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Abstract

Biodosimetry-based discrimination between homogeneous total-body photon exposure and
complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can
improve treatment decisions after mass-casualty radiation-related incidents. Our study objective
was to use high-throughput biomarkers to: a) detect partial-body and/or neutron exposure on an
individual basis, and b) estimate separately the photon and neutron doses in a mixed exposure.
We developed a novel approach, where metrics related to the shapes of micronuclei
distributions per binucleated cell in ex-vivo irradiated human lymphocytes (variance/mean,
kurtosis, skewness, etc.) served as predictors in machine learning or parametric analyses of the
following scenarios: (A) Homogeneous gammae-irradiation, mimicking total-body exposures, vs.
mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X
rays vs. various neutron + photon mixtures. Classification of samples as homogeneously vs.
heterogeneously irradiated (scenario A) achieved a receiver operating characteristic curve area
(AUROC) of 0.931 (uncertainty range of 0.903-0.951), and R? for actual vs. reconstructed mean
dose was 0.87. Detection of samples with 210% neutron contribution (scenario B) achieved
AUROC of 0.916 (0.893-0.943), and R? for reconstructing photon-equivalent dose was 0.77.
These encouraging findings demonstrate a proof-of-principle for the proposed approach of
analyzing micronuclei/cell distributions to detect clinically-relevant complex radiation exposure

scenarios.
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Introduction

The need for high-throughput biodosimetry in response to a large-scale radiological event
such as improvised nuclear device (IND) detonations stems from several considerations *. First,
triage, which is expected to take place away from a hospital, is crucial for preventing treatment
locations from being overwhelmed. Second, to determine the optimal treatment for an individual
exposed to a large radiation dose, it is critical to quantitatively reconstruct the radiation dose
that the individual received to identify among an exposed population those individuals who are
most likely to develop acute or late radiation injury. Third, the need to convey credible
information about radiation doses to individuals as quickly as possible is a major lesson learned

from earlier radiological events 2.

It is likely that large numbers of victims of an IND will receive partial body exposure, due to
shielding by buildings or vehicles, as well as a mixture of densely ionizing neutrons and sparsely
ionizing gamma rays, with the radiation quality and type of exposure varying between
individuals 3. A rapid assessment of exposure type would need to be made for a large number of
individuals following a large-scale radiological event. Consequently, there is a well-recognized
need for development and utilization of high-throughput assays that can discriminate between
these complex irradiation scenarios like partial-body shielding and/or neutron + photon mixtures
from simpler exposures such as homogeneous total-body photon exposure “°. Such
reconstruction of exposure type is important for making appropriate triage and treatment

decisions in mass casualty situations.
Significance of neutrons

A likely scenario for an IND is a gun-type detonation using highly enriched uranium ’. Here,
the prompt exposure will consist of gamma rays combined with a device-dependent dose of fast

neutrons 8. Monte-Carlo based estimates of the neutron component from a 10 kT urban ground
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burst IND ® suggest in-air neutron fractions of 20% to 90% and, more relevantly, organ-dose
neutron fractions of 3 to 14% in the colon and 6 to 27% in the bone marrow 3. Due to the high

11 the neutron

relative biological effectiveness of neutrons for causing cytogenetic damage
dose contributes roughly 4 times the damage of an equivalent photon dose. Consequently,
these neutron components are likely to have a profound impact on disease type and

12-15

progression . It is also likely that different countermeasures will be required for neutron-

induced disease and photon-induced exposure
Significance of partial body exposures

A significant proportion of individuals exposed indoors to the initial blast from an IND will be
exposed non-homogeneously, to a partial body exposure, due to shielding by objects and

7

building materials ‘. By contrast, external fallout is likely to result in a more homogenous

exposure but decreases over time, approximately following a power function called “the 7:10

rule” 17,18.

Partial body exposure has important consequences in terms of medical
countermeasures and disease progression. For example, the hematopoietic system can recover
much better after high-dose irradiation when part of the body containing bone marrow (e.g. one
or more limbs) is shielded *°. In animal studies, even 5% bone marrow shielding results in a
large increase in survival from hematopoietic acute radiation syndrome (H-ARS) ?° and can also
profoundly affect the GI syndrome ?!. A simple biodosimetric dose reconstruction that estimates
a single dose number assumes uniform irradiation and would thus generate incorrect results,

likely overestimating the risk for H-ARS and underestimating the risk for later disease in the

organs that were irradiated.
Current approaches for evaluating complex exposures

There is a large body of literature on various computational biodosimetry approaches for

estimating radiation doses in various exposure scenarios based on micronuclei yields and other
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cytogenetics markers like dicentric chromosomes 7%

As compared to uniform photon
exposures, both neutron and partial body exposures result in a non-poissonian distribution of
damage in the cells scored for biodosimetry due to the shielding and/or differences in radiation
track structure and energy deposition patterns. Thus, there are a larger number of undamaged
cells than would be expected based on Poisson statistics, coupled with more damage in those
that are traversed by ionizing tracks. While these phenomena has been observed for many
years and applied to the dicentric assay, essentially by analyzing the proportion of undamaged

33-35

metaphases , these approaches can be directly applied to high-throughput assays °°.

