

1 Species-specific InDel markers for authentication of the
2 Korean herbs *Zanthoxylum schinifolium* and *Zanthoxylum*
3 *piperitum*

4

5

6 Yonguk Kim¹, Jawon Shin¹, Seung-Sik Cho², Yong-Pil Hwang³, and Chulyung Choi^{1,*}

7 ¹ Jeonnam Institute of Natural Resources Research, Jangheung-gun, Jeollanam-do 59339, Korea

8 ² Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do
9 58554, Korea

10 ³ Department of Pharmaceutical Engineering, International University of Korea, Jinju-si, Gyeongsangnam-do
11 52833, Korea

12 * Correspondence: blockstar@hanmail.net; Tel.: +82-61-860-2620

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 ***Corresponding Author:**

39 Dr. Chulyung Choi

40 Jeonnam Institute of Natural Resources Research, 288

41 Woodland-gil, Anyang-myeon, Jangheung-gun, Jeonnam, 59338, Republic of Korea

42 Tel : +82-61-860-2620

43 Fax : +82-61-864-7105

44

45 **Abstract**

46

47 **Objective:** *Zanthoxylum schinifolium* and *Zanthoxylum piperitum* are the sources of the well-known traditional Korean herbal medicines "sancho" (prickly ash) and "chopi" (Korean pepper), respectively. Sancho and chopi are often indiscriminately mixed due to the similar appearance of the herbal materials when used as spices and herbal medicines. Moreover, commercial sancho and chopi products often contain adulterants, which could compromise drug efficacy and safety.

53 **Methods:** In this study, we developed hypervariable InDel markers to distinguish between 54 sancho and chopi products by comparing the complete chloroplast genome sequences of four 55 *Zanthoxylum* species deposited in NCBI GenBank.

56 **Results:** Comparative analyses of the nucleotide diversity (Pi) of these *Zanthoxylum* 57 genomes revealed four hypervariable divergent sites (*trnH-psbA*, *psbZ-trnG*, *trnfM-rps14*, 58 and *trnF-ndhK*) with $Pi > 0.025$ among 520 windows. Of these four regions, including two 59 genic and two intergenic regions, only *psbZ-trnG* yielded accurate PCR amplification results 60 between commercial sancho and chopi products from the Korean herbal medicine market. We 61 therefore selected *psbZ-trnG*, an InDel-variable locus with high discriminatory powers, as a 62 candidate DNA barcode locus.

63 **Conclusion:** This InDel marker could be used as a valuable, simple, and efficient tool for 64 identifying these medicinal herbs, thereby increasing the safety of these spices and herbal 65 materials in the commercial market.

66

67 **Keywords:** chloroplast genome; chopi; InDel markers; nucleotide diversity; sancho; 68 *Zanthoxylum piperitum*; *Zanthoxylum schinifolium*

