HIV infections in the same individual—don’t necessarily
drive further evolution in existing HIV-neutralizing Ab lineages, but rather
promote the development of de novo HIV-targeting Ab lineages (Sheward et al.,
2018; Williams et al., 2018). Whereas in a paradigm of coevolution, one might
expect that novel epitopes introduced by a superinfection would spur the
development of existing HIV-targeting Ab lineages to evolve innovations to regain
affinity. Similarly, in the context of malaria infection, repeated immunizations with
a complex malaria antigen promote the activation of de novo naive Ab lineages,
rather than the evolution of already existing malaria-targeting Abs (Murugan et
al., 2018).

A better understanding of the interaction between HIV and the AbR over time
could shed light on how HIV immunity is achieved. However, longitudinal
sequence studies of HIV infections tend to either focus on HIV (Feder,
Kryazhimskiy, & Plotkin, 2014; Fischer et al., 2010; Henn et al., 2012;
Shankarappa et al., 1999; Zanini et al., 2015) or the AbR (Hoehn et al., 2015;
Nourmohammad, Otwinowski, Luksza, Mora, & Walczak, 2018; Xueling Wu et
al., 2015), but not both. To our knowledge, only three studies have deeply
sequenced the AbR along with the autologous HIV population, but each of these
studies consisted of a single individual with relatively few time-points (Bhiman et
al., 2015; Landais et al., 2017; Liao et al., 2013). In this study, we ameliorate this
dearth of data, and describe in unprecedented detail the genetic interaction
between these putatively coevolving populations in 10 well-characterized HIV-
infected individuals.

Results
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Sequencing HIV env and IGH

We collected a total of 119 cryopreserved peripheral blood samples from the
OPTIONS cohort at the University of California, San Francisco (UCSF). The
samples all originated from male participants aged 25-48 years old at the
estimated time of infection in San Francisco, and each participant had 10-20
longitudinal samples (Table 1, and Figure S1). The samples were all collected
prior to administration of ART, with the exception of the last time-point of
participants 1, 2, and 5. We chose to deeply sequence the C2-V3 region of the
env gene because of its rich history of interactions with Abs, as evidenced by the
HIV epitope map from Los Alamos National Labs (LANL) (Hatada et al., 2010;
Ringe et al., 2012; Yusim et al., 2016). Of the 116 ART-naive samples, we were
unable to successfully amplify C2-V3 from 12. In 11 of these cases, low viral load
was the presumed cause for lack of amplification, but the 9™ time-point of
participant 6 was unsuccessful despite high viral load (Figure 1, S2). We were
also unable to amplify C2-V3 from the 3 ART-exposed samples. While viral load
measurements were not available for these samples, the presumed cause for our
inability to amplify C2-V3 was low viral load, given their ART status. The initial
env sequencing depth ranged from 3,771-101,831 reads per sample, and after
cleaning the data with several quality control (QC) steps, this ranged from 2,276-
56,914 reads per sample (Figure S3).

We also deeply sequenced the variable region of the immunoglobulin heavy
chain locus (IGH), the product of which we refer to as the antibody repertoire
(AbR). The AbR was successfully sequenced in all 119 samples, with the
exception of the fourth time-point of participant 3. Sequence data was generated
for this sample, but it exhibited an abrupt clonal expansion of a magnitude that
was a clear outlier for participant 3, and not seen in any other sample, so it was
discarded (Figure S4, and 1). Initial AbR sequencing depth ranged from 669,331-
2,669,662 reads per sample, and after QC this ranged from 160,291-552,479
reads per sample (Figure S5).

Characterizing the HIV population and AbR over time

In order to quantify the broad attributes of the AbR and HIV populations over
time, we calculated a variety of summary statistics that characterized the genetic
diversity, divergence, selection, and abundance for each of the populations.
Selection pressure (positive or negative) in HIV was estimated as dN/dS (Nei &
Gojobori, 1986), and in the AbR was estimated using the X values from
BASELINe (Yaari, Uduman, & Kleinstein, 2012). As others have reported
(Maldarelli et al., 2013; Zanini et al., 2015), we found that HIV diversity,
divergence, and selection (dN/dS) all tend to increase with time since estimated
date of infection, with large perturbations over smaller time-scales (Figures 2, S6,
and S7). Of note, the high viral load of the first time-point of participant 7
suggests that the acute viremia phase of early HIV infection was captured.
Additionally, participant 10 had very low viral load for the first 8 time-points, which
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explains why amplification of HIV env was unsuccessful for these samples.
Participant 6 exhibited strong evidence for a super-infection occurring between
the 15 and 2" time-points (Figure S8). Super infections are not uncommon with
HIV (Redd, Quinn, & Tobian, 2013), and will cause a sudden injection of ‘artificial’
genetic divergence relative to the initial infecting virus. Thus, we accounted for
this superinfection when calculating divergence summary statistics for participant
6 by comparing each sequence to both the initial infection, as well as the
subsequent superinfection (see Methods).

The trajectories of the AbR summary statistics did not show any obvious
stereotyped pattern across participants (Figures 3, S9, and S10). However, there
were a couple data points that suggested interactions with the HIV population:
the second time-point of participant 7 (0.41 years post infection) showed a large
increase in selection (in both the framework regions, FWR, and complementarity
determining regions, CDR), which could be a response to the initial viremia in the
prior time-point; and the ninth time-point of participant 10 (3.37 years post
infection) also showed a large increase in selection with a concomitant drop in
diversity, which could have been a response to the large increase in viral load at
that time-point.

To increase the accessibility of these data, we created a web application,
available at https://ab-hiv-coevolution.github.io/HIV_AB_CoEvo/, for others to
investigate this new dataset interactively. It allows users to explore the data by
individual patient or all patients across various summary statistics including
genetic diversity, divergence, selection, and abundance for HIV and/or the AbR.

Testing for whole-population level interactions

In order to gauge the effect HIV has on the AbRs of participants, we first pooled
all the data across participants, and used a regression framework to test if any of
the AbR summary statistics were significantly correlated with that of the HIV
population (while controlling for participant-specific effects, see Methods). We
performed this test in a pairwise fashion on all AbR summary statistics against all
HIV summary statistics. Similar to Hoehn’s work (Hoehn et al., 2015), we found
no significant correlation between AbR diversity and viral load, yet we did find a
modest, statistically significant correlation between AbR and HIV diversity (p=
0.02, Figure 4 A). While this association was marginally significant—indeed, it
ceases to be significant after controlling for multiple tests—we found any
association at the whole-population level surprising, and thus, worth reporting.

