

1 ARTICLE

2 **Cancer/Testis Antigens Differentially Expressed in**  
3 **Prostate Cancer: Potential New Biomarkers and Targets**  
4 **for Immunotherapies**

5 Luciane T. Kagohara<sup>1,\$,¥</sup>, Neil M. Carleton<sup>1,2</sup>, Sayuri Takahashi<sup>1,\*</sup>, Takumi Shiraishi<sup>1,#</sup>, Steven M.  
6 Mooney<sup>1,€</sup>, Robert L. Vessella<sup>3</sup>, Robert H. Getzenberg<sup>1,∞</sup>, Prakash Kulkarni<sup>1,€</sup>, Robert W. Veltri<sup>1</sup>.

7 <sup>1</sup> Brady Urological Institute, Department of Urology, Johns Hopkins University, Baltimore, MD;  
8 Itsukam1@jhmi.edu (L.T.K.); nmc-42@pitt.edu (N.M.C.); t-sayuri@athena.ocn.ne.jp (S.T.); takumi14@koto.kpu-  
9 m.ac.jp (T.S.); s2mooney@uwaterloo.ca (S.M.M.); rgetzenb@nova.edu (R.G.); pkulkarni@coh.org (P.K.);  
10 rveltri11@gmail.com (R.W.V.)

11 <sup>2</sup> Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA; nmc-42@pitt.edu (N.M.C.)

12 <sup>3</sup>Department of Urology, University of Washington, Seattle, WA; vessella@uw.edu (R.L.V.)

13 <sup>¥</sup> Correspondence: Itsukam1@jhmi.edu (L.T.K.)

14 Current affiliations:

15 <sup>\$</sup>Department of Oncology, Johns Hopkins University, Baltimore, MD

16 <sup>\*</sup>Department of Urology, The University of Tokyo, Tokyo, Japan

17 <sup>#</sup>Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan

18 <sup>€</sup>Department of Biology, University of Waterloo, Waterloo, ON Canada N2L 3G1

19 <sup>∞</sup>Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL

20 <sup>CA</sup>Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte,  
21 CA

22 **Abstract:** Current clinical tests for prostate cancer (PCa), such as the PSA test, are not fully capable of  
23 discerning patients that are highly likely to develop metastatic prostate cancer (MPCa). Hence, more  
24 accurate prediction tools are needed to provide treatment strategies that are focused on the different  
25 risk groups. Cancer/testis antigens (CTAs) are expressed during embryonic development and present  
26 aberrant expression in cancer making them ideal tumor specific biomarkers. Here, the potential use of a  
27 panel of CTAs as a biomarker for PCa detection as well as metastasis prediction is explored. We  
28 initially identified eight CTAs (*CEP55*, *NUF2*, *PAGE4*, *PBK*, *RQCD1*, *SPAG4*, *SSX2* and *TTK*) that are  
29 differentially expressed in MPCa when compared to local disease and used this panel to compare the  
30 gene and protein expression profiles in paired PCa and normal adjacent prostate tissue. We identified  
31 differential expression of all eight CTAs at the protein level when comparing 80 paired samples of PCa  
32 and the adjacent non-cancer tissue. Using multiple logistic regression we also show that a panel of these  
33 CTAs present high accuracy to discriminate normal from tumor samples. In summary, this study  
34 provides evidence that a panel of CTAs, differentially expressed in aggressive PCa, is a potential  
35 biomarker for diagnosis and prognosis to be used in combination with the current clinically available  
36 tools and is also a potential target for immunotherapy development.

37 **Keywords:** Cancer/testis antigens; prostate cancer; gene expression; immunohistochemistry; biomarker;  
38 immunology

39

---

40 **1. Introduction**

41 Prostate cancer (PCa) is the most prevalent cancer type among men and the second leading cause  
42 of male cancer-associated deaths in the United States accounting for an estimated 165,000 new cases

43 and 30,000 deaths in 2018 . While local tumors are successfully treated, metastatic PCa (MPCa) remains  
44 an incurable disease with a 30% 5-year survival rate [1]. The most common treatment for advanced PCa  
45 consists of androgen ablation to which most patients are responsive; however, a great proportion of  
46 men progress with metastatic castration-resistant PCa (mCRPC) and die from the disease. Although  
47 much progress in the treatment of mCRPC was made in the last decade, improvements regarding  
48 survival are still measured in months [2,3].

49 PCa screening and disease control is largely based on the prostate specific antigen (PSA) test that  
50 was initially introduced as a follow-up instrument for the detection of recurrence and progression to  
51 metastatic disease. Subsequently, its potential as an early diagnostic tool was explored [4,5] and PSA  
52 was accepted as a standard test to identify men at risk of PCa before any symptoms appeared. Thus,  
53 PSA was heralded as a promising early detection biomarker [5]. However, PSA screening has been  
54 considered a controversial assessment since many men are over-diagnosed and over-treated since PSA  
55 is not capable of differentiating more indolent from aggressive disease. It is estimated that 23% to 60%  
56 of men, with increased PSA levels present with prostate tumors that would remain clinically  
57 insignificant during their lifetime [6]. Unfortunately, these men who present with increased PSA may  
58 be submitted to unnecessary aggressive and invasive treatment and its consequent comorbidities [6–8]  
59 [6–8]. The use of active surveillance programs in men who are considered to have very low and low risk  
60 prostate cancer has had a major impact on over-treatment but one of the major dilemmas in PCa  
61 remains to identify patients with aggressive tumors at an early stage so that they can benefit from  
62 immediate definitive treatment. PSA based tests such as the Prostate Health Index (phi) and the 4K  
63 Score, are options to predict more accurately detect PCa [9]. The first test, that measures total, free and  
64 [-2]proPSA [10]; is FDA approved and have shown to be an important tool for risk stratification [11,12].  
65 The 4K Score measures four kallikrein markers (total, free and intact PSA and hK2) and presents the  
66 same performance and is also associated with the risk of MPCa [13,14]. Still, additional molecular  
67 biomarkers for a combined test are crucial to categorize tumors according to their aggressive potential  
68 in a more accurate manner and to stratify men with PCa into more appropriate treatment strategies.

69 Cancer/testis antigens (CTAs) constitute an important class of cancer biomarkers that have not  
70 been fully explored, especially in PCa [15–18]. CTAs by definition are normally expressed in testis and  
71 other developmentally regulated tissues (e.g., placenta) but are aberrantly expressed in many types of  
72 cancers [19]. This unique pattern of expression makes these genes attractive candidates as biomarkers  
73 and, together with their immunogenic capacity, also good targets for the development of cancer  
74 immunotherapy [20–22]. The aberrant expression of CTAs in different cancer types is associated with  
75 phenotypic changes that confer cancer cells added advantages for proliferation and survival [23,24]. In  
76 a previous study, Takahashi et al. [25] evaluated the expression of 22 CTAs in localized (LPCa) and  
77 MPCa. Five of the CTAs (*CEP55*, *NUF2*, *PAGE4*, *PBK* and *SPAG4*) were differentially expressed  
78 between the two groups, suggesting that CTAs have the potential as biomarkers for differentiating  
79 aggressive PCa. However, since it was a retrospective study, the possibility of using these CTAs as  
80 predictors for MPCa could not be assessed.

81 In this study, we used the data generated by Takahashi et al. [25] to create a panel of CTA genes  
82 that are differentially expressed between LPCa and MPCa, and used this gene set to develop a panel of  
83 biomarkers for PCa screening. We hypothesize that using a panel of genes differentially expressed in  
84 advanced PCa early in the screening process would facilitate the early prediction of patients that will  
85 develop metastasis. In addition to Takahashi et al. analysis [25], we used a statistical multivariate  
86 logistic regression (MLR) model to identify with more stringency, a panel of potential CTA candidates  
87 as biomarkers for aggressive tumors. We found that, among the CTAs evaluated in the current study,  
88 *PAGE4* is down-regulated (undetectable) in 100% of MPCa cases. Thus, *PAGE4* is a promising  
89 candidate to discriminate indolent from aggressive cases. Also, our results showed that the CTAs  
90 *CEP55*, *NUF2*, *PBK* and *TTK* were up-regulated in MPCa and their combined pattern of expression was  
91 capable of differentiating metastatic from non-metastatic tumors. Finally, we evaluated the expression

92 of this CTA panel in normal and tumor paired tissues from PCa patients who were treated with radical  
93 prostatectomy to identify their potential as screening biomarkers. We observed significant variation in  
94 mRNA and protein expression levels of all these CTAs, suggesting that the changes in expression occur  
95 before metastasis development and could be used as early diagnostic and prognostic biomarkers.

96 **2. Materials and Methods**

97 *2.1. Clinical Samples*

98 Samples from clinically localized PCa (LPCa) (n=20) and soft tissue metastasis (MPCa) (n=20) were  
99 obtained at University of Washington from radical prostatectomies and autopsies, respectively. The age  
100 range of the patients with clinically LPCa was 48-75 years (median, 58 years) and a preoperative serum  
101 PSA median of 7.54 (ng/ml) (range, 2.4-64.0). The Gleason Score was: 6 (n=3), 7 (n=14), 8 (n=1) and 9  
102 (n=2). Soft tissue metastasis were obtained from lymph node (n=8), liver (n=5), adrenal (n=1), bladder  
103 (n=1), kidney (n=1), lung (n=1) and pancreas (n=1). The specimens were used with the approval of the  
104 University of Washington Institutional Review Board. Complete demographic and clinical data are  
105 presented on **Supplementary Table 1**. Approximately 30 to 100mg of fresh tissue (with no dimension  
106 greater than 0.5cm) was collected and placed in RNAlater Solution (Ambion, Austin, TX). Samples were  
107 stored at 4°C for 1-7 days to allow solution to thoroughly penetrate the tissue and then maintained at -  
108 20°C until RNA extraction [25].