69 **Introduction**

70

71 *Zanthoxylum* plants are thorny, deciduous shrubs and small trees with dense foliage, prickly
72 trunks, and branches bearing edible fruits and leaves with a strong, pungent taste resembling
73 lemon, anise, or mint. These plants, belonging to the Rutaceae family, comprise 250 species
74 that are native to warm temperate and subtropical regions (Sun and Duan 1996; Epifano et al.
75 2011). While members of *Zanthoxylum* are commonly found in the Himalayan region, they
76 also occur in Central, South, Southeast, and East Asia, and some species are found in
77 America and Africa (Arun and Paridhavi 2012; Patiño et al. 2008; Appelhans et al. 2018).
78 Many of these species are used as traditional medicines to treat human and animal diseases in
79 Africa, Asia, and South America (Negi et al. 2011; Supabphol and Tangjijareonkun 2014).
80 Among these, *Z. schinifolium* (“sancho” in Korean, “huajiao” in Chinese) and *Z. piperitum*
81 (“chopi” in Korean) are important traditional medicinal herbs in Korea and China (Kim et al.
82 2000; Ko and Han 1996; Yang 2008) that are also used as spices. *Korean Flora* describes
83 seven *Zanthoxylum* species from Korea, including *Z. schinifolium* var. *inermis* (Nakai) T.B.
84 Lee, *Z. piperitum* f. *pubescens* (Nakai) W.T. Lee, *Z. schinifolium* Siebold & Zucc., *Z.
85 piperitum* (L.) DC., *Z. schinifolium* f. *microphyllum* (Nakai) W.T. Lee, *Z. planispinum*
86 Siebold & Zucc., and *Z. coreanum* Nakai (Lee 2003; Chung 1957; Nakai 1930). *Z.
87 schinifolium* and *Z. piperitum* are the most ancient cultivated trees in southern regions of
88 Korea. These trees are of major agricultural importance as sources of spices and traditional
89 medicines (Ko and Han 1996; Yang 2008). Whereas *Z. schinifolium* thorns are arranged in an
90 alternating pattern on branches, *Z. piperitum* thorns are arranged in an opposing pattern (Lee
91 2003). However, it is difficult to visually discriminate between dried and powdered herbal
92 products made from *Z. schinifolium* and *Z. piperitum*. Furthermore, commercial herbal
93 products commonly include a mixture of *Z. schinifolium* and *Z. piperitum* tissue. Since these
94 plants are used in herbal medicines and as health food supplements, accurate methods should
95 be developed to identify and characterize the two species.

96 Several studies have focused on developing molecular markers that can discriminate
97 between various *Zanthoxylum* species used as traditional medicines in different countries.
98 These molecular markers include amplified fragment length polymorphism (AFLP) markers
99 for distinguishing between *Z. acanthopodium* and *Z. oxyphyllum* (Gupta and Mandi 2013),
100 sequence-related amplified polymorphism (SRAP) markers (Feng et al. 2015), internal

101 transcribed spacer (ITS) rDNA-specific markers (Kim et al. 2015), and ISSR markers (Feng
102 et al. 2015). However, the use of these markers is limited by population dynamics and their
103 reproducibility as diagnostic markers in the field. With the advancement of next-generation
104 sequencing (NGS) technology, chloroplast (cp) genome assembly has become more
105 accessible than Sanger sequencing. The development of molecular markers has also become
106 cost effective through comparisons of cp genomes. The complete cp genomes of several
107 *Zanthoxylum* species have been sequenced by de novo assembly using a small amount of
108 whole genome sequencing data (Lee et al. 2016; Liu and Wei 2017; 2017).

109 In the current study, we compared the published cp genome sequences of four
110 *Zanthoxylum* species and searched for species-specific regions with hypervariable nucleotide
111 diversity among members of *Zanthoxylum*. Our aim was to develop interspecies insertion and
112 deletion (InDel) markers that could be used to discriminate between *Z. schinifolium* and *Z.*
113 *piperitum* and prevent the indiscriminate mixing of these two materials in commercial
114 products.

115

116

117 **Results**

118 **Comparative analysis of the cp genomes of various *Zanthoxylum* species**

119 To investigate the level of sequence divergence among *Zanthoxylum* cp genomes, we
120 performed a comparative analysis of three *Zanthoxylum* cp genomes with mVISTA using the
121 annotated *Z. piperitum* sequence as a reference (Figure 1). The cp genomes of the
122 *Zanthoxylum* species showed high sequence similarity, with identities of <90% in only a few
123 regions, pointing to a high level of conservation among the cp genomes. However, sliding
124 window analysis using DnaSP detected highly variable regions in the *Zanthoxylum* cp
125 genomes (Figure 2). We calculated the nucleotide diversity (*Pi*) values in the four
126 *Zanthoxylum* cp genomes as an indicator of divergence at the sequence level. The large
127 single-copy (LSC) regions and small single-copy (SSC) regions were more divergent than the
128 inverted repeat (IR) regions.

