

1 **Diaphragmatic Central Motor Conduction Changes In Chronic Obstructive**
2 **Pulmonary Disease**

3 Rehab Abdelaal El-Nemr¹, Rania Ahmad Sweed² Hanaa Shafiek²

4 ¹Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of
5 Medicine, Alexandria University, Egypt

6 ²Chest Diseases Department, Faculty of Medicine, Alexandria University, Egypt

7 **Corresponding Author:**

8 **Rehab EL-Nemr, MD, PhD**

9 Physical Medicine, Rheumatology and Rehabilitation Department,

10 Faculty of Medicine, Alexandria University

11 El-Khartoom Square, Alexandria 21526, Egypt

12 E-mail: hobaelnemr@hotmail.com

13 **Short running title:** Cortico-diaphragmatic changes in COPD

14

15 **Abstract**

16 **Background and objectives:** Respiratory muscles dysfunction has been reported in
17 COPD. Transcranial magnetic stimulation (TMS) is easy non-invasive that has been
18 used for assessing the respiratory corticospinal pathways particularly of diaphragm.
19 We aimed to study the cortico-diaphragmatic motor system changes in COPD using
20 TMS and to correlate the findings with the pulmonary function.

21 **Methods:** A case control study recruited 30 stable COPD from the out-patient
22 respiratory clinic of Main Alexandria University hospital- Egypt and 17 healthy
23 control subjects who were subjected to spirometry. Cortical conduction of the
24 diaphragm was performed by TMS to all participants followed by cervical magnetic
25 stimulation of the phrenic nerve roots. Diaphragmatic resting motor threshold
26 (DRMT), cortical motor evoked potential latency (CMEPL), CMEP amplitude
27 (CMEPA), peripheral motor evoked potential latency (PMEPL), PMEP amplitude
28 (PMEPA) and central motor conduction time (CMCT) were measured.

29 **Results:** 66.7% of COPD patients had severe and very severe COPD with median age
30 of 59 (55-63) years. There was statistically significant bilateral decrease in DRMT,
31 CMEPA and PMEPA in COPD group versus healthy subjects and significant increase
32 in CMEPL and PMEPL ($p <0.01$). Left CMCT was significantly prolonged in COPD
33 group versus healthy subjects ($p <0.0001$) but not right CMCT. Further, there was
34 significant increase in CMEPL and CMCT of left versus right diaphragm in COPD
35 group ($p= 0.003$ and 0.001 respectively) that inversely correlated with FEV₁% and
36 FVC% predicted.

37 **Conclusion:** Central cortico-diaphragmatic motor system is affected in COPD
38 patients with heterogeneity of both sides that is correlated with pulmonary function.

39 **Significance:** Corticospinal pathway affection could be a factor for development of
40 diaphragmatic dysfunction in COPD patients accordingly its evaluation could help in
41 personalization of COPD management especially pulmonary rehabilitation programs

42 **Keywords:** Transcranial magnetic stimulation, corticospinal pathways, phrenic nerve,
43 pulmonary function

44

45

46

47 **Introduction**

48 Chronic obstructive pulmonary disease (COPD) is mainly presented with dyspnea and
49 exercise limitation secondary to irreversible airflow obstruction; however, nowadays
50 COPD is considered as multi-systemic inflammatory disorder rather than simple
51 respiratory disease.[1] Respiratory muscles dysfunction has been reported in COPD
52 compared to healthy elderly individuals [2] and has been implicated in the development
53 of dyspnea.

54 Respiratory muscles, particularly the diaphragm which is considered the main
55 inspiratory muscle, are affected in COPD in two main ways. Firstly, change of shape
56 and geometry of the chest wall secondary to air trapping and hyperinflation in COPD
57 leads to chronic reduction of the apposition zone of the diaphragm [3] and shorten of
58 the diaphragm fiber sarcomere. [4] Secondly, local activation of muscle proteases and
59 oxidative stress due to inspiratory loading induce structural muscular injury [5, 6] that
60 is further affected by exposure to systemic inflammatory process associated with
61 COPD. [7]

62 Transcranial magnetic stimulation (TMS) is easy, non-invasive and painless tool that
63 aimed at measuring neuronal electrical activity. [8] TMS has been used as
64 investigation tool for assessing the respiratory corticospinal pathways and studying of
65 diaphragmatic motor evoked potential (MEP). [8-12] TMS has been used to identify
66 central origin of a diaphragmatic dysfunction in stroke, [13] multiple sclerosis, [14]
67 amyotrophic lateral sclerosis, [15] or spinal cord injury. [16]

68 Cervical magnetic stimulation of the phrenic nerve roots has been used previously to
69 assess diaphragm weakness in COPD patients. [17] In the last decade, a recent study
70 demonstrated increased excitability of the motor cortex controlling respiratory

71 muscles in COPD especially diaphragm which could be secondary to increased
72 inspiratory load and subsequent elevated respiratory drive. [18] However, still little
73 research has been conducted in COPD to assess central neural drive to the diaphragm
74 and its possible involvement in physiological derangement in COPD patients.
75 Accordingly, we aimed to study the cortico-diaphragmatic motor system changes in
76 COPD patients using TMS; to correlate the findings with the pulmonary function; and
77 to detect possible cutoff value for corticospinal diaphragmatic pathway affection that
78 could be a reference in this group of patients.

79 **Methods**

80 **Study design and ethics**

81 A case control study recruited 30 stable COPD according to updated GOLD
82 guidelines 2017 [1] who attended the out-patient respiratory clinic of Main
83 Alexandria University hospital, Egypt as well as 17 healthy control subjects who were
84 invited to participate in the study. The study has been approved by the scientific
85 committee of faculty of medicine, Alexandria University, Egypt. A written informed
86 consent was obtained from all participants enrolled in this study. The study was
87 conducted over 10 months.

88 **Study population and their characterization**

89 Thirty COPD patients were included in the study. All patients were stable i.e. no
90 COPD exacerbation in last 4 weeks, and has been proved to have airway obstruction
91 using spirometry (post-bronchodilator $FEV_1/FVC < 0.70$) as being accepted by
92 updated GOLD guidelines 2017. [1] All patients who were known to have COPD

93 exacerbation, current oral corticosteroids therapy or within last 30 days, bronchial
94 asthma, interstitial lung diseases, metabolic diseases (mainly diabetes mellitus, uremia
95 and hepatic failure), neurological diseases (as cerebrovascular stroke, epilepsy,
96 peripheral neuropathy and muscle diseases), body mass index (BMI) more than 40
97 kg/mm², history of drug abuse, history of any neoplasm, or any contraindications for
98 magnetic stimulation were excluded from the study. Further, 17 healthy control
99 subjects with normal lung function referred for check-up were recruited from other
100 clinics.

