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Abstract 1 

Variability of neural activity is regarded as a crucial feature of healthy brain function, and 2 

several neuroimaging approaches have been employed to assess it noninvasively. Studies on 3 

the variability of both evoked brain response and spontaneous brain signals have shown 4 

remarkable changes with aging but it is unclear if the different measures of brain signal 5 

variability – identified with either hemodynamic or electrophysiological methods – reflect the 6 

same underlying physiology. In this study, we aimed to explore age differences of 7 

spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in 8 

healthy younger (25±3 years, N=135) and older (67±4 years, N=54) adults. Consistent with 9 

the previous studies, we found lower blood oxygenation level dependent (BOLD) variability 10 

in the older subjects as well as less signal variability in the amplitude of low-frequency 11 

oscillations (1–12 Hz), measured in source space. These age-related reductions were mostly 12 

observed in the areas that overlap with the default mode network. Moreover, age-related 13 

increases of variability in the amplitude of beta-band frequency EEG oscillations (15–25 Hz) 14 

were seen predominantly in temporal brain regions. There were significant sex differences in 15 

EEG signal variability in various brain regions while no significant sex differences were 16 

observed in BOLD signal variability. Bivariate and multivariate correlation analyses revealed 17 

no significant associations between EEG- and fMRI-based variability measures. In summary, 18 

we show that both BOLD and EEG signal variability reflect aging-related processes but are 19 

likely to be dominated by different physiological origins, which relate differentially to age 20 

and sex. 21 

Keywords: brain signal variability, resting state, BOLD, fMRI, EEG, aging, sex, default 22 

mode network  23 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 23, 2019. ; https://doi.org/10.1101/646273doi: bioRxiv preprint 

https://doi.org/10.1101/646273
http://creativecommons.org/licenses/by-nc/4.0/


 3 

1. Introduction 24 

Functional neuroimaging methods such as fMRI, PET, fNIRS, EEG, or MEG have 25 

allowed the non-invasive assessment of functional changes in the aging human brain (Cabeza, 26 

2001; Cabeza et al., 2018). Most previous functional neuroimaging studies on aging have 27 

employed a task-based design (Grady, 2012) and in their data analysis the central tendency 28 

has typically been assumed to be the most representative value in a distribution (e.g., mean) 29 

(Speelman and McGann, 2013) or the “signal” within distributional “noise”. In recent years, 30 

also the variability of brain activation in task-dependent and task-independent measurements 31 

(as spontaneous variations of background activity) has been shown to provide relevant 32 

information about the brain’s functional state (Garrett et al., 2013b; Grady and Garrett, 2018; 33 

Nomi et al., 2017). These studies primarily measured the blood oxygen level dependent 34 

(BOLD) signal using fMRI. For example, it has been demonstrated that the variance of the 35 

task-evoked BOLD response was differentially related to aging as well as cognitive 36 

performance (Armbruster-Genc et al., 2016; Garrett et al., 2013a). Similarly, spontaneous 37 

signal variability in resting state fMRI (rsfMRI) has been found to decrease with age (Grady 38 

and Garrett, 2018; Nomi et al., 2017), in individuals with stroke (Kielar et al., 2016), and 39 

22q11.2 deletion syndrome (Zöller et al., 2017). An increase of fMRI variability has been 40 

shown to occur in inflammation induced state-anxiety (Labrenz et al., 2018) and to parallel 41 

symptom severity in Attention Deficit Hyperactivity Disorder (Nomi et al., 2018). From these 42 

studies, it was concluded that changes in BOLD signal variability might serve as an index for 43 

alterations in neural processing and cognitive flexibility (Grady and Garrett, 2014). 44 

The conclusions of aforementioned studies imply that BOLD signal variability is 45 

mainly determined by neuronal variability. To a large extent, this is based on the premise that 46 

BOLD is related to neuronal activity: The evoked BOLD signal in task-based fMRI reflects 47 

the decrease of the deoxyhemoglobin concentration to changes in local brain activity, which is 48 

determined by vascular (blood velocity and volume: “neurovascular coupling”) and metabolic 49 

(oxygen consumption: “neurometabolic coupling”) factors (Logothetis and Wandell, 2004; 50 

Villringer and Dirnagl, 1995). The BOLD signal is therefore only an indirect measure of 51 

neural activity (Logothetis, 2008). For the variability of task-evoked BOLD signal and for 52 

spontaneous variations of the BOLD signal, in principle, the same considerations apply 53 

regarding their relationship to underlying neural processes (Murayama et al., 2010). However, 54 

since in rsfMRI there is no explicit external trigger for evoked brain activity to which time-55 

locked averaging could be applied, the time course of rsfMRI signals is potentially more 56 

susceptible to contributions of “physiological noise”, such as cardiac and respiratory signals 57 
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(Birn et al., 2008; Chang et al., 2009), but also spontaneous fluctuations of vascular tone, 58 

which is found even in isolated arterial vessels (Failla et al., 1999; Hudetz et al., 1998; Wang 59 

et al., 2006). In the same vein, the variability of task-evoked fMRI is not necessarily 60 

reflecting only the variability of evoked neuronal activity, as it may also – at least partly – 61 

reflect the variability of the spontaneous background signal on which a constant evoked 62 

response is superimposed. 63 

In aging, non-neuronal signal fluctuations may also introduce spurious common 64 

variance across the rsfMRI time series (Caballero-Gaudes and Reynolds, 2017), thus 65 

confounding estimates of “neural” brain signal variability. Previous evidence suggests that the 66 

relationship between neuronal activity and the vascular response is attenuated with age – and 67 

so is, as a consequence, the BOLD signal (for review see D’Esposito et al., 2003). For 68 

instance, aging has been associated with altered cerebrovascular ultrastructure, reduced 69 

elasticity of vessels, and atherosclerosis (Farkas and Luiten, 2001) but also with a decrease in 70 

resting cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and 71 

cerebrovascular reactivity (CVR) (Liu et al., 2013). Taken together, age-related changes in 72 

BOLD signal or BOLD signal variability are related to a mixture of alterations in non-neural 73 

spontaneous fluctuations of vascular signals, neural activity, neurovascular coupling, and/or 74 

neurometabolic coupling (D’Esposito et al., 2003; Geerligs et al., 2017; Tsvetanov et al., 75 

