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Abstract 22 

A decade of studies has established the importance of the gut microbiome in human health. In spite of sex 23 

differences in the physiology, lifespan, and prevalence of many age-associated diseases, sex and age 24 

disparities in the gut microbiota have been little studied. Here we show age-related sex differences in the 25 

adult gut microbial composition and functionality in two community-based cohorts from Northern China 26 

and the Netherlands. Consistently, women harbour a more diverse and stable microbial community across 27 

broad age ranges, whereas men exhibit a more variable gut microbiota strongly correlated with age. 28 

Reflecting the sex-biased age-gut microbiota interaction patterns, sex differences observed in younger 29 

adults are considerably reduced in the elderly population. Our findings highlight the age- and sex-biased 30 

differences in the adult gut microbiota across two ethnic population and emphasize the need for 31 

considering age and sex in studies of the human gut microbiota. 32 

Introduction 33 

Along with rapid socio-economic and lifestyle changes during the past decades in China, the prevalence of 34 

chronic non-communicable diseases (NCDs) has  increased dramatically 1,2. Accumulating evidence from 35 

epidemiology studies has revealed age-related sex differences in life expectancy, and in risk, course, and 36 

outcomes of NCDs 3,4. Paradoxically, women live longer, but are predisposed to higher incidences and worse 37 

outcomes of certain diseases than age-matched men in late life, such as cardiometabolic disorders and 38 

Alzheimer's disease 5–8.  39 

In spite of increasing evidence pointing to associations between the gut microbiota and NCDs 9–12, much 40 

remains unknown in relation to sexual dimorphism in the gut microbiota as well as possible interactions with 41 

sex hormones, ageing, and sex- and age-specific health conditions. Two pioneer mice studies have 42 

demonstrated that a sexual dimorphic gut microbiota may bidirectionally interact with host testosterone 43 

levels and further influence the lifetime risk of autoimmune diseases 13,14. Using 89 inbred mice strains, Elin 44 

et al. have further elaborated on genetics-dependent sex differences in the gut microbial composition 15. 45 

However, information on sexual dimorphism in the human gut microbiota is very limited, but a recent study 46 

reported on sex-specific differences, especially in gut resistome profiles, in a large-scale Dutch cohort 47 

(LifeLine DEEP cohort, LLD) 16. In addition, the interplay between the gut microbiota and sex hormones, 48 

and sex- and age-specific health conditions so far has only been investigated in women 49 

with small sample sizes 17,18.  50 
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In this study, we systematically investigated gut microbial characteristics and their associations with sex 51 

hormones and additional extensive host metadata on 2,338 adults (26-76 years) from a Han Chinese 52 

population-based cohort established in the Pinggu (PG) district, Beijing, the PG cohort. Taking advantages 53 

of the same ethnic background and shared geography and by removing samples from adults taking 54 

commonly used medicines for metabolic disorders, we have largely avoided the reported metagenomic 55 

confounding effects related to differences in host genetics, lifestyle, dietary patterns, and medicine use in 56 

this cohort 19–21. Thereby, we uncovered striking age-dependent sex differences in the gut microbial 57 

composition and functionality and replicated our main findings in the LLD cohort. Compared to men, 58 

women overall harboured a more diverse microbiota, showing weak associations with age, menopause, and 59 

menopause related declines in sex hormones and health conditions, exhibiting minor changes across 60 

different age groups. By contrast, the gut microbiota of men tended to be more plastic with marked 61 

differences between different age groups, displaying strong associations with age, alcohol intake, smoking, 62 

and testosterone. Due to age- and sex-biased changes in the gut microbiota, the magnitude of sex-associated 63 

gut microbial differences decreased in the elderly (above 50 years) compared to the younger (below 50 years) 64 

adults.  65 

Our findings provide novel insights into the characteristics of the sex-biased adult gut microbiota and 66 

correlations with age, sex hormones, lifestyle, and host health conditions. Further longitudinal studies 67 

are warranted to investigate the underlying mechanisms governing the different sex-dependent 68 

developmental trajectories of gut microbial communities and the potential impact on lifespan and health.  69 

Results 70 

The PG cohort 71 

The PG cohort is a Chinese Han population-based prospective cohort established in the Pinggu district of 72 

Beijing in North China to study how environmental factors, diet, host physiology and behaviour, and the gut 73 

microbiota might contribute to or be associated with the growing NCD epidemic. From this cohort, 74 

metagenomic data of faecal samples from 2,338 individuals aged 26-76 years were analysed with 75 

time-matched clinical measures for phenotyping, sex hormone levels, and host metabolic status, 76 

supplemented with questionnaire data covering lifestyle, diet, intake of drugs, and female gynaecological 77 

information (Methods, Fig. 1a, Supplementary Table 1).  78 

The PG cohort exhibited a greater prevalence of obesity than a recently reported Shanghai cohort (Fig. 1b, 79 

28.5% vs 12.4%) 22, as well as high prevalence of type 2 diabetes (Fig. 1c, 15.6% for women and 20.1% for 80 
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men), and NCD multimorbidity (51.8% for women and 60.3% for men), defined as the presence of two or 81 

more of six chronic metabolic conditions, including obesity, dyslipidaemia, hyperuricemia, hypertension, 82 

T2D, and fatty liver disease (FLD) diagnosed by a liver-to-spleen (L/S) attenuation ratio ≤ 1.1 using 83 

computerized tomography (CT) scanning 23 (Methods, Fig. 1d, Supplementary Table 1). 597 NCD 84 

patients (25.53% of the 2,338 individuals) reported upon collection of faecal samples the use of drugs 85 

known to improve blood pressure, glucose, and lipids (Supplementary Table 2). In agreement with 86 

previous studies 19,24,25, drugs such as biguanides, glucosidase inhibitors (GIs) and statins, showed 87 

significant effects on the composition of the gut microbiota, especially when taken in combination 88 

(Methods, PERMANOVA, adjusted P < 0.05, Supplementary Table 2). To avoid the confounding effects 89 

of drugs on host biochemical levels, gut microbiota, and the possible mutual interactions, we excluded data 90 

from these 597 NCD patients and established an analysis cohort of 1,741 adults with no reported drug 91 

treatment for further analyses (Supplementary Table 3). 92 

Sex differences in gut microbial composition and functionality 93 

To investigate the importance of covariates in the PG cohort, PERMANOVA was applied for host 94 

phenotypes collected through clinical measurements and questionnaires (Fig. 1a, Methods). In the entire 95 

analysis cohort, 42 factors were identified as significant covariates impacting on the gut microbiota, 96 

including sex, age, serum triglyceride (TG), uric acid (UA), testosterone levels, waist-to-hip ratio (WHR), 97 

body mass index (BMI), and male characteristic lifestyles, including intake of alcohol and smoking 98 