129 Among the 520 windows examined, IR regions were more conserved than LSC and SSC
130 regions, with average *Pi* values of 0.0015 and 0.0012 for IRa and IRb, respectively (for
131 regions other than those with a *Pi* value = 0). The *Pi* values for the LSC regions averaged
132 0.0082, whereas the SSC regions had a *Pi* value of 0.0103, and the average *Pi* value for all
133 regions was 0.00609. Four mutational hotspots in the cp genomes showed markedly higher *Pi*
134 values (>0.025), including two intergenic regions (*trnH-psbA*, 0.02833; *psbZ-trnG*, 0.05067)
135 and two genic regions (*trnfM-rps14*, 0.05367; *trnF-ndhK*, 0.02667 and 0.03133) (Figure 2).
136 Although the SSC and IR regions were generally highly conserved, the four regions located
137 in the LSC regions were particularly divergent.

138 **Development of InDel markers to discriminate between *Z. schinifolium* and *Z. piperitum***

139 Based on multiple alignments of complete cp genome sequences, we selected the four most
140 highly variable InDel loci as candidate DNA markers (Table 1). We confirmed these four
141 InDel regions by PCR amplification and sequencing and investigated their utility for
142 discriminating between *Z. schinifolium* and *Z. piperitum* (Figure 3). We produced four
143 markers (ZanID1, ZanID2, ZanID3, and ZanID4) that were specific to *Z. schinifolium* and *Z.*
144 *piperitum* and were derived from long InDels in the intergenic regions *psbZ-trnG*, *trnfM-*
145 *rps14*, and *trnF-ndhK*, respectively. ZanID1 was derived from 11-, 3-, and 6-bp InDels in the
146 *trnH-psbA* locus and was specific to *Z. schinifolium* and *Z. piperitum* (Figure 3). ZanID2 was

147 derived from 19-, 28-, and 5-bp InDels and 40- and 23-bp tandem repeats (TRs) in the *psbZ*-
148 *trnG* locus. ZanID3 was derived from 19-, 28-, 39-, and 6-bp InDels and a 23-bp TR in
149 *trnfM-rps14*. ZanID4 was derived from 32-, 6-, 59-, and 50-bp InDels and an 8-bp TR in
150 *trnF-ndhK*.

151 **Utilization of InDel markers in the Korean food market**

152 To validate the utility of our newly developed markers to identify commercial dried herbal
153 materials, we extracted genomic DNA from powdered or dried samples of seven sancho and
154 six chopi products and amplified them by PCR using the newly developed primers (Table 1).
155 The banding patterns of the *ZanID1* marker revealed that lanes 1, 2, 5, 6, 8, and 10 contained
156 sancho samples, while lanes 3, 4, 9, and 11–16 were identified as chopi (Figure 4A).
157 Different banding patterns were obtained using *ZanID2*, with lanes 2, 3, 5, 7, 8, and 10
158 containing sancho samples and the other samples identified as chopi (Figure 4B).
159 Interestingly, samples 2, 5, and 7 clearly produced double bands in both species (Figure 4B).
160 Furthermore, analysis of the banding patterns of the *ZanID3* and *ZanID4* markers revealed
161 that lanes 2, 3, 5, 6, 7, 8, and 10 contained sancho samples, while the other samples were
162 identified as chopi (Figure 4C and 4D). These three markers produced considerably different
163 banding patterns, making it difficult to discriminate between sancho and chopi.

164 To select markers that could accurately discriminate between sancho and chopi, we
165 performed PCR-RFLP analysis of the 13 samples by developing a PCR RFLP test to identify
166 sancho samples. Many taxonomic studies of land plants have been based on the *trnH-psbA*
167 region of cpDNA, as this DNA barcode exhibits high rates of sequence divergence among
168 species. Based on the partial sequences of *trnH-psbA* in the cp genome that are shared
169 between *Z. schinifolium* and *Z. piperitum*, we predicted that the *PleI* restriction enzyme would
170 produce species-specific RFLP patterns and could therefore be used to identify *Z.*
171 *schinifolium* based on the *trnH-psbA* locus. As shown in Figure 5, the fragment sizes for the
172 two species were as follows: In *Z. schinifolium*, *PleI* produced two fragments (436 bp and
173 107 bp) from PCR products (lanes 2, 3, 5, 7, 8, and 10) of *trnH-psbA* (543 bp); in *Z.*
174 *piperitum*, this enzyme did not digest the PCR products of *trnH-psbA* (562 bp). These results
175 indicate that the *psbZ-trnG* marker is suitable for use as a reliable DNA barcoding tool to
176 discriminate between *Z. schinifolium* and *Z. piperitum*.