It is well known that cytogenetic damage distribution shapes, which are commonly modeled

by Poisson, Negative Binomial or Neyman distributions 2*%*%’

, can change depending on
exposure type. For example, densely ionizing radiations like neutrons tend to produce
“overdispersed” distributions of cytogenetic damage, where the ratio of variance/mean becomes
significantly higher than in a standard Poisson distribution ***°. Partial-body exposures also tend
to produce overdispersion because even if the damage distribution for a homogeneous
exposure is Poisson, the contribution from a shielded fraction of the body that received a much
lower dose would cause the distribution to become a mixture of two or more Poissons with
different means “°*!. Although the methodologies for analyzing these phenomena differ (e.g.
frequentist vs. Bayesian technigues), a more common popular approach is to fit selected
probability density functions (e.g. Zero-Inflated Poisson or Negative Binomial) to the data 3***,
The best-fit parameters and their uncertainties are then used to estimate the outcomes of
interest. However all these techniques are based on manual scoring of the number of dicentrics

in a large number of metaphases and they are not compatible with processing of tens of

thousands of samples using automated biodosimetry.

Potential of machine learning techniques
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The data fitting methodologies described above rely on parametric regression, such as
linear or linear quadratic functions, to describe the radiation response. To our knowledge,
ensemble machine learning techniques such as random forests (RF) and generalized boosted
regression models (GBM) **** have not been used for radiation biodosimetry applications. Both
parametric and machine learning regression approaches have specific advantages and
disadvantages. Parametric models are easily interpretable because each fitted coefficient has a
specific meaning for relating a given predictor or predictor combination to the outcome(s). RF
and GBM can be more complicated to interpret because they consist of multiple (usually >100)
decision trees. However, RF and GBM tend to be more flexible than parametric models in
describing nonlinear dependences and interactions between predictors, and therefore tend to be

more accurate.

Ensemble methods like RF and GBM train and test multiple models of a given type on
randomly-selected subsets of the analyzed data set and combine the results, thereby
generating more robust and accurate predictions than those obtainable using a single model *°.
RF uses decision trees as base models, and employs “bagging” and tree de-correlation
approaches to improve performance. The bagging (bootstrapping and aggregation) procedure
involves generating bootstrapped samples and using a random subsample of the features for
each fitted decision tree. Decision trees have some very useful properties for analyzing data set
types such as those in the current application. For example, they are not sensitive to outliers
and to the presence of many weak or irrelevant predictors. They are also unaffected by
monotonic (e.g. logarithmic) transformations of the data. RF readily allows for multivariate
analysis with more than one outcome variable and a common set of predictor variables. All of
these properties can potentially prove useful in biodosimetry applications. GBM also uses

decision trees, but the trees are averaged by boosting rather than bagging. Boosting involves

iterative fitting of trees: the data are reweighted so that the next trees focus more strongly on
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those data points on which previous trees performed the worst. GBM readily accommodates
different types of error distributions, e.g. Gaussian for continuous data and Bernoulli for binary

data.

Study design

In this work, we employed machine learning approaches in a novel role, using the shape of
the distribution curve of micronuclei per binucleated cell as a source of information for
discriminating between simple and complex radiation exposure scenarios, e.g. total-body vs.
partial-body photon exposures, or vs. neutron + photon mixtures. Specifically, using our high-

throughput CBMN assay *>%*°

we wish to evaluate on an individual basis: 1) the photon and the
neutron doses and the fraction of neutrons in the total dose after a mixed exposure, 2) whether
there was indeed a partial body exposure. Our study design (shown schematically in Fig. 1)

consisted of using fresh human peripheral blood samples irradiated ex vivo to analyze the

following simple and complex exposure scenarios:

Scenario A. Homogeneous 0, 2, 4, or 8 Gy gamma irradiation, mimicking total-body
exposures, vs. 1:1 mixtures of 4 or 8 Gy irradiated blood with unirradiated blood, mimicking
partial-body exposures. In this data set, 4 Gy-irradiated blood mixed with unirradiated blood was
intended to produce a similar mean micronuclei yield to blood irradiated with a homogeneous
dose of 2 Gy. The goal of the computational biodosimetry approach in this scenario was to

correctly classify such situations as homogeneous exposures vs. mixtures.

