

1 **Title: Intermittent theta burst stimulation at personalized targets reduces**
2 **the functional connectivity of the default mode network in healthy subjects**

3 **Authors:** Aditya Singh¹, Tracy Erwin-Grabner¹, Grant Sutcliffe¹, Walter Paulus², Peter Dechant³,
4 Andrea Antal², Roberto Goya-Maldonado^{1,*}

5 **Affiliations:**

6 ¹Systems Neuroscience and Imaging in Psychiatry, Department of Psychiatry and Psychotherapy of
7 the University Medical Center Göttingen.

8 ²Department of Clinical Neurophysiology of the University Medical Center Göttingen.

9 ³Core facility 'MR-Research in Neurology and Psychiatry', Department of Cognitive Neurology of the
10 University Medical Center Göttingen.

11 *To whom correspondence should be addressed: Dr. Roberto Goya-Maldonado
12 (roberto.goya@med.uni-goettingen.de)

13

14

15

16

17

18

19

20 **Abstract**

21 Understanding the mechanisms by which transcranial magnetic stimulation protocols exert changes
22 in the default mode network (DMN) is paramount to develop therapeutically more effective
23 approaches in the future. A full session (3000 pulses) of 10 Hz repetitive transcranial magnetic
24 stimulation (HF-rTMS) reduces the functional connectivity (FC) of the DMN and the subgenual
25 anterior cingulate cortex but current understanding of the effects of a single session of intermittent
26 theta burst stimulation (iTBS) on the DMN in healthy subjects is limited. To reduce the effects of
27 inter-individual variability in functional architectures, we used a novel personalized target selection
28 approach based on each subject's resting state fMRI for an unprecedented investigation into the
29 effects of a single session (1800 pulses) of iTBS over the DMN in healthy controls. 26 healthy subjects
30 participated in a double-blind, crossover, sham-controlled study. After iTBS to the personalized left
31 dorsolateral prefrontal cortex (DLPFC) targets, we investigated the time lapse of effects in the DMN
32 and its relationship to the harm avoidance (HA) personality trait measure (Temperament and
33 Character Inventory/TCI). Approx. 25-30 minutes after stimulation, we observed reduced FC
34 between the DMN and the rostral anterior cingulate cortex (rACC). About 45 minutes after
35 stimulation the FC of rACC strongly decreased further, as did the FC of right anterior insula (rAI) with
36 the DMN. We also report a positive correlation between the FC decrease in the rACC and the HA
37 domain of TCI. Our results show how iTBS at personalized left-DLPFC targets reduces the FC between
38 DMN and the rACC and rAI, regions typically described as nodes of the salience network. We find
39 that HA scores can potentially predict iTBS response, as has been observed for HF-rTMS.

40

41

42

43

44 Introduction

45 Both the large variability of responses in the treatment of depression by the FDA-approved 10 Hz
46 repetitive transcranial magnetic stimulation (rTMS) protocol has led to a world-wide demand for
47 better techniques or improved protocols. The non-inferior antidepressant efficacy of the 3
48 min/session theta burst protocol¹ compared to 37.5 min/sessions of conventional 10 Hz rTMS
49 protocol has played a role in increasing the use of the theta burst protocol for antidepressant
50 treatment²⁻⁵. The connectivity changes underlying the effects of intermittent theta burst stimulation
51 (iTBS) delivered at the left dorsolateral prefrontal cortex (DLPFC) remain unexplored. Many factors
52 contribute to inter-individual variability, including natural variation in anatomy and functional
53 connectivity. Here we use a previously validated target selection method to improve precision of coil
54 localization and investigated the effects of iTBS on the relevant brain networks that cover the left
55 DLPFC and the anterior cingulate cortex (ACC).

56 The TBS protocol was developed to mimic rodent^{6,7} and human hippocampal activity⁸, where a
57 combination of gamma-frequency spike patterns superimposed on theta rhythms⁹ was found. It
58 involves application of a burst of three TMS pulses every 20 milliseconds (50 Hz), which is repeated
59 five times per second (5 Hz)^{10,11}. When delivered continuously (continuous TBS – cTBS) for 40
60 seconds, it results in reduced corticospinal excitability, while when administered in an intermittent
61 fashion (iTBS) it results in increased corticospinal excitability⁹. Studies of TBS stimulation on motor
62 cortex have shown plasticity changes beyond the duration of stimulation typically lasting in the
63 range of 30 minutes^{11,12}.

64 Beyond local effects under the stimulation coil, plasticity changes in brain's altered functional
65 connectivity away from stimulation point e.g. the DLPFC¹³ are likely relevant to the treatment of
66 psychiatric disorders, which has been suggested to result from aberrant brain functional
67 connectivity¹⁴. The DMN, consisting of the medial prefrontal cortex, posterior cingulate cortex and
68 areas of posterior parietal cortex¹⁵, is usually hyperconnected to subgenual ACC (sgACC) in

69 depression^{15,16}. A reduction of this hyperconnectivity has been related to a reduction of symptoms
70¹⁷. Using 10 Hz rTMS as antidepressant treatment, a study has recently replicated the prediction of
71 symptomatic alleviation in depression when aberrant sgACC connectivity with the DMN is
72 decreased, which happened in responders but not in non-responders¹⁸. Furthermore, such effects
73 over networks in healthy subjects have been shown in our previous work¹⁹. Already after a single
74 session of 10 Hz rTMS (3000 pulses), delivered at personalized left DLPFC sites, a reduction in the
75 connectivity between the sgACC and the DMN was evidenced, most strongly in subjects with lower
76 harm avoidance (HA) scores from the Temperament and Character Inventory (TCI).

77 Given the central involvement of the DMN in the pathophysiology of depression and the importance
78 of a shorter protocol such as iTBS in reducing symptoms,^{15,20-31} here we aimed to uncover if a single
79 session of a prolonged iTBS protocol (1800 pulses) in healthy subjects would result in reduced DMN
80 connectivity to the ACC. We applied a single session of iTBS at personalized left DLPFC sites and
81 analyzed the DMN during three time windows after stimulation in a double-blind, crossover, and
82 sham-controlled study. Given that the nature of iTBS differs from 10 Hz rTMS, we were interested in
83 whether the modulation across the sgACC is similar. Moreover, based on a negative correlation seen
84 between HA scores and coupling changes of the sgACC and the DMN after one session of 10 Hz
85 rTMS¹⁹, we hypothesized a correlation between iTBS induced changes in DMN and HA scores.