2015). 76 

While BOLD fMRI signal and specifically variance measures based on fMRI are only 77 

partially and indirectly related to neural activity (Liu, 2013; Logothetis, 2008), 78 

electrophysiological methods such as EEG can provide a more direct assessment of neural 79 

activity with a higher temporal but poorer spatial resolution (Cohen, 2017). EEG measures 80 

neuronal currents resulting from the synchronization of dendritic postsynaptic potentials 81 

across the neural population; the cerebral EEG rhythms thereby reflect the underlying brain 82 

neural network activity (Steriade, 2006). Resting state (rs)EEG is characterized by 83 

spontaneous oscillations (“brain rhythms”) at different frequencies. Previously, the mean 84 

amplitude of low-frequency bands (e.g., delta and/or theta, 1-7 Hz) has been shown to 85 

correlate negatively with age (Vlahou et al., 2015), while higher-frequency bands (e.g., beta, 86 

15-25 Hz) show the reverse pattern (Rossiter et al., 2014). However, less is known about the 87 

within-subject variability of EEG measures and their association with aging. Several studies 88 

have addressed the variability in the spectral amplitudes of different frequency bands using 89 

variance (Hawkes and Prescott, 1973; Oken and Chiappa, 1988), coefficient of variation 90 

(Burgess and Gruzelier, 1993; Maltez et al., 2004), and complexity (Fernández et al., 2012; 91 
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Sleimen-Malkoun et al., 2015). For instance, reductions of the complexity in rsEEG signal 92 

have been found not only in healthy aging (Yang et al., 2013; Zappasodi et al., 2015) but also 93 

in age-related pathologies such as mild cognitive impairment (McBride et al., 2014) and 94 

Alzheimer’s disease (Smits et al., 2016). Accordingly, it has been suggested that irregular 95 

(e.g., variable) systems indicate a normal and healthy state (more integrated information) 96 

while highly regular systems often mark dysfunction or disease (Lipsitz and Goldberger, 97 

1992; Vaillancourt and Newell, 2002). 98 

The different methodological approaches, fMRI based “vascular” approaches on the 99 

one hand and electrophysiological methods such as EEG and MEG, on the other hand, 100 

indicate alterations of brain signal variability with aging. However, it remains unclear whether 101 

these different measures of brain variability at rest reflect the same underlying physiological 102 

changes. Evidently, there are some correlations between the two signal sources (for a review 103 

see, Jorge et al., 2014; Ritter and Villringer, 2006). For instance, in task-based EEG-fMRI 104 

simultaneous recordings, a relationship between BOLD responses and amplitude of evoked 105 

potentials has been demonstrated (e.g., Ritter et al., 2009; Seaquist et al., 2007), while in 106 

resting state EEG-fMRI studies, a negative association between spontaneous modulations of 107 

alpha rhythm and BOLD signal has also been established (e.g., Chang et al., 2013; Goldman 108 

et al., 2002; Gonçalves et al., 2006; Moosmann et al., 2003). Further, differential correlation 109 

patterns have been noted for the various rhythms of different frequencies in EEG/MEG and 110 

the fMRI signal, such that low-frequency oscillations show a negative (Deligianni et al., 2014; 111 

Mantini et al., 2007; Meyer et al., 2013), while higher frequencies oscillations demonstrate a 112 

positive correlation with the BOLD signal (Niessing et al., 2005; Scheeringa et al., 2011). 113 

Regarding the known age-related changes in BOLD and EEG signal variability, 114 

respectively, the question arises whether these alterations are dominated by joint signal 115 

sources of fMRI and EEG or by – potentially different – signal contributions that relate to 116 

each of these two methods. Given the – potentially large – non-neuronal signal contribution, 117 

this issue is particularly relevant for rsfMRI studies. Here, we addressed this question by 118 

analyzing rsfMRI and EEG measures of variability in healthy younger and older subjects. To 119 

our knowledge, the only study that compared variability in a “vascular” imaging method 120 

(rsfMRI) and an electrophysiological method (rsMEG at the sensor space) concluded that the 121 

effects of aging on BOLD signal variability were mainly driven by vascular factors (e.g., 122 

heart rate variability) and not well-explained by the changes in neural variability (Tsvetanov 123 

et al., 2015). The main aims of the present study were to explore i) age differences of brain 124 

signal variability measures, as well as to investigate ii) how neural variability derived from 125 
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rsEEG related to the analogous parameters of BOLD signal variability derived from rsfMRI. 126 

We used rsfMRI and rsEEG from the “Leipzig Study for Mind-Body-Emotion Interactions” 127 

(Babayan et al., 2019). As an explanatory analysis, we further investigated sex-related 128 

differences of brain signal variability measures. To measure brain signal variability, we 129 

calculated the standard deviation (SD) of both the BOLD signal and of the amplitude 130 

envelope of the filtered rsEEG time series for a number of standard frequency bands at the 131 

source space. We hypothesized that brain signal variability would generally decrease with 132 

aging. In addition, based on the premise that BOLD fMRI signal variability reflects neural 133 

variability as measured by rsEEG, we expected that the corresponding changes in both signal 134 

modalities would demonstrate moderate to strong similarity in their spatial distribution. Given 135 

the confounding effects of vascular factors during aging on the fMRI signal (D’Esposito et al., 136 

2003; Liu, 2013; Thompson, 2018), we further expected to find the relationship between 137 

BOLD and EEG signal variability to be stronger in younger than older adults.  138 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 23, 2019. ; https://doi.org/10.1101/646273doi: bioRxiv preprint 

https://doi.org/10.1101/646273
http://creativecommons.org/licenses/by-nc/4.0/


 7 

2. Method 139 

2.1.Participants 140 

The data of the “Leipzig Study for Mind-Body-Emotion Interactions” (LEMON; 141 

Babayan et al., 2019) comprised 227 subjects in two age groups (younger: 20-35, older: 59-142 

77). Only participants who did not report any neurological disorders, head injury, alcohol or 143 

other substance abuse, hypertension, pregnancy, claustrophobia, chemotherapy and malignant 144 

diseases, current and/or previous psychiatric disease or any medication affecting the 145 

cardiovascular and/or central nervous system in a telephone pre-screening were invited to the 146 

laboratory. The study protocol conformed to the Declaration of Helsinki and was approved by 147 

the ethics committee at the medical faculty of the University of Leipzig (reference number 148 