Scenario B. Photons (0-4 Gy of x-rays) vs. mixtures of neutrons + photons in various
proportions (up to 3 Gy neutrons). The neutron proportions were intentionally varied over a wide

range to mimic various types of realistic exposure scenarios. The goal of the computational
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biodosimetry approach in this scenario was to distinguish neutron + photon mixtures from pure

photon exposures, and to quantify the neutron contribution.
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Materials and Methods

Blood collection and irradiation

Fresh peripheral blood samples were collected by venipuncture into 6 ml lithium-
heparinized Vacutainer® tubes (BD Vacutainer™, Franklin Lakes, NJ) from healthy female and
male donors with informed consent as approved by the Columbia University Medical Center
Institutional Review Board (IRB protocol no: AAAE-2671). Healthy blood donor volunteers, aged
between the ages of 24 and 48 years were non-smokers and in relatively good health at the

time of donation with no known exposure to x rays or CT scan within the last 12 months.
i) Neutron and x-ray irradiations

These irradiations were performed at the Columbia IND Neutron Facility (CINF) °#"*8. Our
broad-energy neutron irradiator has been designed to expose blood or small animals to neutron
fields mimicking those from an IND. This spectrum, dominated by neutron energies between 0.2
and 9 MeV that mimics the Hiroshima gun-type energy spectrum at a relevant distance (1-1.5

km) from ground zero ®°

, Is significantly different from a standard reactor fission spectrum,
because the bomb spectrum changes as the neutrons are transported through air. Blood
aliquots (1 ml) in 1.4 ml Matrix 2D-barcoded storage tubes (Thermo Fisher Scientific, Waltham,
MA) were prepared and either sham-irradiated or exposed to neutrons and X rays at the
Radiological Research Accelerator Facility (RARAF). Details of the IND-spectrum neutron

irradiator and dosimetry have been described previously %%,

Briefly, the aliquoted blood
samples were placed in adjacent positions on an eighteen position Ferris wheel. The wheel
rotates during irradiations and maintains the sample locations at a distance of 17.5cm and an
angle of 60 from the beam’s impingement on a thick beryllium target. Neutron irradiations were

performed over several runs with 15-30 gyA mixed beams of protons and deuterons on the target

generating a neutron dose rate of 1.3-2.6 Gy/h with a 18% concomitant dose of gamma rays. To
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ensure a uniform scatter dose, equivalent tubes containing water were placed in any empty
positions on the wheel. Dosimetry for CINF was performed, on the day of the experiment, as

described previously °.

For the mixed photon + neutron exposure studies, some blood samples were exposed to x
rays following neutron irradiation. This was done using a Westinghouse Coronado orthovoltage
x-ray irradiator running at 250-kVp and 15 mA with a 0.5 mm Cu + 1 mm Al filter (Half Value
Layer 2 mm Cu). X rays were delivered at a dose rate of 1.23 Gy/min. All tested combinations of

x rays and neutrons are shown in the Supplementary_data filel online.
i) Gamma ray irradiations

Irradiations for partial body exposures were performed at the Center for Radiological
Research, Columbia University Irving Medical Center, New York. Blood aliquots (6 ml) in 15-ml
conical bottom tubes (Santa Cruz Biotechnology® Inc., Dallas, TX) were prepared and
transported to a Gammacell 40 **’Cesium (**’Cs) irradiator (Atomic Energy of Canada Ltd.). The
blood samples were placed in a custom-built 15 ml tube holder and exposed to 0 (control), 2.0,
4.0, or 8 Gy of y rays at a dose rate of 0.73 Gy/min. The **'Cs irradiator is calibrated annually
with TLDs and homogeneity of exposure across the sample volume was verified using EBT3
Gafchromic™ film with less than 2% variation within the sample (Ashland Advanced Materials,
Bridgewater, NJ). For the heterogeneous exposures, the blood samples were mixed 1:1 (0 Gy

and 4 or 8 Gy).
Micronucleus assay

Whole blood samples from each dose point were cultured in PB-MAX™ Karyotyping media
(Life Technologies, Grand Island, NY), and incubated at 37°C, 5% CO,, 98% humidity. After 44
h, the media was refreshed with PB-MAX™ media supplemented with cytochalasin B (Sigma-

Aldrich LLC, St. Louis, MO) at a final concentration of 6 ug/mL to block cytokinesis. After a total

10
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incubation period of 72 h, the cells were harvested. The cells were treated with 0.075 M KCI
solution (Sigma-Aldrich, St. Louis, MO) at room temperature for 10 min. After hypotonic
treatment, the cells were fixed with fixative (4:1 methanol:glacial acetic acid). The fixed cell
samples were stored at 4°C (at least overnight), dropped on slides, allowed to air dry for 10 min
and then stained with Vectashield® mounting media containing DAPI (Vector Laboratories,

Burlingame, CA). The slides were left overnight at 4°C prior to imaging.
Imaging analysis and micronuclei scoring