86 Materials and Methods

87 Participants

88 Healthy subjects ages 18-65 were enrolled in the study. We evaluated the subjects with structured
89 clinical interviews and ruled out current or prior psychiatric disorders. We performed the
90 experiments in agreement with relevant guidelines and regulations^{32,33}. The Ethics Committee of the
91 University of Medical Center Göttingen approved the study protocol and subjects provided their
92 informed consent before investigation.

93 Study design

94 The study reported here with healthy subjects is a sham-controlled, double-blind (subject and
95 interviewer), crossover study. We conducted the experiments over three sessions (each session on a
96 different day, Figure 1) with each session separated by at least one week.

97 *Session 1*

98 In session 1, the interviewer administered a Structured Clinical Interview (SCI) consisting of the Beck
99 Depression Inventory II (BDI II), Montgomery-Asberg Depression Rating Scale (MADRS), Hamilton
100 Depression Rating Scale (HAM-D) and Young Mania Rating Scale (YMRS). In addition to the SCI, to
101 further establish the mental health and well-being of the subjects we asked them to complete the
102 Symptoms Checklist 90-revised (SCL 90-R), Temperament and Character Inventory (TCI), Positive and
103 Negative Syndrome Scale (PANSS), Life Orientation Test – Revised (LOT-R), Barratt Impulsiveness
104 Scale (BIS), a handedness questionnaire³⁴ and a vocabulary-based intelligence test (MWT). The
105 interviewer obtained written informed consent from the subject after completing an evaluation of
106 the inclusion and exclusion criteria. Next, we acquired structural T1-weighted MRI and resting state
107 functional MRI (rsfMRI) scans for our novel method of personalized target selection (see Figure 1 for
108 further details). The process of personalized left DLPFC target selection has been described
109 previously¹⁹.

110 *Session 2 and Session 3*

111 To allow wash out of any potential iTBS effects session 2 and session 3 were separated by at least a
112 week. After determining the resting motor threshold (RMT), we applied iTBS, at 80% RMT. We
113 navigated to the personalized left DLPFC target using an online neuronavigation system (Visor 1
114 software, ANT Neuro, Enschede, Netherlands). We obtained a pre-iTBS (baseline) rsfMRI scan (R0)
115 followed by three post-iTBS rsfMRI scans. Subjects completed the Positive and Negative Affect
116 Schedule (PANAS³⁵) at the before and after the experiment on session 2 and session 3. This allowed
117 us to follow any short-term changes in the subjects' mood because of iTBS. Figure 1 pictorially
118 details the study design.

119

120 **INSERT FIGURE 1 ABOUT HERE**

121

122 *rTMS protocol*

123 We delivered iTBS using a MagVenture X100 with Mag-option and a “figure of 8” MCF-B65 cooled
124 butterfly coil at the targets selected using each individual subject’s rsfMRI (see ¹⁹). We used
125 stimulation parameters from Li C-T et al., 2014⁵ [3 pulses burst at 50 Hz delivered at 5 Hz for 2
126 seconds with an 8 second inter train interval, total 60 trains delivered during 9 minutes 30 seconds].

127 For the sham condition, we rotated the coil by 180° along the handle axis of the coil as in our
128 previous work¹⁹.

129 *Image Acquisition*

130 We collected the functional and the structural (T1- and T2-weighted scans with 1-mm isotropic
131 resolution) data with a 3T MR scanner (Magnetom TIM TRIO, Siemens Healthcare, Erlangen,
132 Germany) using a 32-channel head coil. The T2*-weighted multi-band gradient-echo echo-planar
133 imaging sequence provided by the Center for Magnetic Resonance Research of the University of
134 Minnesota^{36,37} had the following parameters: repetition time of 2.5 s, echo time of 33 ms, flip angle
135 of 70°, 60 axial slices with a multi-band factor of 3, 2x2x2 mm, FOV of 210 mm, with 10% gap
136 between slices and posterior to anterior phase encoding. The rsfMRI data were acquired with 125
137 volumes in approx. 5 minutes. The gradient echo field map was acquired with repetition time of 603
138 ms, echo times of 4.92 ms (TE 1) and 7.38 ms (TE 2), flip angle of 60°, 62 slices, FOV of 210 mm,
139 2x2x2 mm, with 10% gap between slices and anterior to posterior phase encoding.

140 *Imaging Data Analysis*

141 We preprocessed the individual rsfMRI data using SPM12
142 (<http://www.fil.ion.ucl.ac.uk/spm/software/spm12/>) and MATLAB (The MathWorks, Inc., Natick,

143 MA, USA) to execute the following state-of-the-art steps: slice time correction, motion correction,
144 gradient echo field map unwarping, normalization, and regression of motion nuisance parameters,
145 cerebrospinal fluid and white matter. Following this, we temporally concatenated the data for group
146 independent component analysis (ICA) with FSL 5.0.7 software³⁸. We visually identified the
147 independent component (IC) that best resembled the DMN and another IC that covered the left
148 DLPFC (IC-DLPFC). We back reconstructed this IC representing the DMN in the normalized rsfMRI
149 data of individual subjects, r-to-z transformed and compared across the groups using a factorial
150 design ANOVA (Real [R0, R1, R2, R3] versus Sham [R0, R1, R2, R3]).

151 *Extraction of parameter estimates (functional connectivity strengths):* We used MarsBar³⁹ to extract
152 the parameter estimates (beta weights) of the rostral anterior cingulate cortex (rACC; 5 mm radius
153 sphere) and subgenual anterior cingulate cortex (sgACC; 5 mm radius sphere) centred on
154 independent coordinates from a meta-analysis of functional large-scale networks in depression⁴⁰
155 and our previous work on 10 Hz rTMS effects on DMN¹⁹, respectively. The parameter estimates for
156 the personalized left DLPFC sites were extracted using 2 mm radius sphere ROI centered around the
157 personalized targets, in line with our previous work¹⁹. Figure 2A highlights an example subject
158 showing the IC-DLPFC (in warm color), the network from which the parameter estimates using a
159 personalized left DLPFC target ROI (blue sphere) is extracted. Figure 2B shows all the personalized
160 ROIs which were used for parameter estimate extraction.