177

178 **Discussion**

179 *Zanthoxylum* formed a phylogenetic group in previous molecular phylogenetic studies
180 (Appelhans et al. 2018; Feng et al. 2015; Kim et al. 2015); however, these studies did not
181 sufficiently resolve the relationships among some of its taxa. These studies were based on the
182 ITS sequences of nuclear ribosomal DNA and the *trnL-trnF*, *matK-trnK*, *atpB*, *atp-rbcL*, and
183 *rbcL* sequences of the cp genome (Sun et al. 2010; Feng et al. 2016; Zhao et al. 2018).
184 Although these regions were considered to be universal DNA barcodes for higher plant, they
185 did not allow to assess usefulness of these loci in barcoding of some taxa. Therefore,
186 advances in NGS technologies have made it possible to sequence whole cp genomes and
187 identify molecular markers. Highly variable markers derived from the cp genomes of
188 different species at the genus level have uncovered many loci that are informative for
189 systematic botany and DNA barcoding research (Dong et al. 2012; Li et al. 2015).

190 Here, we retrieved the complete cp genome sequences of four *Zanthoxylum* species from
191 the NCBI database and compared species-specific cp diversity in *Zanthoxylum*. We
192 confirmed the variation among species, with an average nucleotide diversity value (*Pi*) of
193 0.00609 among the four *Zanthoxylum* species. Although the average *Pi* value for the SSC
194 region was relatively high (0.0103), high sequence divergence was detected at loci *trnH-psbA*
195 (0.02833), *psbZ-trnG* (0.05067), *trnF-M-rps14* (0.05367), and *trnF-ndhK* (0.02667 and
196 0.03133) in the LSC (0.0082). Indeed, the *trnH-psbA* locus is highly variable in most plants
197 and is known as a universal DNA barcoding region (Kress et al. 2007; Whitlock et al. 2010).
198 We used PCR amplification and sequencing to validate four hypervariable markers to
199 distinguish between *Z. schinifolium* and *Z. piperitum* and to discriminate between sancho and
200 chopi spice materials consumed in the online food market. However, PCR amplification of
201 the four markers produced variable banding patterns, making it difficult to discriminate
202 between sancho and chopi. Therefore, we designed a PCR-RFLP method using *PleI* digestion
203 of the *trnH-psbA* DNA barcoding region, resulting in the production of two fragments (436
204 bp and 107 bp) only in *Z. schinifolium*. This marker, the ZanID2 marker from the *psbZ-trnG*
205 region, is therefore suitable for discriminating between *Z. schinifolium* and *Z. piperitum* in
206 sancho and chopi. The ZanID2 marker shows high sensitivity and specificity for detecting
207 both sancho and chopi samples. Among the 10 sancho samples examined, three were
208 successfully detected as sancho (30%), whereas three other samples (30%) produced a double
209 band pattern that was clearly detected in both sancho and chopi samples. As expected, these

210 results confirm the notion that products labeled as sancho that are sold in the spice and herbal
211 medicine market often contain a mixture of sancho and chopi.

212 Although our results confirm that our newly developed InDel markers can be used to
213 authenticate *Z. schinifolium* and *Z. piperitum* based on available cp genome data, more
214 complete cp genome sequences are needed to comprehensively evaluate these InDel markers
215 in the *Zanthoxylum* genus.