Slides were imaged using a Zeiss fluorescence microscope (Axioplan 2; Carl Zeiss
Microlmaging Inc., Thornwood, NY) with a motorized stage and Zeiss 10x air objective.
Quantification of micronuclei yields was performed by automatic scanning and analysis with the
Metafer MNScore software (MetaSystems, Althaussen, Germany) using the Metafer classifier
described in our earlier work *°. Images were captured using a high-resolution, monochrome
megapixel charge coupled device (CCD) camera. For each sample, more than 1000 binucleated
cells were scored and the micronuclei distribution per cell recorded. The values reported by the
Metafer MnScore software were the micronuclei counts per binucleated cell, ranging from O to 5.
The counts in the bin labeled 5 actually represent the sum of counts with values =5, as
outputted by the Metafer software. These counts were typically low (median = 0, maximum = 16,
whereas the median sum of all counts per sample was 461) and the lack of detailed bin

information for bins >5 was unlikely to modify the results substantially.
Compilation of the Data sets

The experimental data analyzed by this study were compiled into two data sets, labeled A
and B, which are presented in the Supplementary_data_filel online. Data set A consisted of a
single experimental design with homogeneous 0, 2, 4, or 8 Gy gamma irradiation, mimicking

total-body exposures, vs. 1:1 mixtures of 4 or 8 Gy irradiated blood with unirradiated blood,

11
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mimicking partial-body exposures. Data set B was a large compilation blood samples which had
been exposed to IND-spectrum neutrons and neutron + photon mixtures in various proportions
(up to ~82% neutrons), including one previously published sample set °. The goal of combining
such a large number of experiments was to increase statistical power and to clarify the main
patterns of interest, such as the dependences of micronuclei per cell distributions on photon and

neutron contributions in the dose.
Development of predictor sets

The main goal of this study was to develop novel methods for classifying samples by
radiation exposure type: “simple” exposures like homogeneous photon irradiation, vs. “complex”
exposures like heterogeneous (e.g. partial-body) photon irradiation and/or neutron + photon
mixed exposures. Therefore, in data set A we compared homogeneous and heterogeneous

photon irradiation, and in data set B we compared photons only with neutron + photon mixtures.

Based on the distribution of micronuclei counts in each sample, we calculated several
summary variables, described in Table 1, for evaluation as potential predictors of simple vs.
complex exposure type. Heavily damaged cells are less likely to reach the binucleated state
needed for micronuclei scoring, causing the total number of scored cells per sample to decrease
with radiation dose. This phenomenon was the rationale for using the variable LnSum. The
other variables listed in Table 1 were used based on our judgement of what metrics could act as
reasonable potential predictors of exposure type and/or dose, combined with information about

overdispersion of cytogenetic damage from complex exposure scenarios 3138,

For data set A (homogeneous gamma irradiation of ex vivo human blood vs. 1:1 mixtures of
irradiated and unirradiated blood) the outcome (independent) variables were called MixIndex
and MeanDose. MixIndex was a binary variable, where 0 indicate homogeneous irradiation and

1 indicated a mixture of irradiated and unirradiated blood. MeanDose was the average gamma

12
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ray dose (in Gy), defined as the dose divided by 1+MixIndex. In other words, MeanDose for a

sample of mixed blood was % of the dose received by the irradiated blood.

For data set B (ex vivo human blood irradiation with x-rays vs. neutron + photon mixtures)
the outcome variables were called Neutron_dose, Photon_dose, Mixindex, and
Neutronindex. Neutron_dose and Photon_dose represent the dose contributions (in Gy) for
each radiation type, respectively. The photon dose includes the gamma ray component of the
neutron beam (~18%) and the added x-ray dose. MixIndex in this data set was set to 1 if
Neutron_dose/(Neutron_dose+ Photon_dose) = 0.1, and set to O otherwise. NeutronIindex
was set to 1 if Neutron_dose = 0.5 Gy, and set to 0 otherwise. In other words, Mixindex = 1
indicated =10% neutron contribution to the total dose, and Neutronindex = 1 indicated 20.5 Gy
neutron dose. The cutoff values of 10% neutrons for MixIndex and 0.5 Gy for Neutronindex
were selected based on practical relevance and to create approximately balanced data classes
(i.e. approximately equal numbers of samples above and below the cutoff). These outcome
variables for both data sets are listed in Table 1. All parameter names starting with Ln are

natural log transformed.

Data analysis

We imported both data sets into R 3.5.1 software for analysis, and randomly split each of
them into training and testing sets. Data set A was generated from a single experiment with a
balanced design, with equal numbers of samples for homogeneous and heterogeneous
radiation exposures. Consequently, we used the raw samples for analysis. In contrast, data set
B was compiled from multiple experiments performed over several years, using a wide variety of
photon and neutron doses. It contained 486 raw blood samples, where the total number of
analyzed cells per sample varied greatly (from 33 to 3561) and the representation of different

neutron + photon combinations was not equal. Consequently, we pooled (summed) all samples

13
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with the same combination of photon and neutron doses using the aggregate function in R. The

raw and processed data sets are contained in the Supplementary_data_filel online.