109 RNA samples from matched tumor and normal adjacent tissues were obtained from the Prostate  
110 Cancer Biorepository Network (PCBN). Using the standard operating procedure (SOP) protocols, as  
111 previously described in detail [26], RNA was isolated from 24 radical prostatectomy specimens. The  
112 grade and stage of each case are listed in **Supplementary Table 2**. Each case consisted of fresh-frozen  
113 tumor and benign tissues obtained at radical prostatectomy. Cancer samples were macro-dissected to  
114 ensure the presence of at 70% to 90% tumor cells.

115 The paired normal and PCa samples for immunohistochemistry assays were included in tissue  
116 microarrays (TMAs). The two TMAs included 80 unique prostate cancer patients representing different  
117 Gleason scores (3+3, 3+4, 4+3, and ≥8) with quadruplicates of cancer and cancer-adjacent normal areas.  
118 The detailed demographics of the total 80 cases stratified by Gleason scores are shown in  
119 **Supplementary Table 3**.

120 *2.2. RNA isolation*

121 RNA from 20 paired normal and PCa from PCBN were obtained using Trizol (Invitrogen). RNA  
122 quantification and integrity were assessed by Nanodrop and 2100 Bioanalyzer (Agilent Technologies).  
123 Additional information for PCBN SOPs can be found at  
124 <http://www.prostatebiorepository.org/protocols>.

125 *2.3. Nanostring gene expression analysis*

126 Nanostring nCounter Gene Expression Assay (NanoString Technologies, Seattle, WA) gene  
127 expression data were obtained previously for the LPCa and MPCa cohort [25]. The Nanostring  
128 approach was performed for 22 CTA genes (*CEP55, CSAG2, CTAG1B (NY-ESO-1), JARID1B, MAGEA1,*  
129 *MAGEA2, MAGEA6, MAGEA12, NOL4, NUF2, PAGE4, PBK, PLAC1, RQCD1, SEMG1, SPAG4, SSX2,*  
130 *SSX4, TMEFF2, TMEM108, TPTE and TTK*). The CTA genes were selected by mining publicly available  
131 microarray data from the Gene Expression Omnibus (<http://www.ncbi.nlm.nih.gov/geo>) in conjunction  
132 with our own data [27,28]. *ACTB* was used as the housekeeping gene for normalization.

133 *2.4. qRT-PCR gene expression analysis*

134 One microgram of total RNA was used for cDNA synthesis using the iScript cDNA Synthesis Kit  
135 (Bio-Rad Laboratories, Inc., Hercules, CA). The PCR reactions were performed with 0.2  $\mu$ l of cDNA  
136 template in 25  $\mu$ l of reaction mixture containing 12.5 $\mu$ l of iQ SYBR Green Supermix (Bio-Rad  
137 Laboratories, Inc.) and 0.25  $\mu$ mol/L each primer. PCR reactions were subjected to hot start at 95°C for 3  
138 minutes followed by 45 cycles of denaturation at 95°C for 10 seconds, annealing at 60°C for 30 seconds,  
139 and extension at 72°C for 30 seconds using the CFX96 Real-Time PCR Detection System (Bio-Rad  
140 Laboratories, Inc.). Analysis and fold differences were determined using the comparative threshold  
141 cycle method. ACTB was the housekeeping gene used for normalization. Primers' sequences for the  
142 CTAs evaluated are shown in **Supplementary Table 4**.

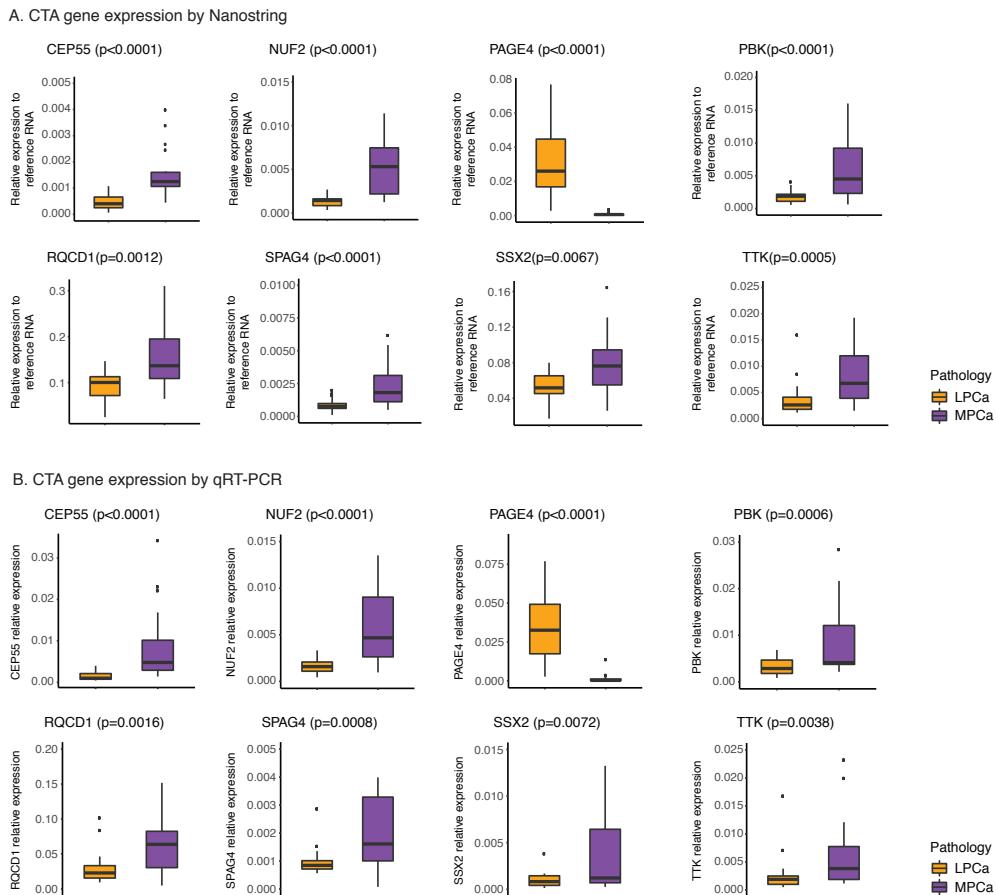
143 *2.5. Immunohistochemistry*

144 The TMA slides were deparaffinized using xylene, and tissues were rehydrated in decreasing  
145 concentrations of ethanol (100%, 75%, 50%, and 25%; all vol/vol). Antigen retrieval was performed at  
146 controlled pH values under heat, followed by endogenous peroxidase inhibition using 0.3% hydrogen  
147 peroxidase. TMA slides were incubated for 1h at room temperature with a proprietary protein block,  
148 Protein Block Serum Free reagent (Dako). Primary antibody incubation was performed at 4°C overnight  
149 using the ideal dilution for each antibody (**Supplementary Table 5**). Primary antibody was washed  
150 with 1X PBS, and secondary antibody (1:200) was added to the slides and incubated for 1h at room  
151 temperature. Antigen localization was developed using 3,3'-diaminobenzidine chromogen. Tissue  
152 samples were counterstained in hematoxylin and dehydrated in ethanol and xylene.

153 For quantitative IHC (qIHC) analysis, slides were scanned using the Aperio Scanscope XT (Leica  
154 Biosystems) and the staining quantifications were performed using Aperio Imagescope v12.3 software  
155 (Leica Biosystems). Intensity and frequency of positive staining are determined by the pixel count of the  
156 delimited area selected for analysis. Intensity (different brown-staining shades) for a determined area is  
157 given as the total brown pixel count for that region. The frequency (area of positive staining) is given by  
158 the ratio of positive brown region and the total area selected for analysis (positive + negative area).  
159 Protein expression differences between the paired normal and tumor areas were compared using the  
160 Wilcoxon matched-pairs test. The average for all cores available from each patient for qIHC analysis  
161 was calculated, and the values were used to compare medians between the groups (tumor vs. benign).  
162 Protein expression (frequency or intensity) was considered significantly different for a *P* value  $\leq$ 0.05.

163 *2.6. Statistical analysis*

164 Receiver Operator Characteristic (ROC) curves were used to identify CTAs with a high probability  
165 of accurately discriminating between localized and metastatic PCa or tumor and non-tumor cases. Gene  
166 expression changes were considered significant when AUC $>$ 0.7. Wilcoxon signed-rank or Mann-  
167 Whitney non-parametric test were used to compare CTA gene expression means between LPCa vs.  
168 MPCa and benign vs. tumor tissues, respectively. Gene expression differences were considered  
169 significant when *P* value  $\leq$ 0.05. After the best individual genes were identified, the multivariate logistic  
170 regression (MLR) backward stepwise model was used to identify a CTA panel (with high specificity,  
171 sensitivity and significant AUC) capable of discriminating LPCa from MPCa or tumor from benign  
172 cases. All statistical analyses were performed using STATA version 13.


173 **3. Results**

174 *3.1. Differential CTA gene expression in LPCa and MPCa*

175 Nanostring is a digital multiplex approach in which multiple mRNAs can be absolutely quantified  
176 making the cDNA synthesis step unnecessary. Using this approach, Takahashi et al. [25] measured the

177 expression of a panel of 22 CTA genes. All analyses were normalized using *ACTB* as a house-keeping  
178 gene. Here, we used the previously published dataset to perform a more stringent statistical analysis to  
179 identify CTAs that can accurately discriminate LPCa from MPCa.