It is possible that some participants’ AbRs interact with their autologous HIV
population more than others, thus we also tested for interactions between
summary statistics on a participant-by-participant approach. Because the number
of data points per participant is relatively low, we opted to use a permutation
based test in order to accurately estimate type 1 error (Ernst, 2004) (see
Methods). In participant 2, we found that selection (dN/dS) and viral load in the
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HIV population were associated with divergence and selection (FWR) in the AbR,
respectively (p=0.009 and p=0.0425, Figure 4 B, and C). We also found that in
participant 7, viral load and diversity in the HIV population were associated with
selection (FWR) and divergence in the AbR, respectively (p=0.040 and p=0.040,
Figure 4 D, and E). All of these associations were positive correlations, with the
exception of HIV selection (dN/dS) and AbR divergence in participant 2, which
was anticorrelated.

Together, these data raise the possibility that the effect that HIV has on the AbR
(and vice versa) is large enough to be observable at the intra- participant, whole
population level, although more samples would be needed to make definitive
statements about this.

Identifying partitions of the AbR that interact with HIV

The AbR is an exceedingly complex population consisting of a myriad of Ab
lineages capable of simultaneously binding and neutralizing a countless number
of antigenic targets. To identify specific parts of the AbR that may be interacting
with HIV, we first partitioned the AbR across time based on the germline identity
of each sequence’s V and J gene segments (Figure S11), and then tested each
AbR partition for evidence of interactions with the autologous HIV population
using similar summary statistics as the overall population (see Methods). Using
an analogous permutation-based test as was used when comparing the overall
populations, we found significant associations between AbR-partition trajectories
and HIV trajectories in participants 3, 7, and 8 (Figures S12, S13, and 5). Of
these associations, AbR-partition frequency tended to be most often associated
with viral load. For example, participant 7 had a distinct viral load trajectory—
presumably due to acute viremia—and the frequency trajectory of the IGHV4-
31:1GHJ5 AbR partition was positively associated with the unique shape of this
trajectory (while the diversity of this AbR partition was negatively associated with
viral load). This suggests a clonal expansion occurred in this AbR-partition in
response to HIV, which caused an increase in the partition’s frequency with a
concomitant drop in diversity. Similarly, in participant 8, the frequency trajectory
of two AbR partitions with the same V gene segment (IGHV6-1:IGHJ5 and
IGHV6-1:1GHJ4) were positively associated with viral load, suggesting that the
IGHV6-1 gene segment in this participant may have had a predisposition to
targeting HIV. In participant 3, the frequency trajectory of the IGHV3-30:IGHJ3
partition was negatively associated with both non-synonymous divergence and
selection (dN/dS) in the HIV population, suggesting that escape mutations in HIV
caused a drop in frequency of the interacting AbR partition.

Validating the HIVV-associated AbR partitions

In order to establish that our permutation-based test is in fact identifying AbR
partitions that had a biological response to HIV infection and was not the result of
random noise in the data, we sought to compare our results to previous findings
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in the literature. We first used Fisher's method to compile all the results of our
permutation-based test into a single score for each V gene segment (see
Methods), and then used the database of HIV bnAbs from bNAber (Eroshkin et
al., 2014) to compare the incidence of known HIV-binding V gene segments in
the literature, to how well these V gene segments score in our test (Table S1).
We found that V gene segments that had been shown to bind HIV in the literature
dataset were associated with significantly higher scores in our permutation-based
test (p=1.52e-3, Mann-Whitney U test, Figure S14 A, and C). There are two
reasonable explanations for this: i) these V gene segments have a predisposition
to bind HIV (i.e. a ‘public’ or convergent response (Setliff et al., 2018)), or ii)
These V gene segments have a predisposition to bind anything (due to high
endogenous expression, having broad affinity for viruses, or some other
unknown reason). In order to differentiate between these two possibilities we
performed a similar test except instead of comparing our results to Abs known to
target HIV, we compared our results to a literature dataset that we previously
compiled of Abs that have been shown to bind to influenza (Strauli & Hernandez,
2016) (Table S1). Similar to the HIV literature dataset, we found that V genes
that were well represented in the influenza literature dataset also tended to score
highly in our permutation-based test (p=7.28e-4, Mann-Whitney U test, Figure
S14 B, and D). Therefore, while we are likely identifying a biological response to
HIV, the response may not be specific to HIV.

Testing for coevolution

Coevolution between HIV and a handful of well-known bnAbs has been
extensively reported (Liao et al., 2013; Rantalainen et al., 2018) and reviewed
(Bonsignori, Liao, et al., 2017). Coevolution provides an intellectually compelling
explanation for the development of bnAbs against HIV, however, examples tend
to be anecdotal and qualitative (likely due to small sample sizes). While we
cannot be sure that bnAbs exist in our data, we sought to test if coevolution is a
predominant driver of HIV-targeting Ab development generally. We tested for
genetic signals of coevolution in our data by first dividing the AbR data of each
participant into time-course lineages of Abs (Figure 6, S15, and S16). We then
used MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002) to create a multiple
sequence alignment (MSA) of each Ab lineage, and compare each of these Ab
lineage MSAs with a representative MSA of the HIV population overtime using a
mutual information (MI) statistic (Brandman, Brandman, & Pande, 2012; Gloor,
Martin, Wahl, & Dunn, 2005; Marino Buslje, Teppa, Di Doménico, Delfino, &
Nielsen, 2010; Simonetti, Teppa, Chernomoretz, Nielsen, & Marino Buslje, 2013).
Importantly, we reduced the complexity of the amino acid code to a code of
‘change’ or ‘no-change’ prior to calculating Ml (see Methods).