(PERMANOVA, adjusted P < 0.05, Fig. 2a, Supplementary Table 4-6). Interestingly, sex explained the 99 

largest gut microbial variance in the PG cohort (Fig.2a), whereas sex was found to rank lower than other 100 

commonly identified covariates such as TG, UA and BMI in previous large-scale studies 20,26,27. 101 

To characterize sex-associated differences in the gut microbiota, we performed comparisons of the 102 

metagenomes between women and men in the PG cohort, and furthermore, in two independent published 103 

shotgun metagenomic datasets of Chinese 9–12, 25 (n=876) and Dutch adults 26 (n=1,135, the LLD cohort) for 104 

validation purposes (Methods). We uncovered that women in the PG cohort showed greater microbial α 105 

diversity at the gene, species, and KEGG Orthology (KO) level than men (P < 0.05, Extended Data Fig. 106 

1a). These findings were consistently replicated in the published Chinese datasets, and in the LLD datasets 107 

with relatively smaller sex differences compared to two Chinese datasets, despite substantial differences in 108 

microbial diversity, Bacteroidetes to Firmicutes (B / F) ratio and enterotypes between Chinese and Dutch 109 

adults (Extended Data Fig. 1-2, Supplementary Table 7) 28,29.  110 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/646620doi: bioRxiv preprint 

https://doi.org/10.1101/646620
http://creativecommons.org/licenses/by-nd/4.0/


Out of 151 common species, 91 differed significantly in abundance between sexes, and over half (77) were 111 

enriched in women (adjusted P < 0.05, Fig. 2b, Supplementary Table 7). Specifically, 19 species were 112 

significantly enriched in both Chinese and Dutch adult women, including Akkermansia muciniphila, 113 

Eggerthella lenta, Alistipes shahii and 15 Firmicutes species including Ruminococcus champanellensis, 114 

Clostridium scindens, C. methylpentosum and C. symbiosum (adjusted P < 0.05, Fig. 2b-c, Supplementary 115 

Table 7). Several species from Bifidobacterium, a main probiotic genus, were significantly enriched in 116 

Chinese women, but were by contrast enriched in men in the LLD cohort (Fig. 2b-c). In addition, a 117 

significant enrichment of Fusobacterium mortiferum, Prevotella copri and Bacteroides salanitronis in men 118 

was observed specifically in Chinese (Fig. 2b-c). Reflecting the enrichment of a variety of Firmicutes 119 

bacteria capable of transforming bile acid (BA) in adult PG women 30,31, most bile acid inducible genes were 120 

also significantly enriched in women, except for the genes encoding the 7-beta-hydroxysteroid 121 

dehydrogenases (7-β-HSDH) and the bile acid transporter (Bai G), which were enriched in adult men 122 

(adjusted P < 0.05, Fig. 2d). In line with a previous study in a healthy Chinese population 32, we observed 123 

significant sex differences in serum BA profiles in a subgroup of 424 age-, sex- and BMI-matched PG 124 

individuals. Thus, we observed higher relative levels of cholic acid (CA) and CA-derived secondary BAs 125 

(deoxycholic acid (DCA) and hyodeoxycholic acid (HDCA)) in women, contrasted by higher levels of 126 

chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), and a larger total BA pool in men (Fig. 127 

2e, Extended Data Fig. 3, Supplementary Table 8).  128 

In summary, our results revealed substantial population independent and dependent sex differences in the gut 129 

microbial composition and functional capacity. 130 

Sex-biased host phenotype-gut microbiota associations 131 

Substantial sex differences were also observed in host physiology, dietary patterns, and lifestyle, with men 132 

showing particularly higher prevalence of smoking (67.61% vs. 1.01%) and alcohol intake (80.7% vs. 133 

13.65%) than women (Extended Data Fig. 4a-d, Supplementary Table 3). Moreover, as expected 134 

postmenopausal women exhibited much lower levels of sex hormone and worse metabolic conditions, 135 

whereas elderly men (above 50 years of age) compared with younger men unexpectedly exhibited higher 136 

testosterone level and lower levels of obesity-related clinical parameters (adjusted P < 0.05, Extended Data 137 

Fig. 4e-h).  138 

Considering the sex disparity in the gut microbiota, host physiology, and behavior, we next conducted 139 

PERMANOVA analyses in each sex, investigating whether different host phenotype-gut microbiota 140 
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association patterns characterised women and men. Surprisingly, many sex-biased covariates, including 141 

several routine blood parameters, education level, family income, and frequency in consumption of fried 142 

food and tea, identified in the analysis of the entire cohort (adjusted P < 0.05, Fig. 2a), were not significant 143 

in the sex-stratified PERMANOVA analyses (adjusted P > 0.05, Fig. 3a), suggesting 144 

potential confounding effect of sex on sex-biased microbiome covariates and host phenotype-gut microbiota 145 

associations.  146 

The gut microbiota of women was characterised by a high degree of overall stability, and unexpectedly, 147 

showed no significant associations with age, menopause, and associated metabolic disorders such as obesity, 148 

T2D and hypertension (Fig. 3a-b). By contrast, age explained the largest microbial variance in men, and 149 

showed consistent direction of the projected impact on the male gut microbiota with testosterone, opposite to 150 

those of obesity-related covariates such as BMI, WHR and TG level (Fig. 3c). This finding was in line with 151 

the correlations between age, testosterone and obesity-related clinical parameters in men (Spearman’s 152 

correlation, adjusted P < 0.05, Extended Data Fig. 4h).  153 

We next asked whether sex-biased associations between individual species and host parameters could be 154 

detected after adjustment for age. A much smaller number of significant associations were identified in 155 

women than in men (Fig. 3d, e). No significant associations were found between species abundance and sex 156 

hormones in women; however, many species were positively correlated with testosterone levels, and largely 157 

overlapped with those that were negatively correlated with clinical metabolic parameters in men (Partial 158 

Spearman’s correlation, adjusted P < 0.05, Fig. 3e, Extended Data Fig. 5, Supplementary Table 13-14). 159 

Among these species, the abundances of Faecalibacterium prausnitzii, Roseburia inulinivorans and 160 

Butyrivibrio crossotus were persistently and positively correlated with testosterone levels in men after 161 

adjustment for both age and BMI (adjusted P < 0.05, Supplementary Table 14). In agreement with the 162 

consistent changes in gut microbial communities in NCDs across the two sexes in previous cross-sectional 163 

studies 9–12, 25, we observed that several species from the genera Eubacterium, Alistipes and Ruminococcus 164 

were negatively correlated with WHR, blood pressures and TG in both sexes (Fig. 3d, f). Significant 165 

positive correlations between the abundance of several Proteobacteria species from the genera Enterobacter, 166 