180 We performed ROC analyses to verify the accuracy of each biomarker expression profile in  
181 discriminating LPCa from and MPCa samples. To classify the 22 CTA genes (*CEP55*, *CSAG2*, *CTAG1B*  
182 (*NY-ESO-1*), *JARID1B*, *MAGEA1*, *MAGEA2*, *MAGEA6*, *MAGEA12*, *NOL4*, *NUF2*, *PAGE4*, *PBK*, *PLAC1*,  
183 *RQCD1*, *SEMG1*, *SPAG4*, *SSX2*, *SSX4*, *TMEFF2*, *TMEM108*, *TPTE* and *TTK*) as good markers to  
184 discriminate indolent and aggressive cases, we used a cutoff  $AUC \geq 0.7$ . ROC curve analysis was also  
185 used to determine the highest specificity, sensitivity, positive (PPV) and negative prediction (NPV)  
186 values that maximize the cases correctly classified. Expression level means were compared to assure  
187 that the differences found were significant. Nanostring multiplex gene expression analysis of the CTA  
188 genes showed down-regulation of *PAGE4* and up-regulation of *CEP55*, *MAGEA2*, *NUF2*, *PBK*, *RQCD1*,  
189 *SPAG4*, *SSX2*, and *TTK* in MPCa (compared with LPCa) (Figure 1A, Table 1 and Supplementary  
190 Figure 1) with AUC above the cutoff established, suggesting that each of the CTAs was capable of  
191 discriminating the two groups. *PAGE4* was at undetectable levels in all MPCa cases.



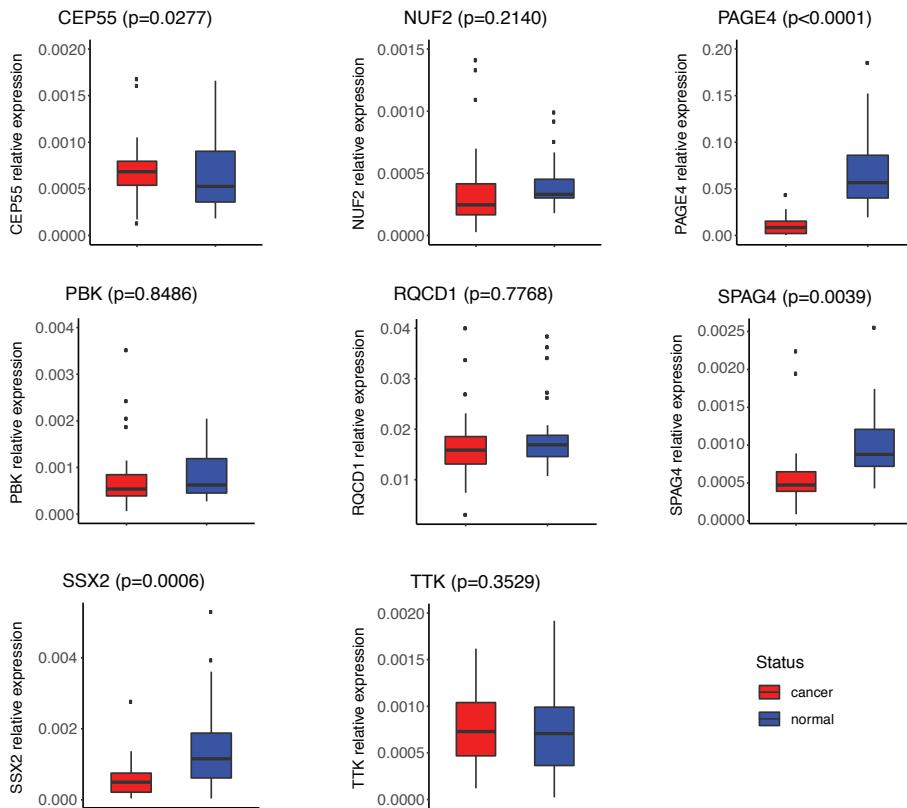
192 **Figure 1** – Cancer/testis antigens (CTA) gene expression analysis in localized (LPCa) and metastatic (MPCa)  
193 prostate cancer. Representation of gene expression measured by Nanostring (A) and by qRT-PCR (B). Nanostring  
194 relative gene expression is the ratio between CTA and ActinB measured. For the qRT-PCR the relative gene  
195 expression calculation was performed using the  $2^{-\Delta Ct}$  approach using ActinB as the housekeeping gene. Wilcoxon  
196 signed-rank test was used to compare means between LPCa and MPCa groups. Gene expression differences were  
197 considered significant when  $P$  value  $\leq 0.05$ . *PAGE4* is down-regulated in MPCa while all other CTAs present  
198 increased expression. Nanostring results were confirmed by qRT-PCR in the same cohort (technical validation).

**Table 1** - Localized and metastatic prostate cancer gene expression ROC analysis for 22 CTAs.

| CTA            | NANOSTRING |             |             |       |       | qRT-PCR |             |             |       |       |
|----------------|------------|-------------|-------------|-------|-------|---------|-------------|-------------|-------|-------|
|                | AUC        | SENSITIVITY | SPECIFICITY | PPV   | NPV   | AUC     | SENSITIVITY | SPECIFICITY | PPV   | NPV   |
| <b>PAGE4</b>   | 0.99       | 95.00       | 95.00       | 95.00 | 95.00 | 0.99    | 95.00       | 90.00       | 90.48 | 94.74 |
| <b>CEP55</b>   | 0.97       | 90.00       | 90.00       | 90.00 | 90.00 | 0.91    | 80.00       | 90.00       | 88.89 | 81.82 |
| <b>NUF2</b>    | 0.92       | 80.00       | 95.00       | 94.12 | 82.61 | 0.89    | 70.00       | 90.00       | 87.50 | 75.00 |
| <b>PBK</b>     | 0.86       | 65.00       | 90.00       | 86.67 | 72.00 | 0.81    | 55.00       | 85.00       | 78.57 | 65.38 |
| <b>SPAG4</b>   | 0.85       | 70.00       | 80.00       | 77.78 | 72.73 | 0.80    | 65.00       | 95.00       | 92.86 | 73.08 |
| <b>TTK</b>     | 0.81       | 65.00       | 85.00       | 81.25 | 70.83 | 0.76    | 50.00       | 90.00       | 83.33 | 64.29 |
| <b>RQCD1</b>   | 0.79       | 65.00       | 85.00       | 81.25 | 70.83 | 0.79    | 60.00       | 85.00       | 80.00 | 68.00 |
| <b>SSX2</b>    | 0.75       | 65.00       | 65.00       | 65.00 | 65.00 | 0.75    | 50.00       | 95.00       | 90.91 | 65.52 |
| <b>MAGEA2</b>  | 0.71       | 45.00       | 80.00       | 69.23 | 59.26 | 0.63    | 40.00       | 65.00       | 53.33 | 52.00 |
| <b>SEMG1</b>   | 0.70       | 80.00       | 45.00       | 59.26 | 69.23 | 0.52    | 35.00       | 70.00       | 53.85 | 51.85 |
| <b>TMEFF2</b>  | 0.69       | 55.00       | 55.00       | 55.00 | 55.00 | 0.63    | 65.00       | 45.00       | 54.17 | 56.25 |
| <b>MAGEA6</b>  | 0.69       | 50.00       | 85.00       | 76.92 | 62.96 | 0.68    | 40.00       | 85.00       | 72.73 | 58.62 |
| <b>MAGEA12</b> | 0.67       | 55.00       | 80.00       | 73.33 | 64.00 | 0.70    | 50.00       | 75.00       | 66.67 | 60.00 |
| <b>MAGEA1</b>  | 0.67       | 50.00       | 85.00       | 76.92 | 62.96 | 0.75    | 45.00       | 80.00       | 69.23 | 59.26 |
| <b>CSAG2</b>   | 0.63       | 40.00       | 80.00       | 66.67 | 57.14 | 0.72    | 50.00       | 80.00       | 71.43 | 61.54 |
| <b>PLAC1</b>   | 0.57       | 45.00       | 75.00       | 64.29 | 57.69 | 0.59    | 45.00       | 75.00       | 64.29 | 57.69 |
| <b>CTAG1B</b>  | 0.56       | 5.00        | 95.00       | 50.00 | 50.00 | 0.59    | 5.00        | 90.00       | 33.33 | 48.65 |
| <b>SSX4</b>    | 0.51       | 40.00       | 65.00       | 53.33 | 52.00 | 0.80    | 55.00       | 85.00       | 78.57 | 65.38 |
| <b>JARID1B</b> | 0.51       | 45.00       | 45.00       | 45.00 | 45.00 | 0.67    | 50.00       | 85.00       | 76.92 | 62.96 |
| <b>TPTE</b>    | 0.50       | 25.00       | 80.00       | 55.56 | 51.61 | 0.47    | 35.00       | 60.00       | 46.67 | 48.00 |
| <b>NOL4</b>    | 0.46       | 25.00       | 70.00       | 45.45 | 48.28 | 0.55    | 35.00       | 75.00       | 58.33 | 53.57 |
| <b>TMEM108</b> | 0.42       | 40.00       | 60.00       | 50.00 | 50.00 | 0.68    | 40.00       | 75.00       | 61.54 | 55.56 |

CTAs: cancer/testis antigens; ROC: Receiver operating characteristic; AUC: area under curve; PPV: positive predictive value; NPV: negative predictive value.

199 qRT-PCR was used to verify the results obtained using the Nanostring multiplex approach.  
 200 Validation was performed for all 22 CTAs using the same sample sets that were examined by Takahashi  
 201 et al [25]. Statistical analysis showed significant ROC curves (AUC>0.7) (**Table 1**) and confirmed  
 202 overexpression of the CTA genes *CEP55*, *NUF2*, *PBK*, *RQCD1*, *SPAG4*, *SSX2* and *TTK* in MPCa, as well  
 203 as the down-regulation of *PAGE4* (**Supplementary Figure 2** and **Figure 1B**). The other selected CTAs  
 204 did not show significant expression changes between LPCa and MPCa (data not shown). Of note, in the  
 205 study by Takahashi et al. [25], only *CEP55*, *NUF2*, *PBK*, *PAGE4* and *SPAG4* were found differentially  
 206 expressed in LPCa vs. MPCa. However, in the present study, a more robust analysis increased the panel  
 207 of potential aggressive PCa biomarkers. These data not only support the fact that CTA expression  
 208 patterns can be used to discriminate MPCa and LPCa cases, but also corroborates the previous data  
 209 using the same biomarkers.