101 All the participants underwent detailed history taking that included age, sex, smoking
102 history, respiratory symptoms, current medications; followed by local and general
103 examination, chest X-ray, spirometry for measurement of post- bronchodilator FVC,
104 FEV₁ and FEV₁/FVC ratio. For COPD patients, arterial blood gases (ABG) were
105 assessed for COPD patients, and venous blood sample was taken for measurement of
106 fasting blood glucose, liver function testing, renal function testing, complete blood
107 picture, and serum electrolytes (sodium and potassium). Computed tomography of
108 chest was performed if indicated clinically.

109

110 **Diaphragmatic neural function assessment**

111 Firstly, TMS of the diaphragm was carried out using electrophysiological apparatus
112 with a circular coil (Nihon Kohden MEB-7102K© with peak magnetic field strength
113 of 2 Tesla; Tokyo, Japan). The coil was applied tangentially to the scalp of patient at
114 diaphragmatic motor cortical area, a point of optimal excitability, located 3 cm lateral
115 to midline and 2-3 cm anterior to auricular plane [9] with face A of the coil visible
116 from above for left hemisphere stimulation and face B for right hemisphere
117 stimulation recording cortical MEPs responses. Surface electrodes were placed in the

118 7th and 8th right and left intercostal spaces respectively within the anterior axillary
119 line, and the reference electrode on the corresponding lower rib for recording
120 diaphragmatic cortical MEP response contralateral to the stimulation site. A ground
121 electrode was placed on the manubrium sterni. [19] The recording conditions utilized
122 were: filter setting high at 3K Hz and low at 3Hz, vertical gain 0.2- 2mV/ division,
123 and sweep speed 5 msec/division. The stimulus threshold was determined by
124 increasing the stimulus strength (expressed as the % of the maximum output of the
125 stimulator) until 3 reproducible MEPs responses were obtained, then the stimulus
126 intensity was set at 20% above the threshold value. The angle of the coil around the
127 stimulation site was changed until the highest MEP response during inspiratory phase
128 was recorded. The following parameters were measured from central stimulation:
129 diaphragmatic resting motor threshold (DRMT), cortical motor evoked potential
130 latency (CMEPL) in milliseconds (ms), CMEP amplitude (CMEPA) in microvoltage
131 (μv).

132 Secondly, cervical magnetic stimulation of the phrenic nerve roots in the neck was
133 performed bilaterally. The periphery of the circular coil of the apparatus was placed 2
134 cm lateral to mid-line and 1-2 cm above the 5th cervical spine while the patient head
135 slightly bent forward. The diaphragmatic peripheral motor evoked potential (PMEP)
136 was recorded by using the same recording electrodes setting previously discussed
137 whereas peripheral motor evoked potential latency (PMEPL) and PMEP amplitude
138 (PMEPA) were measured. Central motor conduction time (CMCT) was then
139 calculated as follow: CMCT = CMEPL – PMEPL. [20]

140

141 **Statistical analysis**

142 Quantitative data were expressed as mean \pm standard deviation (SD) or median
143 (interquartile range; 25-75 percentile) according to the normal distribution of data
144 while qualitative data was expressed as number and percentage (%). Mann - Whitney
145 test, Kruskal - Wallis test, student t-test, Chi-square test and Spearman rho correlation
146 were used as appropriate. ROC (receiver operating characteristic) curve and area
147 under the curve (AUC) has been used to detect cutoff values for diaphragmatic
148 CMEPs that could differentiate COPD from healthy individuals. All the analysis has
149 been performed using MedCalc® (version 9.2.1.0, Acacialaan 22, B-8400 Ostend,
150 Belgium) and SPSS package (PASW Statistics for Windows, Version 22.0. Chicago:
151 SPSS Inc.).

152 **Results**

153 **Participants' characteristics**

154 All the baselines characteristics of COPD patients and healthy control are shown in
155 table “1”. All the recruited patients were males with no statistically significant
156 difference between both groups regarding age, BMI, and smoking status; however
157 smoking index was significantly higher in COPD group ($p < 0.0001$). Baseline
158 FVC%, FEV₁% and FEV₁/FVC were significantly lower in COPD group ($p < 0.0001$)
159 whereas 2 COPD patient (6.7%) had mild airway obstruction, 8 patients (26.7%) had
160 moderate airway obstruction, 12 patients (40%) had severe airway obstruction and 8
161 patients (26.7%) had very severe airway obstruction according GOLD classification.

162 **Diaphragmatic neural function assessment**

163 Both CMEPs and PMEPs of studied population are illustrated in table “2” with
164 demonstration example in figure “1”. There was statistically significant bilateral
165 decrease in DRMT, CMEPA and PMEPA in COPD group versus healthy subjects (p
166 < 0.0001 for all and 0.001 for PMEPA on right). Further, there was statistically
167 significant increase in CMEPL and PMEPL bilaterally in COPD group versus healthy
168 subjects ($p < 0.0001$ for all and 0.006 for CMEPL on right side). Left CMCT was
169 significantly prolonged in COPD group vs. healthy subjects ($p < 0.0001$) but not for
170 right CMCT ($p = 0.376$; table 2”). Further, there was significant increase in CMEPL
171 and CMCT of left versus right diaphragm in COPD group ($p = 0.003$ and 0.001
172 respectively; table 3” but there was no statistically significant difference in control
173 group.

174 **Correlations**

175 Left diaphragmatic CMEPL and CMCT inversely correlated with different pulmonary
176 function parameters (i.e. FVC% predicted, FEV₁% predicted and FEV₁/FVC) and
177 positively correlated with CMEPA among the studied population ($p < 0.01$; figures
178 2A-F”. However, right diaphragmatic CMCT did not correlate with pulmonary
179 function parameters ($p > 0.05$) while right CMEPL is inversely correlated with FVC%
180 predicted ($p = 0.036$) but not FEV₁% predicted or FEV₁/FVC ($p > 0.05$) among the
181 studied population. Both right and left diaphragmatic peripheral conduction (PMEPL
182 and PMEPA) were positively correlated with different pulmonary function parameters
183 ($p < 0.01$).

184 On the other hand, there was no statistically significant association between either
185 CMEPs or PMEPs and COPD severity according to GOLD classification ($p > 0.05$).
186 Similarly, there was no statistically significant correlation between diaphragmatic

187 CMEPs or PMEPs and age, smoking status, smoking index, BMI, serum albumin or
188 ABG parameters ($p > 0.05$).

189

190 **ROC analysis**

191 According to ROC analysis, DRMT $\leq 80\%$ had diagnostic accuracy of 98.6% to
192 differentiate COPD from healthy control individuals with a sensitivity of 92% and
193 specificity of 94% “AUC= 0.986, CI95%= 0.936 - 0.998, $p= 0.0001$; figure 3A”;
194 CMEPL > 12.9 ms had diagnostic accuracy of 83% and sensitivity of 77% and
195 specificity of 85% for differentiating COPD from healthy subjects “AUC= 0.828,
196 CI95%= 0.737 - 0.898, $p= 0.0001$; figure 3B”; CMCT > 6.7 ms had diagnostic
197 accuracy of 71.5% and sensitivity of 77% and specificity of 80% for differentiating
198 COPD from healthy subjects “AUC= 0.715, CI95%= 0.612 - 0.803, $p= 0.0001$; figure
199 3C”; CMEPA ≤ 160 μ v had 92% diagnostic accuracy, 98% sensitivity and 73.5%
200 specificity for differentiating COPD from healthy subjects “AUC= 0.916, CI95%=
201 0.841 - 0.963, $p= 0.0001$; figure 3D”.

