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Abstract

Variability of neural activity is regarded as a crucial feature of healthy brain function, and
several neuroimaging approaches have been employed to assess it noninvasively. Studies on
the variability of both evoked brain response and spontaneous brain signals have shown
remarkable changes with aging but it is unclear if the different measures of brain signal
variability — identified with either hemodynamic or electrophysiological methods — reflect the
same underlying physiology. In this study, we aimed to explore age differences of
spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in
healthy younger (25+3 years, N=135) and older (67+4 years, N=54) adults. Consistent with
the previous studies, we found lower blood oxygenation level dependent (BOLD) variability
in the older subjects as well as less signal variability in the amplitude of low-frequency
oscillations (1-12 Hz), measured in source space. These age-related reductions were mostly
observed in the areas that overlap with the default mode network. Moreover, age-related
increases of variability in the amplitude of beta-band frequency EEG oscillations (15-25 Hz)
were seen predominantly in temporal brain regions. There were significant sex differences in
EEG signal variability in various brain regions while no significant sex differences were
observed in BOLD signal variability. Bivariate and multivariate correlation analyses revealed
no significant associations between EEG- and fMRI-based variability measures. In summary,
we show that both BOLD and EEG signal variability reflect aging-related processes but are
likely to be dominated by different physiological origins, which relate differentially to age

and sex.
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1. Introduction

Functional neuroimaging methods such as fMRI, PET, fNIRS, EEG, or MEG have
allowed the non-invasive assessment of functional changes in the aging human brain (Cabeza,
2001; Cabeza et al., 2018). Most previous functional neuroimaging studies on aging have
employed a task-based design (Grady, 2012) and in their data analysis the central tendency
has typically been assumed to be the most representative value in a distribution (e.g., mean)
(Speelman and McGann, 2013) or the “signal” within distributional “noise”. In recent years,
also the variability of brain activation in task-dependent and task-independent measurements
(as spontaneous variations of background activity) has been shown to provide relevant
information about the brain’s functional state (Garrett et al., 2013b; Grady and Garrett, 2018;
Nomi et al., 2017). These studies primarily measured the blood oxygen level dependent
(BOLD) signal using fMRI. For example, it has been demonstrated that the variance of the
task-evoked BOLD response was differentially related to aging as well as cognitive
performance (Armbruster-Genc et al., 2016; Garrett et al., 2013a). Similarly, spontaneous
signal variability in resting state fMRI (rsfMRI) has been found to decrease with age (Grady
and Garrett, 2018; Nomi et al., 2017), in individuals with stroke (Kielar et al., 2016), and
22q11.2 deletion syndrome (Zoller et al., 2017). An increase of fMRI variability has been
shown to occur in inflammation induced state-anxiety (Labrenz et al., 2018) and to parallel
symptom severity in Attention Deficit Hyperactivity Disorder (Nomi et al., 2018). From these
studies, it was concluded that changes in BOLD signal variability might serve as an index for
alterations in neural processing and cognitive flexibility (Grady and Garrett, 2014).

The conclusions of aforementioned studies imply that BOLD signal variability is
mainly determined by neuronal variability. To a large extent, this is based on the premise that
BOLD is related to neuronal activity: The evoked BOLD signal in task-based fMRI reflects
the decrease of the deoxyhemoglobin concentration to changes in local brain activity, which is
determined by vascular (blood velocity and volume: “neurovascular coupling”) and metabolic
(oxygen consumption: “neurometabolic coupling”) factors (Logothetis and Wandell, 2004;
Villringer and Dirnagl, 1995). The BOLD signal is therefore only an indirect measure of
neural activity (Logothetis, 2008). For the variability of task-evoked BOLD signal and for
spontaneous variations of the BOLD signal, in principle, the same considerations apply
regarding their relationship to underlying neural processes (Murayama et al., 2010). However,
since in rsfMRI there is no explicit external trigger for evoked brain activity to which time-
locked averaging could be applied, the time course of rsfMRI signals is potentially more

susceptible to contributions of “physiological noise”, such as cardiac and respiratory signals
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(Birn et al., 2008; Chang et al., 2009), but also spontaneous fluctuations of vascular tone,
which is found even in isolated arterial vessels (Failla et al., 1999; Hudetz et al., 1998; Wang
et al., 2006). In the same vein, the variability of task-evoked fMRI is not necessarily
reflecting only the variability of evoked neuronal activity, as it may also — at least partly —
reflect the variability of the spontaneous background signal on which a constant evoked
response is superimposed.

In aging, non-neuronal signal fluctuations may also introduce spurious common
variance across the rsfMRI time series (Caballero-Gaudes and Reynolds, 2017), thus
confounding estimates of “neural” brain signal variability. Previous evidence suggests that the
relationship between neuronal activity and the vascular response is attenuated with age — and
S0 is, as a consequence, the BOLD signal (for review see D’Esposito et al., 2003). For
instance, aging has been associated with altered cerebrovascular ultrastructure, reduced
elasticity of vessels, and atherosclerosis (Farkas and Luiten, 2001) but also with a decrease in
resting cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO3), and
cerebrovascular reactivity (CVR) (Liu et al., 2013). Taken together, age-related changes in
BOLD signal or BOLD signal variability are related to a mixture of alterations in non-neural
spontaneous fluctuations of vascular signals, neural activity, neurovascular coupling, and/or
neurometabolic coupling (D’Esposito et al., 2003; Geerligs et al., 2017; Tsvetanov et al.,
2015).