216

217 **Materials and methods**

218

219 **Comparison of cp genomes and identification of hypervariable loci**

220 All cp genome sequences in plants of the *Zanthoxylum* genus with complete genome sequence
221 information were downloaded from GenBank (Table 1). The sequences were aligned using the
222 Clustal W algorithm from MEGA 7.0 (Kumar et al. 2016) and CLC viewer 8.0 software. The
223 gene distribution patterns and similarities in the *Zanthoxylum* cp genomes were compared and
224 visualized using mVISTA software (<http://genome.lbl.gov/vista/mvista/submit.shtml>) in
225 Shuffle-LAGAN mode with the annotated *Z. piperitum* KT153018 cp genome as a reference.
226 The variability of the aligned genomes was evaluated using the sliding window method with
227 DnaSP ver. 5.0. software (Librado and Rozas 2009). The window size was set to 600 base pairs
228 (bp), the typical length of DNA markers. The step size was set to 300 bp for relatively accurate
229 positioning of hypervariable InDels. Only regions with a nucleotide diversity (P_i) value of $>$
230 0.025 were considered. Hypervariable sites and genetic distance in the cp genome were
231 calculated using MEGA 7.0. The InDel events were checked manually based on the aligned
232 sequence matrix.

233

234 **Sample collection and genomic DNA isolation**

235 Table 2 lists the *Z. schinifolium* and *Z. piperitum* collections from the National Institute of
236 Biological Resources used in this study. Thirteen spice and powdered herbal materials (six
237 sancho and six chopi samples) were purchased from verified local market sources in Korea
238 and China (Table 4). Species identification was performed by the National Institute of
239 Biological Resources, Korea. Prior to total genomic DNA extraction, 50 mg (dry weight) of
240 each sample was added to a tube filled with stainless steel beads (2.38 mm in diameter) from
241 a PowerPlant Pro DNA Isolation Kit (Qiagen, Valencia, CA), and the mixture was

242 homogenized in a Precellys® Evolution homogenizer (Bertin Technologies). Genomic DNA
243 was extracted from the collected samples using the PowerPlant Pro DNA Isolation Kit
244 according to the manufacturer's instructions.

245

246 **Development and validation of the InDel molecular marker**

247 To validate interspecies polymorphisms within the cp genomes and to develop DNA genetic
248 markers for identifying these four *Zanthoxylum* species, primers were designed using Primer
249 3Plus (<http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi>), and NCBI Primer-
250 BLAST was performed based on the mutational hotspot regions (hypervariable regions)
251 found in these *Zanthoxylum* cp genomes. PCR amplifications were performed in a reaction
252 volume of 50 µL containing 5 µL 10x Ex Taq buffer (with MgCl₂), 4 µL dNTP mixture (each
253 2.5 mM), Ex Taq (5 U/µL) (TaKaRa, Japan), 10 ng genomic DNA templates, and 1 µL (10
254 pM) forward and reverse primers. The mixtures were denatured at 95°C for 5 min and
255 amplified for 40 cycles at 95°C for 30 s, 55°C for 20 s, and 72°C for 30 s, with a final
256 extension at 72°C for 5 min. To detect PCR amplicons, the PCR products were separated by
257 capillary electrophoresis (QIAxcel, Qiagen) using a QIAxcel DNA High Resolution Kit via
258 the 0M500 method (Qiagen). The target DNA was extracted and purified using a MinElute
259 PCR Purification Kit (Qiagen). Purified PCR products were sent to CosmoGenetech for
260 sequencing (Seoul, Korea) with both forward and reverse primers. The sequencing results
261 were analyzed by BLAST searches of the GenBank database. Sequence alignment and data
262 visualization were carried out with CLC sequence viewer 8.0.