If coevolution is a common characteristic of HIV-targeting Ab lineages, then we

might expect that the HIV-associated AbR partitions that we previously identified
will have abnormally high Ml values. Thus, we compared the mean MI values of
the lineages within all of the HIV-associated AbR partitions (IGHV3-30:1GHJ3 of
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participant 3, IGHV2-70:1GHJ6 of participant 7, IGHV3-15:1GHJ4 of participant 7,
IGHV4-31:1GHJ5 of participant 7, IGHV6-1:1GHJ4 of participant 8, IGHV6-
1:1IGHJ5 of participant 8) to the distribution of mean MI values from the rest of the
lineages (Figure 7 A). In addition to mean MI, we also compared the length of
lineages (i.e. the number of time-points for which a lineage is present in the
data), because coevolving lineages might be expected to persist in the AbR
longer than non-coevolving lineages. We found no evidence of coevolution in the
HIV-associated AbR partitions, with the exception of a single lineage in IGHV6-
1:1GHJ5 of participant 8, which had a mean Ml value that was in the 99.55™
percentile relative to all the Ab lineages in non-HIV-associated AbR partitions.
We found that this result persisted when comparing to a simulated null
distribution that controls for uncertainty when assigning lineages across time-
points (Figure 7 B).

Lastly, we test for a global coevolutionary signal, agnostic to whether or not a
lineage belongs to an HIV-associated partition. To do this we gathered the mean
MI values across all of the observed lineages within a participant, and then
compare this distribution to that of the mean Ml values from the simulated null
lineages (Figure 8). If Ab/HIV coevolution were taking place on a large scale, we
would expect to see a shift towards higher Ml values in the observed distribution
relative to the simulated null. However, we saw no evidence of this, and instead
saw that, if anything, the simulated null lineages tend to have higher Ml values.
This suggests that if coevolution is taking place at all, it is either a weak force or
rare in these participants.

Discussion

In this study we have created a large dataset of Ab sequences and HIV
sequences from 119 longitudinal samples. This is, to our knowledge, the largest
dataset of its kind. The HIV literature currently encompasses an abundance of
AbR sequence datasets from HIV+ individuals. However, these datasets primarily
originate from the amplification of a particular Ab lineage that was known to
contain an HIV-bnAb, prior to deep sequencing. These ‘biased’ AbR datasets are
useful to home in on the development of a particularly interesting Ab lineage.
However, we argue that it is equally important to understand the AbR response
to HIV infection on a global/systems scale for the following reasons: i) It is just as
important to understand why an HIV-targeting Ab lineage failed to develop broad
neutralization ability, as it is to understand why a lineage succeeded in
developing it. i) There is increasing evidence that non-neutralizing Ab lineages
play important roles in viral pathogenesis through Fc-mediated functions (e.g.
antibody-dependent cellular cytotoxicity (Horwitz et al., 2017; Mayr, Decoville, et
al., 2017; Mayr, Su, & Moog, 2017). iii) It is quite possible that a significant
proportion of humans that develop broad immunity to future HIV infections, do so
in a polyclonal manner (Williams et al., 2018), where broad neutralization depth
against HIV is achieved via the cooperative action of many Ab lineages, each
simultaneously targeting different epitopes, or different versions of the same
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epitope. iv) The population dynamics of HIV-bnAbs (in addition to HIV-binding
Abs in general) are poorly understood. For example, do these Abs persist at high
or low frequency in the greater population? How does this frequency change over
time? What type of selection drives their development (ex: positive, negative,
balancing, etc.)? These types of questions are difficult, if not impossible to
answer without understanding the larger population context for which these Ab
lineages exist. In this study, we have taken the preliminary steps towards
addressing these types of questions. Specifically, we have developed a statistical
approach to identify the partitions of the AbR that are likely responding to HIV.
Once this has been established, questions like those enumerated above can be
answered. Further, we hope that the sequence datasets we have created here
will provide a useful resource for others with similar lines of inquiry.

While (Hoehn et al., 2015) found no correlation between AbR diversity and viral
load in their data, they did not have the means to address other characteristics of
the HIV population, as they did not include HIV sequence data in their analyses.
However, they did find that AbR diversity was lower in HIV+ individuals than
healthy controls. This suggested that HIV may have a broad effect on the AbR,
yet the details of this effect remained unclear. We have presented a small
positive correlation between overall AbR and HIV diversity across all our
samples. A possible scenario that would explain this observation is one where
ADbR diversity is decreased due to clonal expansions in Ab lineages that target
HIV, which in turn causes a decrease in HIV diversity, due to positive selection
for escape mutations. Once the HIV population has escaped, its diversity will
return, and diversity in the AbR will also return because the previous clonal
expansion will have vanished due to its target having escaped. However, we
stress that this correlation had nominal significance and should be treated
cautiously. The AbR is an especially complicated population that is capable of
simultaneously responding to countless antigens, thus even a fleeting correlation
with HIV at the whole-population level may be worthy of further follow up studies.

A key first step towards illuminating the global interaction between the AbR and
an HIV infection is to be able to identify the subset of the AbR that is responding
to HIV. Similar to our previous work in the context of influenza vaccination
(Strauli & Hernandez, 2016), we leveraged the time-series nature of our dataset
to identify partitions of the AbR that seem to be associated with HIV. We
purposefully made no prior assumptions about what types of interactions we
might find. For example, the common narrative of HIV-targeting Ab lineages is
that they are under intense positive selection. Thus, one might have the
expectation that Ab selection will be positively correlated with HIV selection.
However, it is also possible that an HIV-targeting Ab lineage is under intense
negative selection, where there is a preference for amino acids not to change so
as to not ablate their binding ability, or perhaps to not change a strict structural
conformation that is required to access an epitope. In this case, one might expect
Ab selection to be negatively correlated with HIV selection. We therefore
compared all AbR summary statistics to all HIV summary statistics. This all-by-all
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comparison gave us the privilege of an unbiased approach, yet greatly increased
the number of tests that were performed, and hence the severity of our multiple-
tests correction. As such, we were only able to identify a handful of AbR
partitions that were significantly associated with HIV. This suggests that long-
term interactions between Ab lineages and HIV are rare, and that Ab/HIV
interactions may be of a more transitory nature, where an antibody binds to HIV,
then HIV escapes, and then another unrelated Ab binds to the escape mutant,
and so on. Another possibility is that our test was simply underpowered and had
many false negatives. One way to ameliorate this would be to first filter AbR
partitions based on some statistic (e.g. divergence) and then test for associations
using a different, orthogonal statistic (e.g. diversity). Further, there remains a
great deal of powerful analyses that could be done with the HIV sequence data.
In principle, one could divide the HIV population into lineages and test each HIV
lineage against each AbR partition. This would increase the number of tests, but
could also illuminate interactions that would be otherwise hidden.