While BOLD fMRI signal and specifically variance measures based on fMRI are only
partially and indirectly related to neural activity (Liu, 2013; Logothetis, 2008),
electrophysiological methods such as EEG can provide a more direct assessment of neural
activity with a higher temporal but poorer spatial resolution (Cohen, 2017). EEG measures
neuronal currents resulting from the synchronization of dendritic postsynaptic potentials
across the neural population; the cerebral EEG rhythms thereby reflect the underlying brain
neural network activity (Steriade, 2006). Resting state (rs)EEG is characterized by
spontaneous oscillations (“brain rhythms”) at different frequencies. Previously, the mean
amplitude of low-frequency bands (e.g., delta and/or theta, 1-7 Hz) has been shown to
correlate negatively with age (Vlahou et al., 2015), while higher-frequency bands (e.g., beta,
15-25 Hz) show the reverse pattern (Rossiter et al., 2014). However, less is known about the
within-subject variability of EEG measures and their association with aging. Several studies
have addressed the variability in the spectral amplitudes of different frequency bands using
variance (Hawkes and Prescott, 1973; Oken and Chiappa, 1988), coefficient of variation
(Burgess and Gruzelier, 1993; Maltez et al., 2004), and complexity (Fernandez et al., 2012;
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92  Sleimen-Malkoun et al., 2015). For instance, reductions of the complexity in rsEEG signal

93  have been found not only in healthy aging (Yang et al., 2013; Zappasodi et al., 2015) but also

94  in age-related pathologies such as mild cognitive impairment (McBride et al., 2014) and

95  Alzheimer’s disease (Smits et al., 2016). Accordingly, it has been suggested that irregular

96 (e.g., variable) systems indicate a normal and healthy state (more integrated information)

97  while highly regular systems often mark dysfunction or disease (Lipsitz and Goldberger,

98  1992; Vaillancourt and Newell, 2002).

99 The different methodological approaches, fMRI based “vascular” approaches on the
100  one hand and electrophysiological methods such as EEG and MEG, on the other hand,
101  indicate alterations of brain signal variability with aging. However, it remains unclear whether
102 these different measures of brain variability at rest reflect the same underlying physiological
103 changes. Evidently, there are some correlations between the two signal sources (for a review
104  see, Jorge et al., 2014; Ritter and Villringer, 2006). For instance, in task-based EEG-fMRI
105  simultaneous recordings, a relationship between BOLD responses and amplitude of evoked
106  potentials has been demonstrated (e.g., Ritter et al., 2009; Seaquist et al., 2007), while in
107  resting state EEG-fMRI studies, a negative association between spontaneous modulations of
108  alpha rhythm and BOLD signal has also been established (e.g., Chang et al., 2013; Goldman
109  etal., 2002; Gongalves et al., 2006; Moosmann et al., 2003). Further, differential correlation
110  patterns have been noted for the various rthythms of different frequencies in EEG/MEG and
111  the fMRI signal, such that low-frequency oscillations show a negative (Deligianni et al., 2014;
112 Mantini et al., 2007; Meyer et al., 2013), while higher frequencies oscillations demonstrate a
113 positive correlation with the BOLD signal (Niessing et al., 2005; Scheeringa et al., 2011).
114 Regarding the known age-related changes in BOLD and EEG signal variability,
115  respectively, the question arises whether these alterations are dominated by joint signal
116  sources of fMRI and EEG or by — potentially different — signal contributions that relate to
117  each of these two methods. Given the — potentially large — non-neuronal signal contribution,
118  this issue is particularly relevant for rsfMRI studies. Here, we addressed this question by
119  analyzing rsfMRI and EEG measures of variability in healthy younger and older subjects. To
120 our knowledge, the only study that compared variability in a “vascular” imaging method
121 (rsfMRI) and an electrophysiological method (rsMEG at the sensor space) concluded that the
122 effects of aging on BOLD signal variability were mainly driven by vascular factors (e.g.,
123 heart rate variability) and not well-explained by the changes in neural variability (Tsvetanov
124 etal., 2015). The main aims of the present study were to explore i) age differences of brain

125  signal variability measures, as well as to investigate ii) how neural variability derived from
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rsEEG related to the analogous parameters of BOLD signal variability derived from rsfMRI.
We used rsfMRI and rsEEG from the “Leipzig Study for Mind-Body-Emotion Interactions”
(Babayan et al., 2019). As an explanatory analysis, we further investigated sex-related
differences of brain signal variability measures. To measure brain signal variability, we
calculated the standard deviation (SD) of both the BOLD signal and of the amplitude
envelope of the filtered rsEEG time series for a number of standard frequency bands at the
source space. We hypothesized that brain signal variability would generally decrease with
aging. In addition, based on the premise that BOLD fMRI signal variability reflects neural
variability as measured by rsEEG, we expected that the corresponding changes in both signal
modalities would demonstrate moderate to strong similarity in their spatial distribution. Given
the confounding effects of vascular factors during aging on the fMRI signal (D’Esposito et al.,
2003; Liu, 2013; Thompson, 2018), we further expected to find the relationship between
BOLD and EEG signal variability to be stronger in younger than older adults.
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139 2. Method
140 2.1.Participants
141 The data of the “Leipzig Study for Mind-Body-Emotion Interactions” (LEMON;

142 Babayan et al., 2019) comprised 227 subjects in two age groups (younger: 20-35, older: 59-
143 77). Only participants who did not report any neurological disorders, head injury, alcohol or
144 other substance abuse, hypertension, pregnancy, claustrophobia, chemotherapy and malignant
145  diseases, current and/or previous psychiatric disease or any medication affecting the

146  cardiovascular and/or central nervous system in a telephone pre-screening were invited to the
147  laboratory. The study protocol conformed to the Declaration of Helsinki and was approved by
148  the ethics committee at the medical faculty of the University of Leipzig (reference number
149 154/13-fY).