The training half of each data set was used for model fitting and selection, and the testing
half was used to assess model performances. On the training data, we generated Spearman’s
correlation coefficient matrices, including all predictors and outcome variables. To analyze all
outcome variables simultaneously, using the same set of predictors, we employed the
multivariate random forest (RF) machine learning approach (MultivariateRandomForest R
package, https://cran.r-project.org/web/packages/MultivariateRandomForest/index.html)  on
each data set ®°. The outcome variables were MeanDose and MixIndex for data set A, and
Neutron_dose, Photon_dose, MixIndex, and Neutronindex for data set B, as defined above.
In data set B we also analyzed the “photon-equivalent dose”, defined as x-ray dose +
RBExneutron dose, where RBE is the neutron relative biological effectiveness. RBE was an

adjustable parameter, and the analysis was performed using RF.

To focus in more detail on the main outcome variable of interest in both data sets,
MixIndex, and to identify the strongest predictors of this variable, we also used the generalized

boosted regression (GBM) algorithm  “**°!

(gbm R package, https://cran.r-
project.org/web/packages/ gbm/index.html) with a Bernoulli error distribution, and logistic
regression (LR). The RF, GBM and LR methodologies and their implementation in our study are

described in Supplementary Methods online.

Results

Analysis of data set A: homogeneous vs, non-homogeneous irradiation
Shape of micronucleus distribution

In this data set, partial-body exposures were mimicked by mixing gamma-irradiated and

unirradiated blood samples with total-body exposures mimicked by standard ex-vivo irradiation.

14
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The goal of the analysis was to use metrics related to the shape of micronuclei per binucleated
cell distributions to distinguish between homogeneous and mixed exposures. Differences in
micronuclei/cell distributions between these exposure scenarios were apparent upon visual
inspection of the pooled data (Fig. 2). For example, the distribution of micronuclei per cell for a
1:1 mixture of 4 Gy with 0 Gy irradiated blood was different from the distribution for blood
irradiated with 2 Gy of pure gamma rays (Fig. 2), despite the fact that the mean micronuclei

yields per binucleated cell were similar for these two scenarios (0.20 vs. 0.22, respectively).

These differences were also reflected in the correlation matrix of predictors and outcomes
(Fig. 3A). This matrix provides a convenient visualization of how all the analyzed variables are
related to each other. As expected, the binary variable Mixindex, which indicated
heterogeneous (mixed) vs. homogeneous exposure, was positively correlated with metrics of
overdispersion: LnVarMean, LnFD, and SEK (Fig. 3A). In other words, overdispersed
micronuclei/cell distributions with large “tails” were associated with heterogeneous exposures,

whereas homogeneous irradiation was associated with lower variance/mean ratios and “tails”.

The average dose received by each blood sample (MeanDose) was positively correlated
with metrics for total damage, e.g. the mean micronuclei yield (LnMean) and the fraction of cells
with =3 micronuclei (Ln3Frac), and negatively correlated with the sum of all analyzed cells
(LnSum) and with the fraction of cells with zero micronuclei (LnZeroFrac) (Fig. 3A). In other
words, the mean micronuclei yield, the total number of cells that made it to the binucleated
stage, and the fraction of cells with no micronuclei were correlated with the average dose

received by the blood sample.
Classification of partial body exposures
Multivariate machine learning analysis of data set A showed very good performance for

reconstructing MeanDose and for detecting heterogeneous exposures (MixIndex) in a binary

15
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classification (Fig. 3B, Supplementary Table 1). Specifically, the area under the receiver
operating characteristic curve (AUROC) for Mixindex, generated by RF analysis of on the
testing data was 0.931 (range over 300 repeats was 0.903, 0.951), which falls into the
“excellent” category for ROC curve metrics ** (Supplementary Table 1). Univariate analyses
using GBM and LR, which focused on reducing the predictor set and identifying the strongest
predictors of MixIindex, as described in Supplementary Methods, performed in the “fair” to

2 (Supplementary Tables 1-2). The retained strongest predictors were

“good” range
LL_exp_Pois_dif, LnVarMean, and LnFD according to GB, and LnFD and
LL_exp_Pois_difxSEK according to LR. As mentioned above, these predictors indicate
distribution shapes that are overdispersed relative to Poisson and are more similar to an

exponential dependence, with a large “tail” at multiple micronuclei/cell. Their specific meanings

are listed in Table 1 and in the Materials and Methods section.
Analysis of data set B: photons vs. neutron + photon mixtures

This large data set consisted of ex vivo human blood samples exposed to x rays vs.
neutron + photon mixtures in various proportions. The dependence of the mean micronucleus
yield per binucleated cell on total radiation dose (photons + neutrons) and on the neutron
contribution to this dose is shown graphically in Fig. 4. These data suggest that increasing the
neutron contribution to the total dose notably increased the mean micronuclei yield, which is
consistent with the high RBE of neutrons ***. It was also seen that, in mixed exposures, the
yield of micronuclei is given by the sum of the yield of micronuclei we would expect from the
separate photon and neutron irradiations — thus the two radiation types appear to be additive

with respect to micronucleus yields.