210 3.2. CTA expression in paired tumor and adjacent normal prostate tissue samples reveals differences at the  
 211 mRNA and protein level

212 To determine if the CTAs differentially expressed in LPCa vs. MPCa also present different  
 213 expression patterns in normal prostate tissue and PCa samples both at the mRNA and protein level,

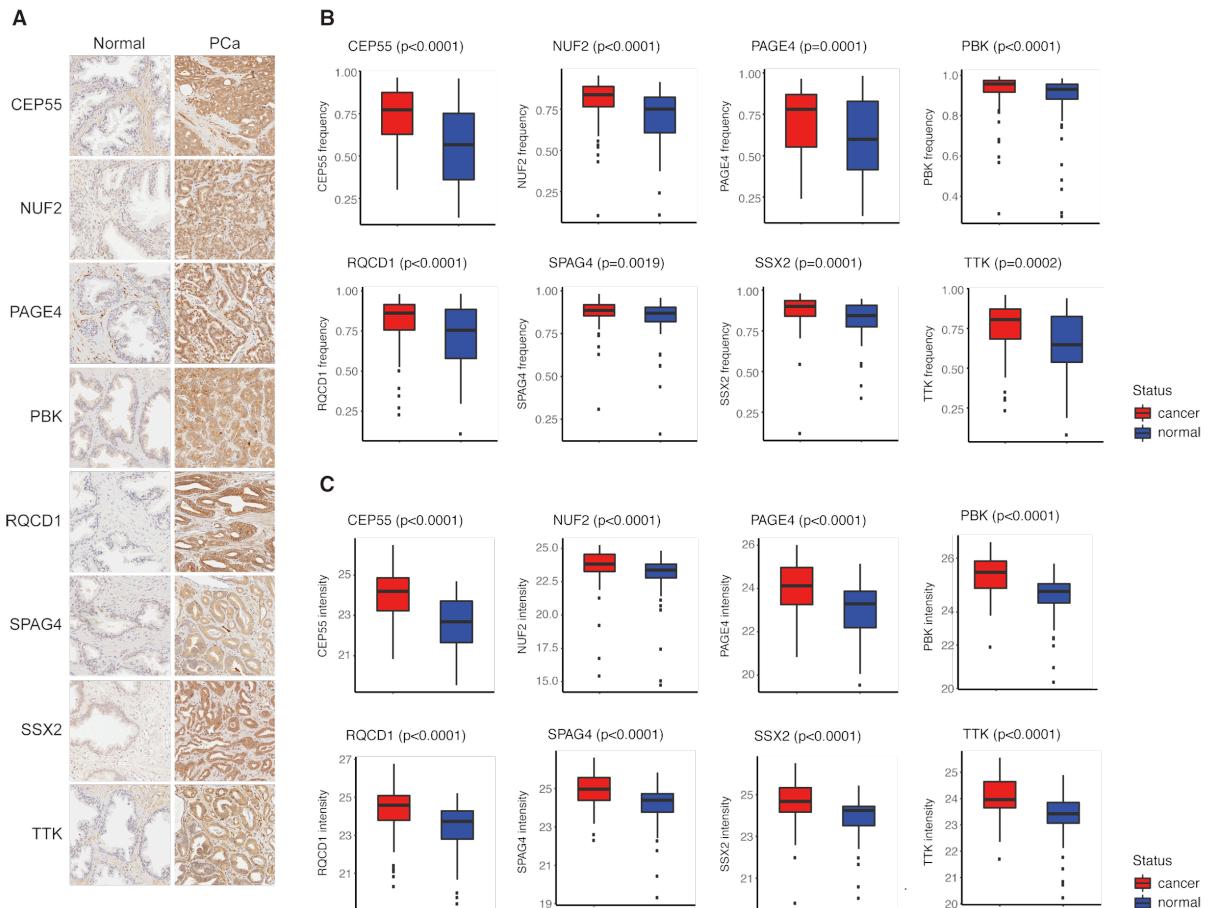
214 *CEP55, NUF2, PAGE4, PBK, RQCD1, SPAG4, SSX2* and *TTK* expression levels were evaluated in paired  
215 tumor samples and the adjacent normal tissues obtained from radical prostatectomies. Two distinct  
216 cohorts were used, one for gene expression analysis (22 paired samples) and another for protein  
217 expression (80 paired samples).

218 Gene expression analysis of the 22 paired tumor and normal samples did not show significant  
219 differences for *CEP55, NUF2, PBK, RQCD1* and *TTK* (Figure 2). *PAGE4, SPAG4* and *SSX2* are up-  
220 regulated in benign areas of the prostate when compared to tumor tissue. The expression profile of  
221 these genes can discriminate with good accuracy normal from PCa samples, as shown by ROC curve  
222 analysis (Table 2). These findings suggest that, for the CTAs selected in this study, changes in gene  
223 expression occur in advanced stages of PCa progression and are associated with a more aggressive  
224 phenotype.

225



226 **Figure 2** – Cancer/testis antigens (CTA) gene expression analysis in paired tumor and normal adjacent samples  
227 from patients with prostate cancer. Gene expression was quantified by qRT-PCR. The relative gene expression  
228 calculation was performed using the  $2^{-\Delta Ct}$  approach using ActinB as the housekeeping gene. Mann-Whitney non-  
229 parametric test was used to compare means between LPCa and MPCa groups. Gene expression differences were  
230 considered significant when  $P$  value  $\leq 0.05$ . *CEP55* presents increased mRNA levels in PCa compared with normal  
231 samples. Up-regulation in normal versus tumor tissue was observed for *PAGE4, SPAG4* and *SSX2*. For the other  
232 CTAs no significant changes in expression was noted.


Table 2 - ROC analysis for gene expression profile of paired normal and tumor samples.

| CTA | AUC | SENSITIVITY | SPECIFICITY | PPV | NPV |
|-----|-----|-------------|-------------|-----|-----|
|-----|-----|-------------|-------------|-----|-----|

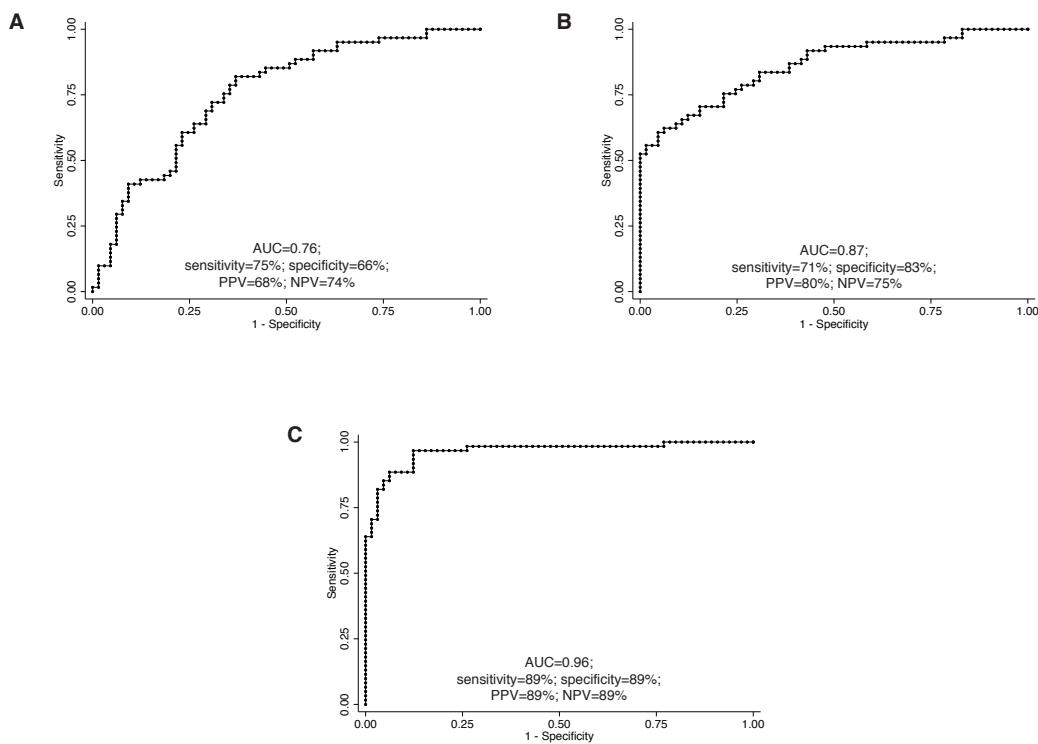
|              |      |        |        |        |       |
|--------------|------|--------|--------|--------|-------|
| <i>CEP55</i> | 0.58 | 13.00  | 92.00  | 60.00  | 53.50 |
| <i>NUF2</i>  | 0.69 | 13.00  | 100.00 | 100.00 | 55.60 |
| <i>PAGE4</i> | 0.98 | 95.70  | 92.00  | 91.70  | 95.80 |
| <i>PBK</i>   | 0.58 | 0.00   | 100.00 | NA     | 53.20 |
| <i>RQCD1</i> | 0.59 | 52.20  | 64.00  | 57.10  | 59.30 |
| <i>SPAG4</i> | 0.83 | 73.90  | 76.00  | 73.90  | 76.00 |
| <i>SSX2</i>  | 0.74 | 78.30  | 64.00  | 66.70  | 76.20 |
| <i>TTK</i>   | 0.55 | 100.00 | 0.00   | 53.70  | NA    |

ROC: Receiver operating characteristic; AUC: area under curve; PPV: positive predictive value; NPV: negative predictive value.