Citrobacter and Klebsiella and blood UA levels were also shared between the two sexes (Fig. 3e, g, 167 

Supplementary Table 14). On the other hand, several Streptococcus species were positively correlated with 168 

HbA1c and WHR in women, but positively with liver aminotransferase levels rather than any diabetes or 169 

obesity-related parameters in men (Fig. 3e, g, Extended Fig. 5). Although several Streptococcus spp. have 170 

been reported to be enriched in elderly European women with T2D compared to women with normal or 171 

impaired glucose control 33, further studies are needed to determine the biological role, if any, of these 172 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/646620doi: bioRxiv preprint 

https://doi.org/10.1101/646620
http://creativecommons.org/licenses/by-nd/4.0/


observed sex-biased disease associations. 173 

Reduced sex microbial differences with ageing 174 

Regardless of sex and ethnicity, ageing is a biological process generally accompanied by impairment of the 175 

digestive system and the immune system, and increased multimorbidity and medicine use 34–37. However, 176 

reported ageing-related gut microbial characteristics are variable and inconsistent 38, potentially confounded 177 

by ageing-related health conditions, sample size, and sex.  178 

Aiming at extending our knowledge on changes of the gut microbiota in elderly, we compared the 179 

gut microbiota of adults below and above 50 years in each sex (Methods). In line with the higher impact of 180 

age on the overall gut microbiota composition in men, we also observed that the magnitude of differences in    181 

microbial α diversity and the proportions of differentially abundant species and functional KOs between 182 

younger and elderly individuals were greater in men compared to women (Fig. 4a-b, Extended Data Fig. 183 

7a, Supplementary Table 15). These findings were well replicated in the LLD cohort (Extended Data Fig. 184 

6a-c, Supplementary Table 15). In addition to higher microbial diversity in adults older than 50 years of 185 

age, several gut microbial taxonomic and functional characteristics were also shared in elderly adults of both 186 

sexes. For instance, comparison of PG adults under and over 50 years of age revealed that PG adults over 50 187 

years of age showed significantly lower B/F ratio and biosynthesis capacity for bacterial lipopolysaccharide 188 

(LPS) in gram-negative bacteria and several vitamins, including menaquinone, pantothenate, riboflavin and 189 

tetrahydrofolate (Extended Data Fig. 8, Supplementary Table 15-16). Moreover, elderly adults of both the 190 

PG and LLD cohorts exhibited higher capacity for microbial methane production as well as a higher 191 

abundance of Methanobrevibacter smithii, the dominant methanogen in the intestine, than younger adults, 192 

and to a greater extent in men than in women (Extended Data Fig. 8, Supplementary Table 15). Given the 193 

clinical links established between increased methane production and prolonged intestinal transit time 39,40, an 194 

age-related increase in methane production might be related to increased chronic constipation in elderly. A 195 

second round Permanova analysis further revealed significant impacts of age and obesity-related covariates 196 

(obesity, BMI and WHR) on species that differed in abundance between the two age groups in both sexes, 197 

but in opposite directions (Extended Data Fig. 7b-c). The sex-dependent opposite effects of these 198 

obesity-related covariates on the microbiota were consistent with the age- and sex-dependent disparities in 199 

metabolic disorders (Extended Data Fig. 7d, e). Most blood routine parameters and dietary patterns that 200 

differed significantly between the two age groups (Supplementary Table 3, Extended Data Fig. 7f, g), 201 

showed no significant effects (Extended Data Fig. 7b).  202 

With the purpose of estimating how strong the gut microbiota might be related to host chronological age, we 203 

used gut microbial species to build age prediction models in each sex (Methods) 41. Interestingly, models in 204 
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both sexes in the PG cohort had good performances, with a relatively higher Spearman’s rho of 0.584 for 205 

men compared with 0.436 for women between predicted and actual age (Fig. 4c). Of the models for both 206 

sexes, the accumulated local effects (ALE) of most selected features were consistently increasing or 207 

decreasing with the predicted ages, but with larger effects in men (Fig. 4d). The ALE ranges of selected 208 

species features were also sex-biased in the age-prediction models for the LLD cohort (Extended Data Fig. 209 

6d-e). Interestingly, A. muciniphila, Eubacterium siraeum and Coprococcus catus, were selected as strong 210 

positive age predictors only for adult men in both cohorts (ALE range ≥1 year) (Fig. 4d, Extended Data Fig. 211 

6e). The elderly enriched species Streptococcus gordonii predicted increased average age in both cohorts and 212 

was selected as the strongest age predictor for the LLD adults (Fig. 4d, Extended Data Fig. 6e). Although 213 

the abundances of several Bifidobacterium species were decreased in elderly of both cohorts, B. adolescentis 214 

and B. longum were stronger predictors in the PG cohort, whereas B. bifidum and B. animals more strongly 215 

predicted age in the LLD cohort (Fig. 4d, Extended Data Fig. 6e).  216 

Additionally, we found significant differences in the abundance of many sex-biased species between age 217 

groups. Of note, the abundances of multiple women enriched species were relatively stable among adult 218 

women across broad age ranges, but showed significant increases in elderly men as compared to young men 219 

(Fig. 4d). This raised the question as to whether sex-associated microbial differences were reduced in elderly. 220 

In both the PG and the LLD cohorts, sex indeed explained much less of the microbial variances in elderly 221 

individuals (Fig. 5a, c, Supplementary Table 18), and the number of sex-dependent differences in 222 

microbial features was considerably less in elderly compared with younger adults (Fig. 5b, d). For instance, 223 

55 and 41 species whose abundance differed between adult women and men of younger age in the PG and 224 

the LLD cohort respectively (adjusted P < 0.05, Fig. 5b,d, e), showed no significant sex difference in 225 

elderly ((adjusted P > 0.05, Fig. 5b,d, f). On the other hand, we found that 38 species differed consitently in 226 

abundance between men and women in both age groups in the PG cohort (Fig. 5f). Among them, several 227 

were correlated with intake of alcohol or smoking in PG men (Fig. 5f). For instance, intake of alcohol in 228 

men correlated negatively with the abundance of women enriched species, such as B. adolescentis, R. 229 

champanellensis and A. shahii, but positively with men-enriched species Turicibacter sanguinis after 230 

adjusting for age, BMI, and smoking (Fig. 5f, Partial Spearman’s correlation, adjusted P < 0.05). 231 

Smoking also negatively correlated with several women-enriched bacteria, including E. eligens, E. 232 

ventriosum, B. crossotus, Haemophilus haemolyticus and H. parainfluenzae (Fig. 5f). Thus, these findings 233 

suggest that lifestyle to a certain extent could contribute to the observed sex-dependent differences in the 234 

composition of the gut microbiota in the PG cohort. 235 
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Discussion 236 