154/13-ff). 149 

RsEEG recordings were available for 216 subjects who completed the full study 150 

protocol. We excluded data from subjects that had missing event information (N=1), different 151 

sampling rate (N=3), mismatching header files or insufficient data quality (N=9). Based on 152 

the rsfMRI quality assessment, we further excluded data from subjects with faulty 153 

preprocessing (N=7), ghost artefacts (N=2), incomplete data (N=1), or excessive head motion 154 

(N=3) (criterion: mean framewise displacement (FD) ≤ 0.5 mm; Power et al., 2012) 155 

(Supplementary Figure 1). The final sample included 135 younger (M = 25.10 ± 3.70 years, 156 

42 females) and 54 older subjects (M = 67.15 ± 4.52 years, 27 females). 157 

2.1.fMRI Acquisition 158 

Brain imaging was performed on a 3T Siemens Magnetom Verio MR scanner 159 

(Siemens Medical Systems, Erlangen, Germany) with a standard 32-channel head coil. The 160 

participants were instructed to keep their eyes open and not fall asleep while looking at a low-161 

contrast (light grey on dark grey background) fixation cross. 162 

The structural image was recorded using an MP2RAGE sequence (Marques et al., 2010) with 163 

the following parameters: TI 1 = 700 ms, TI 2 = 2500 ms, TR = 5000 ms, TE = 2.92 ms, FA 1 164 

= 4°, FA 2 = 5°, band width = 240 Hz/pixel, FOV = 256 × 240 × 176 mm3, voxel size = 1 x 1 165 

x 1 mm3. The functional images were acquired using a T2*-weighted multiband EPI sequence 166 

with the following parameters: TR = 1400 ms, TE = 30 ms, FA= 69°, FOV = 202 mm, 167 

imaging matrix=88 × 88, 64 slices with voxel size = 2.3 x 2.3 x 2.3 mm3, slice thickness = 2.3 168 

mm, echo spacing = 0.67 ms, bandwidth=1776 Hz/Px, partial fourier 7/8, no pre-scan 169 

normalization, multiband acceleration factor = 4, 657 volumes, duration = 15 min 30 s. A 170 

gradient echo field map with the sample geometry was used for distortion correction (TR = 171 

680 ms, TE 1 = 5.19 ms, TE 2 = 7.65 ms). 172 
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2.2.fMRI Preprocessing 173 

Preprocessing was implemented in Nipype (Gorgolewski et al., 2011), incorporating 174 

tools from FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), ANTs 175 

(Avants et al., 2011), CBS Tools (Bazin et al., 2014), and Nitime (Rokem et al., 2009). The 176 

pipeline comprised the following steps: (I) discarding the first five EPI volumes to allow for 177 

signal equilibration and steady state, (II) 3D motion correction (FSL mcflirt), (III) distortion 178 

correction (FSL fugue), (IV) rigid body coregistration of functional scans to the individual 179 

T1-weighted image (Freesurfer bbregister), (V) denoising including removal of 24 motion 180 

parameters (CPAC, Friston et al., 1996), motion, signal intensity spikes (Nipype rapidart), 181 

physiological noise in white matter and cerebrospinal fluid (CSF) (CompCor; Behzadi et al., 182 

2007), together with linear and quadratic signal trends, (VI) band-pass filtering between 0.01-183 

0.1 Hz (FSL fslmaths), (VII) spatial normalization to MNI152 (Montreal Neurological 184 

Institute) standard space (2 mm isotropic) via transformation parameters derived during 185 

structural preprocessing (ANTS). (VIII) The data were then spatially smoothed with a 6-mm 186 

full-width half-maximum (FWHM) Gaussian kernel (FSL fslmaths). Additionally, we 187 

calculated total intracranial volume (TIV) of each subject using the Computational Anatomy 188 

Toolbox (CAT12: http:// dbm.neuro.uni-jena.de/cat/) running on Matlab 9.3 (Mathworks, 189 

Natick, MA, USA) and used it as a covariate for further statistical analyses (Malone et al., 190 

2015). 191 

BOLD Signal Variability (SDBOLD). Standard deviation (SD) quantifies the amount of 192 

variation or dispersion in a set of values (Garrett et al., 2015; Grady and Garrett, 2018). 193 

Higher SD in rsfMRI signal indicates greater intensity of signal fluctuation or an increased 194 

level of activation in a given area (Garrett et al., 2011). We first calculated SDBOLD across the 195 

whole time series for each voxel and then within 96 boundaries of preselected atlas-based 196 

regions of interests (ROIs) based on the Harvard-Oxford cortical atlas (Desikan et al., 2006). 197 

The main steps of deriving brain signal variability (SDBOLD) from the preprocessed fMRI 198 

signal are shown in Figure 1. 199 

The reproducible workflows containing fMRI preprocessing details can be found here: 200 

https://github.com/NeuroanatomyAndConnectivity/pipelines/releases/tag/v2.0. 201 

2.3.EEG Recordings 202 

Sixteen minutes of rsEEG were acquired on a separate day with BrainAmp MR-plus 203 

amplifiers using 61 ActiCAP electrodes (both Brain Products, Germany) attached according 204 

to the international standard 10-20 localization system (Jurcak et al., 2007) with FCz (fronto-205 

central or cephalic electrode) as the reference. The ground electrode was located at the 206 
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sternum. Electrode impedance was kept below 5 kΩ. Continuous EEG activity was digitized 207 

at a sampling rate of 2500 Hz and band–pass filtered online between 0.015 Hz and 1 kHz. 208 

The experimental session was divided into 16 blocks, each lasting 60 s, with two 209 

conditions interleaved, eyes closed (EC) and eyes open (EO), starting with the EC condition. 210 

Changes between blocks were announced with the software Presentation (v16.5, 211 

Neurobehavioral Systems Inc., USA). Participants were asked to sit comfortably in a chair in 212 

a dimly illuminated, sound-shielded Faraday recording room. During the EO periods, 213 

participants were instructed to stay awake while fixating on a black cross presented on a white 214 

background. To maximize comparability, only EEG data from the EO condition were 215 

analyzed, since rsfMRI data were collected only in the EO condition. 216 

2.4.EEG Data Analysis 217 

EEG processing and analyses were performed with custom Matlab (The MathWorks, 218 