233     Although gene expression changes were not detected for some of the CTA genes selected, the  
234     protein expression analysis by IHC in 80 paired PCa and normal samples revealed significant  
235     differences between tumor and normal adjacent tissue from the same patients for all 8 genes (**Figure**  
236     **3A**). Using quantitative image analysis, we measured the frequency and the intensity of the staining,  
237     independently. For both variables, we observed significant differences in the protein levels when  
238     comparing the tumor with its paired adjacent normal tissue (Mann-Whitney non-parametric test with *P*  
239     value  $\leq 0.05$ ) (**Figure 3B** and C). All CTAs show increased protein expression in PCa versus the normal  
240     tissue. In order to verify if the increased protein levels were useful to accurately discriminate tumor  
241     from adjacent normal samples we performed ROC analysis. The intensity of staining for all CTAs, but  
242     NUF2, is an accurate variable (AUC  $> 0.70$ ) to discriminate cancer from normal tissue. (**Table 3**). The  
243     frequency of positively stained cells was significantly higher among tumor samples when compared to  
244     the normal adjacent paired tissue for all CTAs. Although, almost all AUCs were below the cutoff value  
245     (**Table 3**), when we compared the means of positive cells between tumor and normal samples the  
246     differences are significant (**Figure 3B**). The progressive down-regulation of *PAGE4* in PCa is a  
247     distinctive marker of metastasis development and therefore, tracing its loss of expression from the time  
248     of PCa diagnosis can provide valuable prognostic information. The observation that gene expression is  
249     not different between normal versus PCa and the fact that *SPAG4* and *SSX2* present with higher levels  
250     in normal samples suggest that slight changes at the transcriptional level may lead to significant  
251     changes in protein expression in cancer cells.



252 **Figure 3** – Cancer/testis antigens (CTA) protein expression analysis by immunohistochemistry (IHC) in paired  
253 tumor and normal adjacent tissues. IHC using antibodies against eight CTAs were performed to identify significant  
254 differences between normal and tumor areas from the same prostate. Panel A represents the immuno-staining for  
255 CTAs in normal and PCa paired samples. Using a computational quantitative approach, it was possible to measure  
256 the frequency (B) and intensity (C) of the staining. Mann-Whitney non-parametric test was used to compare means  
257 (P value  $\leq 0.05$ ). All CTA proteins present increased expression in PCa when compared to the normal paired  
258 sample.


**Table 3** - ROC analysis summary for the immunohistochemistry intensity and frequency protein expression analysis.

| CTA          | INTENSITY |             |             |      |      | FREQUENCY |             |             |      |      |
|--------------|-----------|-------------|-------------|------|------|-----------|-------------|-------------|------|------|
|              | AUC       | SENSITIVITY | SPECIFICITY | PPV  | NPV  | AUC       | SENSITIVITY | SPECIFICITY | PPV  | NPV  |
| <b>CEP55</b> | 0.79      | 0.64        | 0.75        | 0.71 | 0.68 | 0.71      | 0.70        | 0.62        | 0.64 | 0.68 |
| <b>NUF2</b>  | 0.67      | 0.54        | 0.73        | 0.66 | 0.63 | 0.69      | 0.75        | 0.53        | 0.61 | 0.69 |
| <b>PAGE4</b> | 0.72      | 0.56        | 0.78        | 0.71 | 0.65 | 0.61      | 0.64        | 0.54        | 0.57 | 0.62 |
| <b>PBK</b>   | 0.78      | 0.65        | 0.82        | 0.77 | 0.72 | 0.64      | 0.71        | 0.47        | 0.56 | 0.64 |
| <b>RQCD1</b> | 0.71      | 0.63        | 0.73        | 0.69 | 0.66 | 0.64      | 0.71        | 0.52        | 0.59 | 0.64 |
| <b>SPAG4</b> | 0.72      | 0.61        | 0.77        | 0.72 | 0.67 | 0.62      | 0.69        | 0.49        | 0.57 | 0.62 |
| <b>SSX2</b>  | 0.73      | 0.56        | 0.80        | 0.72 | 0.66 | 0.67      | 0.67        | 0.56        | 0.58 | 0.64 |
| <b>TTK</b>   | 0.73      | 0.58        | 0.76        | 0.70 | 0.65 | 0.67      | 0.67        | 0.58        | 0.61 | 0.64 |

ROC: Receiver operating characteristic; AUC: area under curve; PPV: positive predictive value; NPV: negative predictive value.

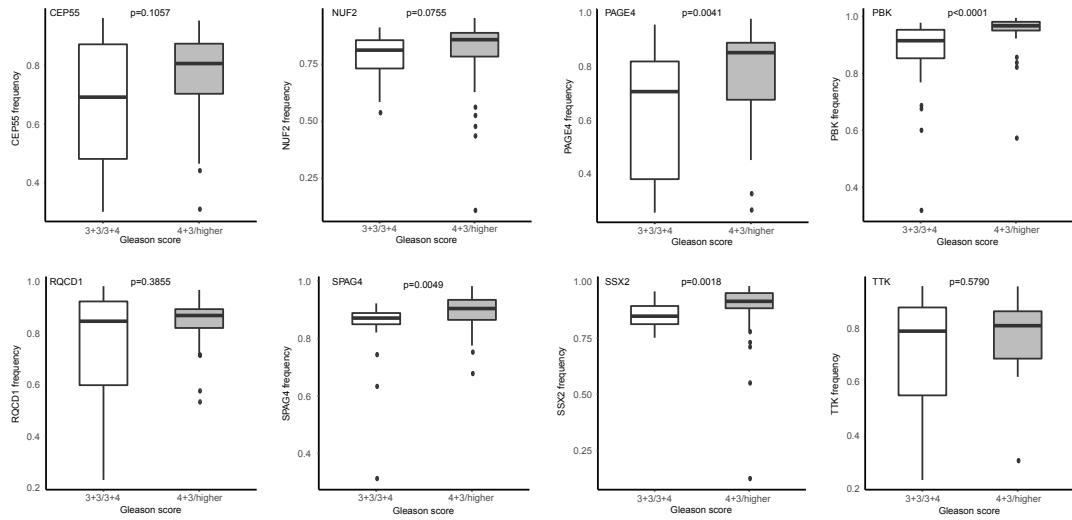
259 3.3. Identification of a CTA panel as a potential biomarker for aggressive disease

260 In an attempt to identify a panel of CTAs that would be more sensitive than a single CTA to  
261 discriminate indolent from aggressive disease, we performed multiple logistic regression (MLR). We  
262 identified a panel of CTAs whose combined expression pattern could represent a potential tool for the  
263 discrimination of MPCa cases from LPCa. Using the expression profiles determined by qRT-PCR, MLR  
264 led us to a panel that included the CTAs *CEP55* and *RQCD1* and that correctly classify MPCa or LPCa  
265 in 87.5% of the cases evaluated in the present study (AUC=0.95, sensitivity=85.0%; specificity=90.0%;  
266 positive predictive value=89.5%) (Figure 4A).

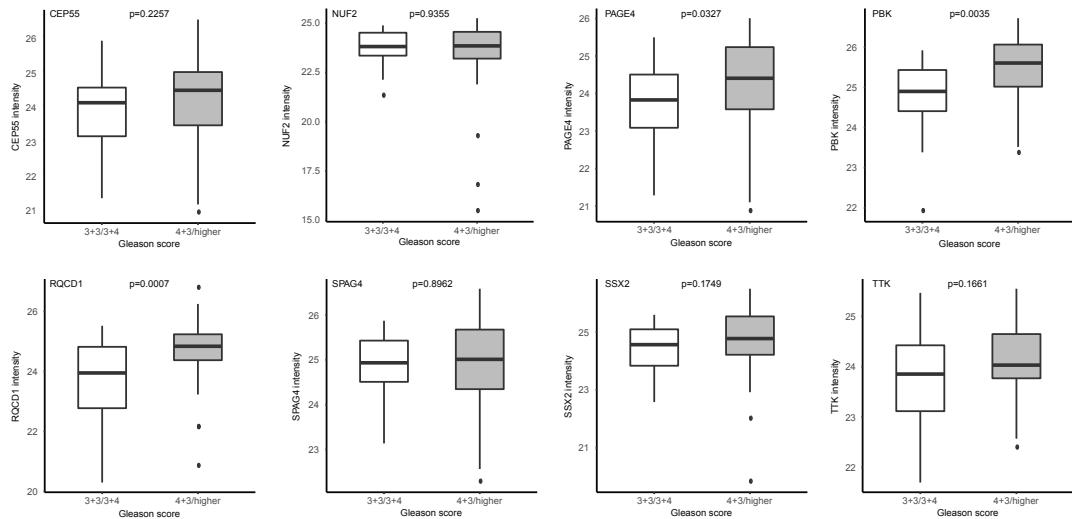


267 **Figure 4** – Receiver operating characteristic (ROC) curve analysis of the multivariate logistic regression (MLR)  
268 performed to identify panels of biomarkers accurate to discriminate localized (LPCa) from metastatic (MPCa)  
269 prostate cancer and normal from tumor samples. A. ROC curve analysis for the gene expression levels of *CEP55*  
270 and *RQCD1* to discriminate LPCa from MPCa. B. ROC curve analysis for the protein expression analysis. Here,  
271 MLR identified a panel including all CTAs staining intensity and 3 CTAs staining frequency as a good panel to  
272 discriminate normal from tumor samples. C. ROC curve analysis for *PAGE4* gene expression that alone is capable  
273 of discriminating virtually all MPCa cases from LPCa. AUC – area under curve; PPV – positive predictive value;  
274 NPV – negative predictive value.

275 For the paired PCa and normal adjacent tissue cohort, the MLR analysis resulted in a panel in  
276 which intensity and frequency of the CTA proteins accurately discriminate normal from tumor


277 samples. The panel including all CTA protein expression intensity and NUF2, PBK, SSX2 and TTK  
278 protein expression frequency correctly classified ~89% of the samples (AUC=0.96, sensitivity=88.5%;  
279 specificity=89.2%; positive predictive value=89.2%) (**Figure 4B**).