Lastly, we tested for a coevolutionary signal in our data. Coevolution in sequence
data is notoriously hard to establish (Avila-Herrera & Pollard, 2015), and to our
knowledge, reports of HIV/Ab coevolution to date have been universally
qualitative, with little or no statistical analyses (Bhiman et al., 2015; Bonsignori,
Kreider, et al., 2017; Bonsignori et al., 2016; Nicole A. Doria-Rose et al., 2014;
Gao et al., 2014, Landais et al., 2017; Liao et al., 2013; MacLeod et al., 2016;
Rantalainen et al., 2018). When it comes to claims of coevolution, there are two
sources of uncertainty that we have attempted to account for in this study. i)
When both the Ab lineage and the putative HIV epitope are under positive
selection, it is very easy for mutations to be correlated by chance rather than by
coevolution. ii) There is a huge amount of uncertainty when assigning Abs to
lineages, especially when trying to link a given Ab sequence to other Ab
sequences that existed months-years prior. AbRs are incredibly dynamic
populations with high turnover, and high mutation rates. In a population such as
this, where de novo lineages are continuously being added, it is important for one
to account for the possibility that two similar Ab sequences—even if strikingly
similar—may not be of the same lineage. By creating a simulated null dataset
from shuffled Ab lineages, we were able to create a null distribution of Ml values
that took both of these confounders into account. After doing this we found no
global signal for coevolution, yet we did find one isolated Ab lineage in participant
8 that showed compelling evidence for it. This suggests that while coevolution
between Ab lineages and HIV is possible, it is likely exceedingly rare and/or hard
to detect. Given that other sequence datasets of the AbR in the context of HIV
infection have about the same or fewer time-points than the participants in our
dataset, we suspect that claims of coevolution in these data would be equally
hard to make.

Coevolution has been responsible for some of the most remarkable phenotypes
known (e.g. the cheetah's speed, a flower’s beauty, the strangeness of genitalia
(Brennan & Prum, 2015)), yet it remains unclear as to how much of a role it plays
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in the development of HIV-targeting Abs. This has important implications for
vaccine strategies. If coevolution is the predominant force in the development of
HIV-bnAbs, then a vaccine regimen that mimics the natural evolution of the HIV
epitope in vivo would be desired, as this would recapitulate the coevolutionary
process leading to increased neutralization breadth. However, it is also possible
that HIV-bnAbs occur as rare, random events. Examples of this include unlikely
V(D)J recombination events whereby a naive Ab lineage is created that happens
to have a predisposition to target a conserved HIV epitope, or a (typically
diverged) Ab lineage ‘stumbling’ upon broad neutralization breadth by chance. In
this case, one might desire a vaccine regimen that has a very diverse array of
HIV epitopes so as to maximize the chances that these rare events occur. This
approach is supported by the fact that neutralization breadth is positively
correlated with viral load and HIV diversity (N. A. Doria-Rose et al., 2010;
Landais et al., 2016; Piantadosi et al., 2009). An interesting future study would be
to use mathematical modeling (Nourmohammad, Otwinowski, & Plotkin, 2016),
or simulation frameworks (Murugan et al., 2018) that include the introduction of
novel naive Ab lineages into the population, to gain a better understanding of
which evolutionary parameters (e.g. population size, mutation rate, selection
strength, population diversity, etc.) in the HIV and AbR populations promote
coevolution, and which do not. We hope that this study has provided a sound
example of how to go about formally testing for coevolution in order to
differentiate between these two possibilities.

Methods

Participant selection and sample processing

Samples were obtained from the OPTIONS cohort at UCSF. All participants
provided written informed consent, and the study was approved by the UCSF
Committee on Human Research. Our sole criterion for selecting participants from
this cohort was to find those with the greatest number of samples available prior
to the administration of ART. All the participants in this study were men who
contracted HIV via sexual transmission, with the exception of participant 5, who
became infected by unknown means (Table 1). Each peripheral blood sample
was divided into plasma and peripheral blood mononuclear cells (PBMCs) by
density gradient centrifugation using Ficoll-hypaque. After separation, PBMCs
and plasma were aliquoted in cryopreservation media, and cryo-preserved in a
specimen repository. Plasma viral load was measured at each participant visit.

Viral load

In early samples (prior to ~2009), a combination of a branched DNA assay and
an ultra-sensitive PCR assay from Roche were used to measure HIV load. In
later samples (post ~2009), the Abbott RealTime HIV-1 Viral Load assay was
employed to measure load.
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Estimated time of infection

The time of initial infection was estimated using the following criteria: i) If a
participant first presents with detectable viral load, but negative enzyme
immunoassay (EIA) or western blot, and then presents a positive western blot in
the following visit, then the estimated time of infection is given by 24 days prior to
the first visit. ii) If a participant first presents with an indeterminate western blot,
and then a positive western blot following repeat testing, then the estimated time
of infection is given by 24 days prior to this first test. iii) If participant first presents
with a positive western blot, and has a documented negative HIV test result
within at most 180 days prior to first test, then the estimated time of infection is
calculated as 24 days prior to the midpoint between the first positive test and
prior negative test. We note that first visit here corresponds to the first visit in the
OPTIONS study at UCSF, and not the first sample in our study.

C2V3 amplification and ultra-deep sequencing

HIV RNA was isolated from plasma samples using the Maxwell 16 Viral Total
Nucleic Acid Purification Kit (Promega). cDNA was synthesized using the
SuperScript Il First-Strand Synthesis System (Invitrogen) with a gag-specific
primer: 5-GCACTYAAGGCAAGCTTTATTGAGGCTTA-3'. The C2/V3 region
(~416bp) of HIV env was amplified using a nested PCR approach with Phusion
High-Fidelity PCR Master Mix (New England Biolabs). The outer primers were:
5-ATTACAGTAGAAAAATTCCCCT-3’ and 5-CAAAGGTATCCTTTGAGCCAAT-
3. The inner primers were: 5’-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAACAGGACCAGGATCCA
ATGTCAGCACAGTACAAT-3’ and 5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCGTTAAAGCTTCTGGG
TCCCCTCCTGAG-3’, where the underlined portions indicate the lllumina
adapter sequence. A unique barcode was added to each amplicon using the
Nextera XT Index Kit (lllumina) and the barcoded amplicons were mixed to
generate a sequencing library. Paired-end sequencing (2x300 bp) was
performed using the lllumina MiSeq instrument and the MiSeq Reagent Kit v3.