Inc, Natick, Massachusetts, USA) scripts using functions from the EEGLAB environment 219 

(version 14.1.1b; Delorme and Makeig, 2004). The continuous EEG data were down-sampled 220 

to 250 Hz, band-pass filtered within 1–45 Hz (4th order back and forth Butterworth filter) and 221 

split into EO and EC conditions. Segments contaminated by large artefacts due to facial 222 

muscle tensions and gross movements were removed following visual inspection, resulting in 223 

a rejection of on average 6.6% of the recorded data. Rare occasions of artifactual channels 224 

were excluded from the analysis. The dimensionality of the data was reduced using principal 225 

component analysis (PCA) by selecting at least 30 principal components explaining 95% of 226 

the total variance. Next, using independent component analysis (Infomax; Bell and 227 

Sejnowski, 1995), the confounding sources e.g. eye-movements, eye-blinks, muscle activity, 228 

and residual ballistocardiographic artefacts were rejected from the data. 229 

2.5.EEG Source Reconstruction 230 

Before conducting source reconstruction, preprocessed EEG signals were re-231 

referenced to a common average. We incorporated a standard highly detailed finite element 232 

method (FEM) volume conduction model as described by Huang et al. (2016). 233 

The geometry of the FEM model was based on an extended MNI/ICBM152 (International 234 

Consortium for Brain Mapping) standard anatomy, where the source space constrained to 235 

cortical surface and parceled to 96 ROIs based on the Harvard-Oxford atlas (Desikan et al., 236 

2006). We used eLORETA (exact low resolution brain electromagnetic tomography) as 237 

implemented in as implemented in as implemented in the M/EEG Toolbox of Hamburg 238 

(METH; Haufe and Ewald, 2016; Pascual-Marqui, 2007) to compute the cortical electrical 239 

distribution from the scalp EEG recordings. The leadfield matrix was calculated between 240 
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1804 points located on the cortical surface to the 61 scalp electrodes. We filtered into several 241 

frequency bands, associated with brain oscillations: delta (1–3 Hz), theta (4–8 Hz), alpha (8–242 

12 Hz), and beta (15–25 Hz). Following the singular value decomposition (SVD) of each 243 

voxel’s three-dimensional time course, the dominant orientation of the source signal was 244 

identified by preserving the first SVD component. The amplitude envelope of filtered 245 

oscillations was extracted using the Hilbert transform (Rosenblum et al., 2001). Next, we 246 

applied temporal coarse graining by averaging data points in non-overlapping windows of 247 

length 0.5 s (Figure 1).  248 

EEG Variability (SDEEG). We calculated the SD of amplitude envelope of band-pass filtered 249 

oscillations on the coarse-grained signal. RsEEG signal variability (SDEEG) was obtained for 250 

different frequency bands (SDDELTA, SDTHETA, SDALPHA, SDBETA) in each of 96 ROIs. Further, 251 

in our study we investigated variability in the amplitude of oscillatory signals from one time 252 

segment to the other. If amplitude (or power) of each signal stays the same, the variability 253 

(SD) in the amplitude of such segments will be zero. Therefore, the average amplitude of a 254 

signal is not indicative of its variability. Although amplitude and its standard deviation 255 

mathematically are different, they can show some correlation due to size effects (Immer, 256 

1937). 257 

Main steps toward deriving brain signal variability from the preprocessed EEG signal are 258 

shown in Figure 1. The raw and preprocessed fMRI and EEG data samples can be found at 259 

https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/  260 
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Figure 1. Main steps of deriving brain signal variability from the preprocessed resting state 261 

fMRI and EEG signal. We calculated the standard deviation of the blood oxygen level 262 

dependent (BOLD) signal and of the coarse-grained amplitude envelope of the rsEEG time 263 

series for a number of standard frequency bands at the source space. Each sample of coarse-264 

grained amplitude envelope of the rsEEG (represented in numbers) is generated by averaging 265 

the samples in non-overlapping windows of length 0.5 s. 266 

 267 
 268 

2.6.Statistical Analyses 269 

Mean SDBOLD and SDEEG. For the topographic information (based on ROIs), the mean BOLD 270 

and EEG variability were calculated by I) log-transforming the SD values, II) averaging 271 

separately for younger and older subjects, and III) then back-transforming the values 272 

(McDonald, 2014). 273 

 274 

Age and Sex Effects. A series of non-parametric analyses of covariance (ANCOVAs, type III) 275 

were applied to brain signal variability values in each 96 ROIs for SDBOLD and SDEEG using 276 

age group and sex as variables of interest, adjusting for TIV and mean FD. The significance 277 

level was controlled for using false discovery rate (FDR) correction according to Benjamini 278 

and Hochberg (1995). Significant group differences were further examined by Tukey HSD 279 

post-hoc comparisons. The signal variability values were log-transformed to normalize 280 

SDBOLD and SDEEG before further analyses (assessed by Lilliefors tests at a significance 281 
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threshold of 0.05). All analyses were performed using the aovp function in the lmperm 282 

package (Wheeler, 2016) as implemented in R (R core team, 2018). 283 

 284 

SDBOLD – SDEEG Correlation. To investigate the association between each ROI of SDBOLD and 285 

SDEEG, we used pairwise Spearman’s rank correlation separately for younger and older 286 

subjects, corrected for FDR (96 ROIs). We further applied sparse canonical correlation 287 

analysis (CCA) to show that the relationship between SDBOLD and SDEEG is not missed when 288 

only mass bivariate correlations are used. CCA is a multivariate method to find the 289 

independent linear combinations of variables such that the correlation between variables is 290 

maximized (Witten et al., 2009). The sparse CCA criterion is obtained by adding a Lasso 291 

Penalty function (l1), which performs continuous shrinkage and automatic variable selection 292 

and can solve statistical problems such as multicollinearity and overfitting (Tibshirani, 2011). 293 

We used l1 penalty as the regularization function to obtain sparse coefficients, that is, the 294 

canonical vectors (i.e., translating from full variables to a data matrix’s low-rank components 295 

of variation) will contain exactly zero elements. Sparse CCA was performed using the R 296 

package PMA (Penalized Multivariate Analysis; Witten et al., 2009; http://cran.r-297 

project.org/web/packages/PMA/). In our analyses, the significance of the correlation was 298 

estimated using the permutation approach (N=1000) as implemented in the CCA.permute 299 

function in R (pperm<0.05). 300 

 301 

Cognition. The Trail Making Test (TMT) is a cognitive test measuring executive function, 302 

including processing speed and mental flexibility (Reitan, 1955; Reitan and Wolfson, 1995). 303 