150 RsEEG recordings were available for 216 subjects who completed the full study

151  protocol. We excluded data from subjects that had missing event information (N=1), different
152  sampling rate (N=3), mismatching header files or insufficient data quality (N=9). Based on
153  the rsfMRI quality assessment, we further excluded data from subjects with faulty

154  preprocessing (N=7), ghost artefacts (N=2), incomplete data (N=1), or excessive head motion
155  (N=3) (criterion: mean framewise displacement (FD) < 0.5 mm; Power et al., 2012)

156  (Supplementary Figure 1). The final sample included 135 younger (M = 25.10 + 3.70 years,
157 42 females) and 54 older subjects (M = 67.15 + 4.52 years, 27 females).

158 2.1.fMRI Acquisition

159 Brain imaging was performed on a 3T Siemens Magnetom Verio MR scanner

160  (Siemens Medical Systems, Erlangen, Germany) with a standard 32-channel head coil. The
161  participants were instructed to keep their eyes open and not fall asleep while looking at a low-
162 contrast (light grey on dark grey background) fixation cross.

163 The structural image was recorded using an MP2RAGE sequence (Marques et al., 2010) with
164  the following parameters: TI 1 =700 ms, TI 2 = 2500 ms, TR = 5000 ms, TE =2.92 ms, FA 1
165 =4°FA 2= 5° band width = 240 Hz/pixel, FOV = 256 x 240 x 176 mm?, voxel size = 1 x 1
166  x 1 mm?. The functional images were acquired using a T2*-weighted multiband EPI sequence
167  with the following parameters: TR = 1400 ms, TE = 30 ms, FA= 69°, FOV =202 mm,

168  imaging matrix=88 x 88, 64 slices with voxel size = 2.3 x 2.3 x 2.3 mm?, slice thickness = 2.3
169  mm, echo spacing = 0.67 ms, bandwidth=1776 Hz/Px, partial fourier 7/8, no pre-scan

170  normalization, multiband acceleration factor = 4, 657 volumes, duration = 15 min 30 s. A

171  gradient echo field map with the sample geometry was used for distortion correction (TR =

172 680ms, TE 1 =5.19 ms, TE 2 = 7.65 ms).
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173 2.2.fMRI Preprocessing

174 Preprocessing was implemented in Nipype (Gorgolewski et al., 2011), incorporating
175  tools from FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), ANTs
176  (Avants et al., 2011), CBS Tools (Bazin et al., 2014), and Nitime (Rokem et al., 2009). The
177  pipeline comprised the following steps: (I) discarding the first five EPI volumes to allow for
178  signal equilibration and steady state, (II) 3D motion correction (FSL mcflirt), (IIT) distortion
179  correction (FSL fugue), (IV) rigid body coregistration of functional scans to the individual
180  Tl-weighted image (Freesurfer bbregister), (V) denoising including removal of 24 motion
181  parameters (CPAC, Friston et al., 1996), motion, signal intensity spikes (Nipype rapidart),
182  physiological noise in white matter and cerebrospinal fluid (CSF) (CompCor; Behzadi et al.,
183  2007), together with linear and quadratic signal trends, (VI) band-pass filtering between 0.01-
184 0.1 Hz (FSL fslmaths), (VII) spatial normalization to MNI152 (Montreal Neurological

185  Institute) standard space (2 mm isotropic) via transformation parameters derived during

186  structural preprocessing (ANTS). (VIII) The data were then spatially smoothed with a 6-mm
187  full-width half-maximum (FWHM) Gaussian kernel (FSL fslmaths). Additionally, we

188  calculated total intracranial volume (TIV) of each subject using the Computational Anatomy
189  Toolbox (CATI12: http:// dbm.neuro.uni-jena.de/cat/) running on Matlab 9.3 (Mathworks,
190  Natick, MA, USA) and used it as a covariate for further statistical analyses (Malone et al.,
191  2015).

192 BOLD Signal Variability (SDporp). Standard deviation (SD) quantifies the amount of

193  variation or dispersion in a set of values (Garrett et al., 2015; Grady and Garrett, 2018).

194 Higher SD in rsfMRI signal indicates greater intensity of signal fluctuation or an increased
195  level of activation in a given area (Garrett et al., 2011). We first calculated SDporp across the
196  whole time series for each voxel and then within 96 boundaries of preselected atlas-based
197  regions of interests (ROIs) based on the Harvard-Oxford cortical atlas (Desikan et al., 2006).
198  The main steps of deriving brain signal variability (SDeoLp) from the preprocessed fMRI
199  signal are shown in Figure 1.

200  The reproducible workflows containing fMRI preprocessing details can be found here:

201  https://github.com/NeuroanatomyAndConnectivity/pipelines/releases/tag/v2.0.

202 2.3.EEG Recordings

203 Sixteen minutes of rsSEEG were acquired on a separate day with BrainAmp MR-plus
204  amplifiers using 61 ActiCAP electrodes (both Brain Products, Germany) attached according
205  to the international standard 10-20 localization system (Jurcak et al., 2007) with FCz (fronto-

206  central or cephalic electrode) as the reference. The ground electrode was located at the
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sternum. Electrode impedance was kept below 5 kQ. Continuous EEG activity was digitized
at a sampling rate of 2500 Hz and band—pass filtered online between 0.015 Hz and 1 kHz.

The experimental session was divided into 16 blocks, each lasting 60 s, with two
conditions interleaved, eyes closed (EC) and eyes open (EO), starting with the EC condition.
Changes between blocks were announced with the software Presentation (v16.5,
Neurobehavioral Systems Inc., USA). Participants were asked to sit comfortably in a chair in
a dimly illuminated, sound-shielded Faraday recording room. During the EO periods,
participants were instructed to stay awake while fixating on a black cross presented on a white
background. To maximize comparability, only EEG data from the EO condition were
analyzed, since rsfMRI data were collected only in the EO condition.