202 **Discussion**

203 In the current study, COPD patients had significant delayed central and peripheral
204 diaphragmatic conduction latencies compared to the healthy control group, as well as
205 decreased amplitude that was correlated with several parameters of pulmonary
206 function testing. In addition, there was a statistically significant difference in COPD
207 patients between right and left central diaphragmatic conduction.

208 Previous studies and interpretation of the results

209 Hopkinson et al [18] found that diaphragmatic cortical motor thresholds were
210 significantly lower in COPD than healthy controls as well as significant longer mean

211 PMEPL. Similarly, Hamed et al [21] reported bilateral increase in CMEPL and
212 CMCT in their studied COPD compared to healthy control group as well as decreased
213 DRMT. Further, El-Tantawi et al [22] found peripheral phrenic nerve conduction
214 abnormalities in 42.5% of their studied COPD patients that did not correlate with
215 disease severity. These results are in accordance of the current results and could be
216 explained by increased excitation of motor cortex and corticospinal pathways to the
217 respiratory muscles in the COPD patient [23] and less excitability of intracortical
218 facilitatory circuits at long interstimulus intervals using paired stimulation denoting
219 ceiling effect of motor control output to the respiratory muscles of case of COPD.
220 [18]

221 Interestingly, we found significant increase in CMEPL and CMCT of left versus right
222 diaphragm in COPD group which correlated inversely with FEV₁% and FVC% but
223 not ABG parameters. This denotes that there is heterogeneity in affection of
224 respiratory muscles which is in accordance with disease heterogeneity on one hand.
225 [24] On the other hand, increased inspiratory load of respiratory muscles has been
226 associated with significant activation of several motor cortical areas as demonstrated
227 by increased regional cerebral blood flow using positron emission tomography [25]
228 which could be affected asymmetrically. More recently, Dodd et al [26] demonstrated
229 by magnetic resonance imaging techniques that generalized functional activation of
230 resting-state networks in COPD patients compared with controls.

231 Further, we proposed cutoff point for CMEPs that had good diagnostic accuracy and
232 sensitivity for predicting corticospinal pathway affection in case of COPD. Lissens
233 [8] demonstrated values for diaphragmatic CMEPs in 10 healthy man only. However,
234 to our knowledge, there are no specific values proposed to date that could be
235 reference for CMEPs responses in COPD. We suppose that the presented values could

236 be considered as reference, however, further studies with larger population should be
237 considered to confirm the current values.

238 **Clinical implementation**

239 Diaphragmatic dysfunction is strongly correlated with FEV₁ in COPD [27] and
240 correlated with the perception of dyspnea among this group of patients. [28]
241 Corticospinal pathway affection could be another factor for development of
242 diaphragmatic dysfunction in COPD patients accordingly its evaluation could help in
243 personalization of COPD management especially pulmonary rehabilitation programs.

244 Chun et al found significant improvement of diaphragmatic motility after pulmonary
245 rehabilitation using sonography. [29]

246 Further, assessment of diaphragmatic corticospinal pathway could be of value in
247 evaluation noninvasive ventilation use in stable severe/ very severe COPD. [30] This
248 has been demonstrated by Hopkinson et al, [23] who found that the excitability of the
249 corticospinal pathway to the diaphragm reduced in 6 COPD patients after acute
250 noninvasive ventilation use. This could be explained by the fact that noninvasive
251 ventilation reduced inspiratory muscles loads [30] through reduces the cortical motor
252 areas excitability supplying the respiratory muscles especially the diaphragm. [31]
253 Accordingly, TMS could be a good applicable tool for evaluation of central and
254 peripheral diaphragmatic neural pathway which may affect the management of COPD
255 patients.

256 **Limitations**

257 The current study has some limitations. Firstly, we studied only the diaphragm as the
258 main respiratory muscle and we did not study the intercostals or abdominal muscles.
259 Further, the cortical area for the diaphragm has been previously validated in healthy
260 man [9, 12] rather than other respiratory muscles. Secondly, we used surface

261 electrodes for diaphragm CMEPs recording and we did not use diaphragm needle
262 electromyography. However, intercostal surface electrodes have been validated
263 previously [19] and needle electromyography is more invasive and could be
264 associated with complications as pneumothorax. Lastly, we did not study the
265 diaphragmatic CMEPs response at different intervals of time of at maximal
266 inspiratory efforts in COPD patients. However, Sharshar et al [32] studied before the
267 response to cortical stimulations at different points of time or inspiratory efforts in
268 healthy men and they concluded that cortical motor control of diaphragm is identical
269 during different inspiratory tasks.

270

271 **Conclusions**

272 Central cortico-diaphragmatic motor system is affected in COPD patients with
273 heterogeneity of both sides that is correlated with airway obstruction as being
274 detected with spirometry but not with COPD severity or ABG changes. The cutoff
275 values for CMEPs in COPD patients in the current study had good diagnostic value in
276 predicting diaphragmatic corticospinal affection. The current data could be a step for
277 future studies for evaluating the diaphragm using noninvasive tool - the TMS - after
278 therapeutic interventions for COPD.

279

280 **Acknowledgments**

281 The authors would like to thank the technicians/nurses in the pulmonary function unit
282 for their willing to help in the current manuscript. Dr. Shafiek is the guarantor of the
283 manuscript.

284 **Conflict of interest:**

285 None of the authors have potential conflicts of interest to be disclosed

286

287 **Funding sources:**

288 Authors affirm that we have no funding source

289

290

291

292 **References**

293 1 Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli
294 BR, Chen R, Decramer M, Fabbri LM, Frith P, Halpin DM, López Varela
295 MV, Nishimura M, Roche N, Rodriguez-Roisin R, Sin DD, Singh D, Stockley
296 R, Vestbo J, Wedzicha JA, Agustí A. Global Strategy for the Diagnosis, Management,
297 and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive
298 Summary. *Am J Respir Crit Care Med* 2017; **195**:557-582

299 2 Dos Santos Yamaguti WP, Paulin E, Shibao S, Chammas MC, Salge JM, Ribeiro
300 M, Cukier A, Carvalho CR. Air trapping: The major factor limiting diaphragm
301 mobility in chronic obstructive pulmonary disease patients. *Respirology* 2008;
302 **13**:138-144

303 3 Cassart M, Pettiaux N, Gevenois PA, Paiva M, Estenne M. Effect of chronic
304 hyperinflation on diaphragm length and surface area. *Am J Respir Crit Care Med*
305 1997; **156**:504-508