Despite emerging evidence linking the gut microbiome to human health, sexual dimorphism in the gut 237 

microbiota as well as the potential relation to diseases and behaviour, has often been overlooked. Our study 238 

demonstrates the sexual dimorphism in the gut microbiome and associations with age, sex hormones, and 239 

other host metadata in a large community-based cohort randomly drawn from a Northern Chinese Han 240 

population.  241 

The women in the PG cohort harboured a relatively more diverse and richer gut microbial community than 242 

that of men, a finding which was further replicated in published datasets of Chinese and Dutch adults. Of 243 

note, both Chinese and Dutch adult women exhibited a significant enrichment of A. muciniphila, a 244 

well-characterized metabolic beneficial species 42,43, and E. lenta. The latter species possesses the ability to 245 

inactivate digoxin 44, the therapeutic effect of which has been reported to differ between women and men 45. 246 

Significant sex differences were also consistently observed in the abundance of bacterial genes involved in 247 

BA transformation and in serum BA profiles, suggesting that the gut microbiota might modulate sex-biased 248 

host metabolic processes through BA-Farnesoid X receptor (FXR) and TGR5 signalling pathways. These 249 

sex differences of the gut microbiota might potentially be associated with the age-related sex disparities in 250 

risk, pathophysiology and treatment of metabolic disorders, where the underlying mechanisms require 251 

further investigation. 252 

Focusing on the host-microbiome association patterns in the PG cohort, we show that the overall gut 253 

microbial community in women seemed to remain relatively stable between different age groups, while it in 254 

men varied significantly with age, testosterone levels, multiple metabolic parameters, and lifestyle. 255 

Correspondingly, many species including several butyrate producers were positively correlated with 256 

testosterone levels in men but showed negligible relationships with sex hormone levels in women. 257 

Additionally, smoking and alcohol intake in men were negatively associated with several women enriched 258 

bacterial species, suggesting that the sexual dimorphism of the gut microbiota might be mediated through 259 

both hormone-dependent and -independent factors.  260 

Importantly, we demonstrate that the cross-sectional age-related gut microbial differences are much more 261 

pronounced in men than in women in the PG cohort, a finding we replicated in the LLD cohort. Despite 262 

substantial population and sex differences, commonly shared age-related gut microbial differences were 263 

identified, such as increased microbial diversity and methane production potential, and decreased 264 

abundances of Bifidobacterium spp. in elderly, which might be related to age-dependent changes of 265 

intestinal functions. Additionally, we demonstrate considerable accuracy in chronological age prediction 266 
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from intestinal microbial species abundances in both sexes, again, emphasizing a strong connection between 267 

ageing and the human gut microbiota. In contrast to previous reports 46,47, we observed that several 268 

Firmicutes members from the genera Eubacterium, Roseburia and Clostridium, exhibited a significant 269 

increase in abundance in elderly, especially in elderly men. Among these bacteria, some butyrate producers 270 

were independently and positively associated with male testosterone level. As noted, testosterone levels in 271 

elderly men in the PG cohort were significantly higher than those in younger men, which is similar to 272 

reports of two large-scale cross-sectional Chinese and American cohorts 48,49. These findings, which were 273 

contrary to an age-related hormone decline, suggest that the decline in serum testosterone in relation to 274 

generations is larger than the age-associated decline in cross-sectional population. An intriguing possibility 275 

is that social and environmental differences between generations, especially maternal and early life 276 

conditions might potentially modify later testosterone levels, gut microbiota, disease susceptibility, and 277 

host-microbiome interactions 50–52. Further longitudinal studies are needed to clarify the age-dependent 278 

changes and generation differences in the gut microbiota that cannot be captured in cross-sectional data, 279 

with careful consideration of sex differences. 280 

Supplementary information is available online. 281 
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 319 

Methods 320 

Cohort establishment and metadata collection 321 

Flowchart for establishment of the Pinggu cohort 322 

The Pinggu cohort study, a large prospective cohort set up in suburban Beijing (in the north of China), was 323 

first established in 2013-2014 and designed for follow up studies every 5 years. The Pinggu district is 324 

surrounded by mountains on three sides. This unique geographic feature results in a relatively low mobility 325 
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of the population in the area. The overall research objectives of the Pinggu cohort are to study the 326 

involvement of genetic and environmental factors in the development of metabolic diseases and to 327 

understand the changes/roles of the gut microbiota on the ageing process. 328 

Based on the national Civil Registration system, a total of 6,583 participants were randomly drawn using 329 

multistage stratified sampling method according to the demographic structure in terms of sex, age and region 330 

(rural or suburban) (Fig. 1a). Participants were eligible based on the following criteria: 1) born in Pinggu; 2) 331 

5 years or longer continuous residence in Pinggu back tracing from the sampling point, and 3) adults aged 332 

26-76 years (men and non-pregnant women). A total of 4,002 individuals were enrolled, giving a response 333 

rate of 60.8%. All enrolled participants signed an informed consent form before their physical examination 334 

and biomaterial collection. Subsequently, 2,338 participants meeting the additional criteria: 1) with faecal 335 

and blood samples; 2) with complete questionnaire information; 3) without antibiotic treatment in the past 3 336 

weeks before biomaterial collections, and 4) without severe disease (end-stage cancer and renal disease), 337 

were selected for the metagenomic study. In total, 98 phenotypic factors were collected for each participants 338 

through questionnaires (Q), including socio-demographics  (n=5), lifestyle (n=4), diet (n=18), drugs for 339 

treating metabolic disorders when collecting faecal samples (n=10), and female gynaecological information 340 

(n=4); or through clinical measurements (M), including anthropometric measures (n=4), biochemical 341 

measures of blood (n=42) and urine samples (n=1), and liver-to-spleen fat attenuation ratio (L/S ratio) 342 

measured using computed tomography (CT) (n=1). Information on diseases (n=9) was collected by 343 

self-report of diagnosis and treatment history for patients, and by new diagnoses according to clinical 344 

measures for the remaining participants with no self-report. Statistics of the factors are summarized in 345 

Supplementary Table 1.  346 

Questionnaires, clinical measurements and disease information collected in the study centres are detailed in 347 

the following part. 348 

Questionnaire. All participants in the Pinggu cohort study provided during a face-to-face 349 

interviewer-administered questionnaire information on socio-demographics, medical history, family history 350 

of chronic disease, life-style and other health-related topics. The pre-processing of information on sleep 351 

duration, sedentary time and diet frequency data was performed as previously described in epidemiological 352 

studies on China Kadoorie Biobank comprising 0.5 million Chinese adults 53,54. Sleep duration was 353 

categorized into 6 or fewer hours, 7-9 h, or more than 9 h 55. Sedentary time was categorized into <1.5, 354 