Shape of micronucleus distribution
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The presence of neutrons in the total dose also markedly alters the shape of the
micronuclei per binucleated cell distributions. For example, Fig. 5 compares Poisson distribution
fits to our micronuclei per cell data for 1.0 Gy of x-rays or 1.2 Gy of a neutron + photon beam
(~82% neutrons). The x-ray data in this example are clearly much more consistent with the
Poisson distribution than the neutron beam data, which have a much larger “upper tail”, i.e.

higher than Poisson-predicted probabilities of multiple micronuclei per cell.

These effects of neutrons on the micronuclei/cell distribution are reflected in the correlation
matrix of predictor and outcome variables are shown in Fig. 6A. Neutron dose was positively
correlated with metrics for high damage vyield (LnMean, Ln3Frac) and overdispersion
(LnVarMean, SEK, LL_exp_Pois_dif), and negatively correlated with metrics for low damage
yield (LnSum, LnZeroFrac) (Fig. 6A). Photon dose had the opposite correlation pattern
regarding LnVarMean, SEK and LL_exp_Pois_dif, compared with neutron dose. These trends
are intuitively explainable by the known overdispersion of neutron-induced damage compared

with photon-induced damage 2.
Classification of neutron exposures

The binary variable Neutronindex, which indicated exposure to =0.5 Gy of neutrons, had
essentially the same correlation patterns as neutron dose (Fig. 6A). The variable MixIndex,
which indicated 210% of neutrons in the total dose, was most strongly positively correlated with
two predictors: LL_exp_Pois_dif and LnVarMean, again suggesting that the overdispersion

phenomenon is associated with neutron irradiation.

Multivariate RF analysis of data set B was quite good in reconstructing the photon-
equivalent dose, defined as photon dose + RBExneutron dose (Fig. 6B, Supplementary Table
1). The concordance between predictions and actual values was patrticularly close in the dose

region around 2 Gy, which is important for triage decision-making (Fig. 6B). The best-fit neutron
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RBE value was 3.8, very similar to the previously published value of 4 for micronuclei following

irradiation at CINF °.

Notably, multivariate RF was very good at detecting a neutron fraction 210% (MixIndex)
and neutron doses 20.5 Gy (Neutronindex) in binary classifications (Fig. 7A-B). The AUROC
values for MixIndex and NeutronIindex were 0.916 (uncertainty range 0.893 to 0.943 over 300
RF repeats) and 0.848 (0.815 to 0.879), respectively (Supplementary Table 1). These values fall
into the good to excellent range for ROC curve metrics *. Targeted analyses using GBM and
LR (described in Supplementary Methods) performed as well as RF in predicting MixIndex, with
AUROC of 0.922 (0.878, 0.961) and 0.911 (0.819, 1.0), respectively (Supplementary Tables 1,
3). These techniques used fewer predictors: LnVarMean, LL_exp_Pois_dif, LnSum, SEK,
Ln3Frac, and LnZeroFrac for GB, and LnSum, LL_exp_ Pois_difxLn3Frac, and
LL_exp_Pois_difxLnSum for LR. Therefore, accurate predictions of MixIndex were generated
using predictor groups that were indicative of overdispersion (e.g. LnVarMean and

LL_exp_Pois_dif) and total damage yields (e.g. LnSum, Ln3Frac, and LnZeroFrac).

Quantitative reconstructions of the neutron and photon dose components (Neutron_dose
and Photon_dose, respectively) were weaker, compared with the binary classifications.
Neutron dose reconstructions were decent (Fig. 7C, Supplementary Table 1), and photon dose
reconstructions were relatively poor (Fig. 7D, Supplementary Table 1). These results may
indicate that the selected predictor set, which was focused on micronuclei/cell distribution
shapes, is a sensitive qualitative indicator of complex exposure scenarios, but is less sensitive

for quantifying the details of these scenarios.

Discussion

The CBMN assay is one of the simplest cytogenetic biodosimetry assays to perform and

score. It is therefore also the easiest to automate *°. However, the conventional CBMN assay is
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geared towards uniform photon exposures and provides only the photon-equivalent total body
dose, which may not be the most useful parameter in scenarios involving mixed neutron +
photon or partial body exposures. To address these issues, there are many advanced
techniques for dose reconstruction for complex exposure scenarios, which are generally based
on fitting parametric linear or linear quadratic dose response functions with selected error
distributions (e.g. Zero-Inflated Poisson or Negative Binomial) **°***3_ Here we extended the
analysis of micronuclei per cell distribution shapes in a different direction: we used various
summary metrics like index of dispersion, skewness and kurtosis as potential predictors of
complex exposure scenarios, and imported these predictors into machine learning or parametric

regression methods.