161

162 **INSERT FIGURE 2 ABOUT HERE**

163

164 *Statistical Analysis*

165 Using a factorial design ANOVA in SPM12 we compared the time windows of rsfMRI across real and
166 sham conditions using a, and report results surviving a statistical threshold of $p < 0.05$ FWE whole

167 brain corrected for multiple testing. We ran Pearson's correlation tests between rACC functional
168 connectivity strengths and the harm avoidance domain of the TCI using MATLAB. We used R to run
169 two-way t-tests to compare the scores from YMRS, HAM-D, MADRS, PANAS, VAS and BDI II for real
170 and sham stimulation sessions.

171 *Data availability statement*

172 Owing to restrictions in the data sharing consent obtained from the participants of the study, the
173 datasets generated and analysed cannot be made publicly available.

174 **Results**

175 Twenty-nine healthy subjects (11 females, mean age of 28 years +/- 8 years) signed up for the study.
176 Two subjects (both females) were dropped from the study due to failure to locate their personalized
177 left DLPFC target and one subject (male) dropped out of study due to discomfort from stimulation.
178 Thus 26 subjects were included in final analysis, none of whom reported any adverse effects during
179 or after stimulation.

180 *Functional connectivity changes after real stimulation*

181 After a full single session of iTBS (1800 pulses) we observed reduced functional connectivity of the
182 rACC and dorsal ACC (dACC) with the DMN, during the R2 rsfMRI session (27-32 minutes post-
183 stimulation) when compared to R1 rsfMRI session (10-15 minutes post stimulation) (Figure 3 [A1-
184 A2]). Even more interesting was the effect on the functional connectivity of DMN during the R3
185 rsfMRI (45-50 minutes post-stimulation), which increased in spatial extent. During R3, the area of
186 significantly reduced functional connectivity of the DMN spread to include the medial prefrontal
187 cortex (mPFC) and frontal poles, as seen in Figure 3 [B1-B2]. Additionally, the right anterior insula
188 (AI) shows decreased functional connectivity to the DMN during R3 rsfMRI (figure 3 [B3-3B4]). These
189 findings were not seen in the sham condition. Changes in clinical scales were neither expected nor

190 identified. Also, it is important to note that when comparing the DMN only across real iTBS rsfMRI
191 sessions without sham correction, we see the same regions decoupling from the DMN
192 (Supplementary Figure 1), except by smaller mPFC and larger rAI blobs in the R2 rsfMRI. In this case,
193 the decoupling of the right AI is more pronounced, showing significantly reduced functional
194 connectivity even during the R2 rsfMRI.

195

196 **INSERT FIGURE 3 ABOUT HERE**

197

198 *Functional connectivity changes in the left DLPFC and the rACC along time*

199 To have a better understanding of the effects of iTBS, we extracted the parameter estimates of two
200 regions of interest in the real condition: the personalized left DLPFC and the rACC. We used a
201 spherical ROI of 2 mm radius centered at the left DLPFC target to extract its parameter estimates
202 from the IC-DLPFC (see methods for definition of IC-DLPFC). We extracted the parameter estimates
203 of the rACC from the DMN. Following an earlier study of the ACC with a 10 Hz protocol¹⁹, a spherical
204 5 mm radius ROI was used with coordinates obtained from an independent meta-analysis⁴⁰. The plot
205 (Figure 4) shows that the DMN functional connectivity of the rACC increases from the R0 to the R1
206 rsfMRI window. Subsequently, a functional connectivity decrease in the rACC from R1 to R2 is
207 sustained until R3. An insignificant increase in the IC-DLPFC functional connectivity of the left DLPFC
208 from R0 to R1 is also seen. This functional connectivity returns to a value close to baseline during R2
209 and increases during R3 rsfMRI. The green dotted line represents the correlation coefficients
210 between the parameter estimates of the sgACC and the left DLPFC. It shows that as the effect of iTBS
211 becomes more prominent, the correlation between these regions goes from negative to more and
212 more positive, not returning to baseline within 50 minutes after iTBS. We explored the changes in
213 functional connectivity of these regions for sham condition (Supplementary Figure 2) and observed

214 minor changes in the median of parameter estimates (ranging between 0-0.02) and in the
215 correlation coefficient (between 0-0.17). However, the functional connectivity fluctuates around the
216 baseline during all rsfMRI sessions.

217

218 **INSERT FIGURE 4 ABOUT HERE**

219

220 *Harm avoidance – a predictor of iTBS response?*

221 Our previous work has identified a negative relationship between harm avoidance scores on TCI and
222 the changes induced by 10 Hz rTMS in the right sgACC during R2 rsfMRI compared to R1 rsfMRI¹⁹.
223 We hence explored if such a relationship existed also between the harm avoidance scores of
224 subjects in the current study and the observed decrease in the functional connectivity of rACC during
225 R2 rsfMRI compared to R1 rsfMRI. We identify a positive correlation between the harm avoidance
226 measure and the decrease in functional connectivity of the rACC, only after real stimulation ($r =$
227 0.6052, p value = 0.013) but not after sham stimulation ($r = -0.1233$, p value = 0.6491). This indicates
228 that the higher the harm avoidance score of the subjects the more they showed a decrease in their
229 rACC functional connectivity to DMN (Figure 5).

230

231 **INSERT FIGURE 5 ABOUT HERE**

232

233 **Discussion**

234 In this double-blind, sham-controlled study, we have determined for the first time the connectivity
235 changes of the DMN in the healthy brain for up to 50 minutes after iTBS (1800 pulses protocol). As

236 expected, after personalized left DLPFC stimulation (Figure 2B) we see a decrease in the functional
237 connectivity of the DMN, mainly with the rACC and dACC during the R2 rsfMRI window (Figure 3 A1-
238 2, about 27-32 minutes after stimulation). This decrease is sustained in the rACC and additionally
239 extends to the mPFC and right AI during the R3 rsfMRI window (Figure 3 B1-4, about 45-50 minutes
240 after stimulation). In agreement with the literature^{18,41}, we see at baseline a negative correlation
241 between the parameter estimates of sgACC and the personalized left DLPFC (Figure 4, green
242 diamond at ~20 minutes before iTBS). As the functional connectivity changes in both left DLPFC and
243 rACC within their own networks (Figure 4, red and blue curves), the negative correlation between
244 sgACC and left DLPFC becomes progressively positive (Figure 4, green dotted curve). Finally, we
245 observe a positive correlation between the HA score and the connectivity changes observed with the
246 DMN in the rACC (Figure 5A), which implies that this measure can possibly predict the magnitude of
247 functional connectivity changes induced by iTBS in rACC.