280 Although the combined expression of *CEP55* and *RQCD1* expression presented high accuracy, this  
281 panel is not any more accurate than the *PAGE4* pattern of expression alone. *PAGE4* by itself is capable  
282 of separating almost all cases (AUC~1) (**Figure 4C**). No other CTA selected from the current study  
283 demonstrates the same degree of accuracy to differentiate MPCa and tumor cases from LPCA like  
284 *PAGE4*. Therefore, a decrease in *PAGE4* level is an important, and to the best of our knowledge, a  
285 unique feature among CTAs known to be expressed in PCa, mainly in MPCa. Therefore, *PAGE4* is a  
286 strong candidate as a biomarker for aggressive prostate tumors.


287 *3.4. CTA expression and association with Gleason score*

288 The Gleason score is an important feature considered to determine therapy and prognosis of PCa  
289 patients. Due to its relevance, we investigated the CTAs protein expression in 3+3/3+4 and 4+3/≥8  
290 Gleason score groups. Although, 3+4 and 4+3 are score 7, it is widely known that the prognosis for these  
291 groups of men are significantly different and so we decided to group the first with more indolent  
292 tumors (3+3/3+4) and the later with the more aggressive (4+3/higher). Most of the CTAs analyzed by  
293 IHC in this study present increased protein levels in patients with higher Gleason scores when  
294 compared to lower scores (**Figure 5A and B**). Frequency of *PAGE4*, *PBK* and *RQCD1* positive cells are  
295 significantly increased in PCa with Gleason score 4+3/higher (**Figure 5A**). When considering the  
296 intensity of the IHC staining, *PAGE4*, *PBK*, *SPAG4* and *SSX2* presented significant stronger staining  
297 associated with more aggressive histopathology (**Figure 5B**). These findings suggest that *PAGE4* and  
298 *PBK* could be used to determine PCa prognosis since the frequency and protein levels together in the  
299 tumor cells present positive association with the Gleason score.

A - Frequency of positive cells and Gleason score



B - Intensity of staining and Gleason score



300 **Figure 5 –** Cancer/testis antigens (CTA) protein expression by immunohistochemistry according to the Gleason  
301 score. The PCa samples from the TMAs were grouped in Gleason score 3+3/3+4 and 4+3/higher. The frequency of  
302 positive tumor cells (A) and the intensity of the staining (B) were measured in separate and statistical analysis  
303 (Mann-Whitney non-parametric test) was performed for each of the staining measurements.

304 **4. Discussion**

305 In this study we used gene and protein expression analysis to identify a panel of CTA biomarkers  
306 that are differentially expressed in MPCa but could potentially be used for tumor screening as well. We  
307 used the gene expression profiles previously published by Takahashi et al. [25] and performed a new  
308 statistical exploration, with ROC curve and MLR analysis, to identify CTA genes that by themselves  
309 were capable of discriminating MPCa from LPCa cases and also to create a panel with even better  
310 accuracy. The expression of the CTAs CEP55, NUF2, PAGE4, PBK, RQCD1, SPAG4, SSX2 and TTK are  
311 capable of discriminating aggressive from indolent PCa. Loss of PAGE4 expression was detected in all  
312 MPCa cases and this feature alone is enough to distinguish all MPCa from LPCa cases. The up-

313 regulation of *CEP55* and *RQCD1* together is the second most accurate biomarker of MPCa cases. These  
314 findings represent good evidence that the changes in CTA gene expression with the progression of PCa  
315 can identify men with more aggressive tumors. Unfortunately, since the LPCa and MPCa samples were  
316 not paired, it was not possible to determine the evolution of the CTA expression profiles in the same  
317 patient. Prospective studies with patient follow-up, from disease diagnosis until metastasis  
318 development, would allow a better understanding about the time point where the changes in CTA  
319 expression begin during the course of PCa development.

320 One of the main causes of death among men with PCa is metastatic disease [1]. Although PSA is  
321 the gold standard for screening, it lacks the ability to predict the development of metastasis [29,30].  
322 Since the CTAs we selected from the Takahashi et al. [25] study are differentially expressed between  
323 LPCa and MPCa, we analyzed their expression in a cohort of paired tumor and adjacent normal tissue  
324 obtained from patients with PCa that underwent radical prostatectomy. Using quantitative IHC, we  
325 found that all the selected CTA proteins are up-regulated (intensity and frequency) in the tumor  
326 samples when compared to the normal adjacent tissue. As with the above mentioned cohort, we found  
327 a panel of CTAs whose intensity and frequency at the protein level are capable of discriminating  
328 normal from cancer samples with great accuracy. This observation further highlights the usefulness of  
329 CTAs as biomarkers for PCa that could be used during screening together with the PSA test, though  
330 further studies with larger cohorts across institutions and demographics are needed to determine the  
331 real prediction ability of these biomarkers for the development of MPCa. Studies in the future with  
332 prospective cohorts from screening to diagnosis, and the development of metastatic disease, can shed  
333 new light on how the expression of these CTAs progress during the course of the cancer.

334 An important contribution of this study is that we show the importance of using a panel of  
335 biomarkers for detection or prognosis. In both scenarios, normal vs. cancer, and LPCa vs. MPCa, the  
336 strongest predictors were those including more than one CTA. It is widely known that PCa and many  
337 other tumors are heterogeneous and composed of different cell populations with unique molecular  
338 profiles [31–34]. The use of single biomarkers may not cover the wide range of cell subclones present in  
339 the tumor and only capture the most abundant population. On the other hand, a panel of biomarkers is  
340 more likely to cover more broadly the different molecular profiles and allow the development of more  
341 accurate tests for screening and follow-up [35–37]. In the current study, there is one exception to our  
342 biomarker panel hypothesis: namely *PAGE4*. *PAGE4* gene expression was capable of discriminating  
343 MPCa from LPCa with 100% accuracy. Metastatic samples from men previously treated for PCa  
344 showed loss of this CTA expression compared to patients with local disease at the moment of diagnosis,  
345 suggesting that this gene is critical for tumor development but not for the metastasis establishment in a  
346 distant sites. This assumption is corroborated by the fact that *PAGE4* protein expression is  
347 downregulated in metastatic PCa suggesting that *PAGE4* may actually be a metastasis suppressor [38].

348 Recent studies suggest that *PAGE4* is developmentally regulated with dynamic expression  
349 patterns in the fetal prostate and that it is also a stress-response protein that is up-regulated in response  
350 to cellular stress [38]. In the present study, we observed loss of expression of *PAGE4* in MPCa cases.  
351 Sampson et al. [39] also observed reduced levels of *PAGE4* in MPCa when compared to indolent cases  
352 and found that in *PAGE4* positive cells wild-type AR activity is reduced. This suggests that *PAGE4*  
353 plays an important role in MPCa, since aberrant activation of the AR pathway is a critical step in the  
354 progression to mCRPC after androgen ablation therapy. Loss of *PAGE4* in MPCa might result in  
355 activation of the AR signaling pathway, resulting in resistance to androgen-derivation therapy in men  
356 with MPCa [40,41]. However, as we recently demonstrated the role of *PAGE4* in mCRPC is dependent  
357 on intratumor heterogeneity and downregulating the activity of the AR pathway depends on the co-  
358 expression and *PAGE4* phosphorylation by HIPK1 and CLK2 that either potentiate or attenuate the  
359 effects on the AR pathway, respectively [42].

360 CTA expression in PCa and the association with disease aggressiveness was assessed previously in  
361 the same cohort of LPCa and MPCa by Takahashi et al. [25]. The authors found that *CEP55*, *NUF2*,

362 *PAGE4*, *PBK* and *SPAG4* are differentially expressed in LCPa vs. MPCa. Using the same cohort, we  
363 repeated the technical validation and performed new statistical analysis using different tests. Besides  
364 the five CTAs previously shown to be differentially expressed between the two groups, we also found  
365 that *RQCD1*, *SSX2* and *TTK* are up-regulated in the MPCa samples. In addition, one of these CTAs, not  
366 previously predicted to be a biomarker candidate, was relevant when combined with another gene. The  
367 combined expression pattern of *CEP55* and *RQCD1* could be a marker for aggressive tumors. Although  
368 this panel is not any more accurate than *PAGE4* expression profile alone in local and metastatic tumors,  
369 it provides good evidence that a combination panel could be more relevant for prognostication than a  
370 single marker, resulting in higher specificity. Besides *PAGE4*, other CTAs such as *PBK* and *SSX2*, were  
371 previously detected in PCa. *PBK* expression is absent in vitro and in normal prostate tissue. A gradual  
372 increase in *PBK* expression is concurrent with increased disease aggressiveness [43], in accordance with  
373 our findings that this CTA is a marker of MPCa. *SSX2* expression was also detected in PCa samples in a  
374 few studies [44–46]. Smith et al. observed that *SSX2* higher levels were present in advanced cases,  
375 however they also noticed that the pattern of expression across different tumor stages (including  
376 benign prostate) was heterogeneous [44]. The immunohistochemistry data and gene expression  
377 findings by Bloom & McNeel [47] corroborate our observations that *SSX2* protein is increased in MPCa.  
378 The authors also showed that circulating tumor cells expressing the correspondent gene could only be  
379 detected in peripheral blood of PCa patients, while undetectable in healthy men [47].