The conceptual basis for our approach is that micronuclei per binucleated cell distributions
from complex exposures have different shapes (e.g. “tails”), compared with distributions from
simple exposures, even when the mean micronucleus yields are the same for both scenarios.
These differences in distribution shapes translated into differences in variables like index of
dispersion, kurtosis and skewness (Table 1), which were used to generate predictors imported
into machine learning and parametric modeling approaches. To our knowledge, this approach is

new and was not used previously in radiation biodosimetry.

Our results suggest that 1:1 mixtures of irradiated and unirradiated blood can be quite
accurately discriminated from homogeneous irradiations (AUROC > 0.9 on testing data,
Supplementary Table 1). Ongoing work is focusing on determination of the minimal shielded

percentage that can be reliably detected.

Using the same approaches, we also obtained encouraging results in discrimination of
mixed exposures to photons and neutrons from pure photon exposures, e.g. by detecting =210%
neutron fractions or 20.5 Gy of neutrons in the total dose (AUROC > 0.9 for the first scenario
and > 0.8 for the second, Fig. 7A-B, Supplementary Table 1). Of note, the dose reconstructions
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performed using this method estimated the measured RBE rather well (3.8 in this work vs. 4 in
reference °). Ongoing work focuses on obtaining more precise reconstructions of the neutron

fractions and photon doses.

Therefore, although the two scenarios (partial body and neutron exposures) differ in
experimental design and radiation doses and types, the general concept of using micronucleus
distribution shape metrics as indicators of complex vs. simple exposure scenarios was
applicable in both situations. At this stage, our results of course represent only a proof of
principle because ex vivo blood irradiation is an “idealized” model system for partial-body and
neutron + photon mixed exposures. Much more complexity is expected for realistic in vivo
scenarios because various organs, which are (or are not) irradiated in the ex vivo situation, can
contribute to the in vivo responses. Furthermore, a realistic exposure may include both neutron
and partial body photon exposures. These type of scenarios were not investigated in this work
but will be the focus of future studies. The accuracy of applying the approaches proposed here
under realistic mass-casualty conditions can probably be increased by integrating micronuclei
assays with other types of radiation biomarkers (e.g. dicentric chromosomes, gene expression
levels, blood cell counts). Several biomarkers, combined into one framework, are likely to

provide more detailed and useful information than a single assay alone.

Conclusions

We demonstrate a proof of principle that measurements of the distributions of
micronuclei per binucleated cell, analyzed by a novel implementation of machine learning and
parametric regression methods, contain enough information to detect complex exposure
scenarios involving partial-body shielding or densely ionizing radiations. The ability to perform
such detection reliably in a high throughput manner would be extremely useful in radiation-

related mass casualty situations such as IND detonations because partial-body and/or neutron
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exposures can have very different clinical outcomes, compared with homogeneous photon

irradiation.
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Figures

Figure 1. A schematic representation of our study design aimed at developing new
computational methods for discriminating between triage-relevant simple and complex
radiation exposure scenarios. We used ex vivo irradiated human blood to generate two data
sets (A and B), and analyzed each of them using a novel application of machine learning
techniques. The data sets and analysis methods are described in detail in the Materials and
Methods section. Yellow lightning symbols indicate photon irradiation, and blue ones indicate
neutron irradiation of blood samples. Curves of various colors indicate probability distributions of
micronuclei per cell, where the y-axis is probability density. Solid vs. dashed lines indicate the
effects of different neutron proportions. These schematic distributions are intended to illustrate
that complex exposure scenarios, such as mixtures of irradiated and unirradiated blood, or
photon + neutron exposures, produce larger “tails” (i.e. larger probabilities of multiple

micronuclei per cell) than simple exposures.
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Figure 2. Distributions of micronuclei per binucleated cell data set A: blood samples ex
vivo irradiated with 0, 2, 4 or 8 Gy of gamma rays (labeled “homogeneous”), or with 1:1
mixtures of 4 Gy with 0 Gy or 8 Gy with 0 Gy (labeled “mixed”). The differences between
these distributions form the basis for our analysis aimed at discriminating between
homogeneous and mixed exposures. Specifically, the data for 4 Gy mixed with 0 Gy are
different from those for 2 Gy homogeneous (left panel), and the data for 8 Gy mixed with 0 Gy
are different from those for 4 Gy homogeneous (right panel). Each curve was based on pooled