In the first part of the test (TMT-A) the targets are all numbers, while in the second part 304 

(TMT-B), participants need to alternate between numbers and letters. In both TMT-A and B, 305 

the time to complete the task quantifies the performance, and lower scores indicate better 306 

performance. Based on the previous literature, we focused on SDBOLD, SDDELTA, and SDTHETA 307 

(Vlahou et al., 2015) and selected different ROIs from two research papers about the neural 308 

correlates of the TMT: Zakzanis et al., (2005) and Jacobson et al., (2011) (Table 1). To reduce 309 

the number of multiple comparisons (Nguyen and Holmes, 2019), these ROIs were 310 

decomposed into singular values using the prcomp function belonging to factoextra package 311 

(R core team, 2018), which performs SVD on the centered values. As a criterion, the 312 

minimum total variance explained over 70% was selected (Jollife and Cadima, 2016). This 313 

resulted in three principle components (PC) in SDBOLD (52.82%, 10.34%, and 7%), two PCs 314 

in SDDELTA (67.37%, 10.95%), and one PC in SDTHETA (75.63%). We also ran multiple linear 315 
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regression using task completion time in TMT-A and TMT-B as the dependent variables with 316 

the PC scores (for SDBOLD, SDDELTA, and SDTHETA) and their interaction with continuous age 317 

as independent variables. Since the residuals from the regression models fitted to the data 318 

were not normally distributed, the TMT values were log-transformed prior to the final 319 

analyses. These tests were conducted using the lmp function in lmperm package implemented 320 

in R (R core team, 2018). 321 

 322 

Table 1. Selected region of interests (ROIs) derived from the previous fMRI literature, and 323 

their corresponding ROIs in Harvard-Oxford atlas to investigate the age-dependent 324 

relationship between TMT and SDBOLD or SDEEG. 325 

Literature  Region Hemisphere Harvard-Oxford Atlas 

 
 
 
 
Zakzanis et al., 
2005 

Middle Frontal Gyrus Left Middle Frontal Gyrus 

Precentral Gyrus Left Precentral Gyrus 

Cingulate Gyrus Left/Right Cingulate Gyrus, anterior/posterior 

Superior Frontal Gyrus Left Superior Frontal Gyrus 

Medial Frontal Gyrus Left Frontal Medial Cortex 

Insula Left/Right Insular Cortex 

Middle Temporal Gyrus Left Middle Temporal Gyrus, 
anterior/posterior/temporooccipital 

Superior Temporal Gyrus Left Superior Temporal Gyrus, 
anterior/posterior 

Jacobson et al., 
2011 

Fusiform Gyrus Right Occipital Fusiform Gyrus 

Inferior Middle Frontal 
Gyrus 

Right Middle Frontal Gyrus 

Precentral Gyrus Right Precentral Gyrus 
  326 
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3. Results 327 

Mean SDBOLD and SDEEG. The topographic distribution of SDBOLD in younger adults revealed 328 

the largest brain signal variability values in fronto-temporal regions while in older adults it 329 

was in the frontal and occipital areas. Further, we found strongest variability across younger 330 

subjects in occipito-temporal regions for SDDELTA, SDTHETA, SDALPHA, and in medial frontal 331 

brain regions for SDBETA, while older adults showed strongest brain signal variability in the 332 

fronto-central brain regions for SDDELTA, in parietal-central brain regions for SDTHETA, 333 

SDALPHA, and in medial frontal brain regions for SDBETA. The details of the mean values of 334 

SDBOLD and SDEEG across age groups and their topographic distributions are given in 335 

Supplementary Table 1, Supplementary Figure 2 and 3, and are also available at Neurovault 336 

(https://neurovault.org/collections/WWOKVUDV/). 337 

 338 

Age and Sex Effects. The nonparametric ANCOVAs with SDBOLD as dependent variable 339 

demonstrated that there was a significant main effect of age group in 72 ROIs in frontal, 340 

temporal, and occipital brain regions (F-values: 13.32–61.14; Figure 2). However, there was 341 

no significant main effect of sex on SDBOLD and no significant interaction between age group 342 

and sex (all pFDR>0.05). Tukey HSD post-hoc analyses showed that older subjects had 343 

decreased SDBOLD compared to younger adults which were presented in both sexes (nROI=35).  344 

The nonparametric ANCOVAs with SDEEG as dependent variable showed significant main 345 

effects of age group in all frequency bands: SDDELTA in 14 ROIs in occipital (F-values: 12.57–346 

20.94), SDTHETA in 16 ROIs in frontal and parietal (F-values: 13.16–40.30), SDALPHA in 20 347 

ROIs in occipital (F-values: 12.69–20.12), and SDBETA in 19 ROIs in central and temporal 348 

brain regions (F-values: 12.50–21.61), as shown in Figure 2. There were also significant main 349 

effects of sex in all frequency bands: SDDELTA in 21 ROIs in temporal and occipital (F-values: 350 

13.24–26.63), SDTHETA in 74 ROIs in frontal, occipital, and temporal (F-values: 12.68–30.06), 351 

SDALPHA in 4 ROIs in frontal (F-values: 12.88–16.51), and SDBETA in 69 ROIs in temporal, 352 

occipital, and central brain regions (F-values: 12.54–35.72), as shown in Figure 3. No 353 

significant interaction effects between age group and sex on SDEEG were observed in any 354 

frequency band (pFDR>0.05). Tukey HSD post-hoc analyses on SDEEG showed that older 355 

subjects had less brain signal variability, which was present in both sexes for SDDELTA 356 

(nROI=12), SDTHETA (nROI=10), and SDALPHA (nROI=11). Additionally, older adults showed 357 

higher SDBETA, driven by female subjects (nROI=15). With regard to sex differences, post-hoc 358 

analyses showed that females had higher SDDELTA, SDTHETA, SDALPHA, and SDBETA than 359 

males. Sex differences in SDDELTA (nROI=13) and SDTHETA (nROI=54) were mostly pronounced 360 
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in younger adults, while the effect of sex in SDBETA (nROI=21) were mainly presented in older 361 

adults (p<0.05). The graphical distribution of the F-values for the significant effects of age 362 

group or sex for each ROIs are shown in Supplementary Figure 4. Additional information of 363 