248 A dynamic system known as the triple network model has been suggested to explain the fast
249 adaptive qualities of the brain^{42,43}. According to the triple network model, a task positive network
250 corresponding to the central executive network (CEN) is active when the brain is engaged in
251 cognitive tasks or allocating attention to external stimuli^{25,44}. The DMN (aka task negative network) is
252 active antagonistically to the task positive network, being active when resources are internally
253 allocated during introspective thoughts or autobiographical memories⁴⁵. A dynamic interplay
254 between the task positive and task negative network is required to quickly reallocate resources
255 towards internal or external stimuli according to immediate demands. It has been shown that this
256 “circuit breaker” role is played by the salience network (SN)⁴³, with the dACC and right AI as the main
257 network nodes. We identified these regions as being decoupled from the DMN in healthy subjects
258 after a single session of a prolonged iTBS protocol (1800 pulses) (Figure 3). Although the changes
259 evidenced here may not directly translate to the context of psychopathology, it was very promising
260 to see these nodes as part of our results. The AI is considered to be the essential hub of the SN

261 because it mediates the information flow across the brain to different networks and switches
262 between central-executive and default-mode networks^{42,43,46}.

263 In depression, the SN shows aberrant functional connectivity to the DMN and CEN^{23,25,47}. One of the
264 network-based hypotheses of depression conjectures that the increased interaction between the SN
265 and the DMN results in pathologically increased allocation of resources to negative information
266 about the self, e.g. ruminative thoughts^{30,48}. Considering the proven efficacy of iTBS for treatment of
267 depression and speculating that the effects seen in healthy participants would extend to patients,
268 the mechanism by which iTBS may initially influence the symptomatology of depression could be by
269 “normalizing” the pathologically increased interaction between the SN and the DMN. In line with this
270 reasoning, Iwabuchi et al.⁴⁹ has shown in patients with depression that fronto-insular and SN
271 connectivity interactions correlated positively with HAM-D score change at the end of a 4-week iTBS
272 protocol. They have also described that better clinical outcomes are associated with reduced
273 connectivity between dorsomedial prefrontal cortex (DMPFC) and bilateral insula⁴⁷. Their results in
274 conjunction with ours highlight the importance of investigating the AI and dACC as SN nodes
275 involved in responsiveness to iTBS.

276 Using a different approach, Baeken et al.⁵⁰ have shown that the functional connectivity of the sgACC
277 and medial orbitofrontal cortex (mOFC) is increased during accelerated iTBS in depression patients.
278 Their results stem from seed-based analysis of the sgACC after iTBS. One possible reason for the
279 discrepancy between their and our results may be the method of analysis, as seed-based analysis
280 focuses on the functional connectivity of a predefined ROI while ICA allows exploration of functional
281 connectivity changes of the whole brain without having to pre-define a ROI. In contrast to our
282 previous work that identified the sgACC as the main region decoupled from the DMN after a single
283 session of personalized 10 Hz rTMS¹⁹, the strongest changes in connectivity after iTBS are not with
284 the sgACC, but rather the rACC and dACC as mentioned above. However, due to the relevance of the
285 sgACC, we further explored the beta weights from this region and evaluated its relation to the left

286 DLPFC at baseline and up to 50-min after stimulation. We evidenced a shift of correlation between
287 these regions from negative to positive within the observation time (Figure 4, green dotted curve).
288 This suggests the participation of the sgACC in the effects driven by iTBS, even though it is not
289 directly engaged by it. The striking similarity between the red curves seen in the rACC after iTBS
290 (Figure 4) and in the sgACC after 10 Hz TMS (Figure 5 in Singh et al.¹⁹) suggests that sgACC is rather
291 the first target after 10 Hz rTMS (under standard dose of 3000 pulses). Another important aspect
292 that might have contributed to differences between our and the results of Baeken et al.⁵⁰ is that we
293 stimulated functionally relevant sites within the left DLPFC, as opposed to their structural selection.
294 Of course, the most profound difference is that our study closely evaluated connectivity changes
295 after one session of iTBS in healthy subjects, whereas Baeken et al.⁵⁰ evaluated patients with
296 depression after 20 stimulation sessions. It must be considered that the complexities associated with
297 the underlying pathophysiology of depression could have contributed to differences in how iTBS
298 interacts with brain regions and networks. Our results shed light on other relevant regions that
299 respond to a single session of iTBS in the healthy brain. Future work examining brain networks in
300 patients before and after 20 iTBS treatment sessions should close these knowledge gaps.

301 We also evidenced a positive correlation between changes in the HA score on the TCI and the
302 functional connectivity to the rACC in the DMN (Figure 5A). This indicates that the higher the
303 subjects scored on the HA domain, the stronger the reduction in functional connectivity. This
304 correlation indicates that it might be possible to utilize the HA to predict the extent of DMN-rACC
305 coupling changes induced by iTBS. Interestingly, the correlation between connectivity changes and
306 HA scores replicates the time window in which this was seen in an independent sample using 10 Hz
307 rTMS¹⁹, although in opposite direction and in a different brain region, the sgACC. Considering the
308 rACC and the sgACC are the regions whose connectivity to the DMN is affected by iTBS and 10 Hz
309 TMS respectively, we speculate that HA scores may facilitate identification of participants who will
310 present stronger DMN changes in response to TMS protocols. If this holds true for clinical samples,
311 we hypothesize that such a measure could be used to determine beforehand who would benefit

312 most from one stimulation protocol or the other. We hope future research in precision medicine will
313 investigate this using different TMS protocols, considering the direct clinical application and
314 potential relevance to improving treatment response.

315 There are limitations to this study. It should be noted that our choice of a single session of 1800
316 pulses iTBS for uncovering its effect on the DMN in healthy brains was based on ethical reasons, as
317 applying 20 sessions of iTBS as done in patients⁵¹ would not be prudent. While the results presented
318 have been controlled for using a sham stimulation, it must be noted that the method used for sham
319 stimulation allowed some lingering current on the sham side. The strength of this current was low
320 and not enough to elicit motor response. However, the fact remains that the sham condition used
321 was not completely passive and hence could be interpreted as an active sham. Lastly, the diseased
322 state of the brain, e.g. in depressive state, is likely to influence interactions between brain networks
323 in response to multiple sessions of iTBS. Therefore, assumptions based on healthy samples must be
324 made cautiously.