IGH amplification and ultra-deep sequencing

Total RNA was extracted from PBMCs using the Qiagen RNeasy Mini Kit. To
reverse transcribe, amplify IGH encoding RNA, and generate sequencing-ready
libraries, we used iRepertoire’s long read iR-Profile Kit and followed the
procedure as described in the accompanying protocol (Wang et al., 2010).
Paired-end sequencing (2x300 bp) was performed using the lllumina MiSeq
instrument and the MiSeq Reagent Kit v3.

HIV sequence data QC
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Sequences from different samples were de-multiplexed by barcode using the
internal software on the lllumina machine. We used the software package
pRESTO (Vander Heiden et al., 2014) to assemble read pairs, remove
sequences shorter than 300bp, remove sequences with a mean quality score
less than 30, mask the primer sequences, and remove sequences that only occur
once in a given sample. We then use an in house implementation of BLAST
(Altschul, Gish, Miller, Myers, & Lipman, 1990) to check that each sequence has
at least 70% identity to at least one HIV subtype env reference sequence, which
were downloaded from LANL (Foley et al., 2017). In order to check for possible
contaminations from HIV sequences outside of our study, we again used BLAST
to map each of our sequences to every env sequence within the LANL database.
In this case, any of our sequences that had 99% identity or more to any
sequence within the env database would be deemed a contaminant. We found
that all the samples from participant 8 in our study had a significant amount of
identity with sequences derived from patient ID: 9036 in the LANL database. We
also found that all the samples from our participant 9 had significant identity with
sequences in the LANL database derived from patient ID: 9018. There are two
reasonable explanations for this: i) these samples had a large degree of
contamination, or ii) that our participants 8 and 9 are the same as patients 9036
and 9018 in the LANL database, respectively. We conclude that the latter is the
more likely explanation because of the following rationale. This large degree of
‘contamination’ only occurred in participants 8 and 9, and it occurred in all their
samples, however, the samples from these participants were processed in
different batches. These participants’ diversity, and divergence trajectories
showed a relatively steady increase over time, which would not be consistent
with contamination (see results). Lastly, patients 9036 and 9018 from the LANL
database both correspond to the study (Sturdevant et al., 2015) which also
recruited participants from San Francisco, CA. None of the other samples in our
study had detectable contamination using this method.

To check for cross contamination of sequences across samples in our study, we
used a clustering approach. We first reduced the size of the dataset by grouping
the sequences within each sample that have an edit distance less than or equal
to 4 (see “Clustering sequences with samples” section below). We then choose
the sequence within each group (or cluster) that had the highest count to be the
‘representative sequence’ for that cluster, after which we pooled all the
representative sequences across all samples and clustered those pooled
representative sequences using the same clustering algorithm. To identify
clusters of sequences that were likely cross contaminants we used the following
criteria: the cluster had to i) have a representative sequence that clustered closer
with sequences from a different participant than with sequences from the same
sample, and ii) have a frequency less than 0.001 within its sample. All sequences
within clusters that satisfied these criteria were removed. This effectively
identified low frequency sequences that were closer in genetic distance to
sequences from another participant. Lastly, we used a phylogenetic approach
(see “Making phylogenetic trees” section below) to i) make phylogenetic trees of
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the representative sequences in each sample, and ii) remove any sequence that
is more closely related to a representative sequence that was identified as a
cross contaminant (as described above) then to the other representative
sequences in the sample (Figure S17).

Clustering sequences within samples

We use the Needleman-Wunsch algorithm (Needleman & Wunsch, 1970) as
implemented in the ‘needle’ program from the European Molecular Biology Open
Software Suite (Rice, Longden, & Bleasby, 2000) to globally align each pair of
sequences, and calculate the edit distances. Through an in-house algorithm, we
then grouped sequences into a cluster that had an edit distance less than some
provided threshold to any other sequence in the cluster. For HIV sequences, this
threshold was 4; for AbR sequences, this threshold was 6.

Phylogenetic analysis

To make a phylogenetic tree of a group of sequences, we first made multiple
sequence alignments using MAFFT (Katoh et al., 2002), and then constructed
phylogenetic trees using FastTree (Price, Dehal, & Arkin, 2010). Visualization
and analyses of newick formatted files was performed using the ETE toolkit
(Huerta-Cepas, Serra, & Bork, 2016).

Calculating HIV divergence

We first assigned an HIV reference sequence for each participant by finding the
most abundant sequence at the first time-point. Because participant 6 showed
extensive evidence of a super-infection occurring at the second time-point, we
assigned two reference sequences to participant 6: the most abundant
sequences from the first and second time-points. We then translated the
reference sequences as well as all other sequences in the data (see “Translating
HIV sequences” section below). To find the number of synonymous and non-
synonymous changes for a given query HIV sequence, we first codon aligned it
to the participant’s reference. For a given codon, we first calculated the number
of expected non-synonymous and synonymous sites as:

n=%,fi,and

s=3—n.

Where f; gives the proportion of all possible nucleotide changes at codon
position i of the reference sequence that result in an amino acid change. We
denote N and S as the sum of n and s across all codons in a given reference
sequence. We then counted the number of observed non-synonymous and
synonymous changes in a given query HIV sequence as N, and S,,. If there were
multiple mutations, we selected the order of mutations that resulted in the least
amount of amino acid changes as the most parsimonious, and thus most likely.
The proportion of non-synonymous and synonymous mutations in a given query
sequence is then,
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N, So

psz,andpSz?.
To estimate non-synonymous and synonymous divergence we then use

3 4 3 4
dN =—21n(1-2pN), and ds = —2In (1 - 2ps)

(Nei & Gojobori, 1986). The notation above was heavily borrowed from Richard
Orton’s blog post (Orton, 2014). Because participant 6 had two reference
sequences, divergence for a given query sequence was calculated relative to

both reference sequences, and the lower value was used.

Calculating HIV selection

Selection in a given HIV sequence was estimated by taking the ratio of the non-
synonymous over synonymous divergence values (described above), dN/dS.

Translating HIV sequences

In order to translate a given query HIV sequence, we first used needle to globally
align it to the reference HXB2 env sequence (downloaded from LANL). We then
used this alignment to determine the coding frame of the query sequence. Once
this was known we translated the query nucleotide sequence using a simple in-
house python script.