306 4 Smith J, Bellemare F. Effect of lung volume on in vivo contraction
307 characteristics of human diaphragm. *J Appl Physiol* (1985) 1987; **62**:1893-
308 1900

309 5 Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of
310 the human diaphragm associated with exertion and chronic obstructive pulmonary
311 disease. *Am J Respir Crit Care Med* 2001; **164**:1734-1739

312 6 Reid WD, Huang J, Bryson S, Walker DC, Belcastro AN. Diaphragm injury and
313 myofibrillar structure induced by resistive loading. *J Appl Physiol* (1985) 1994;
314 **76**:176-184

315 7 Agustí AGN, Noguera A, Sauleda J, Busquets PX. Systemic inflammation of
316 chronic obstructive pulmonary disease. *Eur Respir J* 2003; **21**:347-360

317 8 Lissens MA. Motor evoked potentials of the human diaphragm elicited
318 through magnetic transcranial brain stimulation. *J Neurol Sci* 1994; **124**:204-
319 207

320 9 Maskill D, Murphy K, Mier A, Owen M, Guz A. Motor cortical representation of
321 the diaphragm in man. *J Physiol* 1991; **443**:105-121

322 10 Sharshar T, Ross E, Hopkinson NS, Dayer M, Nickol A, Lofaso F, Moxham
323 J, Similowski T, Polkey MI. Effect of voluntary facilitation on the diaphragmatic
324 response to transcranial magnetic stimulation. *J Appl Physiol* (1985) 2003; **95**:26-34

325 11 Davey NJ, Murphy K, Maskill DW, Guz A, Ellaway PH. Site of facilitation of
326 diaphragm EMG to corticospinal stimulation during inspiration. *Respir Physiol* 1996;
327 **106**:127-135

328 12 Khedr EM, Trakhan MN. Localization of diaphragm motor cortical
329 representation and determination of corticodiaphragmatic latencies by using
330 magnetic stimulation in normal adult human subjects. *Eur J Appl Physiol*
331 2001; **85**:560-566

332 13 Khedr EM, El Shinawy O, Khedr T, Abdel aziz ali Y, Awad EM. Assessment of
333 corticodiaphragmatic pathway and pulmonary function in acute ischemic stroke
334 patients. *Eur J Neurol* 2000; **7**:323-330

335 14 Lagueny A, Arnaud A, Le Masson G, Burbaud P, Deliac P, Marthan R. Study of
336 central and peripheral conductions to the diaphragm in 22 patients with definite
337 multiple sclerosis. *Electromyogr Clin Neurophysiol* 1998; **38**:333-342

338 15 Similowski T, Attali V, Bensimon G, Salachas F, Mehiri S, Arnulf I, Lacomblez
339 L, Zelter M, Meininger V, Derenne JP. Diaphragmatic dysfunction and dyspnoea in
340 amyotrophic lateral sclerosis. Eur Respir J 2000; **15**:332-337

341 16 Lissens MA, Vanderstraeten GG. Motor evoked potentials of the
342 respiratory muscles in tetraplegic patients. Spinal Cord 1996; **34**:673-678

343 17 Martinez-Llorens J, Coronell C, Ramirez-Sarmiento A, Orozco-Levi M, Espadaler
344 JM, Bautista Gáldiz J, Gea J; ENIGMA in COPD. [Determination of maximal
345 diaphragm strength in chronic obstructive pulmonary disease: cervical magnetic
346 stimulation versus traditional sniff maneuver]. Arch Bronconeumol 2006; **42**:509-515

347 18 Hopkinson NS, Sharshar T, Ross ET, Nickol AH, Dayer MJ, Porcher R, Jonville
348 S, Moxham J, Polkey MI. Corticospinal control of respiratory muscles in chronic
349 obstructive pulmonary disease. Respir Physiol Neurobiol 2004; **141**:1-12

350 19 Demoule A, Verin E, Locher C, Derenne JP, Similowski T. Validation of surface
351 recordings of the diaphragm response to transcranial magnetic stimulation in humans.
352 J Appl Physiol (1985) 2003; **94**:453-461

353 20 Hallett M. Transcranial magnetic stimulation and the human brain. Nature
354 2000; **406**:147-150

355 21 Hamed SA, Youssef AH, Abd-Elaal RF, Hassan MM. Evaluation of central
356 diaphragmatic neural function in early stages of chronic obstructive
357 pulmonary disease. J Neur And Neuroscience 2013; **4**:4

358 22 El-Tantawi GA, Imam MH, Morsi TS. Phrenic Nerve Conduction
359 Abnormalities Correlate with Diaphragmatic Descent in Chronic Obstructive
360 Pulmonary Disease. COPD 2015; **12**:516-524

361 23 Hopkinson NS, Sharshar T, Dayer MJ, Lofaso F, Moxham J, Polkey MI. The
362 effect of acute non-invasive ventilation on corticospinal pathways to the respiratory

363 muscles in chronic obstructive pulmonary disease. *Respir Physiol Neurobiol* 2012;
364 **183**:41-47

365 24 Wedzicha JA. The heterogeneity of chronic obstructive pulmonary disease.
366 *Thorax* 2000; **55**:631-632

367 25 Isaev G, Murphy K, Guz A, Adams L. Areas of the brain concerned with
368 ventilatory load compensation in awake man. *J Physiol* 2002; **539**:935-945

369 26 Dodd JW, Chung AW, van den Broek MD, Barrick TR, Charlton RA, Jones PW.
370 Brain structure and function in chronic obstructive pulmonary disease: a multimodal
371 cranial magnetic resonance imaging study. *Am J Respir Crit Care Med* 2012;
372 **186**:240-245

373 27 Scheibe N, Sosnowski N, Pinkhasik A, Vonderbank S, Bastian A. Sonographic
374 evaluation of diaphragmatic dysfunction in COPD patients. *Int J Chron Obstruct
375 Pulmon Dis* 2015; **10**:1925-1930

376 28 Rocha FR, Bruggemann AK, Francisco DS, Medeiros CS, Rosal D, Paulin E.
377 Diaphragmatic mobility: relationship with lung function, respiratory muscle strength,
378 dyspnea, and physical activity in daily life in patients with COPD. *J Bras Pneumol*
379 2017; **43**:32-37

380 29 Chun EM, Han SJ, Modi HN. Analysis of diaphragmatic movement before
381 and after pulmonary rehabilitation using fluoroscopy imaging in patients with
382 COPD. *Int J Chron Obstruct Pulmon Dis* 2015; **10**:193-199

383 30 Diaz O, Begin P, Torrealba B, Jover E, Lisboa C. Effects of noninvasive
384 ventilation on lung hyperinflation in stable hypercapnic COPD. *Eur Respir J* 2002;
385 **20**:1490-1498