1.5-2.4, 2.5-3.4, 3.5-4.4, or ≥ 4.5 hours/day 56. The average frequency of consumption of food items was 355 

categorized into 'never/rarely', 'monthly', '1-3 days per week', '4-6 days per week', and 'daily' 57. 356 
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Physical Examination. Clinical measurements, height, weight, waist and hip circumferences were 357 

measured by trained staff according to standardized protocols. The derived parameters body mass index 358 

(BMI, kg/m2) and waist-to-hip ratio (WHR) were calculated and stored for further analyses. Blood pressure 359 

(mmHg) was measured three times using an automatic manometer (Omron, Japan) after a 10-min period of 360 

rest in a seated position and the mean of the measures was used in the analysis.  361 

Laboratory measurements and biobanking. All participants had fasting blood samples drawn between 362 

8:00 AM and 9:00 AM for the assessment of fasting levels of glucose, insulin, lipids, sex hormones and 363 

other relevant biochemicals. Afterwards, a standard oral glucose tolerance test (OGTT) was conducted for 364 

participants with no known diabetes. Blood samples were then drawn for the assessment of 2-hour 365 

postprandial glucose and insulin levels. Urine samples were collected in fasting conditions in the visit 366 

morning, and faecal samples were collected using sterile cups after defecation at visit. Details for laboratory 367 

measurements are summarized in Supplementary Table 19. Portions of these biomaterials including blood, 368 

urine and faecal samples were also stored at -80 °C for long-term biobanking in addition to current 369 

measurement use. 370 

Definition of diseases or conditions. 371 

Definition of obesity. Participants were classified as normal weight (BMI < 24 kg/ m2), overweight (24.0 ≤ 372 

BMI < 28 kg/m2), or obese (BMI ≥ 28 kg/m2) according to criteria issued by the China Diabetes Society 58.  373 

Definition of hypertension. Hypertension was defined using blood pressure of at least 140/90 mmHg or the 374 

current use of antihypertensive medications.  375 

Definition of prediabetes and diabetes. Known type 2 diabetes was defined by a self-reported history of 376 

diabetes diagnosed by a doctor and/or on glucose lowering treatment. Participants without known diabetes 377 

underwent a 75g 2-h oral glucose tolerance test (OGTT). According to the WHO definition in 1999 59, 378 

undiagnosed diabetes was defined as fasting plasma glucose (FPG) ≥7.0mmol/L and/or 2-h postprandial 379 

plasma glucose (PPG) ≥11.1mmol/L. Prediabetes was defined as 6.1 ≤ FPG <7.0 mmol/L or 7.8 ≤ PPG < 380 

11.1 mmol/L. Normal glucose tolerance (NGT) was defined as FPG <6.1 mmol/l and PPG < 7.8mmol/L. 381 

Definition of dyslipidaemia. Dyslipidaemia was defined as CH > 200 mg/dL (5.18 mmol/L), and/or TG>150 382 

mg/dL (1.70 mmol/L), and/or LDL>130mg/dL (3.37 mmol/L), and/or HDL< 40 mg/dL (1.04 mmol/L) or the 383 

current use of anti-dyslipidaemia medications 60.  384 

Definition of hyperuricemia. Hyperuricemia was defined by a serum UA concentration > 416.4 μmol/l (7.0 385 

mg/dl) in men or >356.9μmol/l (6.0mg/dl) in women or a history of gout 61.  386 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/646620doi: bioRxiv preprint 

https://doi.org/10.1101/646620
http://creativecommons.org/licenses/by-nd/4.0/


Definition of fatty liver disease. To detect fatty liver disease, unenhanced abdominal CT scans were run for 387 

each participant using a 64-slice multi-detector scanner (LightSpeed VCT, General Electric Healthcare, 388 

Milwaukee, WI, USA). The Hounsfield Units (HU) of three 1cm2 areas in liver and two 1cm2 areas in spleen 389 

were measured. The mean of the liver and spleen measurements were used to calculate the L/S ratios. Fatty 390 

liver disease (FLD) was then defined as : 1) a negative test of HBsAg and anti-HCV, 2) no other special 391 

cause of secondary hepatic disease, 3) L/S ratio≤ 1.1 23, and based on 4) history of significant alcohol 392 

consumption [men >210g/week or women >140g/week] further classified as alcoholic fatty liver disease 393 

(AFLD), or else non-alcoholic fatty liver disease (NAFLD). 394 

 395 

Methods for Metagenomics 396 

1.  Generation and profiling of shotgun metagenomic sequencing data of Pinggu cohort 397 

DNA extraction from faecal samples was performed as previously described 9.  398 

DNA nanoball (DNB) based DNA library construction and combinatorial probe-anchor synthesis (cPAS) 399 

based shotgun metagenomic sequencing with 100bp single-end reads were applied to all 2,338 400 

samples (MGI, Shenzhen, China). Quality control (QC) workflow developed for this platform was applied to 401 

filter out low-quality and human reads 62. On average 6.9 Gb (± 2.1 Gb) high-quality data was generated per 402 

sample. High-quality non-human reads were further aligned to the 9.9M integrated gene catalogue (IGC) 28. 403 

To control for the quantitative biases of fluctuations in sequencing depth, the IGC uniquely mapped reads 404 

were downsized to 20 million for each sample and then used to generate the relative abundance profiles of 405 

genes, phyla, genera, species and KOs per individual. A total of 26 phyla, 316 genera, 525 species and 6865 406 

KOs were detected. At species level, we further confined our analyses to species with at least 100 annotated 407 

genes in each of at least 10% samples. This gave 151 common species accounted for on average 99.45% of 408 

the annotated microbial species composition. 409 

2.  Richness and diversity analyses 410 

Alpha diversity quantified by the Shannon index was calculated on the relative abundance profiles at gene, 411 

KO, and species level using the function diversity in the R package vegan (R version 3.5.1). Richness was 412 

derived as the count number of genes and KOs in each sample as described 28. 413 

3.  Available shotgun metagenomic datasets from Chinese and Dutch adults 414 

To provide a landscape of Chinese adults’ gut microbiota, we further retrieved metagenomic datasets of 876 415 

Chinese adults (aged 18-86 years) from five published studies 9–12, 25, in which, samples from patients with 416 
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diseases known to exhibit severe dysbiosis of the gut microbiota, including liver cirrhosis and extreme 417 

obesity (BMI > 32 kg/m2) were excluded. Of all published shotgun metagenomic datasets, the Lifelines 418 