Calculating diversity

To estimate diversity in both the HIV population and the AbR we calculated the
statistic, m (Strauli & Hernandez, 2016). In words, r is the expected genetic
distance between two randomly selected sequences from a given sample.
Mathematically = can be expressed as

IR e Glsis))

B ) ’
where N gives the total number of unique sequences in the sample, c; gives the
count of sequence i, M gives the total counts of sequences in that sample (i.e.
M =YY, ¢), and G(x,y) gives the genetic distance between sequences x and y.
We used VSEARCH with the “--allpairs_global” option to globally align all pairs of
sequences in a sample (Rognes, Flouri, Nichols, Quince, & Mahé, 2016).
Genetic distance between a pair of sequences was then calculated as the
percent of mismatches in the alignment.

AbR sequence data QC

As with the HIV data, we used pRESTO to assemble read pairs, remove reads
less than 300bp, remove reads with a mean Q score less than 20, and remove
reads that only occur once. We then use IgBLAST (Ye, Ma, Madden, & Ostell,
2013) to align each sequence to a database of germline immunoglobin genes
downloaded from the IMGT website (imgt.org) (Giudicelli et al., 2006). After this,
we used Change-O to annotate each sequence with its most likely V, D, and J
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germline gene-segments, identify the FWRs and CDRs, and to construct the
likely naive antibody sequence from the germline gene-segment alignments.

Calculating Ab divergence

Divergence in a given Ab sequence was calculated as the number of changes in
the observed sequence relative to the naive sequence, divided by the length of
the sequence. This is excluding the junction region of the sequence, as naive
sequence reconstruction of this region is unreliable.

Estimating Ab Selection

We ran the BASELINe program on each individual Ab sequence and used the
resulting X value to estimate selection pressure. For a detailed description of this
tool see (Yaari et al., 2012). Very briefly, BASELINe compares the observed
number of mutations in a sequence (relative to its inferred naive ancestor) to a
null distribution of the expected number of mutations under no selection. The
program takes local nucleotide motifs into account when calculating mutation
probabilities and returns a X value that indicates the distance between the
observed number of mutations and the null distribution. A negative X indicates
fewer mutations than expected (negative selection), and a positive X indicates
more mutations than expected (positive selection). It does this separately for
different regions of the Ab sequence (i.e. the FWR and CDR).

Creating AbR lineages

To cluster the AbR of a given participant, we first divided it into partitions by
grouping together all sequences that use the same germline V and J gene-
segments (as annotated by Change-O). We then clustered the sequences within
a given partition/time-point (see “Clustering sequences within samples” section
above), with an edit distance threshold of 6 (Figure S18 A). Once clusters were
delineated, and similar to the clustering of HIV sequences, we assigned the most
numerous sequence of each cluster as the ‘representative sequence’. We then
linked clusters, within a given partition, across adjacent time-points using the
following algorithm: We first found the representative sequence in the previous
time-point that had the smallest edit distance to a given representative sequence
in a contemporary time-point. If this edit distance was smaller than 30 (Figure
S18 B), then the two representative sequences (and the clusters they
represented) were linked as being part of the same lineage. This process was
carried out independently in each participant, over each representative
sequence, and for each adjacent time-point pair (see Figure S19 A). Finally, once
all lineages were assigned in this manner, any lineage that did not rise above
0.0001 frequency, in any of the time-points was disregarded.

Simulating null AbR lineages
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To simulate random AbR lineages, we began by using our clustered Ab
sequences within the partitioned AbR data (see “Creating AbR lineages” section
above). We then carried out an identical procedure as was done to create the
observed lineages, with the exception that instead of finding the parent cluster in
the previous time-point that had the minimum edit distance, a parent cluster was
randomly chosen from the previous time-point (Figure S19 B). Additionally, in
order to replicate the aspect of the observed data where each time-point brought
a certain number of new lineages to the population, we estimated the probability

of a new lineage as

N7

1] Ci'j

where [; ; gives the number of new lineages, and C; ; gives the total number of
clusters in participant, i, and time-point, j. For the simulated lineages, we then
randomly assigned each cluster as being a new lineage (i.e. not having any
connections with the previous time-point) with probability r; ;. In order to have a
null dataset that was sufficiently large, we duplicated the observed, clustered
data N times and then simulated lineages using this N-fold larger dataset. When
comparing all lineages to simulated data (i.e. Figure 8), N=10; when comparing

lineages from particular AbR partitions to simulated data (i.e. Figure 7), N=100.

Linear modeling of population level interactions

We tested for cross-participant, population-wide interactions of summary
statistics using a linear mixed model approach. We modeled the interaction of a
pair of summary statistics as

Vii=Bi+BX;+e,
where Y; ; gives the value of a given HIV summary statistic for the jth time-point
of participant i, X; ; gives the value of a given AbR summary statistic for the same
participant/time-point, g; is a random intercept term to correct for participant
specific effects, and ¢; ; is a random error term that is assumed to be normally
distributed with a mean of 0. This model was implemented in the R programming
language using the ‘Imer’ function of the Ime4’ package (Bates, Machler, Bolker,
& Walker, 2015). We then used a likelihood ratio test to determine if a model with
B#0 provided a significantly better fit than a model with §=0 (p<0.05). If it did,
then the given pair of HIV and AbR summary statistics was deemed to be
interacting.

Trajectory permutation test

We test for associations between a set of AbR trajectories to one or more HIV
trajectories using a permutation-based test. The AbR and HIV trajectories were
loaded into memory as matrices where each row is a different trajectory and
each column is a time-point in chronological order from left to right. We first
standardize each trajectory by subtracting the mean and dividing by the standard
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deviation. If v is a row vector representing a given trajectory, then v is
standardized by

1 _ Vil

] oy

where u,, and g, give the arithmetic mean and standard deviation of v,
respectively. We then calculate the sum of the squared error (SSE) for a given
ADbR trajectory relative to a given HIV trajectory as

SSE(r',v") = Zjeu'(Tj' — vj)z )
where r’ is a standardized HIV trajectory vector. This gives the observed SSE
values for each AbR/HIV trajectory pair. If either the HIV or AbR trajectories have
missing values, then these time-points are disregarded in the SSE calculation,
and a trajectory must have at least 75% of its values defined to be included in the
test. We then permute the columns of the AbR trajectory matrix many times and
calculate the SSE values for each permuted AbR trajectory after each
permutation. This gives our permuted null distribution of SSE values. If an
observed AbR/HIV trajectory pair have an SSE value that is significantly outside
of this null distribution, then they are deemed to be significantly associated with
one another, where significance is appropriately adjusted as based on the
number of tests. When conducting this test on whole AbR population trajectories
vs. whole HIV population trajectories (Figure 4 B-E), we performed 100,000
permutations for each participant. When conducting this test on AbR partition
trajectories vs. whole HIV population trajectories (Figures 5, S12, and S13) we
performed 1,000 permutations for each participant.