325 In conclusion, by means of a double-blind, sham-controlled crossover study involving healthy
326 subjects, we show that a single session of iTBS results in decoupling of the rostral/dorsal ACC,
327 followed by the mPFC and the right AI, with the DMN. The interaction between the personalized
328 sites of stimulation at the left DLPFC and the rACC shows a progressive shift from negative to
329 positive correlation. Lastly, connectivity changes in the rACC induced by a single real session of iTBS
330 in the healthy brain positively correlated with the HA score on the TCI scale.

331 **Supplementary information**

332 Supplementary information is available at Molecular Psychiatry's website.

333 **References**

334 1 Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P *et al.* Effectiveness

335 of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients
336 with depression (THREE-D): a randomised non-inferiority trial. *Lancet* 2018; **391**: 1683–1692.

337 2 Bakker N, Shahab S, Giacobbe P, Blumberger DM, Daskalakis ZJ, Kennedy SH *et al.* rTMS of the
338 Dorsomedial Prefrontal Cortex for Major Depression: Safety, Tolerability, Effectiveness, and
339 Outcome Predictors for 10 Hz Versus Intermittent Theta-burst Stimulation. *Brain Stimul* 2015;
340 **8**: 208–215.

341 3 Duprat R, Desmyter S, Rudi DR, van Heeringen K, Van den Abbeele D, Tandt H *et al.*
342 Accelerated intermittent theta burst stimulation treatment in medication-resistant major
343 depression: A fast road to remission? *J Affect Disord* 2016; **200**: 6–14.

344 4 Bulteau S, Sébille V, Fayet G, Thomas-Olivier V, Deschamps T, Bonnin-Rivalland A *et al.*
345 Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10-Hz high-frequency repetitive
346 transcranial magnetic stimulation (rTMS) in treatment-resistant unipolar depression: Study
347 protocol for a randomised controlled trial. *Trials* 2017; **18**. doi:10.1186/s13063-016-1764-8.

348 5 Li C-T, Chen M-H, Juan C-H, Huang H-H, Chen L-F, Hsieh J-C *et al.* Efficacy of prefrontal theta-
349 burst stimulation in refractory depression: a randomized sham-controlled study. *Brain* 2014;
350 **137**: 2088–2098.

351 6 Vanderwolf C. Hippocampal electrical activity and voluntary movement in the rat.
352 *Electroencephalogr Clin Neurophysiol* 1969; **26**: 407–418.

353 7 O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta
354 rhythm. *Hippocampus* 1993; **3**: 317–330.

355 8 Brazier MA. Studies of the EEG activity of limbic structures in man. *Electroencephalogr Clin*
356 *Neurophysiol* 1968; **25**: 309–318.

357 9 Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH *et al.* The effects of

358 individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study.

359 *Hum Brain Mapp* 2018. doi:10.1002/hbm.24398.

360 10 Oberman L, Edwards D, Eldaief M, Pascual-Leone A. Safety of Theta Burst Transcranial

361 Magnetic Stimulation: A Systematic Review of the Literature. *J Clin Neurophysiol* 2011; **28**:

362 67–74.

363 11 Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the

364 human motor cortex. *Neuron* 2005; **45**: 201–206.

365 12 Conte A, Rocchi L, Nardella A, Dispenza S, Scontrini A, Khan N *et al.* Theta-Burst Stimulation-

366 Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal

367 Discrimination in Healthy Humans. *PLoS One* 2012; **7**: e32979.

368 13 Chung SW, Lewis BP, Rogasch NC, Saeki T, Thomson RH, Hoy KE *et al.* Demonstration of short-

369 term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG

370 study. *Clin Neurophysiol* 2017; **128**: 1117–1126.

371 14 Anderson RJ, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Repetitive transcranial magnetic

372 stimulation for treatment resistant depression: Re-establishing connections. *Clin*

373 *Neurophysiol* 2016; **127**: 3394–3405.

374 15 Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B *et al.* Default mode network

375 mechanisms of transcranial magnetic stimulation in depression. *Biol Psychiatry* 2014; **76**:

376 517–526.

377 16 Taylor SF, Ho SS, Abagis T, Angstadt M, Maixner DF, Welsh RC *et al.* Changes in brain

378 connectivity during a sham-controlled, transcranial magnetic stimulation trial for depression.

379 *J Affect Disord* 2018; **232**: 143–151.

380 17 Mayberg HS. Targeted electrode-based modulation of neural circuits for depression. *J Clin*

381 17 *Invest* 2009; **119**: 717–725.

382 18 Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF *et al.* Prospective Validation
383 That Subgenual Connectivity Predicts Antidepressant Efficacy of Transcranial Magnetic
384 Stimulation Sites. *Biol Psychiatry* 2018; **84**: 28–37.

385 19 Singh A, Erwin-Grabner T, Sutcliffe G, Antal A, Paulus W, Goya-Maldonado R. Personalized
386 repetitive transcranial magnetic stimulation temporarily alters default mode network in
387 healthy subjects. *Sci Rep* 2019; **9**: 5631.

388 20 Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H *et al.* Resting-State
389 Functional Connectivity in Major Depression: Abnormally Increased Contributions from
390 Subgenual Cingulate Cortex and Thalamus. *Biol Psychiatry* 2007; **62**: 429–437.

391 21 Andreeescu C, Tudorascu DL, Butters MA, Tamburo E, Patel M, Price J *et al.* Resting state
392 functional connectivity and treatment response in late-life depression. *Psychiatry Res*
393 *Neuroimaging* 2013; **214**: 313–321.

394 22 Bluhm R, Williamson P, Lanius R, Théberge J, Densmore M, Bartha R *et al.* Resting state
395 default-mode network connectivity in early depression using a seed region-of-interest
396 analysis: Decreased connectivity with caudate nucleus. *Psychiatry Clin Neurosci* 2009; **63**:
397 754–761.

398 23 Mulders PCP, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I. Resting-state
399 functional connectivity in major depressive disorder: A review. *Neurosci Biobehav Rev* 2015;
400 **56**: 330–344.

401 24 Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng L-L *et al.* A Treatment-Resistant Default Mode
402 Subnetwork in Major Depression. *Biol Psychiatry* 2013; **74**: 48–54.

403 25 Manoliu A, Meng C, Brandl F, Doll A, Tahmasian M, Scherr M *et al.* Insular dysfunction within

404 the salience network is associated with severity of symptoms and aberrant inter-network
405 connectivity in major depressive disorder. *Front Hum Neurosci* 2014; **7**: 1–17.

406 26 Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W *et al.* Evidence of a dissociation pattern in
407 resting-state default mode network connectivity in first-episode, treatment-naive major
408 depression patients. *Biol Psychiatry* 2012; **71**: 611–617.