386 31 Sharshar T, Ross ET, Hopkinson NS, Porcher R, Nickol AH, Jonville S, Dayer
387 MJ, Hart N, Moxham J, Lofaso F, Polkey MI. Depression of diaphragm motor cortex
388 excitability during mechanical ventilation. *J Appl Physiol* (1985) 2004; **97**:3-10
389 32 Sharshar T, Hopkinson NS, Ross ET, Jonville S, Dayer MJ, Nickol AH, Lofaso
390 F, Moxham J, Polkey MI. Motor control of the costal and crural diaphragm--insights
391 from transcranial magnetic stimulation in man. *Respir Physiol Neurobiol* 2005; **146**:5-
392 19
393
394
395
396
397
398
399
400
401
402
403
404
405
406

407 Table (1): Demographic and baseline clinical characteristics of study population

Character	COPD (n=30)	Control (n=17)	p value
Age (years)	59 (55- 63)	55 (50 - 59.5)	0.055
Gender Male / Female	30 (100) / 0 (0)	17 (100) / 0 (0)	1.0
BMI (Kg/mm ²)	24.3 ± 4.7	22.8 ± 3.6	0.338
Smoking history smoker / ex-smoker smoking index (PYI)	14 (46.7) / 16 (53.3) 60 (45 - 80)	11 (64.7) / 6 (35.3) 20 (10-30)	0.375 <0.0001*
Comorbidities Hypertension IHD Obesity and OSA	10 (33.3) 6 (20) 1 (3) 3 (10)	0 (0)	0.029*
Spirometry FVC% predicted	56 (50.3 - 66.3)	109 (98 - 123)	< 0.0001*
FEV ₁ % predicted	42.9 (29 - 54)	123 (112 - 136.5)	< 0.0001*
FEV ₁ /FVC	57.6 ± 8.7	86.6 ± 8.5	< 0.0001*
ABG pH PaO ₂ (mmHg) PaCO ₂ (mmHg) HCO ₃ (mmol/L) SaO ₂	7.43 ± 0.048 78.43 ± 20.8 40.5 ± 8.9 25 (22 - 30) 96 (94.8 - 97.0)	NA	NA

Laboratory tests		NA	NA
FBS (mg/dl)	101.5 (72 - 111)		
Hb (g/dl)	13.9 ± 1.3		
BUN (mg/dl)	15 (12 - 20)		
Cr (mg/dl)	0.81 ± 0.24		
Na (mmol/L)	140 (137 - 144)		
K (mmol/L)	4.1 ± 0.35		
AST (U/L)	29.5 (22 - 41)		
ALT (U/L)	27.5 (20- 41)		
Albumin (g/dl)	3.0 (2.9 - 3.4)		

408

409 *: Statistically significant at $p \leq 0.05$, BMI: body mass index, OSA: obstructive sleep
410 apnea, IHD: ischemic heart disease, PYI: pack/year index, PaO_2 : arterial partial
411 pressure of oxygen, PaCO_2 : arterial partial pressure of carbon dioxide, HCO_3 :
412 bicarbonate, SaO_2 : oxygen saturation, FBS: fasting blood sugar, Hb: hemoglobin,
413 BUN: blood urea nitrogen, Cr: creatinine, Na: sodium, K: potassium, AST: aspartate
414 transferase, ALT: alanine transferase.

415

416

417 Table (2): Comparison between the two studied groups regarding diaphragmatic
418 CMEP and PMEP parameters

Parameter	COPD (n=30)	Control (n=17)	p value
Right diaphragm conduction			
DRMT (%)	66.9 ± 8.2	89.5 ± 5.2	< 0.0001
CMEPL (ms)	14.4 (11.9 - 16.5)	11.2 (10.5 - 12.4)	0.006
CMEPA (μv)	120 (110-140)	177 (158.3 - 180.0)	< 0.0001
PMEPL (ms)	6.99 ± 1.05	5.4 ± 0.6	< 0.0001
PMEPA (μv)	135.0 (117.0 - 160.0)	190 (179.5 - 196.3)	< 0.0001
CMCT (ms)	7.7 (4.9 - 9.2)	5.9 (5.6 - 6.6)	0.376
Left diaphragm conduction			
DRMT (%)	68.6 ± 7.6	89 ± 4.4	< 0.0001
CMEPL (ms)	16.8 (14.5 - 18.0)	10.9 (10.6 - 12.8)	< 0.0001
CMEPA (μv)	127.1 ± 23.8	173.9 ± 34.2	< 0.0001
PMEPL (ms)	7.4 (6.0 - 8.4)	5.1 (4.7 - 5.75)	< 0.0001
PMEPA (μv)	147.3 ± 21.7	183.0 ± 35.9	0.001
CMCT (ms)	9.3 (8.1 - 10.1)	6.2 (5.5 - 6.95)	< 0.0001

419
420 *: Statistically significant at $p \leq 0.05$, DRMT: diaphragmatic resting motor threshold,
421 CMEPL: cortical motor evoked potential latency in milliseconds (ms), CMEPA:
422 cortical motor evoked potential amplitude in microvoltage (μv), PMEPL:
423 peripheral motor evoked potential latency, PMEPA: peripheral motor evoked

424

potential amplitude, CMCT: central motor conduction time.

426 Table 3: Comparison between right and left diaphragmatic CMEP and PMEP in both
427 groups

Parameter	COPD group (n=30)			Control group (n=17)		
	Right	Left	p value	Right	Left	p value
DRMT (%)	66.9 ± 8.2	68.6 ± 7.6	0.417	89.5 ± 5.2	89 ± 4.4	0.778
CMEPL (ms)	14.4 (11.9 - 16.5)	16.8 (14.5 - 18.0)	0.003*	11.2 (10.5 - 12.4)	10.9 (10.6 - 12.8)	0.783
CMEPA (μv)	122.8 ± 22.3	127.1 ± 23.8	0.472	177 (158.3 - 180.0)	173.9 ± 34.2	0.959
PMEPL (ms)	6.99 ± 1.05	7.4 (6.0 - 8.4)	0.427	5.2 (4.9 - 5.8)	5.1 (4.7 - 5.8)	0.593
PMEPA (μv)	138.3 ± 25.7	147.3 ± 21.7	0.147	190 (179.5 - 196.3)	190 (147.5 - 196.5)	0.986
CMCT (ms)	7.7 (4.9 - 9.2)	9.3 (8.1 - 10.1)	0.001*	5.9 (5.6 - 6.6)	6.2 (5.5 - 6.95)	0.629

428
429 *: Statistically significant at $p \leq 0.05$, DRMT: diaphragmatic resting motor threshold,
430 CMEPL: cortical motor evoked potential latency in milliseconds (ms), CMEPA:
431 cortical motor evoked potential amplitude in microvolt (μv), PMEPL:
432 peripheral motor evoked potential latency, PMEPA: peripheral motor evoked
433 potential amplitude, CMCT: central motor conduction time.