Comparison against published datasets

To compare the results of our trajectory permutation test to a literature dataset
we used a Mann-Whitney U test. However, before this could be done, we first
must combined the results of our permutation-based test across participants.
When the permutation-based test was employed to identify HIV associated AbR
partitions, the structure of the results was as follows: each participant had
hundreds of AbR partitions, and each AbR partition had tens of p values
associated with it (from comparing each of its summary statistics to each of the
HIV population summary statistics). In order to combine p values such that there
was one value associated with one V gene segment, we first pooled the p values
across all AbR partitions that have a given V gene segment, and across all
participants. We then used Fisher's method to arrive at an overall V gene score
for this pool of p values. If p is a vector of p values associated with a given V
gene segment, then we first combine the p values into one overall p value,
Poverail> Using Fisher's method:

c=-2 Zliill Inp; , and
Poveran = Pr (X§|p| <c).
Where X§|p| is the chi-squared distribution with 2|p| degrees of freedom. Strictly

speaking, pyverqn Will tend to be inflated because not all the p values in p are
independent (ex. AbR partition trajectories that are associated with HIV selection,
will also tend to be associated HIV non-synonymous divergence). However,


https://doi.org/10.1101/646968
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/646968; this version posted June 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

because this inflation should be the same across V gene segments, and because
we were not interested in actual significance but rather needed some reasonable
method for combining p values into an overall score, Fisher's method should be
sufficient. Finally, to avoid p,,.rqu being interpreted as a significance level, we
took its log transform to arrive at a V gene score

V gene score = —1081¢ Doverair -
We then used a Mann-Whitney U test to see if V gene segments that were ‘well
represented’ in a literature dataset tended to have significantly different
I gene score values then those that were not ‘well represented’. In the case of
the dataset of HIV targeting Abs, ‘well representation’ was defined as
presence/absence (i.e. count = 1). The dataset of influenza targeting Abs was
relatively large (432 entries), so ‘well representation’ was defined as a count =2 10
(Table S1).

Calculating mutual information (MI)

To measure the amount of association between two sites (columns) in a pair of
MSAs we first reduced the complexity of the amino acid code by converting it to a
code of ‘change’ or ‘no-change’. In this case, if a site had an amino acid identity
that was different than the previous time-point, then it was recorded as a ‘1’ and if
it was the same, then it was recorded as a ‘0’ (the first time-point is always ‘0’).
We then used MI to measure the amount of association (coevolution) between
two columns in a ‘change’, ‘no-change’ alignment. Ml is calculated as
MI(X,Y) = Brex yey Pr (5, 9)10g, (5 mos) |
where X and Y are categorical random variables representing the two different
columns being compared. x and y represent particular states of X and Y,
respectively (i.e. ‘1’ or ‘0’ for a change/no-change alignment). Pr(a) is the
probability that a given random variable (or MSA column) equals the state, a. If ¢
is a vector that represents a given column of an MSA, then Pr(a) can be
estimated as
1 1, ¢ =a
Pr(@) = 5 Drecly) o 2 o

Pr(a, b) is the joint probability that the random variable representing one MSA
column equals a, and simultaneously the random variable representing the other
MSA column equals b. If d is a vector that represents a given column of the other
MSA, then Pr(a, b) can be estimated as
1 1, Cj =aq, d] =b
Pr(e,b) = £ % je.{

0,cjia|d1¢b

Correcting for multiple tests

Unless otherwise stated, p values from a given statistical test within a participant
were corrected for multiple testing using the Benjamini-Hochberg procedure.

Network plots
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Networks of lineages were visualized using cytoscape (Shannon et al., 2003).
Software

All computer code written for this study is available on GitHub, at
https://github.com/nbstrauli/abr_hiv_evo. This is accompanied by a flow chart
which shows each data-processing step with the corresponding name of the
script that carries it out (Figure S20).

Data availability

All sequence data associated with this study is available at the sequence read
archive (SRA) under the BioProject ID: PRINA543982.

Website

To create an interactive web application, we built a website using the Boostrap
framework for the frontend interface along with the JavaScript graphing library
plotly.js. The website is available at https://ab-hiv-

coevolution.github.io/HIV AB CoEvo/
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Tables
ID Age* Date* Gender Ethnicity Exposure Num. Samples
1 30 6/7/98 Male White/European American MSM 20
2 25 2/17/99 Male Asian MSM 17
3 32 7/4/01 Male Hispanic/Latino MSM 10
4 44 8/8/01 Male White/European American MSM 10
5 34 7/20/03 Male Hispanic/Latino Unknown 11
6 25 1/18/05 Male White/European American MSM 10
7 35 6/6/05 Male White/European American MSM 10
8 48 9/3/08 Male White/European American MSM 10
9 33 2/2/09 Male Asian MSM 10
10 31 4/3/09 Male White/European American MSM 10

Table 1. Participant demographics.
MSM — men who have sex with men.
* at estimated time of infection
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Figure 1. Sampled time-points.
Depicts the time since infection for each sample, in each of the participants.
Open circles indicate that the AbR was successfully sequenced, crosses indicate
that HIV was successfully sequenced, and solid circles indicate that the
participant was on ART at this time.


https://doi.org/10.1101/646968
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/646968; this version posted June 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

A Participant ID
-1
> ° -2
= -3
.g 2 —9
; =
0 -10
B
[0]
- 8 0.09
c e
? & 0.06
58 0.03
2 0.
ZA
0.00
C o012
3
© 0.09
c 0
S, ©0.06
N o
5 0.03
0.00
D
c_. 2
S»m
9
o9Z 1
O T
sz
0
E _
® 5
@]
= 4
o
S 3
g¥ 2
-
0 5 10