SDBOLD and SDEEG for each frequency band and for each of the 96 ROIs, split up by age group 364 

and sex, are presented in the Supplementary Tables 2-6. 365 

 366 

Figure 2. Spatial maps of significant age group differences in SDBOLD and SDEEG.  367 

We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD) 368 

signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1–369 

3 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (15–25 Hz) frequency bands at the source 370 

space. Statistical significance was determined using nonparametric ANCOVAs corrected for 371 

multiple comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Blue 372 

color indicates areas where brain signal variability was lower in older than in younger adults, 373 

while red color indicates the opposite.374 
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Figure 3. Spatial maps of significant sex differences in SDBOLD and SDEEG.  376 

We calculated the standard deviation (SD) of the blood oxygen level dependent (BOLD) 377 

signal and of the coarse-grained amplitude envelope of the rsEEG time series for the delta (1–378 

3 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (15–25 Hz) frequency bands at the source 379 

space. Statistical significance was determined using nonparametric ANCOVAs corrected for 380 

multiple comparisons by false discovery rates (FDR; Benjamini and Hochberg, 1995). Yellow 381 

color indicates areas where brain signal variability was higher in female subjects as compared 382 

to male subjects in EEG. 383 
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SDBOLD – SDEEG Correlation. The correlation coefficient of pairwise associations for 96 ROIs 385 

of SDBOLD with SDDELTA, SDTHETA, SDALPHA, and SDBETA ranged in younger adults from rho=-386 

0.200 to rho=0.223 (Supplementary Table 7) and in older adults from rho=0.386 to 387 

rho=0.349 (Supplementary Table 8). None of the pairwise associations between SDBOLD and 388 

SDEEG remained significant after the correction for multiple comparison corrections. 389 

Confirmatory multivariate sparse CCA further showed that correlations between SDBOLD and 390 

SDEEG across all subjects were rather low, highly sparse, and non-significant (SDDELTA; 391 

r=0.145, pperm =0.750, l1=0.367; SDTHETA; r=0.143, pperm=0.713 l1=0.7; SDALPHA; r=0.153, 392 

pperm=0.528, l1=0.1; SDBETA; r=0. 232, pperm=0.096, l1=0.633). 393 

 394 

Figure 4. Distribution of correlation coefficients (rho) for the association between SDBOLD 395 

and SDEEG for A) younger (N=135) and B) older (N=54) adults for different frequency bands 396 

across each pair of 96 regions of interests. The correlations between SDBOLD and SDEEG were 397 

tested using pairwise Spearman’s rank correlation corrected for multiple comparison by false 398 

discovery rates (FDR; Benjamini and Hochberg, 1995). 399 

  400 

A) Younger Adults (N=135) B) Older Adults (N=54) 
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Cognition. There was a significant interaction between age and SDBOLD in PC2 on the TMT-B 401 

performance (adjusted R2 = 0.395, F(7,181) = 18.60, p <.001, interaction: β= -0.002, p = 402 

0.027). For older, but not younger participants, stronger SDBOLD was associated with faster 403 

completion time in PC2, driven mainly by the left temporal gyrus as well as the left anterior 404 

and posterior cingulate cortex (Figure 5). The regression analyses in SDDELTA and SDTHETA 405 

did not show a significant association between cognition and brain signal variability 406 

measures. The contributions of selected ROIs to the PCs resulted from SVD analyses can be 407 

found in Supplementary Table 9. The complete multiple linear regression results can be found 408 

in Supplementary Table 10.  409 

 410 

Figure 5. Age-dependent relationship between cognitive performance and BOLD signal 411 

variability.  412 

The scatterplot shows the significant association between task completion time in TMT-B (x-413 

axis) and SDBOLD (adjusted R2 = 0.395, F(7,181) = 18.60, p <.001, interaction: β= -0.002, p = 414 

0.027) in PC2, driven mainly by the left anterior and posterior temporal gyrus, bilateral 415 

anterior and posterior cingulate cortex. 416 

 417 
418 
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4. Discussion 419 

Comparing healthy younger and older adults, we found widespread variability 420 

reductions in BOLD signal as well as in the amplitude envelope of delta, theta, and alpha 421 

frequency of rsEEG, whereas increased variability with aging was observed in the beta-band 422 

frequency. As a complementary analysis, we also explored sex differences and found that 423 

female subjects exhibited higher EEG signal variability than male subjects; no significant sex 424 

differences were found in BOLD signal variability. There were no significant correlations 425 

between hemodynamic (SDBOLD) and electrophysiological (SDEEG) measures of brain signal 426 

variability, neither in the younger nor in the older adults. Our results suggest that variability 427 

measures of rsfMRI and rsEEG – while both related to aging – are dominated by different 428 

physiological origins and relate differently to age and sex. 429 

 430 

4.1.BOLD Signal Variability  431 

The first aim of our study was to investigate the effect of age on BOLD signal 432 

variability, as measured by SD of spontaneous fluctuations during rsfMRI. Consistent with 433 

recent rsfMRI studies demonstrating that BOLD signal variability decreases with age in large-434 

scale networks (Grady and Garrett, 2018; Nomi et al., 2017), we found that older subjects had 435 

reduced SDBOLD in temporal and occipital brain regions but also in cortical midline structures 436 

like the precuneus, anterior and posterior cingulate cortices, as well as orbitofrontal cortex 437 

compared to younger adults. These age-related reductions in BOLD signal variability were 438 

thus especially apparent in regions of the Default Mode (DMN) and the Fronto-Parietal 439 

Network (FPN). The DMN is an intrinsically correlated network of brain regions, that is 440 

particularly active during rest or fixation blocks (Biswal et al., 2010). It reflects the systematic 441 

integration of information across the cortex (Margulies et al., 2016) and has been frequently 442 

associated with psychological functions like self-referential thought or mind-wandering, and 443 

also memory retrieval (Andrews-Hanna et al., 2014; Raichle, 2015). The FPN is involved in 444 

cognitive control processes (Spreng et al., 2013), and closely interacts with the DMN, for 445 

example during mind-wandering state (Golchert et al., 2017). Previous studies in healthy 446 

aging noted that older subjects showed lower functional connectivity in DMN and FPN 447 

regions (Damoiseaux, 2017; Damoiseaux et al., 2008; Meunier et al., 2009; Petersen et al., 448 