2.4.EEG Data Analysis

EEG processing and analyses were performed with custom Matlab (The MathWorks,
Inc, Natick, Massachusetts, USA) scripts using functions from the EEGLAB environment
(version 14.1.1b; Delorme and Makeig, 2004). The continuous EEG data were down-sampled
to 250 Hz, band-pass filtered within 1-45 Hz (4" order back and forth Butterworth filter) and
split into EO and EC conditions. Segments contaminated by large artefacts due to facial
muscle tensions and gross movements were removed following visual inspection, resulting in
a rejection of on average 6.6% of the recorded data. Rare occasions of artifactual channels
were excluded from the analysis. The dimensionality of the data was reduced using principal
component analysis (PCA) by selecting at least 30 principal components explaining 95% of
the total variance. Next, using independent component analysis (Infomax; Bell and
Sejnowski, 1995), the confounding sources e.g. eye-movements, eye-blinks, muscle activity,
and residual ballistocardiographic artefacts were rejected from the data.

2.5.EEG Source Reconstruction

Before conducting source reconstruction, preprocessed EEG signals were re-
referenced to a common average. We incorporated a standard highly detailed finite element
method (FEM) volume conduction model as described by Huang et al. (2016).
The geometry of the FEM model was based on an extended MNI/ICBM152 (International
Consortium for Brain Mapping) standard anatomy, where the source space constrained to
cortical surface and parceled to 96 ROIs based on the Harvard-Oxford atlas (Desikan et al.,
2006). We used eLORETA (exact low resolution brain electromagnetic tomography) as
implemented in as implemented in as implemented in the M/EEG Toolbox of Hamburg
(METH; Haufe and Ewald, 2016; Pascual-Marqui, 2007) to compute the cortical electrical

distribution from the scalp EEG recordings. The leadfield matrix was calculated between
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1804 points located on the cortical surface to the 61 scalp electrodes. We filtered into several
frequency bands, associated with brain oscillations: delta (1-3 Hz), theta (4—8 Hz), alpha (8—
12 Hz), and beta (15—-25 Hz). Following the singular value decomposition (SVD) of each
voxel’s three-dimensional time course, the dominant orientation of the source signal was
identified by preserving the first SVD component. The amplitude envelope of filtered
oscillations was extracted using the Hilbert transform (Rosenblum et al., 2001). Next, we
applied temporal coarse graining by averaging data points in non-overlapping windows of
length 0.5 s (Figure 1).

EEG Variability (SDeeg). We calculated the SD of amplitude envelope of band-pass filtered
oscillations on the coarse-grained signal. RSEEG signal variability (SDgec) was obtained for
different frequency bands (SDperta, SDTHETA, SDALPHA, SDBETA) 1In €ach of 96 ROIs. Further,
in our study we investigated variability in the amplitude of oscillatory signals from one time
segment to the other. If amplitude (or power) of each signal stays the same, the variability
(SD) in the amplitude of such segments will be zero. Therefore, the average amplitude of a
signal is not indicative of its variability. Although amplitude and its standard deviation
mathematically are different, they can show some correlation due to size effects (Immer,
1937).

Main steps toward deriving brain signal variability from the preprocessed EEG signal are
shown in Figure 1. The raw and preprocessed fMRI and EEG data samples can be found at
https://ftp.gwdg.de/pub/misc/MPI-Leipzig Mind-Brain-Body-LEMON/

10
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Figure 1. Main steps of deriving brain signal variability from the preprocessed resting state
fMRI and EEG signal. We calculated the standard deviation of the blood oxygen level
dependent (BOLD) signal and of the coarse-grained amplitude envelope of the rsEEG time
series for a number of standard frequency bands at the source space. Each sample of coarse-
grained amplitude envelope of the rsEEG (represented in numbers) is generated by averaging

the samples in non-overlapping windows of length 0.5 s.

: Harvard-Oxford
Preproce'ssed - BOLD S.l.gnal Atlas: 96 Regions
rsfMRI Signal Variability of Interest

\[
Y
v

Standard Deviation

Filtering & Hilbert Harvard-Oxford
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rsEEG Signal reconstruction Variability of Interest

Standard Deviation

2.6.Statistical Analyses
Mean SDporp and SDggc. For the topographic information (based on ROIs), the mean BOLD
and EEG variability were calculated by I) log-transforming the SD values, II) averaging
separately for younger and older subjects, and III) then back-transforming the values

(McDonald, 2014).

Age and Sex Effects. A series of non-parametric analyses of covariance (ANCOV As, type I11)
were applied to brain signal variability values in each 96 ROIs for SDporp and SDggG using
age group and sex as variables of interest, adjusting for TIV and mean FD. The significance
level was controlled for using false discovery rate (FDR) correction according to Benjamini
and Hochberg (1995). Significant group differences were further examined by Tukey HSD
post-hoc comparisons. The signal variability values were log-transformed to normalize

SDgorp and SDgkg before further analyses (assessed by Lilliefors tests at a significance
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threshold of 0.05). All analyses were performed using the aovp function in the Imperm

package (Wheeler, 2016) as implemented in R (R core team, 2018).

SDgorp — SDeEG Correlation. To investigate the association between each ROI of SDgorp and
SDEeEeG, we used pairwise Spearman’s rank correlation separately for younger and older
subjects, corrected for FDR (96 ROIs). We further applied sparse canonical correlation
analysis (CCA) to show that the relationship between SDporp and SDEggg is not missed when
only mass bivariate correlations are used. CCA is a multivariate method to find the
independent linear combinations of variables such that the correlation between variables is
maximized (Witten et al., 2009). The sparse CCA criterion is obtained by adding a Lasso
Penalty function (/1), which performs continuous shrinkage and automatic variable selection
and can solve statistical problems such as multicollinearity and overfitting (Tibshirani, 2011).
We used /i penalty as the regularization function to obtain sparse coefficients, that is, the
canonical vectors (i.e., translating from full variables to a data matrix’s low-rank components
of variation) will contain exactly zero elements. Sparse CCA was performed using the R
package PMA (Penalized Multivariate Analysis; Witten et al., 2009; http://cran.r-
project.org/web/packages/PMA/). In our analyses, the significance of the correlation was
estimated using the permutation approach (N=1000) as implemented in the CCA.permute
function in R (pperm<0.05).