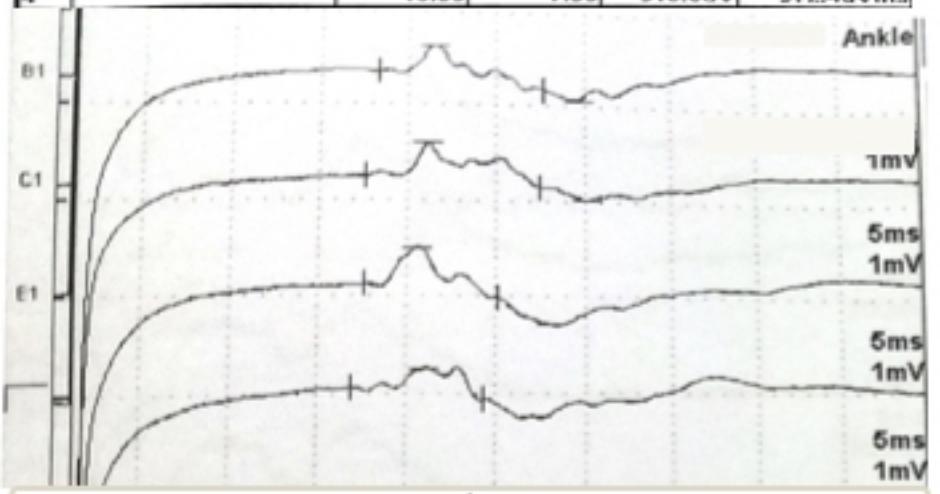
434

435 **Figures**

436 Figure 1. A: CMEP of diaphragm in COPD patient noticing that there is delayed
437 latency and low amplitude of the response versus figure 1-B which represents
438 healthy subject; C: PMEP of diaphragm in COPD patient with low amplitude of
439 the response versus figure 1-D which represents healthy subject.

440

441 Figure 2. Correlations between spirometric parameters (FEV% predicted and FVC%
442 predicted) and left CMEPs (A-F).

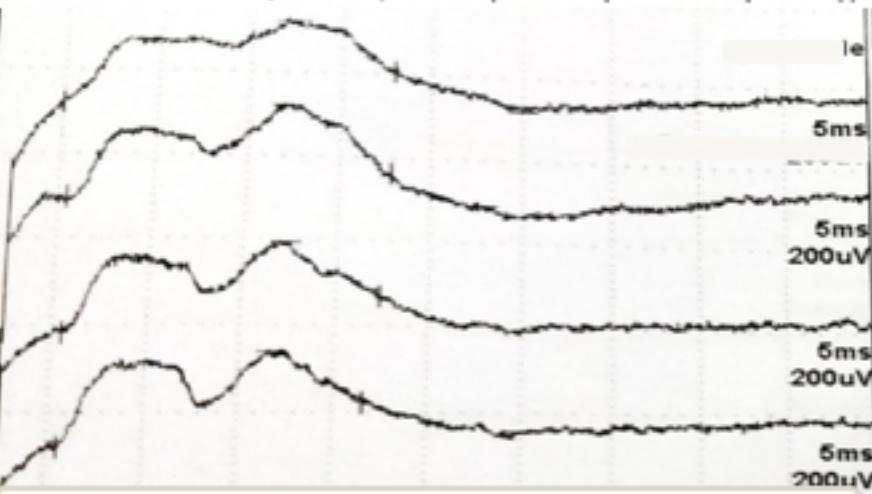

443

444 Figure 3. ROC analysis in COPD patients for predicting cutoff for CMEPs; A: for
445 DMRT% (AUC= 0.986, CI95%= 0.936 - 0.998, $p= 0.0001$); B: for CMEPL
446 (AUC= 0.828, CI95%= 0.737 - 0.898, $p= 0.0001$); C: CMEPA (AUC= 0.715,
447 CI95%= 0.612 - 0.803, $p= 0.0001$); D: CMCT (AUC= 0.916, CI95%= 0.841 -
448 0.963, $p= 0.0001$).