analysis of a very large number of binucleated cells (from 8,417 to 21,056).
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Figure 3. Analysis results summary for data set A: ex vivo human blood irradiated with
homogeneous gamma ray doses vs. 1:1 mixtures of irradiated and unirradiated blood. A.
Matrix of Spearman’s correlation coefficients (pairwise, without correction for multiple testing)
between predictors and outcome variables. The meanings of all variables are provided in Table
1, and a color-coded correlation scale is provided on the right of the plot. Blue ellipses represent
positive correlations, and red ones represent negative correlations. Darker color tones and
narrower ellipses represent larger correlation coefficient magnitudes. Red star symbols indicate
statistical significance levels: *** indicates p<0.001, ** indicates p<0.01, * indicates p<0.05, no
stars indicates p>0.05. These p-values here are intended only for visualization: due to multiple
comparisons, only 3 star significance levels are likely to indicate strong associations. Blank
squares indicate correlation coefficients close to zero. B. Comparison of actual mean doses with
reconstructed values by RF. Circles represent data points, and the line represents theoretically

perfect 1:1 correlation.
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Figure 4. Dependence of mean micronuclei yield per binucleated cell on total radiation
dose (photons + neutrons) and on the fraction of neutrons in this dose
(Neutron_fraction). Larger and lighter colored circles represent a larger fraction of neutrons in

the total dose.
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Figure 5. Comparison of Poisson distribution fits to micronuclei per binucleated cell data
for 1.0 Gy x-rays vs. 1.2 Gy of a mixed neutron + photon beam that contains ~82%
neutrons. The probabilities of 3-5 micronuclei per cell in the mixed beam data are much larger,
than those predicted by the best-fit Poisson distribution. No symbols are shown for micronuclei

per cell values for which the observed counts were zero.
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Figure 6. Analysis results summary for data set B: ex vivo human blood irradiated with

X-rays vs. neutron + photon mixtures. A. Matrix of Spearman’s correlation coefficients

(pairwise, without correction for multiple testing) between predictors and outcome variables. The

meanings of all variables are provided in Table 1 and in the main text. The meanings of ellipse

shapes and colors are the same as in Fig. 2, and a color-coded correlation scale is provided on

the right of the plot.

Blank squares indicate correlation coefficients close to zero. B.

Comparison of actual photon-equivalent doses (defined as photon dose + RBExneutron dose)

with reconstructed values by RF. Circles represent data points, and the line represents

theoretically perfect 1.1 correlation.
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Figure 7. RF performance for data set B: ex vivo human blood irradiated with x rays vs.
neutron + photon mixtures. A. ROC curve for discriminating between exposures with =10%
neutron fraction vs. those with <10% neutrons. B. ROC curve for discriminating between
exposures with 20.5 Gy neutron dose vs. those with <0.5 Gy neutrons. C-D. Comparisons of
actual and reconstructed neutron and photon doses, respectively. Circles represent data points,

and the lines represents theoretically perfect 1:1 correlation.
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Table 1. Descriptions of outcome (dependent) and predictor (independent) variables used

in our analyses. The prefix “Ln” indicates natural logarithm. M is the mean, V is the variance,

and n is the number of cells in the analyzed sample. The predictor variables were selected

based on our judgement, combined with information about overdispersion of cytogenetic

damage from complex exposure scenarios

31,38,39

Data set Type of Name Definition
variable
A: Homogeneous | Outcomes: | MixIndex Binary variable: 0 = homogeneous exposure, 1
VS. = heterogeneous exposure
heterogeneous MeanDose Average dose to the sample in Gy
gamma ray
irradiation
B: x-rays vs. MixIndex Binary variable: 0 = <10% neutrons in total
neutron + photon dose,
mixtures 1 =210% neutrons
Neutronindex Binary variable: 0 = <0.5 Gy neutrons in total
dose,
1 =20.5 Gy neutrons
Photon_dose Photon dose in Gy
Neutron_dose Neutron dose in Gy
Both A and B Predictors: | LnSum Sum of analyzed cells per sample

LnMean Mean number of micronuclei per cell

LnVar Variance of the number of micronuclei per cell

LnVarMean Variance divided by the mean

LnZeroFrac In[1+fo], where fy is the fraction of cells with O
micronuclei

Ln3Frac In[1+f3], where f; is the fraction of cells with 23
micronuclei

LnFD Fisher dispersion index, calculated according to
the following equation >*:
1D = In [(/ o (7 DY/ =)

SEK Sample excess kurtosis, calculated using the

following equation, where z; are standardized
data values using the standard deviation based
on n rather thanon n — 1:

LnSEK = In[> 37, z;* — 3]
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LnSkew

Sample skewness, defined as LnSkew =
In[m3/SD3], where mis the sample third central
moment and SD is its standard deviation

LL_exp_Pois_dif

The difference in maximized log likelihoods for
fitting an exponential distribution to the sample
data vs. the Poisson distribution, calculated as
follows, where k is the micronuclei count value
in the i-th cell:

n
LLexp = z —(k + 1) In[1 + M] + k In [M]
i=1
n
LLPois = kIn[M] —M — In [k!]
i=1
LL_exp_Pois_dif = (LLexp — LLPois)/n
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