380 One intriguing observation in our study is that the gene expression levels of *PAGE4*, *NUF2* and  
381 *SPAG4* are increased in normal prostate tissue relative to the tumor samples. Since the normal tissues  
382 were collected adjacent to the prostate tumors it is probable that the up-regulation of CTAs in non-  
383 cancer areas is a field effect as previously described by Zeng et al. [48]. They describe the same trend for  
384 *PAGE4* when comparing its expression in PCa with the adjacent normal tissue from the same patients.  
385 Another plausible reason for the discrepancy in gene expression in the paired tumor and normal  
386 samples is that the RNA abundance for these genes does not reflect protein levels, since our IHC results  
387 show that *PAGE4*, *NUF2* and *SPAG4* are up-regulated in tumor although the mRNAs are down-  
388 regulated when compared to the normal prostate. This would also explain why for the other CTAs no  
389 differences in mRNA levels in normal and tumor contrast with significant differences at the protein  
390 level. Also, translational machinery activity and temporal mRNA and protein degradation are  
391 additional variables that can cause in discrepancies between RNA abundance and protein expression  
392 [49,50].

393 CTAs, especially the ones located on the X chromosome (the CT-X-Antigens), constitute a family  
394 of genes with great potential as biomarkers in different types of tumors, since they are cancer-specific  
395 and rarely expressed by normal tissues. Many of these genes when aberrantly expressed in cancer cells  
396 are immunogenic and can induce antibody- and cell-mediated responses that make them good targets  
397 for the development of cancer vaccines [24,51,52]. Unfortunately, their role as cancer biomarkers and  
398 therapeutic targets has not been appreciated in many tumor types, including PCa. The current study  
399 demonstrates that CTA expression profiles might be an important tool to predict, at the time of  
400 diagnosis, patients with higher risk to develop metastasis and that would benefit from aggressive  
401 treatments from those men with indolent disease who may have a better quality of life receiving  
402 adequate active surveillance. Here, we used small cohorts to determine CTA expression profiles; the  
403 next step is to evaluate the expression of *CEP55*, *NUF2*, *PAGE4*, *PBK*, *RQCD1*, *SPAG4*, *SSX2* and *TTK* in  
404 larger cohorts with follow-up data right from screening to the development of MPCa. Also, the  
405 development of less invasive approaches (liquid biopsies) to measure CTAs expression in circulating  
406 tumor cells, and even the presence of antibodies against these immunogenic biomarkers would be  
407 beneficial for early detection of primary tumors as well as metastasis prediction.

408 **5. Conclusions**

409 To summarize, we have demonstrated that eight CTAs are differentially expressed in PCa. The  
410 same CTAs can also be useful to discriminate locally confined tumors from metastatic tumors. These  
411 observations were detected at the gene expression and protein levels and in different patients cohorts,  
412 which provides validation of our findings across different samples and, groups of patients. CTAs are a  
413 group of genes aberrantly expressed in cancer and some present immunogenicity. Cancer specificity  
414 and immunogenicity make this class of genes unique potential biomarkers and immunotherapy targets.  
415 Here, we demonstrate that a panel of CTAs are aberrantly expressed in PCa and associated with  
416 metastatic disease suggesting their potential as biomarkers for screening and patients' follow-up.  
417 Further studies involving broader prospective cohorts are needed to prove their usefulness as  
418 biomarkers and also the investigation of their immunogenicity is valuable and would result in new  
419 immunotherapy strategies for men with PCa.

420 **Acknowledgements:** The authors thank the Prostate Cancer Biorepository Network for their help in  
421 obtaining samples and clinicopathologic data; the Johns Hopkins Medical Institution (JHMI) Deep  
422 Sequencing Core for performing the Nanostring approach; the Department of Pathology in JHMI for  
423 the TMAs construction and immunohistochemistry image acquisition. We further acknowledge  
424 members of the RWV.

425 **Author Contributions:** Conceptualization, L.T.K., R.G., P.K. and R.W.V.; Development of methodology,  
426 L.T.K., S.T., T.S., P.K., R.W.; Data acquisition, L.T.K., S.T., T.S., S.M.M. R.L.V.; Analysis, L.T.K., N.M.C.,  
427 S.T., T.S., S.M.M., P.K., R.W.V.; Writing, review, and/or revision of the manuscript, L.T.K., N.M.C., S.T.,  
428 T.S., S.M.M., R.L.V., R.G., P.K., R.W.V.; Study supervision, L.T.K., P.K., R.W.V.

429 **Financial support:** This study was supported by Department of Defense Prostate Cancer Research  
430 Program, Award No W81XWH-12-1-0535 (PI: R.W.V.) and W81XWH-15-2-0062 Prostate Cancer  
431 Biorepository Network (PCBN); and National Cancer Institute Early Detection Research Network  
432 (U01CA86323). The funders had no role in study design, data collection and analysis, decision to  
433 publish, or preparation of the manuscript.

434 **Conflict of interest:** The authors declare no conflict of interest

## 435 **References**

- 436 1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. *CA Cancer J Clin* **2018**, *68*, 7–30.
- 437 2. Massari, F.; Modena, A.; Ciccarese, C.; Pilotto, S.; Maines, F.; Bracarda, S.; Sperduti, I.; Giannarelli, D.; Carlini,  
438 P.; Santini, D.; et al. Addressing the expected survival benefit for clinical trial design in metastatic castration-  
439 resistant prostate cancer: Sensitivity analysis of randomized trials. *Crit. Rev. Oncol. Hematol.* **2016**, *98*, 254–263.
- 440 3. Drake, C.G.; Sharma, P.; Gerritsen, W. Metastatic castration-resistant prostate cancer: new therapies, novel  
441 combination strategies and implications for immunotherapy. *Oncogene* **2014**, *33*, 5053–5064.
- 442 4. Catalona, W.J.; Smith, D.S.; Ratliff, T.L.; Dodds, K.M.; Coplen, D.E.; Yuan, J.J.; Petros, J.A.; Andriole, G.L.  
443 Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. *N. Engl. J. Med.* **1991**,  
444 *324*, 1156–1161.
- 445 5. Parkes, C.; Wald, N.J.; Murphy, P.; George, L.; Watt, H.C.; Kirby, R.; Knekt, P.; Helzlsouer, K.J.; Tuomilehto, J.  
446 Prospective observational study to assess value of prostate specific antigen as screening test for prostate  
447 cancer. *BMJ* **1995**, *311*, 1340–1343.
- 448 6. Draisma, G.; Etzioni, R.; Tsodikov, A.; Mariotto, A.; Wever, E.; Gulati, R.; Feuer, E.; de Koning, H. Lead time  
449 and overdiagnosis in prostate-specific antigen screening: importance of methods and context. *J. Natl. Cancer  
450 Inst.* **2009**, *101*, 374–383.
- 451 7. Sandhu, G.S.; Andriole, G.L. Overdiagnosis of prostate cancer. *J. Natl. Cancer Inst. Monographs* **2012**, *2012*, 146–  
452 151.
- 453 8. Welch, H.G.; Black, W.C. Overdiagnosis in cancer. *J. Natl. Cancer Inst.* **2010**, *102*, 605–613.

454 9. Loeb, S. Biomarkers for Prostate Biopsy and Risk Stratification of Newly Diagnosed Prostate Cancer Patients.  
455 *Urol Pract* **2017**, *4*, 315–321.

456 10. Catalona, W.J.; Partin, A.W.; Sanda, M.G.; Wei, J.T.; Klee, G.G.; Bangma, C.H.; Slawin, K.M.; Marks, L.S.; Loeb,  
457 S.; Broyles, D.L.; et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific  
458 antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific  
459 antigen range. *J. Urol.* **2011**, *185*, 1650–1655.

460 11. Lughezzani, G.; Lazzeri, M.; Buffi, N.M.; Abrate, A.; Mistretta, F.A.; Hurle, R.; Pasini, L.; Castaldo, L.;  
461 Zandegiacomo De Zorzi, S.; Peschiera, R.; et al. Preoperative prostate health index is an independent  
462 predictor of early biochemical recurrence after radical prostatectomy: Results from a prospective single-center  
463 study. *Urol. Oncol.* **2015**, *33*, 337.e7–14.

464 12. Tosoian, J.J.; Loeb, S.; Feng, Z.; Isharwal, S.; Landis, P.; Elliot, D.J.; Veltri, R.; Epstein, J.I.; Partin, A.W.; Carter,  
465 H.B.; et al. Association of [-2]proPSA with biopsy reclassification during active surveillance for prostate  
466 cancer. *J. Urol.* **2012**, *188*, 1131–1136.

467 13. Carlsson, S.; Maschino, A.; Schröder, F.; Bangma, C.; Steyerberg, E.W.; van der Kwast, T.; van Leenders, G.;  
468 Vickers, A.; Lilja, H.; Roobol, M.J. Predictive value of four kallikrein markers for pathologically insignificant  
469 compared with aggressive prostate cancer in radical prostatectomy specimens: results from the European  
470 Randomized Study of Screening for Prostate Cancer section Rotterdam. *Eur. Urol.* **2013**, *64*, 693–699.

471 14. Stattin, P.; Vickers, A.J.; Sjoberg, D.D.; Johansson, R.; Granfors, T.; Johansson, M.; Pettersson, K.; Scardino, P.T.;  
472 Hallmans, G.; Lilja, H. Improving the Specificity of Screening for Lethal Prostate Cancer Using Prostate-  
473 specific Antigen and a Panel of Kallikrein Markers: A Nested Case-Control Study. *Eur. Urol.* **2015**, *68*, 207–213.

474 15. Fosså, A.; Berner, A.; Fosså, S.D.; Hernes, E.; Gaudernack, G.; Smeland, E.B. NY-ESO-1 protein expression and  
475 humoral immune responses in prostate cancer. *Prostate* **2004**, *59*, 440–447.

476 16. Parmigiani, R.B.; Bettoni, F.; Grossi, D.M.; Lopes, A.; Cunha, I.W.; Soares, F.A.; Carvalho, A.L.; Fonseca, F.;  
477 Camargo, A.A. Antibodies against the cancer-testis antigen CTSP-1 are frequently found in prostate cancer  
478 patients and are an independent prognostic factor for biochemical-recurrence. *Int. J. Cancer* **2008**, *122*, 2385–  
479 2390.