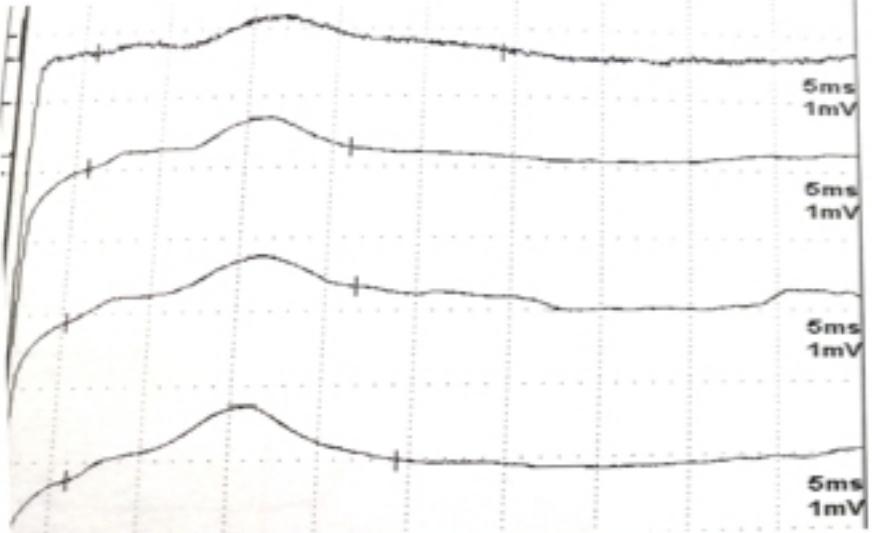
449


450

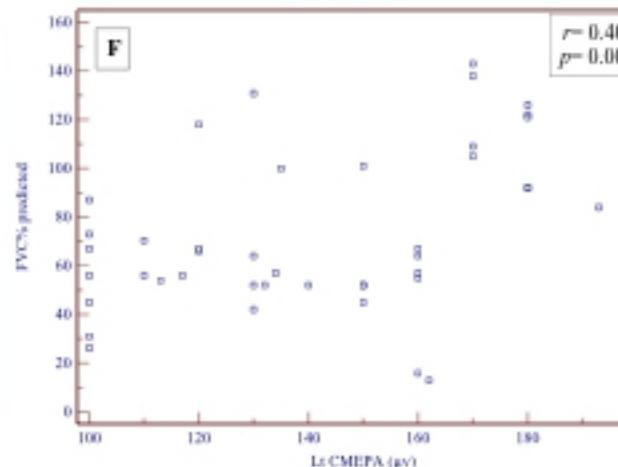
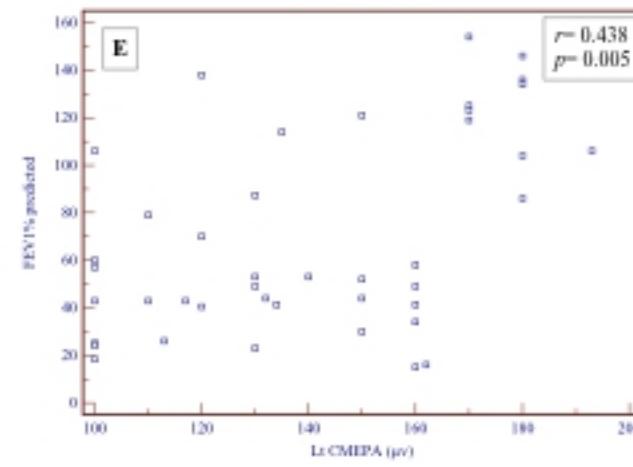
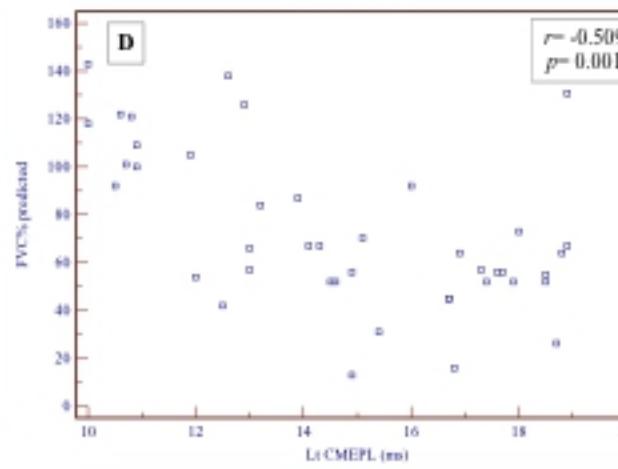
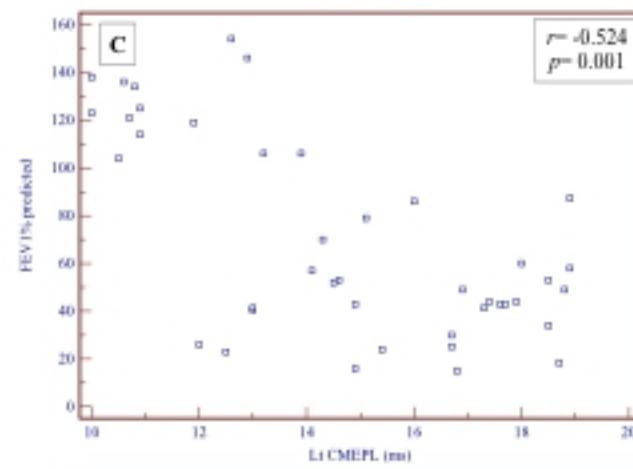
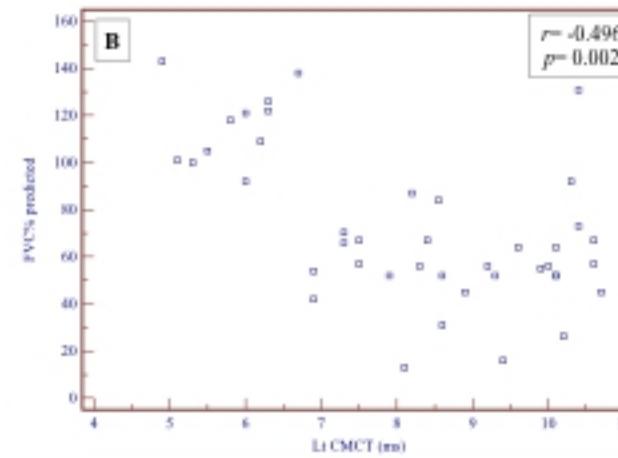
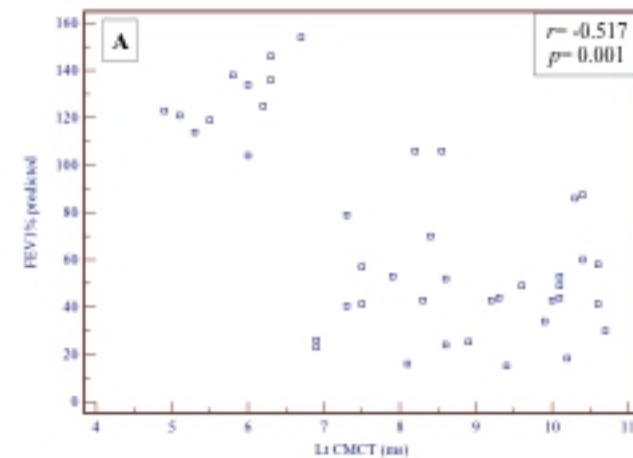
No.	Site	Lat.(ms)	Dur.(ms)	Amp.	Area
1		18.30	9.40	560.0 μ V	1.025mVms
2		17.60	9.85	570.0 μ V	1.558mVms
3		17.60	7.50	790.0 μ V	1.185mVms
4		16.95	7.35	510.0 μ V	972.4 μ Vms