Cognition. The Trail Making Test (TMT) is a cognitive test measuring executive function,
including processing speed and mental flexibility (Reitan, 1955; Reitan and Wolfson, 1995).
In the first part of the test (TMT-A) the targets are all numbers, while in the second part
(TMT-B), participants need to alternate between numbers and letters. In both TMT-A and B,
the time to complete the task quantifies the performance, and lower scores indicate better
performance. Based on the previous literature, we focused on SDgorp, SDpgLTA, and SDTHETA
(Vlahou et al., 2015) and selected different ROIs from two research papers about the neural
correlates of the TMT: Zakzanis et al., (2005) and Jacobson et al., (2011) (Table 1). To reduce
the number of multiple comparisons (Nguyen and Holmes, 2019), these ROIs were
decomposed into singular values using the prcomp function belonging to factoextra package
(R core team, 2018), which performs SVD on the centered values. As a criterion, the
minimum total variance explained over 70% was selected (Jollife and Cadima, 2016). This
resulted in three principle components (PC) in SDgorp (52.82%, 10.34%, and 7%), two PCs
in SDpeLTa (67.37%, 10.95%), and one PC in SDtueTA (75.63%). We also ran multiple linear
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regression using task completion time in TMT-A and TMT-B as the dependent variables with
the PC scores (for SDeorp, SDpeLTa, and SDTueTA) and their interaction with continuous age
as independent variables. Since the residuals from the regression models fitted to the data
were not normally distributed, the TMT values were log-transformed prior to the final
analyses. These tests were conducted using the /mp function in /mperm package implemented

in R (R core team, 2018).

Table 1. Selected region of interests (ROIs) derived from the previous fMRI literature, and
their corresponding ROIs in Harvard-Oxford atlas to investigate the age-dependent

relationship between TMT and SDgorp or SDgkG.

Literature Region Hemisphere Harvard-Oxford Atlas
Middle Frontal Gyrus Left Middle Frontal Gyrus
Precentral Gyrus Left Precentral Gyrus
Cingulate Gyrus Left/Right Cingulate Gyrus, anterior/posterior
Zakzanis et al., Superior Frontal Gyrus Left Superior Frontal Gyrus
2005 Medial Frontal Gyrus Left Frontal Medial Cortex
Insula Left/Right Insular Cortex
Middle Temporal Gyrus Left Middle Temporal Gyrus,
anterior/posterior/temporooccipital
Superior Temporal Gyrus ~ Left Superior Temporal Gyrus,
anterior/posterior
Jacobson et al., Fusiform Gyrus Right Occipital Fusiform Gyrus
201 Inferior Middle Frontal Right Middle Frontal Gyrus
Gyrus
Precentral Gyrus Right Precentral Gyrus
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3. Results
Mean SDporp and SDeec. The topographic distribution of SDeorp in younger adults revealed
the largest brain signal variability values in fronto-temporal regions while in older adults it
was in the frontal and occipital areas. Further, we found strongest variability across younger
subjects in occipito-temporal regions for SDpeLta, SDtHETA, SDALPHA, and in medial frontal
brain regions for SDgeTa, While older adults showed strongest brain signal variability in the
fronto-central brain regions for SDpEeLTa, in parietal-central brain regions for SDthETA,
SDavpHa, and in medial frontal brain regions for SDggra. The details of the mean values of
SDgorp and SDEggg across age groups and their topographic distributions are given in
Supplementary Table 1, Supplementary Figure 2 and 3, and are also available at Neurovault

(https://neurovault.org/collections/ WWOKVUDV/).

Age and Sex Effects. The nonparametric ANCOVAs with SDporp as dependent variable
demonstrated that there was a significant main effect of age group in 72 ROIs in frontal,
temporal, and occipital brain regions (F-values: 13.32-61.14; Figure 2). However, there was
no significant main effect of sex on SDporp and no significant interaction between age group
and sex (all prpr>0.05). Tukey HSD post-hoc analyses showed that older subjects had
decreased SDporp compared to younger adults which were presented in both sexes (nroi=35).
The nonparametric ANCOV As with SDgg as dependent variable showed significant main
effects of age group in all frequency bands: SDpeLta in 14 ROIs in occipital (F-values: 12.57—
20.94), SDrtheTA in 16 ROIs in frontal and parietal (F-values: 13.16—40.30), SDarpna in 20
ROIs in occipital (F-values: 12.69-20.12), and SDggta in 19 ROIs in central and temporal
brain regions (F-values: 12.50-21.61), as shown in Figure 2. There were also significant main
effects of sex in all frequency bands: SDperta in 21 ROIs in temporal and occipital (F-values:
13.24-26.63), SDThETA in 74 ROIs in frontal, occipital, and temporal (F-values: 12.68-30.06),
SDarpua in 4 ROIs in frontal (F-values: 12.88—16.51), and SDgeta in 69 ROIs in temporal,
occipital, and central brain regions (F-values: 12.54-35.72), as shown in Figure 3. No
significant interaction effects between age group and sex on SDggg were observed in any
frequency band (prpr>0.05). Tukey HSD post-hoc analyses on SDgeg showed that older
subjects had less brain signal variability, which was present in both sexes for SDpeLta
(nror=12), SDtHETA (nROI=10), and SDarpua (nro=11). Additionally, older adults showed
higher SDggTa, driven by female subjects (nror=15). With regard to sex differences, post-hoc
analyses showed that females had higher SDpeLta, SDtHETA, SDALPHA, and SDgeta than

males. Sex differences in SDperta (nrRo=13) and SDtrETA (NROI=54) Were mostly pronounced
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361  in younger adults, while the effect of sex in SDgera (nrRor=21) were mainly presented in older
362 adults (p<0.05). The graphical distribution of the F-values for the significant effects of age
363  group or sex for each ROIs are shown in Supplementary Figure 4. Additional information of
364  SDsorp and SDkgg for each frequency band and for each of the 96 ROIs, split up by age group
365  and sex, are presented in the Supplementary Tables 2-6.