409 27 van Tol M-J, Li M, Metzger CD, Hailla N, Horn DI, Li W *et al.* Local cortical thinning links to
410 resting-state disconnectivity in major depressive disorder. *Psychol Med* 2014; **44**: 2053–2065.

411 28 Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks
412 increased connectivity between networks via the dorsal nexus. *Proc Natl Acad Sci U S A* 2010;
413 **107**: 11020–5.

414 29 Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM. Functional
415 connectivity in the cognitive control network and the default mode network in late-life
416 depression. *J Affect Disord* 2012; **139**: 56–65.

417 30 Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and the
418 default network. *Soc Cogn Affect Neurosci* 2011; **6**: 548–555.

419 31 Wu M, Andreescu C, Butters MA, Tamburo R, Reynolds CF, Aizenstein H. Default-mode
420 network connectivity and white matter burden in late-life depression. *Psychiatry Res*
421 *Neuroimaging* 2011; **194**: 39–46.

422 32 Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Avanzini G, Bestmann S *et al.* Safety, ethical
423 considerations, and application guidelines for the use of transcranial magnetic stimulation in
424 clinical practice and research. *Clin Neurophysiol* 2009; **120**: 2008–2039.

425 33 Lefaucheur J-PP, Andre-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH *et al.*
426 Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic

427 stimulation (rTMS). *Clin Neurophysiol* 2014; **125**: 2150–2206.

428 34 Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory.

429 *Neuropsychologia* 1971; **9**: 97–113.

430 35 Liu Q, Zhou R, Chen S, Tan C. Effects of Head-Down Bed Rest on the Executive Functions and

431 Emotional Response. *PLoS One* 2012; **7**. doi:10.1371/journal.pone.0052160.

432 36 Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N *et al.* Multiband multislice GE-

433 EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high

434 spatial and temporal whole-brain fMRI. *Magn Reson Med* 2010; **63**: 1144–1153.

435 37 Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled

436 aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-

437 factor penalty. *Magn Reson Med* 2012; **67**: 1210–1224.

438 38 Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. *Neuroimage* 2012;

439 **62**: 782–790.

440 39 Brett M, Anton J-L, Valbregue R, Poline J-B. Region of interest analysis using an SPM toolbox.

441 In: *NeuroImage*. Academic Press, 2002, pp 769–1198.

442 40 Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network Dysfunction in

443 Major Depressive Disorder. *JAMA Psychiatry* 2015; **02478**: 603–611.

444 41 Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial

445 magnetic stimulation targets for depression is related to intrinsic functional connectivity with

446 the subgenual cingulate. *Biol Psychiatry* 2012; **72**: 595–603.

447 42 Menon V. Large-scale brain networks and psychopathology: a unifying triple network model.

448 *Trends Cogn Sci* 2011; **15**: 483–506.

449 43 Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula
450 function. *Brain Struct Funct* 2010; **214**: 655–667.

451 44 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional
452 magnetic resonance imaging. *Nat Rev Neurosci* 2007; **8**: 700–711.

453 45 Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib IH. Default-Mode and Task-
454 Positive Network Activity in Major Depressive Disorder: Implications for Adaptive and
455 Maladaptive Rumination. *Biol Psychiatry* 2011; **70**: 327–333.

456 46 Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching
457 between central-executive and default-mode networks. *Proc Natl Acad Sci U S A* 2008; **105**:
458 12569–12574.

459 47 Iwabuchi SJ, Peng D, Fang Y, Jiang K, Liddle EB, Liddle PF *et al.* Alterations in effective
460 connectivity anchored on the insula in major depressive disorder. *Eur Neuropsychopharmacol*
461 2014; **24**: 1784–1792.

462 48 Cooney RE, Joormann J, Eugène F, Dennis EL, Gotlib IH. Neural correlates of rumination in
463 depression. *Cogn Affect Behav Neurosci* 2010; **10**: 470–478.

464 49 Iwabuchi SJ, Auer DP, Lankappa ST, Palaniyappan L. Baseline effective connectivity predicts
465 response to repetitive transcranial magnetic stimulation in patients with treatment-resistant
466 depression. *Eur Neuropsychopharmacol* 2019; : 1–10.

467 50 Baeken C, Duprat R, Wu G-R, De Raedt R, van Heeringen K. Subgenual Anterior Cingulate–
468 Medial Orbitofrontal Functional Connectivity in Medication-Resistant Major Depression: A
469 Neurobiological Marker for Accelerated Intermittent Theta Burst Stimulation Treatment? *Biol*
470 *Psychiatry Cogn Neurosci Neuroimaging* 2017; **2**: 556–565.

471 51 Duprat R, Wu GR, De Raedt R, Baeken C. Accelerated iTBS treatment in depressed patients

472 differentially modulates reward system activity based on anhedonia. *World J Biol Psychiatry*
473 2017; **0**: 1–12.

474 **Acknowledgements**

475 This work was supported by the German Federal Ministry of Education and Research
476 (Bundesministerium fuer Bildung und Forschung, BMBF: 01 ZX 1507, “PreNeSt - e:Med”).

477 **Competing Interests Statement**

478 All authors report no competing interests exist.

479 **Figure legends**

480 Figure 1: A schematic representation of the study design. In session 1, we obtained the informed
481 consent and collected the information from Structured Clinical Interviews (SCI). After this we
482 acquired a structural (T1-weighted) and functional (rsfMRI) image. During rsfMRI, the subjects were
483 instructed to fixate at a ‘+’ and mind wander, while their open eyes were monitored by eye tracking.
484 Personalized target were found using each subject’s rsfMRI as has been described elsewhere¹⁹. Using
485 online neuronavigation, we delivered real or sham iTBS, in a counterbalanced and pseudo-
486 randomized fashion, at 80% of resting motor threshold. Baseline and three post-iTBS rsfMRI scans
487 were acquired. The subjects also completed the Positive and Negative Affect Schedule (PANAS) both
488 before and after the sessions, and a visual analog scale (VAS) for perceived effects of iTBS on mental
489 state and scalp sensation at the end of the sessions.

490 Figure 2: A) An example of IC-DLPFC (warm colors) for a single subject from which the parameter
491 estimates of personalized stimulation site (blue sphere) were extracted. B) Personalized left DLPFC
492 stimulation sites of all subjects from which parameter estimates were extracted.