480 17. Ghafouri-Fard, S.; Ousati Ashtiani, Z.; Sabah Golian, B.; Hasheminasab, S.-M.; Modarressi, M.H. Expression of  
481 two testis-specific genes, SPATA19 and LEMD1, in prostate cancer. *Arch. Med. Res.* **2010**, *41*, 195–200.

482 18. Chiriva-Internati, M.; Yu, Y.; Mirandola, L.; D'Cunha, N.; Hardwicke, F.; Cannon, M.J.; Cobos, E.; Kast, W.M.  
483 Identification of AKAP-4 as a new cancer/testis antigen for detection and immunotherapy of prostate cancer.  
484 *Prostate* **2012**, *72*, 12–23.

485 19. Scanlan, M.J.; Simpson, A.J.G.; Old, L.J. The cancer/testis genes: review, standardization, and commentary.  
486 *Cancer Immun.* **2004**, *4*, 1.

487 20. Kulkarni, P.; Uversky, V.N. Cancer/Testis Antigens: “Smart” Biomarkers for Diagnosis and Prognosis of  
488 Prostate and Other Cancers. *Int J Mol Sci* **2017**, *18*.

489 21. Kulkarni, P.; Shiraishi, T.; Rajagopalan, K.; Kim, R.; Mooney, S.M.; Getzenberg, R.H. Cancer/testis antigens  
490 and urological malignancies. *Nat Rev Urol* **2012**, *9*, 386–396.

491 22. Shiraishi, T.; Getzenberg, R.H.; Kulkarni, P. Cancer/testis antigens: novel tools for discerning aggressive and  
492 non-aggressive prostate cancer. *Asian J. Androl.* **2012**, *14*, 400–404.

493 23. Simpson, A.J.G.; Caballero, O.L.; Jungbluth, A.; Chen, Y.-T.; Old, L.J. Cancer/testis antigens, gametogenesis  
494 and cancer. *Nat. Rev. Cancer* **2005**, *5*, 615–625.

495 24. Costa, F.F.; Le Blanc, K.; Brodin, B. Concise review: cancer/testis antigens, stem cells, and cancer. *Stem Cells*  
496 **2007**, *25*, 707–711.

497 25. Takahashi, S.; Shiraishi, T.; Miles, N.; Trock, B.J.; Kulkarni, P.; Getzenberg, R.H. Nanowire analysis of cancer-  
498 testis antigens as biomarkers of aggressive prostate cancer. *Urology* **2015**, *85*, 704.e1–7.

499 26. Darshan, M.; Zheng, Q.; Fedor, H.L.; Wyhs, N.; Yegnasubramanian, S.; Lee, P.; Melamed, J.; Netto, G.J.; Trock,  
500 B.J.; De Marzo, A.M.; et al. Biobanking of derivatives from radical retropubic and robot-assisted laparoscopic  
501 prostatectomy tissues as part of the prostate cancer biorepository network. *Prostate* **2014**, *74*, 61–69.

502 27. Shiraishi, T.; Terada, N.; Zeng, Y.; Suyama, T.; Luo, J.; Trock, B.; Kulkarni, P.; Getzenberg, R.H. Cancer/Testis  
503 Antigens as potential predictors of biochemical recurrence of prostate cancer following radical prostatectomy.  
504 *J Transl Med* **2011**, *9*, 153.

505 28. Suyama, T.; Shiraishi, T.; Zeng, Y.; Yu, W.; Parekh, N.; Vessella, R.L.; Luo, J.; Getzenberg, R.H.; Kulkarni, P.  
506 Expression of cancer/testis antigens in prostate cancer is associated with disease progression. *Prostate* **2010**, *70*,  
507 1778–1787.

508 29. Cordon-Cardo, C.; Kotsianti, A.; Verbel, D.A.; Teverovskiy, M.; Capodieci, P.; Hamann, S.; Jeffers, Y.; Clayton, M.; Elkhettabi, F.; Khan, F.M.; et al. Improved prediction of prostate cancer recurrence through systems pathology. *Journal of Clinical Investigation* **2007**, *117*, 1876–1883.

509 30. Shariat, S.F.; Karakiewicz, P.I.; Roehrborn, C.G.; Kattan, M.W. An updated catalog of prostate cancer predictive tools. *Cancer* **2008**, *113*, 3075–3099.

510 31. Boutros, P.C.; Fraser, M.; Harding, N.J.; de Borja, R.; Trudel, D.; Lalonde, E.; Meng, A.; Hennings-Yeomans, P.H.; McPherson, A.; Sabelnykova, V.Y.; et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. *Nature Genetics* **2015**, *47*, 736–745.

511 32. ICGC Prostate UK Group; Gundem, G.; Van Loo, P.; Kremeyer, B.; Alexandrov, L.B.; Tubio, J.M.C.; Papaemmanuil, E.; Brewer, D.S.; Kallio, H.M.L.; Högnäs, G.; et al. The evolutionary history of lethal metastatic prostate cancer. *Nature* **2015**, *520*, 353–357.

512 33. Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. *Nature* **2013**, *499*, 214–218.

513 34. Kleppé, M.; Levine, R.L. Tumor heterogeneity confounds and illuminates: assessing the implications. *Nat. Med.* **2014**, *20*, 342–344.

514 35. Zhang, F.; Deng, Y.; Drabier, R. Multiple Biomarker Panels for Early Detection of Breast Cancer in Peripheral Blood. *BioMed Research International* **2013**, *2013*, 1–7.

515 36. Vargas, A.J.; Harris, C.C. Biomarker development in the precision medicine era: lung cancer as a case study. *Nature Reviews Cancer* **2016**, *16*, 525–537.

516 37. Fung, K.Y.C.; Tabor, B.; Buckley, M.J.; Priebe, I.K.; Purins, L.; Pompeia, C.; Brierley, G.V.; Lockett, T.; Gibbs, P.; Tie, J.; et al. Blood-Based Protein Biomarker Panel for the Detection of Colorectal Cancer. *PLOS ONE* **2015**, *10*, e0120425.

517 38. Mooney, S.M.; Qiu, R.; Kim, J.J.; Sacho, E.J.; Rajagopalan, K.; Johng, D.; Shiraishi, T.; Kulkarni, P.; Weninger, K.R. Cancer/testis antigen PAGE4, a regulator of c-Jun transactivation, is phosphorylated by homeodomain-interacting protein kinase 1, a component of the stress-response pathway. *Biochemistry* **2014**, *53*, 1670–1679.

518 39. Sampson, N.; Ruiz, C.; Zenzmaier, C.; Bubendorf, L.; Berger, P. PAGE4 positivity is associated with attenuated AR signaling and predicts patient survival in hormone-naïve prostate cancer. *Am. J. Pathol.* **2012**, *181*, 1443–1454.

519 40. Salgia, R.; Jolly, M.; Dorff, T.; Lau, C.; Weninger, K.; Orban, J.; Kulkarni, P. Prostate-Associated Gene 4 (PAGE4): Leveraging the Conformational Dynamics of a Dancing Protein Cloud as a Therapeutic Target. *Journal of Clinical Medicine* **2018**, *7*, 156.

520 41. Jolly, M.K.; Kulkarni, P.; Weninger, K.; Orban, J.; Levine, H. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. *Front Oncol* **2018**, *8*, 50.

521 42. Kulkarni, P.; Jolly, M.K.; Jia, D.; Mooney, S.M.; Bhargava, A.; Kagohara, L.T.; Chen, Y.; Hao, P.; He, Y.; Veltri, R.W.; et al. Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. *Proc. Natl. Acad. Sci. U.S.A.* **2017**, *114*, E2644–E2653.

522 43. Brown-Clay, J.D.; Shenoy, D.N.; Timofeeva, O.; Kallakury, B.V.; Nandi, A.K.; Banerjee, P.P. PBK/TOPK enhances aggressive phenotype in prostate cancer via  $\beta$ -catenin-TCF/LEF-mediated matrix metalloproteinases production and invasion. *Oncotarget* **2015**, *6*, 15594–15609.

523 44. Smith, H.A.; Cronk, R.J.; Lang, J.M.; McNeel, D.G. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. *Cancer Res.* **2011**, *71*, 6785–6795.

524 45. Dubovsky, J.A.; McNeel, D.G. Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor. *Prostate* **2007**, *67*, 1781–1790.

525 46. Türeci, O.; Chen, Y.T.; Sahin, U.; Güre, A.O.; Zwick, C.; Villena, C.; Tsang, S.; Seitz, G.; Old, L.J.; Pfreundschuh, M. Expression of SSX genes in human tumors. *Int. J. Cancer* **1998**, *77*, 19–23.

526 47. Bloom, J.E.; McNeel, D.G. SSX2 regulates focal adhesion but does not drive the epithelial to mesenchymal transition in prostate cancer. *Oncotarget* **2016**, *7*, 50997–51011.

527 48. Zeng, Y.; Gao, D.; Kim, J.J.; Shiraishi, T.; Terada, N.; Kakehi, Y.; Kong, C.; Getzenberg, R.H.; Kulkarni, P. Prostate-associated gene 4 (PAGE4) protects cells against stress by elevating p21 and suppressing reactive oxygen species production. *Am J Clin Exp Urol* **2013**, *1*, 39–52.

528 49. Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. *Cell* **2016**, *165*, 535–550.

561 50. Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic  
562 analyses. *Nature Reviews Genetics* **2012**, *13*, 227–232.

563 51. Caballero, O.L.; Chen, Y.-T. Cancer/testis (CT) antigens: potential targets for immunotherapy. *Cancer Sci.* **2009**,  
564 *100*, 2014–2021.

565 52. Bruggeman, J.W.; Koster, J.; Lodder, P.; Repping, S.; Hamer, G. Massive expression of germ cell-specific genes  
566 is a hallmark of cancer and a potential target for novel treatment development. *Oncogene* **2018**.

567