DEEP (LLD) study from Netherland has a comparable cohort size and age range (1,135 Dutch aged 18-80 419 

years) as the PG cohort 27 and was thus retrieved with sex and age information for validation purpose of sex 420 

and age-related gut microbial differences. Considering that the sequencing depth was considerably lower in 421 

the published Chinese datasets and the LLD cohort 27 (3 Gb on average) compared to the PG cohort (6.9 Gb 422 

on average), these shotgun metagenomic sequence data were analyzed using the same IGC-based pipeline as 423 

described above but without downsizing. The summary of metagenomic datasets is provided in 424 

Supplementary Table 20. 425 

4.  Enterotyping for Chinese and Dutch adults 426 

Due to a relatively high gut microbial abundance of Bifidobacterium in the LLD cohort, the Dutch 427 

metagenomic data could not fit a recently established standard classifier for enterotyping 63. Following the 428 

guidelines in the aforementioned paper, de-novo genus-level enterotyping was performed respectively for 429 

3,214 Chinese adults (2,338 from the PG cohort and 876 from the published dataset), and for 1,135 LLD 430 

Dutch adults, according to the partitioning around medoids (PAM) clustering approaches based on 431 

Jensen-Shannon divergence (PAM-JSD) or Bray-Curtis dissimilarity (PAM-BC) from Arumugam et al 64. 432 

The optimal number of enterotype (ET) clusters was evaluated using the Calinski–Harabasz index, which 433 

indicated two optimal clusters (ET-Bacteroides and ET-Prevotella) for Chinese adults and three optimal 434 

clusters (ET-Bacteroides, ET-Firmicutes and ET-Bifidobacterium) for LLD Dutch adults. We further tested 435 

the robustness of the optimal number of enterotypes in Chinese and Dutch adults by repeating PAM-BC and 436 

PAM-JSD enterotyping on randomly sampled subsets with size ranging from 200 to the maximal number 437 

available from each cohort increasing by 100 samples each time. For each given subset size, the procedure 438 

was repeated 100 times. For Chinese, the optimal number is consistently 2 in over 97.4% of the test sets. For 439 

Dutch adults, the optimal number of enterotype cluster shifts to three as the sample size increased. 440 

Method for serum bile acid measurements 441 

Serum bile acids in 424 individuals of a selected age-, sex- and BMI-matched sub cohort were measured 442 

using the procedure adopted from Sun et al 65, with minor modifications. Briefly, the bile acid 443 

concentrations were measures using Ekspert ultraLC-100 coupled to a Triple TOF 5600 system (AB SCIEX). 444 

Fourteen bile acid standards, including cholic acid (CA), ursodeoxycholic acid (UDCA), hyodeoxycholic 445 

acid (HDCA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), taurocholic acid (TCA), 446 

tauroursodeoxycholic acid (TUDCA), taurohyodeoxycholic acid (THDCA), taurochenodeoxycholic acid 447 
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(TCDCA), taurodeoxycholic acid (TDCA), glycocholic acid (GCA), glycoursodeoxycholic acid (GUDCA), 448 

glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA) and internal standard 449 

chlorpropamide were purchased from Sigma-Aldrich. Chromatographic separation was achieved on an 450 

XBridge Peptide BEH C18 column (100 mm x 2.1 mm i.d., 1.7 μm, Waters Corp.). Column temperature was 451 

40 °C, and the flow rate was 0.4 ml/min. The mobile phase included a mixture of 0.1% formic acid and 10 452 

mM acetamide in water and 0.1% formic acid and 20% acetonitrile in methanol.  453 

Statistical analyses 454 

1.  Impacts of drugs  455 

Of the 2,338 individuals, 597 (25.5%) were taking at least one type of drugs for treating diabetes, 456 

hypertension or dyslipidaemia around the time for donating faecal sample (Supplementary Table 2). Of 457 

these drugs registered in the PG cohort, ten with at least 20 users, including antidiabetic drugs (biguanides, 458 

glucosidase inhibitors (GIs), sulphonylureas and glinides), antihypertensive drugs (calcium channel blockers 459 

(CCBs), beta-adrenergic receptor blockers (beta blockers), diuretics, angiotensin II receptor blockers 460 

(ARBs), angiotensin-converting enzyme inhibitors (ACEIs)), and statins for dyslipidaemia, were used for 461 

analyses. 462 

To evaluate the impacts of each type of the ten drugs on the gut microbiota, we conducted multiple rounds of 463 

PERMANOVA analyses based on Bray-Curtis dissimilarities at the gene, species, and KO level. 464 

PERMANOVA analyses were conducted using the function adonis from the vegan R package. R-squared 465 

(R2) was adjusted for the number of observations and the number of degrees of freedom using the function 466 

RsquareAdj from the same package. The P value was determined by 10,000 permutations and was further 467 

adjusted for multiple testing of tested drugs in each round using Benjamini-Hochberg (BH) method 468 

(function p.adjust, package stats) 66. An adjusted P value smaller than 0.05 was considered statistically 469 

significant. For each round, 1,741 participants not using any of the registered drugs were used as treatment 470 

naive controls. In the first round, for a given drug, PERMANOVA was performed on datasets from 471 

participants taking it alone or in combination with others and treatment native controls. Drugs such as 472 

biguanides, GIs, glinides, sulphonylureas, ARBs and statins were identified to be of significance (adjusted P 473 

< 0.05, Supplementary Table 2). In the next round, samples from participants taking biguanides and/or GIs, 474 

which showed the most significant impacts on the overall gut microbial variations in the first round, were 475 

excluded. The effect remained significant for ARBs and statins, but not for glinides and sulphonylureas. In 476 

the last round, PERMANOVA was performed on samples from individuals taking only one type of drug and 477 

treatment naive controls to evaluate the standalone effect of the drug. Of the drugs that significantly 478 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/646620doi: bioRxiv preprint 

https://doi.org/10.1101/646620
http://creativecommons.org/licenses/by-nd/4.0/


influenced the composition of the gut microbiota identified above, GIs were not evaluated in this round due 479 

to a shortage of samples, and no other drugs than biguanides were still found to significantly impact on the 480 

composition of the gut microbiota (adjusted P < 0.05, Supplementary Table 2). Taken together, these 481 

results demonstrate the complex in vivo effects of drugs on the gut microbiota, especially when taken in 482 

combination, implying great caution for evaluation and interpretation of result from cohort studies. 483 

Subsequent analyses if not otherwise indicated were performed on the 1,741 individuals with no registration 484 

of intake of drugs, denoted as ' the analysis cohort' .  485 

2.  Association analysis between phenotypic factors and microbial Bray-Curtis dissimilarity 486 

To examine the association between host phenotypic factors and the gut microbiota, PERMANOVA was 487 

performed on the entire analysis cohort and further on each sex of the analysis cohort to assess whether there 488 

were different association patterns between the two sexes. PERMANOVA was conducted as described above 489 

and threshold for statistical significance was BH adjusted P values below 0.05. 490 