493 Figure 3: Regions that show reduced functional connectivity to DMN after stimulation (real-sham
494 condition, whole-brain corrected $p_{FWE} < 0.05$): A1-2) About 27 minutes after iTBS, the rACC and dACC
495 disengage from the DMN. B1-2) About 45 minutes after stimulation, the functional connectivity has
496 further reduced, extending to the mPFC and B3-4) the right AI. C) DMN during R1 rsfMRI and R3
497 rsfMRI session after real stimulation.

498 Figure 4: Left axis shows the parameter estimates of left DLPFC (blue) and rACC (red) of IC-DLPFC
499 and DMN, respectively. Dots represent the individuals and horizontal lines depict the median of the
500 parameter estimates for the respective rsfMRI window. The right axis plots the correlation
501 coefficients between the DLPFC and the rACC, showing that the effect of a single session of iTBS
502 progressively changes the correlation between these ROIs from negative to positive.

503 Figure 5: Correlation between the harm avoidance score and the changes observed in rACC during
504 R2 rsfMRI compared to R1 rsfMRI for A) real and B) sham conditions. A significant positive correlation
505 is observed after real stimulation only.

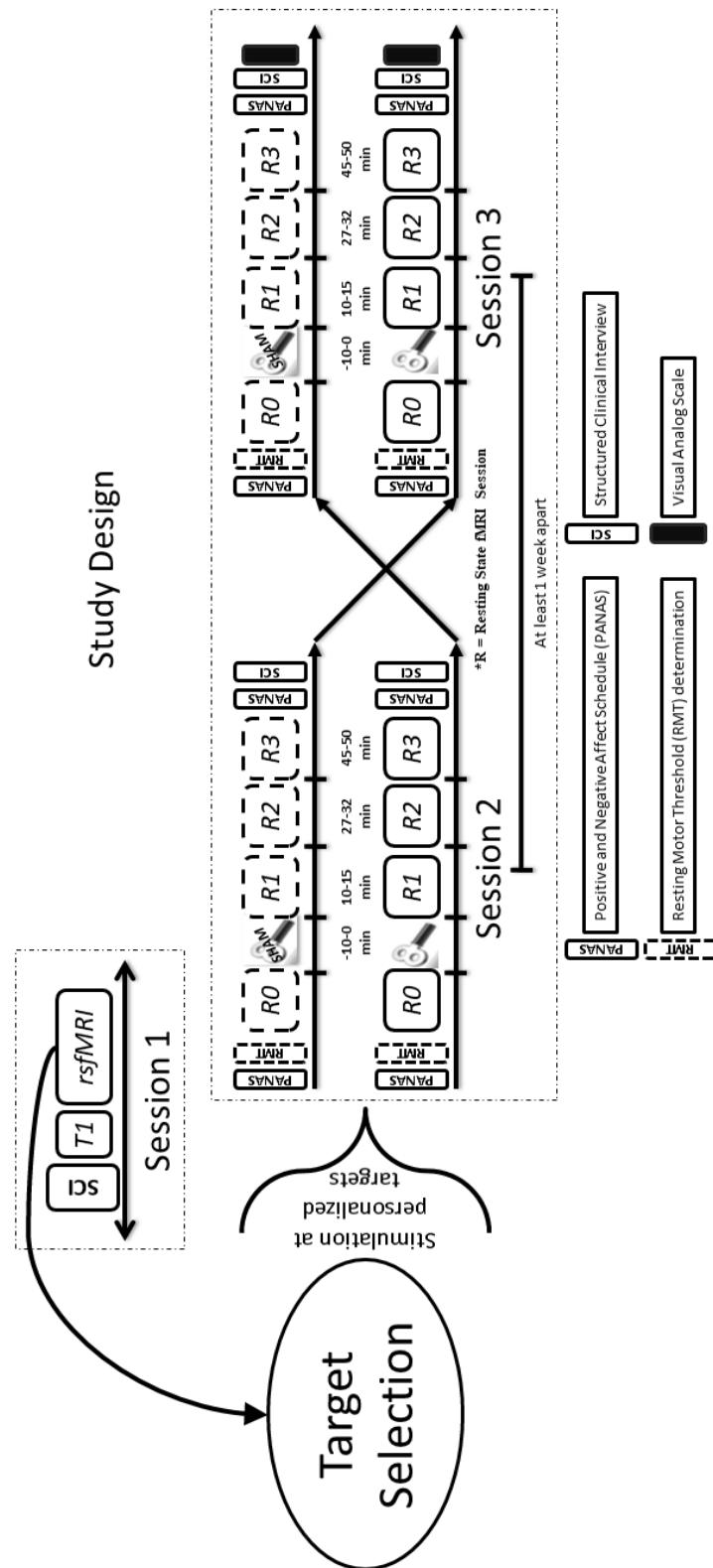
506

507

508

509

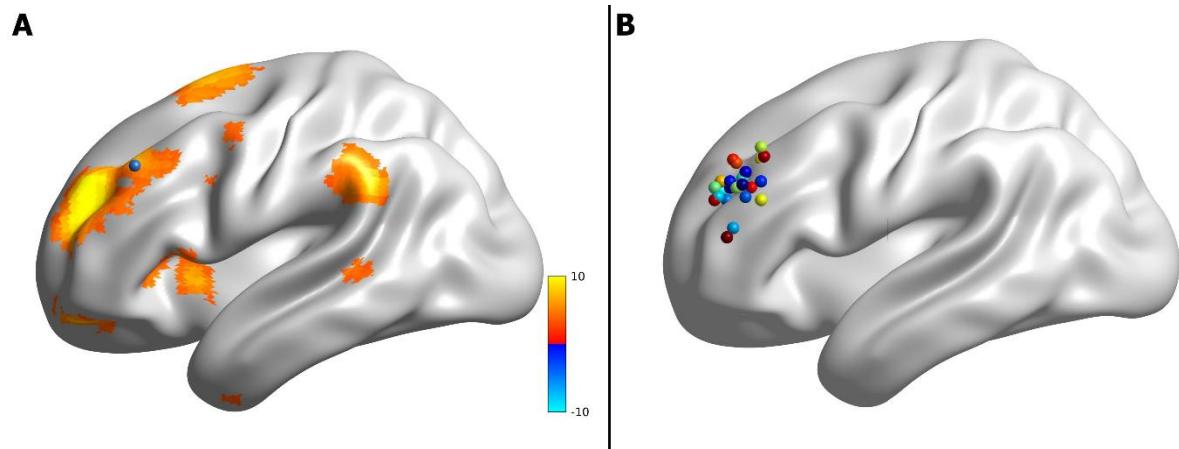
510


511

512

513 **Figures**

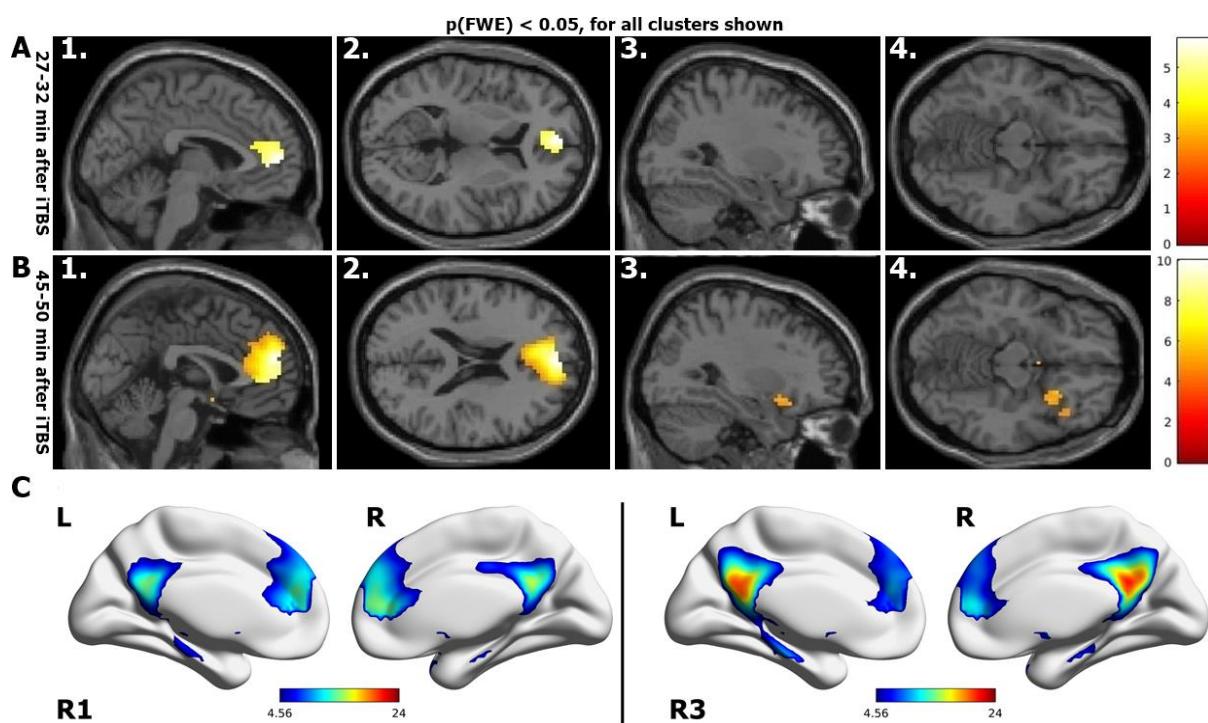
514


Figure 1

515

516

Figure 2



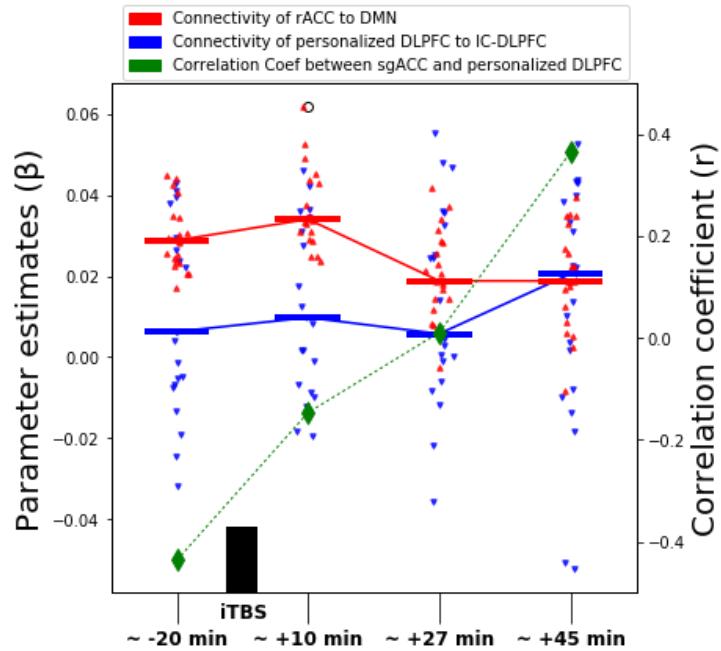
517

518

519

Figure 3

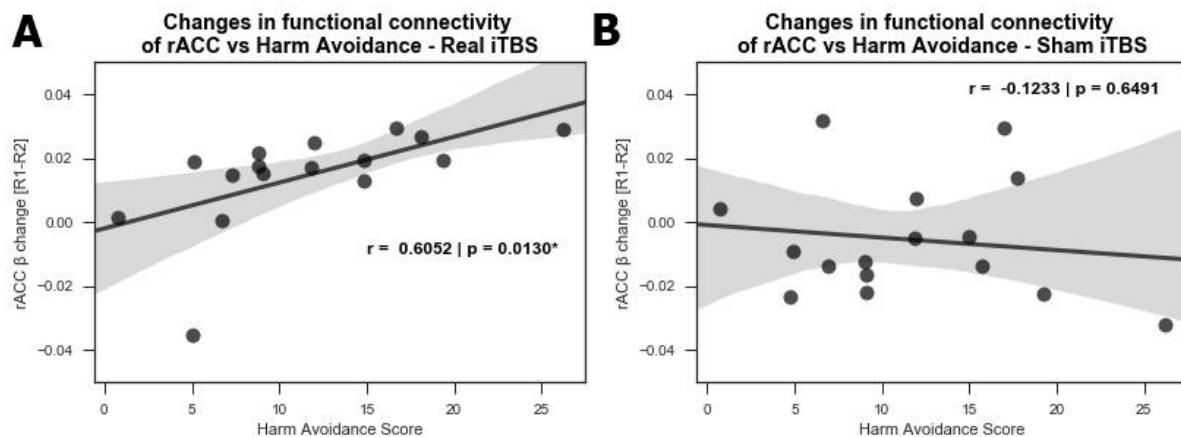
520


521

522

523

524


Figure 4

525

526

Figure 5

527