366

367  Figure 2. Spatial maps of significant age group differences in SDpoLp and SDgkG.

368  We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD)

369  signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1—
370 3 Hz), theta (4-8 Hz), alpha (8—12 Hz), and beta (15-25 Hz) frequency bands at the source
371  space. Statistical significance was determined using nonparametric ANCOVAs corrected for
372  multiple comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Blue
373  color indicates areas where brain signal variability was lower in older than in younger adults,

374  while red color indicates the opposite.
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376  Figure 3. Spatial maps of significant sex differences in SDsorLp and SDkkc.

377  We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD)

378  signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1—
379 3 Hz), theta (4-8 Hz), alpha (8—12 Hz), and beta (15-25 Hz) frequency bands at the source
380  space. Statistical significance was determined using nonparametric ANCOVAs corrected for
381  multiple comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Yellow
382  color indicates areas where brain signal variability was higher in female subjects as compared

383  to male subjects in EEG.
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385  SDgorp — SDeeG Correlation. The correlation coefficient of pairwise associations for 96 ROIs
386  of SDeorp with SDperta, SDTHETA, SDALPHA, and SDgeta ranged in younger adults from rho=-
387  0.200 to rho=0.223 (Supplementary Table 7) and in older adults from rho=0.386 to

388  rho=0.349 (Supplementary Table 8). None of the pairwise associations between SDgorp and
389  SDkgc remained significant after the correction for multiple comparison corrections.

390  Confirmatory multivariate sparse CCA further showed that correlations between SDgorp and
391  SDkgg across all subjects were rather low, highly sparse, and non-significant (SDpgrta;

392 r=0.145, pperm=0.750, /1=0.367; SDtHETA; 1=0.143, pperm=0.713 [1=0.7; SDarpHA; 1=0.153,
393 pperm=0.528, [1=0.1; SDgEeTA; 1=0. 232, pperm=0.096, ;=0.633).

394

395  Figure 4. Distribution of correlation coefficients (rho) for the association between SDporp
396  and SDggg for A) younger (N=135) and B) older (N=54) adults for different frequency bands
397  across each pair of 96 regions of interests. The correlations between SDporp and SDggg were
398  tested using pairwise Spearman’s rank correlation corrected for multiple comparison by false

399  discovery rates (FDR; Benjamini and Hochberg, 1995).
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Cognition. There was a significant interaction between age and SDgorp in PC2 on the TMT-B
performance (adjusted R? = 0.395, F(7,181) = 18.60, p <.001, interaction: f=-0.002, p =
0.027). For older, but not younger participants, stronger SDgorp was associated with faster
completion time in PC2, driven mainly by the left temporal gyrus as well as the left anterior
and posterior cingulate cortex (Figure 5). The regression analyses in SDpgrta and SDtueTA
did not show a significant association between cognition and brain signal variability
measures. The contributions of selected ROIs to the PCs resulted from SVD analyses can be
found in Supplementary Table 9. The complete multiple linear regression results can be found

in Supplementary Table 10.

Figure 5. Age-dependent relationship between cognitive performance and BOLD signal
variability.

The scatterplot shows the significant association between task completion time in TMT-B (x-
axis) and SDgorp (adjusted R? = 0.395, F(7,181) = 18.60, p <.001, interaction: p=-0.002, p =
0.027) in PC2, driven mainly by the left anterior and posterior temporal gyrus, bilateral

anterior and posterior cingulate cortex.
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419 4. Discussion

420 Comparing healthy younger and older adults, we found widespread variability

421  reductions in BOLD signal as well as in the amplitude envelope of delta, theta, and alpha
422  frequency of rsEEG, whereas increased variability with aging was observed in the beta-band
423  frequency. As a complementary analysis, we also explored sex differences and found that
424  female subjects exhibited higher EEG signal variability than male subjects; no significant sex
425  differences were found in BOLD signal variability. There were no significant correlations
426  between hemodynamic (SDsoLp) and electrophysiological (SDeeg) measures of brain signal
427  variability, neither in the younger nor in the older adults. Our results suggest that variability
428  measures of rsfMRI and rsEEG — while both related to aging — are dominated by different
429  physiological origins and relate differently to age and sex.

430
431 4.1.BOLD Signal Variability
432 The first aim of our study was to investigate the effect of age on BOLD signal

433  variability, as measured by SD of spontaneous fluctuations during rstMRI. Consistent with
434 recent rsfMRI studies demonstrating that BOLD signal variability decreases with age in large-
435  scale networks (Grady and Garrett, 2018; Nomi et al., 2017), we found that older subjects had
436  reduced SDgorp in temporal and occipital brain regions but also in cortical midline structures
437  like the precuneus, anterior and posterior cingulate cortices, as well as orbitofrontal cortex
438  compared to younger adults. These age-related reductions in BOLD signal variability were
439  thus especially apparent in regions of the Default Mode (DMN) and the Fronto-Parietal

440  Network (FPN). The DMN is an intrinsically correlated network of brain regions, that is

441  particularly active during rest or fixation blocks (Biswal et al., 2010). It reflects the systematic
442  integration of information across the cortex (Margulies et al., 2016) and has been frequently
443  associated with psychological functions like self-referential thought or mind-wandering, and
444  also memory retrieval (Andrews-Hanna et al., 2014; Raichle, 2015). The FPN is involved in
445  cognitive control processes (Spreng et al., 2013), and closely interacts with the DMN, for

446  example during mind-wandering state (Golchert et al., 2017). Previous studies in healthy