Bray-Curtis dissimilarities at the gene level were visualized by unconstrained principal coordinate analysis 491 

(PCoA) plots with arrows indicating the dimensions of top strong covariates identified by PERMANOVA 492 

and the contributions of the genera Bacteroides and Prevotella were fitted to the ordination space using 493 

maximum correlation (envfit function, R package vegan). 494 

3. Principal component analysis for metadata 495 

Principal component analysis (PCA) was implemented using the R function prcomp on three subsets of 496 

metadata: blood routine parameters, metabolic parameters, and dietary patterns for the entire analysis cohort, 497 

women only and men only. Before PCA, all factors were transformed using log transformation. A total of 18 498 

metabolic parameters associated with metabolic disorders including obesity (BMI and WHR), hypertension 499 

(SBP and DBP), diabetes (HbA1c, FPG, PPG, fasting insulin [Fins], postprandial insulin [Pins] and 500 

HOMA-IR), dyslipidaemia (TG, CH, HDL and LDL) and hyperuricemia (UA), and fatty liver disease (L/S 501 

ratio, ALT and AST) were included for PCA analysis. For full information of factors of blood routine 502 

parameters (n=16) and dietary patterns (n=18) see Supplementary Table 3. 503 

4.  Age Grouping  504 

In the PG cohort (n=2,338), 50 years was both the median menopause age for women and the median age 505 

for men (Supplementary Table 1), in agreement with large-scale epidemiological studies in China 67 and 506 

Europe 68 the reported prevalence of multimorbidity increases substantially from this age. We have thus 507 

divided both women and men into two groups by an age cut-off of 50 years: a younger group (26 < age ≤ 50 508 
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years) and an elderly group (50 < age ≤ 76 years) . 509 

5.  Comparisons on phenotypic factors and microbial characteristics across sexes and age groups 510 

Wilcoxon rank sum tests were applied to detect differences in the continuous metadata and gut microbial 511 

features (richness, diversity, relative abundances of phyla, species and KOs) between groups. Chi-square 512 

tests were conducted to detect differences in categorical metadata. BH adjusted P value less than 0.05 was 513 

considered significant.  514 

Differentially enriched KEGG pathways (modules) between groups were identified according to the reporter 515 

Z-scores of all KOs involved in a given pathway (module) 69. An absolute value of reporter score ≥ 1.96 (95% 516 

confidence according to normal distribution) was used as the detection threshold for significance. Of note, in 517 

comparative analysis of female age groups, we have excluded 61 postmenopausal women in the younger 518 

group and 37 premenopausal women in the elderly group. 519 

6.  Chronological age prediction from gut microbial species 520 

To test how strong gut microbial features related to age, an age predictor for each sex was trained based on 521 

the relative abundance of microbial species with at least 500 represented genes. The predictors were trained 522 

as a regressor with five-fold cross-validation using XGboost from R package caret as recently reported 41. 523 

After completing grid search for various model configurations, the best performing model was selected 524 

based on the minimal RMSE (Root Mean Square Error). For PG adults, the best performing XGBoost model 525 

for women was derived with the following parameters: nroduns = 1500, eta = 0.01, max_depth = 2, gamma 526 

= 0.9, colsample_bytree = 1, min_child_weight = 2, subsample = 0.5. The best performing XGBoost model 527 

for men was derived with the following parameters: nroduns = 5000, eta = 0.01, max_depth = 4, gamma = 0, 528 

colsample_bytree = 0.4, min_child_weight = 3, subsample = 0.5. For LLD adults, the best performing 529 

XGBoost model for women was derived with the following parameters: nroduns = 1300, eta = 0.01, 530 

max_depth = 4, gamma = 0.5, colsample_bytree = 0.8, min_child_weight = 2, subsample = 0.5. The best 531 

performing XGBoost model for men was derived with the following parameters: nroduns = 3100, eta = 532 

0.005, max_depth = 2, gamma = 0.1, colsample_bytree = 0.4, min_child_weight = 3, subsample = 0.75. 533 

7.  Association analyses in the PG cohort . 534 

Association analyses between phenotypic factors in the PG cohort. Spearman’s rank correlation (SCC) 535 

analysis was performed to detect associations between phenotypic factors including age, sex hormones, and 536 

metabolic parameters. 537 

Association analyses between serum bile acids and gut microbial features in the PG cohort. SCC analysis 538 
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was performed to detect associations between relative concentrations of serum bile acids and abundances of 539 

microbial species / microbial BA transformation genes in 424 selected samples. 540 

Association analyses between phenotypic factors and gut microbial features in the PG cohort. A first 541 

round of Spearman’s rank correlation (SCC) analysis was performed to detect interactions between host 542 

factors and microbial features (microbial diversity, richness and species abundance) without controlling for 543 

the potentially confounding effects from other microbial covariates (Supplementary Table 9, 12). Due to 544 

the sex disparity in associations between age, metabolic parameters, and overall gut microbial variation, 545 

partial Spearman's rank correlation analyses were further conducted to validate the SCC identified 546 

associations between phenotypic factors (sex hormones and 18 metabolic parameters) and microbial features 547 

by adjusting for age, or both age and BMI (Supplementary Table 10-11, 13-14). For associations between 548 

alcohol intake and microbial features in men, partial Spearman's rank correlation analysis was conducted by 549 

adjusting for age, BMI and smoking, and for associations between smoking and microbial features, age, 550 

BMI and alcohol intake were adjusted. The P values were adjusted using BH method for total number of 551 

tests for each phenotypic factor and the significant cut-off was set at BH adjusted P < 0.05. 552 
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Figures and Figure legends 708 

 709 

Fig 1. Overview of the Pinggu cohort.  710 

a, In the PG cohort, 4,002 of 6,538 invited individuals drawn by multistage stratified sampling responded. 711 

2,338 individuals meeting the additional criteria were included in metagenomic study, of which 1,741 free of 712 

drugs for treating diabetes, hypertension or dyslipidemia constituted the final analysis cohort. The study  713 

collected 98 phenotypic factors in total through clinical measurements (M): biochemical measures in blood / 714 

urine samples (n=43), anthropometric measures (n=4), computed tomography (CT) examination (n=1); 715 

through questionnaires (Q): female gynecological information (n=4), socio-demography (n=5), lifestyle 716 