A

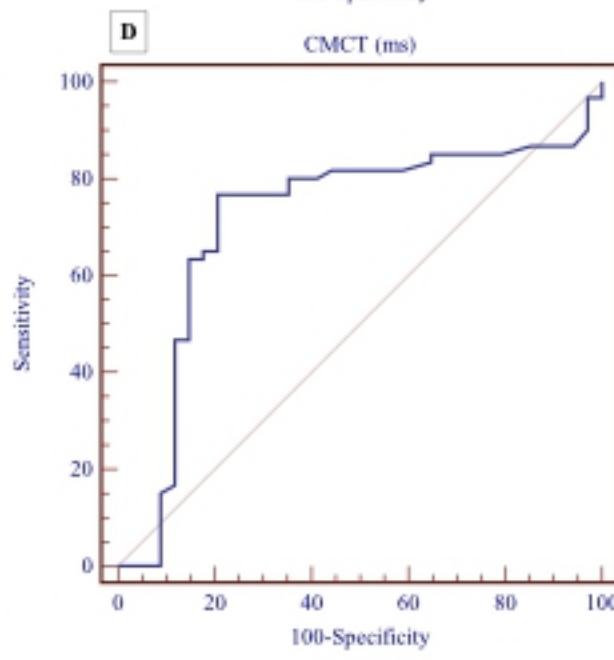
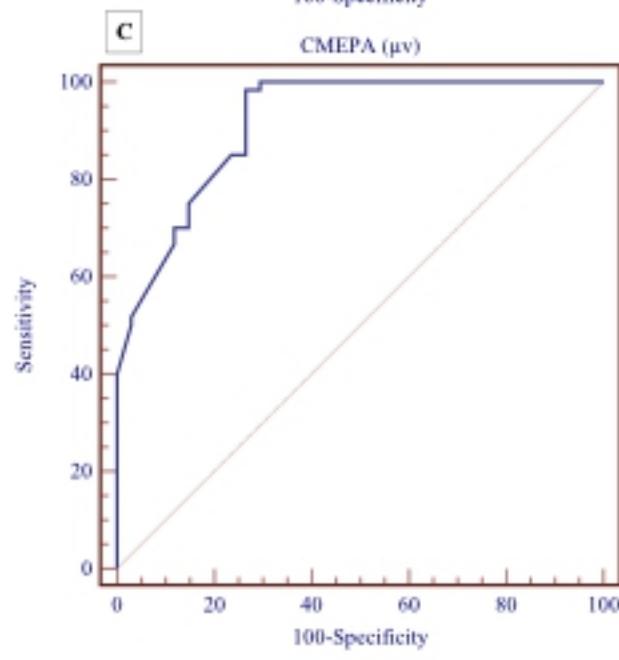
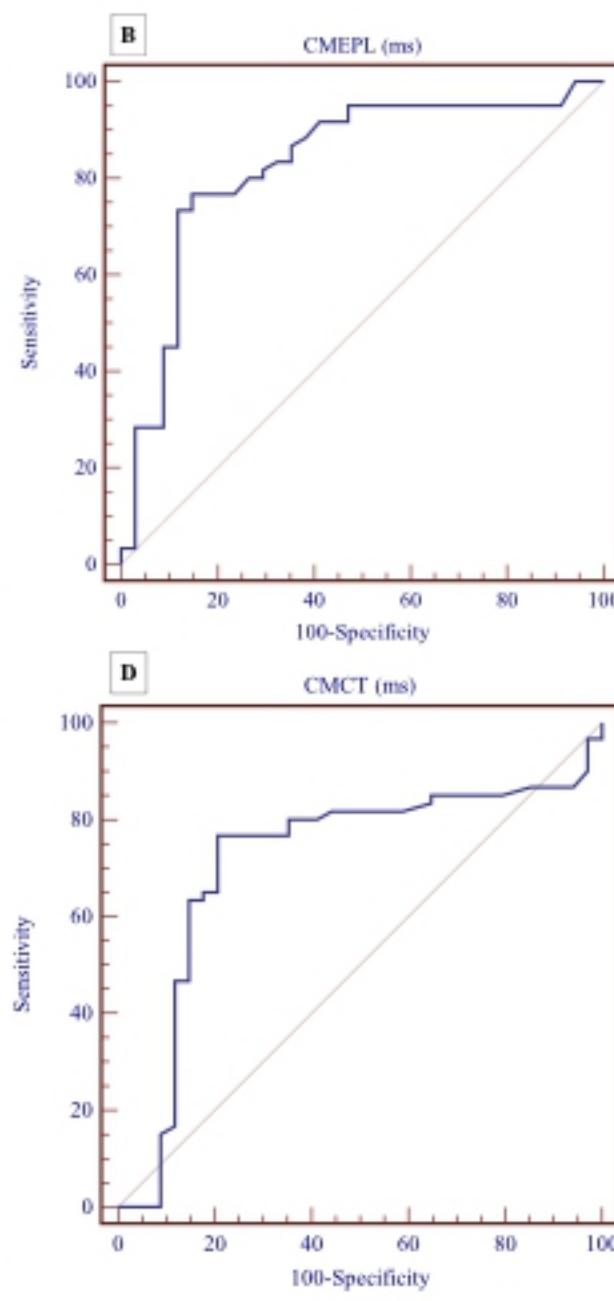
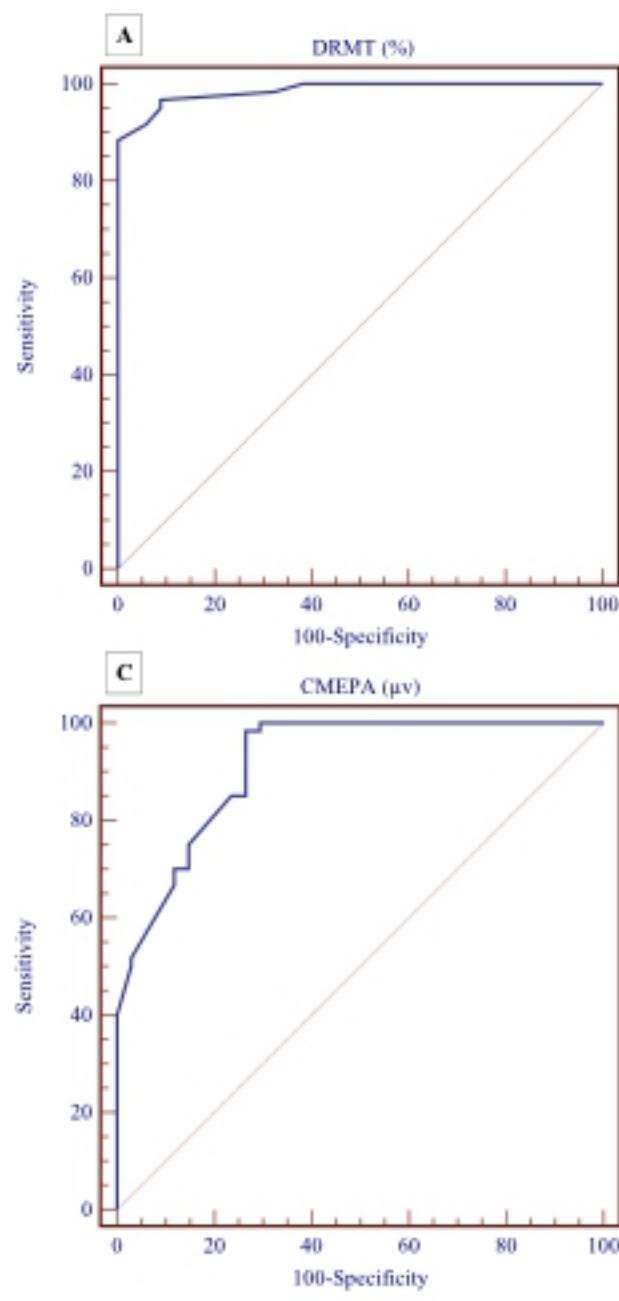
No.	Site	Lat.(ms)	Dur.(ms)	Amp.	Area	Stim.
1		17.45	15.50	2.620mV	19.40mVms	32.6mA
2		17.30	15.20	2.910mV	20.33mVms	32.6mA
3		17.25	14.90	2.900mV	22.15mVms	32.6mA
4		17.30	14.85	3.400mV	20.55mVms	32.6mA


B

No.	Site	Lat.(ms)	Dur.(ms)	Amp.	Area	Stim.
1		4.95	18.00	207.0 μ V	1.297mVms	0mA
2		5.40	17.40	233.0 μ V	1.873mVms	0mA
3		5.55	16.80	188.0 μ V	1.592mVms	0mA
4		5.55	16.05	183.0 μ V	1.608mVms	0mA







C

No.	Site	Lat.(ms)	Dur.(ms)	Amp.	Area	Stim.
1		5.80	23.55	630.0 μ V	4.778mVms	0mA
2		5.75	15.25	590.0 μ V	3.603mVms	0mA
3		5.20	16.50	760.0 μ V	4.755mVms	0mA
4		5.85	18.45	850.0 μ V	7.207mVms	0mA

D

Figure

Figure

Figure