447  aging noted that older subjects showed lower functional connectivity in DMN and FPN

448  regions (Damoiseaux, 2017; Damoiseaux et al., 2008; Meunier et al., 2009; Petersen et al.,
449  2014). Similarly, an altered functional connectivity in the DMN has been found in different
450  pathologies, for example, in Alzheimer’s disease (Greicius et al., 2004) or mild cognitive

451  impairment (Das et al., 2015). Further, we found a significant interaction between age and

452  SDgorp in temporal and cingulate cortices for performance on the cognitive task (TMT-B),
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suggesting that the relationship between brain signal variability and cognitive performance
depends on the participants’ age. We speculate that — in the elderly — reduced BOLD signal
variability in the DMN and the FPN, particularly in the overlapping frontal brain regions,
could be related to locally impaired function that is reflected in impaired cognitive
performance (Campbell et al., 2012). Such findings support the notion that local BOLD signal
variability may be a valuable biomarker of neurocognitive health (and disease) in aging.
Sex-specific differences in brain structure and function have been previously shown
(for a review see, Gong et al., 2011; Ruigrok et al., 2014; Sacher et al., 2013). For example,
larger total brain volume has been reported in male as compared to female subjects (Gong et
al., 2011), whereas higher cerebral blood flow (Gur et al., 1982; Rodriguez et al., 1988) and
stronger functional connectivity in the DMN (Tomasi and Volkow, 2012) were found in
females. In our exploratory analysis, we did not find significant sex differences in BOLD
signal variability when controlling for total intracranial volume as an approximation of overall

brain size.

4.2.Electrophysiological Signal Variability

Measures of neural variability were derived from rsEEG for several main frequency
bands (delta, theta, alpha, beta) as the standard deviation of their amplitude of envelope time
series data, analogously to the BOLD signal variability. Multimodal imaging studies have
shown that the amplitude envelope of neural oscillatory activity across frequency bands
relates to different rsfMRI networks (Brookes et al., 2011; Deligianni et al., 2014), confirming
the neurophysiological origin of the resting state networks measured with BOLD fMRI.
Additionally, these studies also concluded that different frequency bands can be related to the
same functional network, but also differentially to distinct networks (Brookes et al., 2011;
Laufs et al., 2006; Mantini et al., 2007; Meyer et al., 2013). For instance, Mantini et. al.
(2007) reported that the visual network is associated with all frequency bands except gamma
rhythm, while the sensorimotor network is primarily associated with beta-band oscillations.

In our analysis, we found age-dependent EEG signal variability changes within
networks which were associated with more than one frequency band, thus confirming that
neurons generating oscillations at different frequencies may contribute to the same network.
More precisely, we found age-related reductions in SDpgrta and SDarpaa mainly in a visual
network (including calcarine regions, cuneal cortex, and occipital pole), SDtueTa in posterior
DMN (e.g., posterior cingulate cortex), while an enhancement of SDggrra was mainly seen in

the temporal (e.g., superior/middle temporal gyrus), and central/sensorimotor (e.g.,
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supramarginal gyrus) regions. These results align with previous reports of age-dependent
changes of electrophysiological activity using spectral power (Dustman et al., 1993; Vlahou et
al., 2015), and signal variability (Dustman et al., 1999; Tsvetanov et al., 2015).

Age-related decreases of alpha amplitude and alpha band variability (measured by SD
of the oscillatory signal) were previously found in posterior and occipital brain regions
(Babiloni et al., 2006; Tsvetanov et al., 2015). Alpha rhythm is a classical EEG hallmark of
resting wakefulness (Laufs et al., 2003) that is modulated by thalamo-cortical and cortico-
cortical interactions (Bazanova and Vernon, 2014; Goldman et al., 2002; Lopes Da Silva et
al., 1997; Moosmann et al., 2003). It has been suggested that the posterior alpha-frequency
plays an important role in the top-down control of cortical activation and excitability
(Klimesch, 1999). Accordingly, decreased alpha variability in occipital regions might be
associated with altered functioning of the cholinergic basal forebrain, affecting thalamo-
cortical and cortico-cortical processing. Our finding of higher temporal and sensorimotor
SDgEta in the elderly is in line with previous findings (Rossiter et al., 2014; Tsvetanov et al.,
2015). Aging has previously been associated with an increase in movement-related beta-band
attenuation, suggesting an enhanced motor cortex GABAergic inhibitory activity in older
individuals (Rossiter et al., 2014). Similarly, beta-band activity is thought to play a key role in
signaling maintenance of the status quo of the motor system, despite the absence of
movement (Engel and Fries, 2010). Therefore, greater SDagTa in sensorimotor brain regions
could be interpreted as a compensatory mechanism to account for a decline of motor
performance during aging (Quandt et al., 2016).

It should be noted that the present findings of age-related alterations of brain signal
variability at different frequencies might be influenced by several anatomical factors which
might influence EEG-generators such as reduced cortical gray matter (Babiloni et al., 2013;
Moretti et al., 2012), white-matter (Nunez et al., 2015; Valdés-Hernandez et al., 2010), and
increased amount of cerebrospinal fluid (CSF; Hartikainen et al., 1992; Stomrud et al., 2010),
but also alterations of cerebral glucose metabolism (Dierks et al., 2000). Localized or global
disturbances of brain anatomy and function might lead to deviations in the EEG sources,
resulting in EEG amplitude changes. A methodological improvement for future studies will
therefore be the application of individual head models (Ziegler et al., 2014).