(n=4), diet (n=18) and drugs (n=10), and diseases (n=9) based on M and Q. The summary statistics of all 717 

factors is shown in Supplementary Table S1.  718 

b-d, Population pyramids showing the age-sex distribution of the PG metagenomic study cohort (N=2,338) 719 

and the prevalence of obesity / overweight (b), of type 2 diabetes (T2D) and hypertension (c), and of 720 

non-communicable diseases (NCD) multimorbidity (d) for women (left) and men (right) within each age 721 

group. NCD multimorbidity is defined as the presence of two or more of the six chronic metabolic 722 

conditions, including obesity, dyslipidaemia, fatty liver disease, hyperuricemia, T2D and hypertension 723 

(Methods). 724 
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 725 

 726 

Fig 2. Sex differences in gut microbial composition and functionality. 727 

a, Horizontal bars showing the amount of inferred variance (adjusted R-squared) explained by each 728 

identified covariate as determined by PERMANOVA with Bray-Curtis (BC) dissimilarities at the gene (left), 729 

common species (middle) and KEGG Orthology (KO, right) level. Metadata categories are indicated by 730 

colors and ranked by the highest explained variation in the respective category. Only statistically significant 731 

covariates with adjusted P < 0.05 using Benjamini and Hochberg (BH) method are shown. 732 

b, Venn diagrams showing the overlap of sex-dependent differentially abundant species between the PG 733 

cohort (up), the published datasets of Chinese adults (PDoC, left) and the LifeLines DEEP cohort (LLD, 734 

right). Red circles for women enriched species, and blue circles for men enriched species. Wilcoxon rank 735 

test, BH adjusted P < 0.05.   736 

c, Selected sex-dependent differentially abundant common species in the PG cohort (left), the published 737 

datasets of Chinese adults (middle), and the LLD cohort (right). The colored bar indicates phylum-level 738 
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taxonomy of each species. BPBPC, represents Bifidobacterium catenulatum-Bifidobacterium 739 

pseudocatenulatum complex. 740 

d, Enrichment of relative abundance of genes involved in bile acid transformation and transport between the 741 

two sexes in the three datasets.  742 

e, Enrichment of relative concentrations of serum bile acids in a subgroup including 424 age-, sex-, and 743 

BMI-matched PG individuals.  744 

Wilcoxon rank test (c-e), Z-scores shown as horizontal bars indicate the enrichment direction between sexes, 745 

red for women enriched and blue for men enriched. * BH  adjusted P < 0.05; ** adjusted P < 0.01; *** 746 

adjusted P < 0.001.  747 
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 749 

 750 

Fig 3. Sex-biased host phenotype-gut microbiota associations. 751 

a, Horizontal bars showing the amount of inferred variance (adjusted R squared) explained by each 752 

identified covariate (adjusted P < 0.05) by PERMANOVA using Bray-Curtis dissimilarities at the gene level 753 

in women (red) and men (blue).  754 

b-c, Unconstrained principal coordinate analysis (PCoA) using gene level Bray-Curtis (BC) dissimilarities 755 

in women (b) and men (c). Arrows indicate the dimensions of significant covariates as shown in (a) and the 756 

contribution of the genera Bacteroides and Prevotella. 757 

d-e, Number of significant negative (d) and positive (e) associations (Partial Spearman’s rank correlations, 758 

adjusted P < 0.05) between host parameters and individual species specifically in women (red), specifically 759 

in men (blue) and shared in both sexes (purple) after adjustment for age. Gray indicates negative 760 

associations; orange indicates positive associations. For each panel, the bar height (left) indicates the number 761 

of significantly associated species with each phenotype.  762 

f, Heatmap showing the sex-shared significant negative associations between host parameters and species. 763 
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g, Heatmap showing the sex-shared and selected sex-specific significant positive associations between host 764 

parameters and species. See Extended Data Fig. 5 for full association heatmap. *, adjusted P < 0.05. 765 

 766 
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 768 

 769 
Fig 4. Age- and sex- related differences in the adult gut microbiota of the PG cohort. 770 

a, Box plots showing gut microbial alpha diversity for adults below (<=50 years, light color) and above 50 771 

years (>50 years, dark color) of women (red) and men (blue) at the gene, common species, and KO level. 772 

Wilcoxon rank test; * P < 0.05; ** P < 0.01; *** P < 0.001. 773 

b, Number of differentially abundant common species (left) and KOs (right) (Wilcoxon rank test, adjusted P 774 

< 0.05) between two age groups in each sex, with oblique shadow area indicating the fraction shared 775 

between the two sexes.  776 

c, Scatter plot of predicted age versus actual age for women (red) and men (blue) of PG cohort. Spearman's 777 

rho values between predicted age and actual age in each sex are shown. Shaded areas contain 46% for 778 

women and 50% for men of predictions corresponding to the trend line ± 3 years. 779 

d, Accumulated local effects (ALE) range (maximum ALE minus minimum ALE within 5-95% abundance 780 

bracket) shown as vertical bars for microbial species affecting age prediction for at least one year, for men 781 

(up) and women (down). Dark brown indicates increasing ALEs, light brown indicates decreasing 782 

ALEs. The enrichment of each species is shown in the bottom between adults below and above 50 years for 783 

men and women, and between all women and all men. 784 

 785 
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 786 

Fig 5. Reduced sex differences in the gut microbiota from young to elderly adults 787 

a, c, Sex-explained inferred variance (adjusted R-squared) in the gut microbiota as determined by 788 

PERMANOVA with gene (left), common species (middle) and KO (right) level Bray-Curtis dissimilarities 789 

for adults below 50 years (light brown) and above 50 years (dark brown) in the PG cohort (a) and in the 790 

LLD cohort (c). PERMANOVA, * P < 0.05, ** P < 0.01, *** P < 0.001, ns, P ≥ 0.05. 791 
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b, d, Venn diagrams showing the number of sex-dependent differentially abundant gut microbial common 792 

species (left) and KOs (right) between two age groups of the PG (b) and the LLD (d) cohort. Pie charts 793 

indicate the number of species/KOs enriched in women (red) and men (blue). Wilcoxon rank test, adjusted P 794 

< 0.05. 795 

e, Sex-dependent differentially abundant species specifically in adults below 50 years (n=55, panel b) in the 796 

PG cohort. Stars indicate the enrichment of the respective species replicated (yellow) or reversed (gray) in 797 

the LLD cohort (See Supplementary Table 15 for full list). 798 

f, Sex-dependent differentially abundant species in adults in two age groups (n=38, panel b) in the PG 799 

cohort. Additional bar charts (down) showing the significant negative (grey) and positive (orange) 800 

associations between these 38 species and alcohol intake or smoking in men after adjusting for age, BMI and 801 

one another (Partial Spearman's rank correlation). Y axis indicates the log (10) transformed adjusted P 802 

values, with dashed lines indicating adjusted P < 0.05 as the cutoff for significance. 803 
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