Time Since Infection (years)
Figure 2. HIV summary statistic trajectories for each participant.
Each line shows the trajectory of a given summary statistic, in a given participant
over time. Each participant has a unique color. (A) Diversity. (B) Nonsynonymous
divergence. (C) Synonymous divergence. (D) Selection. (E) Viral load.
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Figure 3. AbR summary statistic trajectories for each participant.
Each line shows the trajectory of a given summary statistic, in a given participant
over time. Each participant has a unique color. (A) Diversity. (B) Divergence. (C)
Selection in the framework region (FWR). (D) Selection in the complementarity
determining region (CDR).
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Figure 4. Whole population level associations between AbR and HIV
summary statistics.
(A) Scatter plot showing positive correlation between HIV diversity (x-axis) and
AbR diversity (y-axis). Each point represents a sample with diversity values from
both the AbR and HIV sequence data. The axes show diversity values after
participant specific effects have been regressed out. Dashed line shows positive
relationship between AbR and HIV diversity, as given by our linear regression
(see Methods). (B-E) Shows associations between summary statistic trajectories
in AbR (blue) and HIV (red) at the individual participant level. (B) HIV selection
with AbR Divergence, in participant 2. (C) Viral load with AbR FWR-selection, in
participant 2. (D) Viral load with AbR FWR-selection, in participant 7. (E) HIV
diversity with AbR divergence, in participant 7.


https://doi.org/10.1101/646968
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/646968; this version posted June 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Az 440 2
130
120 1
110
I I I I I I I I I I
B N [ mEEEE mEOOE (W BN EEEN N W e e e Hvei o -log. (p)
[ EE B u ] L] [ || B HIVdN 10
m N EEn [ ] u HEE S8 HIVdNds R
HENEE ENENE BN BN H [EN EEEEN HEEN FEEE "EEEN | | HIV dS 4
L | | | L] | [ [ | ] viral load
UTT0Y UTTOY UTTOY UTTOY UTTOY UITOY UTTOY UITOY UITOW UITON 3
ST ITPgRO ITFRD TR TR0 SRR TR TR0 TR I TgRD
S5m  Som  2om  Som  fom  Som 2om  Som Som Som 2
® ™ 0 ® Ql © ® < < 0 1
2 - T’. - ] - - I 2 - ||
o [N » © — ™ © © — — =
® I ™ < © l — < | |
§ 5 3 & 3 & L I g ¢
> > > > > >
Co ® V6-1:J5 Freq vs. HIV Load Dm V6-1:J4 Freq vs. HIV Load
_g .g @ p=0.01686 / _| p=0.01686 / ADbR trajectory
© o n / == H|V trajectory
© O™ - -
2L e, __ — ———
S & g — S
nhHE 1! I I I I I I I I I
1 2 3 4 1 2 3 4

Estimated Time Since Infection (years)
Figure 5. Results of permutation-based test to identify HIV-associated AbR
partitions in participant 8.
(A) A barplot showing the combined score from the permutation-based test (left
axis), and the number of significant associations (right axis) for the top 10 AbR
partitions. AbR partitions were sorted first by the number of significant
associations, then by their combined score from the permutation-based test
(ascending, left-right). (B) Heatmaps depicting the significance (-log1o(p-value))
for each permutation test within each of the top 10 AbR partitions. Columns
correspond to summary statistics of the AbR partitions: Div=divergence,
Pi=diversity, Freg=relative frequency, Sel.C=CDR selection, and Sel.F=FWR
selection. Rows correspond to summary statistics of the HIV population: HIV
pi=diversity, HIV dN=nonsynonymous divergence, HIV dS=synonymous
divergence, HIV dN/dS=selection, and viral load is self-explanatory. The color of
each element in the heatmaps shows the significance of the association between
a given AbR partition summary statistic trajectory with a given HIV population
summary statistic trajectory. (C, D) Shows the AbR partition (blue) and HIV
population (red) trajectories that were significantly associated. (C) Frequency
trajectory of the IGHV6-1:1GHJ5 AbR partition with the viral load trajectory of the
HIV population. (D) Frequency trajectory of the IGHV6-1:IGHJ4 AbR partition
with the viral load trajectory of the HIV population.
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Figure 6. AbR lineage structure.

lllustrates the lineages in AbR partition IGHV6-1:1GHJ5, participant 8. (A) Muller
plot depicting the relative frequency of each lineage within the partition. Each
color represents a lineage. If a new lineage arises within the bounds of a
preexisting lineage, then the new lineage is a daughter of the preexisting, parent
lineage. Lineages that began earlier in the time-course have colors closer to the
red side of the spectrum, while lineages that began later in the time-course have
colors closer to violet. Only lineages that exceeded 0.0001 frequency are
included in the plot. (B) Network plot. Each node represents a unique sequence.
Nodes with thicker black borders are the ‘representative sequence’ of their
sequence-cluster. Nodes of the same color (i.e. same time-point) are linked with
an edge if they were in the same cluster. Nodes that have different colors are
linked with an edge if they were assigned to the same lineage. This inter-time-
point linking only occurs between ‘representative sequences’. Taken together,
each isolated grouping of nodes shows a family of related lineages.
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Figure 7. Coevolution test for individual lineages.

Each black dot corresponds to a value for a specific lineage within an HIV-
associated AbR partition, and are jittered across the x-axis. The identifying
information for the specific HIV-associated partition is given by the column labels
for the plots (ex. The values for the lineages within the IGHV3-30:IGHJ3 AbR
partition of participant 3 are found in the left-most column). The colored violin
plots behind the points represent a given null-comparison for the points, where
color corresponds to participant. The top row of plots shows the values and null
distributions for the length of lineages (i.e. how many time-points they were
present). The bottom row shows the values and null distributions for the mean M
of lineages. (A) The null distributions are made up of the values from the lineages
in AbR partitions that were not HIV-associated. (B) The null distributions are
made up of the values from the null simulation for each given AbR partition.
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Figure 8. Global tests for coevolution.
Each line gives the distribution of mean MI values for a given participant.

Turquoise colored lines correspond to observed lineages (i.e. lineages inferred
from the data), and salmon colored lines correspond to lineages from the null
simulations. Participant 10 is omitted because of limited HIV sequence data.
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