2014). Similarly, an altered functional connectivity in the DMN has been found in different 449 

pathologies, for example, in Alzheimer’s disease (Greicius et al., 2004) or mild cognitive 450 

impairment (Das et al., 2015). Further, we found a significant interaction between age and 451 

SDBOLD in temporal and cingulate cortices for performance on the cognitive task (TMT-B), 452 
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suggesting that the relationship between brain signal variability and cognitive performance 453 

depends on the participants’ age. We speculate that – in the elderly – reduced BOLD signal 454 

variability in the DMN and the FPN, particularly in the overlapping frontal brain regions, 455 

could be related to locally impaired function that is reflected in impaired cognitive 456 

performance (Campbell et al., 2012). Such findings support the notion that local BOLD signal 457 

variability may be a valuable biomarker of neurocognitive health (and disease) in aging. 458 

Sex-specific differences in brain structure and function have been previously shown 459 

(for a review see, Gong et al., 2011; Ruigrok et al., 2014; Sacher et al., 2013). For example, 460 

larger total brain volume has been reported in male as compared to female subjects (Gong et 461 

al., 2011), whereas higher cerebral blood flow (Gur et al., 1982; Rodriguez et al., 1988) and 462 

stronger functional connectivity in the DMN (Tomasi and Volkow, 2012) were found in 463 

females. In our exploratory analysis, we did not find significant sex differences in BOLD 464 

signal variability when controlling for total intracranial volume as an approximation of overall 465 

brain size.  466 

 467 

4.2.Electrophysiological Signal Variability 468 

Measures of neural variability were derived from rsEEG for several main frequency 469 

bands (delta, theta, alpha, beta) as the standard deviation of their amplitude of envelope time 470 

series data, analogously to the BOLD signal variability. Multimodal imaging studies have 471 

shown that the amplitude envelope of neural oscillatory activity across frequency bands 472 

relates to different rsfMRI networks (Brookes et al., 2011; Deligianni et al., 2014), confirming 473 

the neurophysiological origin of the resting state networks measured with BOLD fMRI. 474 

Additionally, these studies also concluded that different frequency bands can be related to the 475 

same functional network, but also differentially to distinct networks (Brookes et al., 2011; 476 

Laufs et al., 2006; Mantini et al., 2007; Meyer et al., 2013). For instance, Mantini et. al. 477 

(2007) reported that the visual network is associated with all frequency bands except gamma 478 

rhythm, while the sensorimotor network is primarily associated with beta-band oscillations.  479 

In our analysis, we found age-dependent EEG signal variability changes within 480 

networks which were associated with more than one frequency band, thus confirming that 481 

neurons generating oscillations at different frequencies may contribute to the same network. 482 

More precisely, we found age-related reductions in SDDELTA and SDALPHA mainly in a visual 483 

network (including calcarine regions, cuneal cortex, and occipital pole), SDTHETA in posterior 484 

DMN (e.g., posterior cingulate cortex), while an enhancement of SDBETA was mainly seen in 485 

the temporal (e.g., superior/middle temporal gyrus), and central/sensorimotor (e.g., 486 
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supramarginal gyrus) regions. These results align with previous reports of age-dependent 487 

changes of electrophysiological activity using spectral power (Dustman et al., 1993; Vlahou et 488 

al., 2015), and signal variability (Dustman et al., 1999; Tsvetanov et al., 2015). 489 

Age-related decreases of alpha amplitude and alpha band variability (measured by SD 490 

of the oscillatory signal) were previously found in posterior and occipital brain regions 491 

(Babiloni et al., 2006; Tsvetanov et al., 2015). Alpha rhythm is a classical EEG hallmark of 492 

resting wakefulness (Laufs et al., 2003) that is modulated by thalamo-cortical and cortico-493 

cortical interactions (Bazanova and Vernon, 2014; Goldman et al., 2002; Lopes Da Silva et 494 

al., 1997; Moosmann et al., 2003). It has been suggested that the posterior alpha-frequency 495 

plays an important role in the top-down control of cortical activation and excitability 496 

(Klimesch, 1999). Accordingly, decreased alpha variability in occipital regions might be 497 

associated with altered functioning of the cholinergic basal forebrain, affecting thalamo-498 

cortical and cortico-cortical processing. Our finding of higher temporal and sensorimotor 499 

SDBETA in the elderly is in line with previous findings (Rossiter et al., 2014; Tsvetanov et al., 500 

2015). Aging has previously been associated with an increase in movement-related beta-band 501 

attenuation, suggesting an enhanced motor cortex GABAergic inhibitory activity in older 502 

individuals (Rossiter et al., 2014). Similarly, beta-band activity is thought to play a key role in 503 

signaling maintenance of the status quo of the motor system, despite the absence of 504 

movement (Engel and Fries, 2010). Therefore, greater SDBETA in sensorimotor brain regions 505 

could be interpreted as a compensatory mechanism to account for a decline of motor 506 

performance during aging (Quandt et al., 2016). 507 

It should be noted that the present findings of age-related alterations of brain signal 508 

variability at different frequencies might be influenced by several anatomical factors which 509 

might influence EEG-generators such as reduced cortical gray matter (Babiloni et al., 2013; 510 

Moretti et al., 2012), white-matter (Nunez et al., 2015; Valdés-Hernández et al., 2010), and 511 

increased amount of cerebrospinal fluid (CSF; Hartikainen et al., 1992; Stomrud et al., 2010), 512 

but also alterations of cerebral glucose metabolism (Dierks et al., 2000). Localized or global 513 

disturbances of brain anatomy and function might lead to deviations in the EEG sources, 514 

resulting in EEG amplitude changes. A methodological improvement for future studies will 515 

therefore be the application of individual head models (Ziegler et al., 2014). 516 

In addition to the effect of age on rsEEG signal variability, an exploratory analysis 517 

showed sex differences in distinct brain regions and EEG frequencies. More precisely, we 518 

found higher SDDELTA and SDTHETA in occipito-temporal, SDALPHA in frontal, and SDBETA in 519 

frontal as well as occipito-temporal brain regions in female compared to male subjects. While 520 
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some studies demonstrated higher alpha (Aurlien et al., 2003), delta (Armitage, 1995), theta 521 