In addition to the effect of age on rsEEG signal variability, an exploratory analysis
showed sex differences in distinct brain regions and EEG frequencies. More precisely, we
found higher SDpgrta and SDtrETA 1n Occipito-temporal, SDarpua in frontal, and SDggta in

frontal as well as occipito-temporal brain regions in female compared to male subjects. While
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521  some studies demonstrated higher alpha (Aurlien et al., 2003), delta (Armitage, 1995), theta
522 (Carrier et al., 2001; Duffy et al., 1993), and beta power (Jausovec and Jausovec, 2010;

523  Matsuura et al., 1985; Veldhuizen et al., 1993) in female relative to male subjects, other

524  studies reported the opposite pattern (Brenner et al., 1995; Latta et al., 2005; Zappasodi et al.,
525  2006). These differences in EEG signal variability could be a result of different mechanisms
526  (biological/hormonal, cultural or developmental) involved in shaping sex differences.

527  Unfortunately, based on our dataset we cannot differentiate which of these potential

528  mechanisms might be most relevant for the observed changes.

529
530 4.3. Association between BOLD and EEG Variability
531 We further assessed how neural variability in source-reconstructed rsEEG related to

532  the analogous parameters of BOLD signal variability in rsfMRI using univariate and

533  multivariate correlation analyses. Previously, simultaneous EEG-fMRI studies have shown
534  meaningful relationships between fluctuations in EEG power, frequency, phase, and local

535  BOLD changes (for a review see, Jorge et al., 2014; Ritter and Villringer, 2006). Due to age-
536  related physiological (particularly cardiovascular) alterations in the brain, we expected the
537  relationship between BOLD and EEG signal variability to be stronger in younger than older
538 adults. However, in the present study, both univariate and multivariate analyses showed no
539  significant correlations between SDpoLp and SDEgc neither in the younger nor in the older
540  adults. This finding was supported by the distinct anatomical distributions of age-related

541  changes in BOLD and EEG signal variability, that barely showed a spatial overlap, suggesting
542  different underlying physiological processes. What could they be? Clearly, neuronal activity
543  is the main signal source for EEG- and MEG recordings as well as for EEG/MEG-based

544  variability measures. BOLD signal variability, however, can reflect both vascular and neural
545  processes (Garrett et al., 2017). While neuronal activity clearly contributes to the BOLD

546  signal at rest (Ma et al., 2016; Mateo et al., 2017), our results indicate, however, that neuronal
547  activity which is captured by EEG (or more specifically by our EEG-based measures), is not
548  the major determinant of BOLD variability in the resting state. Other factors that could

549  contribute to BOLD variability are (i) neuronal activity which is not captured by EEG and (ii)
550  non-neural factors such as vasomotion, or cardiac and respiratory signals (Murphy et al.,

551  2013). In the elderly, additional factors related to the known morphological and functional
552 changes of blood vessels as well as age-related metabolic changes are known to affect CBF
553  (Ances et al., 2009; Martin et al., 1991), CMRO: (Aanerud et al., 2012), and CVR (Liu et al.,
554 2013) and therefore are likely to also influence BOLD variability. Thus, given different
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underlying physiology, joint EEG and fMRI variability studies might provide complementary
information for a comprehensive assessment of neuronal as well as vascular factors related to
aging.

5. Limitations

There are several limitations of our study: EEG and MRI scans were not recorded
simultaneously. Therefore, we could not directly relate the two signals in a cross-correlation
analysis. Furthermore, EEG and MRI were performed with different body postures (fMRI;
supine, EEG; seated) known to affect brain function, for example, changes in the amplitude of
the EEG signal have been related to different body postures presumably due to the shifts in
cerebrospinal fluid layer thickness (Rice et al., 2013). Similarly, other experimental (e.g.,
visual display; Nir et al., 2006), environmental (e.g., acoustic noise in MRI; Andoh et al.,
2017; Cho et al., 1998) and subject-related factors (e.g., changes of vigilance; Tagliazucchi
and Laufs, 2014; Wong et al., 2013) could have introduced unintended variations in our
results (Yan et al., 2013) and the influence of these factors is probably not the same for the
different methods, e.g., noise in MRI or poor “control” of vigilance in MRI. For instance,
given the well-known relationship between vigilance or arousal and fMRI signal fluctuations
(Bijsterbosch et al., 2017; Chang et al., 2016; Haimovici et al., 2017), it is likely that the
observed age-related differences in BOLD signal variability might be confounded by such
within-subject (state) variability. Therefore, future rsfMRI studies may benefit from obtaining
arousal-related (e.g., self-report) measures and an explicit measurement of eye movements
and eye opening/closure to account for the influence of arousal on the BOLD amplitude
changes. Another option would be to combine EEG and fMRI simultaneously. Yet, resting
state measures of EEG (Népflin et al., 2007) and fMRI (Shehzad et al., 2009; Zuo et al., 2010)
have been shown to be reliable within-individuals across time.

In our study, the computation of the source reconstructed rsEEG required the
parcellation of the brain into relatively large anatomical ROIs. It could well be that the
analysis with a higher spatial resolution (e.g., at the voxel-level) with individual head models
may provide additional insights about brain signal variability.

Finally, while our study aimed at comparing analogous variability measures in EEG
and fMRI, future research using rsEEG and rsfMRI in the same subjects would benefit from
the addition of connectivity-based measures including graph theory-based (Yu et al., 2016) or
sliding-window methods (Chang et al., 2013; Qin et al., 2019).
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587 6. Conclusion

588 In this study, we report age and sex differences of brain signal variability obtained
589  with rsfMRI and rsEEG from the same subjects. We demonstrate extensive age-related

590  reduction of SDgorp, SDpeLTA, SDTHETA, and SDarPHA mainly in the DMN and the visual
591  network, while a significant increase of SDeera was mainly seen in temporal brain regions.
592 We could not demonstrate significant associations between SDporp and SDggg. Our findings
593  indicate that measurements of BOLD and EEG signal variability, respectively, are likely to
594  stem from different physiological origins and relate differentially to age and sex. While the
595  two types of measurements are thus not interchangeable, it seems, however, plausible that
596  both markers of brain variability may provide complementary information about the aging

597  process.
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