(Carrier et al., 2001; Duffy et al., 1993), and beta power (Jaušovec and Jaušovec, 2010; 522 

Matsuura et al., 1985; Veldhuizen et al., 1993) in female relative to male subjects, other 523 

studies reported the opposite pattern (Brenner et al., 1995; Latta et al., 2005; Zappasodi et al., 524 

2006). These differences in EEG signal variability could be a result of different mechanisms 525 

(biological/hormonal, cultural or developmental) involved in shaping sex differences. 526 

Unfortunately, based on our dataset we cannot differentiate which of these potential 527 

mechanisms might be most relevant for the observed changes. 528 

 529 

4.3. Association between BOLD and EEG Variability  530 

We further assessed how neural variability in source-reconstructed rsEEG related to 531 

the analogous parameters of BOLD signal variability in rsfMRI using univariate and 532 

multivariate correlation analyses. Previously, simultaneous EEG-fMRI studies have shown 533 

meaningful relationships between fluctuations in EEG power, frequency, phase, and local 534 

BOLD changes (for a review see, Jorge et al., 2014; Ritter and Villringer, 2006). Due to age-535 

related physiological (particularly cardiovascular) alterations in the brain, we expected the 536 

relationship between BOLD and EEG signal variability to be stronger in younger than older 537 

adults. However, in the present study, both univariate and multivariate analyses showed no 538 

significant correlations between SDBOLD and SDEEG neither in the younger nor in the older 539 

adults. This finding was supported by the distinct anatomical distributions of age-related 540 

changes in BOLD and EEG signal variability, that barely showed a spatial overlap, suggesting 541 

different underlying physiological processes. What could they be? Clearly, neuronal activity 542 

is the main signal source for EEG- and MEG recordings as well as for EEG/MEG-based 543 

variability measures. BOLD signal variability, however, can reflect both vascular and neural 544 

processes (Garrett et al., 2017). While neuronal activity clearly contributes to the BOLD 545 

signal at rest (Ma et al., 2016; Mateo et al., 2017), our results indicate, however, that neuronal 546 

activity which is captured by EEG (or more specifically by our EEG-based measures), is not 547 

the major determinant of BOLD variability in the resting state. Other factors that could 548 

contribute to BOLD variability are (i) neuronal activity which is not captured by EEG and (ii) 549 

non-neural factors such as vasomotion, or cardiac and respiratory signals (Murphy et al., 550 

2013). In the elderly, additional factors related to the known morphological and functional 551 

changes of blood vessels as well as age-related metabolic changes are known to affect CBF 552 

(Ances et al., 2009; Martin et al., 1991), CMRO2 (Aanerud et al., 2012), and CVR (Liu et al., 553 

2013) and therefore are likely to also influence BOLD variability. Thus, given different 554 
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underlying physiology, joint EEG and fMRI variability studies might provide complementary 555 

information for a comprehensive assessment of neuronal as well as vascular factors related to 556 

aging. 557 

5. Limitations 558 

There are several limitations of our study: EEG and MRI scans were not recorded 559 

simultaneously. Therefore, we could not directly relate the two signals in a cross-correlation 560 

analysis. Furthermore, EEG and MRI were performed with different body postures (fMRI; 561 

supine, EEG; seated) known to affect brain function, for example, changes in the amplitude of 562 

the EEG signal have been related to different body postures presumably due to the shifts in 563 

cerebrospinal fluid layer thickness (Rice et al., 2013). Similarly, other experimental (e.g., 564 

visual display; Nir et al., 2006), environmental (e.g., acoustic noise in MRI; Andoh et al., 565 

2017; Cho et al., 1998) and subject-related factors (e.g., changes of vigilance; Tagliazucchi 566 

and Laufs, 2014; Wong et al., 2013) could have introduced unintended variations in our 567 

results (Yan et al., 2013) and the influence of these factors is probably not the same for the 568 

different methods, e.g., noise in MRI or poor “control” of vigilance in MRI. For instance, 569 

given the well-known relationship between vigilance or arousal and fMRI signal fluctuations 570 

(Bijsterbosch et al., 2017; Chang et al., 2016; Haimovici et al., 2017), it is likely that the 571 

observed age-related differences in BOLD signal variability might be confounded by such 572 

within-subject (state) variability. Therefore, future rsfMRI studies may benefit from obtaining 573 

arousal-related (e.g., self-report) measures and an explicit measurement of eye movements 574 

and eye opening/closure to account for the influence of arousal on the BOLD amplitude 575 

changes. Another option would be to combine EEG and fMRI simultaneously. Yet, resting 576 

state measures of EEG (Näpflin et al., 2007) and fMRI (Shehzad et al., 2009; Zuo et al., 2010) 577 

have been shown to be reliable within-individuals across time.  578 

In our study, the computation of the source reconstructed rsEEG required the 579 

parcellation of the brain into relatively large anatomical ROIs. It could well be that the 580 

analysis with a higher spatial resolution (e.g., at the voxel-level) with individual head models 581 

may provide additional insights about brain signal variability.  582 

Finally, while our study aimed at comparing analogous variability measures in EEG 583 

and fMRI, future research using rsEEG and rsfMRI in the same subjects would benefit from 584 

the addition of connectivity-based measures including graph theory-based (Yu et al., 2016) or 585 

sliding-window methods (Chang et al., 2013; Qin et al., 2019).  586 
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6. Conclusion 587 

In this study, we report age and sex differences of brain signal variability obtained 588 

with rsfMRI and rsEEG from the same subjects. We demonstrate extensive age-related 589 

reduction of SDBOLD, SDDELTA, SDTHETA, and SDALPHA mainly in the DMN and the visual 590 

network, while a significant increase of SDBETA was mainly seen in temporal brain regions. 591 

We could not demonstrate significant associations between SDBOLD and SDEEG. Our findings 592 

indicate that measurements of BOLD and EEG signal variability, respectively, are likely to 593 

stem from different physiological origins and relate differentially to age and sex. While the 594 

two types of measurements are thus not interchangeable, it seems, however, plausible that 595 

both markers of brain variability may provide complementary information about the aging 596 

process.  597 
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