263

264 **RFLP analysis to identify suitable InDel markers**

265 PCR was performed using universal primers for DNA barcodes within *trnH-psbA*: forward
266 primer 5'-GTTATGCATGAACGTAATGCTC-3' and reverse primer 5'-
267 CGCGCATGGTGGATTACAATCC-3' (approximate product size: 401 bp). The PCR was
268 conducted in a 50 µL reaction mixture containing 5 µL 10x Ex Taq buffer (with MgCl₂), 4 µL
269 dNTP mixture (each 2.5 mM), Ex Taq® (5 U/µL) (TaKaRa, Japan), 10 ng genomic DNA
270 template, and 1 µL (10 pM) forward and reverse primers. The mixtures were denatured at
271 94°C for 5 min and amplified for 30 cycles of 94°C for 60 s, 55°C for 60 s, and 72°C for 90 s,
272 with a final extension at 72°C for 7 min. The PCR-amplified products were separated by
273 electrophoresis on 1.5% agarose gels for 30 min.

274 A 2- μ L aliquot of each PCR-amplified *trnH-psbA* product (concentration 0.6 to 1 μ g/ μ L)
275 was digested in 2 μ L of 10x CutSmart buffer, 2 units of PstI restriction enzyme (New
276 England Biolabs, Ipswich, MA; NEB), and 15.8 μ L distilled H₂O in a final volume of 20 μ L,
277 followed by incubation at 37°C for 20 min and inactivation at 65°C for 20 min. The digested
278 fragments were separated by electrophoresis on 1.5% agarose gels stained with ethidium
279 bromide, and the fragment patterns were visualized under UV light.

280

281

282

283

284

285 **Abbreviations**

286 InDel: Insert and Deletion; RFLP: Restriction Fragment Length Polymorphism;
287 CP:Chloroplast; Large single-copy: LSC; Small single-copy: SSC; IR: Inverted repeat; PI:
288 pairwise distance

289

290 **Acknowledgments**

291 This research was supported by the Support Program for Creative Industry Institutes
292 (Commercial Biotechnology Sophistication Platform Construction Program, R0003950),
293 funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

294

295 **Competing interests**

296 The authors declare that they have no competing interests.

297

298 **Authors' Contributions**

299 Y.K. and C.C. conceived and designed the experiments; S.-S.C. and Y.-P.H. collected the
300 data; Y.K. and J.S. performed the experiments; Y.K. analyzed the data and wrote the
301 manuscript. All authors read and approved the manuscript.

302

303 **Funding**

304 Not applicable

305

306

307

308

309

310

311

312

313

314 **References**

315 Appelhans MS, Reichelt N, Groppo M, Paetzold C, Wen J (2018) Phylogeny and
316 biogeography of the pantropical genus *Zanthoxylum* and its closest relatives in the proto-
317 Rutaceae group (Rutaceae). *Mol Phylogenet Evol* 126: 31-44

318

319 Arun K, Paridhavi M (2012) An ethno botanical phytochemical and pharmacological
320 utilization of widely distributed species *Zanthoxylum*: a comprehensive overview. *Int J*
321 *Pharm Invent* 2: 24-35

322

323 Chung TH (1957) Korean flora. *Shinjisa* Seoul 1025.

324

325 Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable chloroplast markers for
326 evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. *PloS one* 7:
327 e35071

328

329 Epifano F, Curini M, Carla Marcotullio M, Genovese S (2011) Searching for novel cancer
330 chemopreventive plants and their products: the genus *Zanthoxylum*. *Curr Drug Targets* 12:
331 1895-1902

332

333 Feng S, Yang T, Liu Z, Chen L, Hou N, Wang Y, Wei A (2015) Genetic diversity and
334 relationships of wild and cultivated *Zanthoxylum* germplasms based on sequence-related
335 amplified polymorphism (SRAP) markers. *Genet Resour Crop Evol* 62: 1193-1204

336

337 Feng S, Yang T, Li X, Chen L, Liu Z, Wei A (2015) Genetic relationships of Chinese prickly
338 ash as revealed by ISSR markers. *Biologia* 70: 45-51

339

340 Feng S, Liu Z, Chen L, Hou N, Yang T, Wei A (2016) Phylogenetic relationships among
341 cultivated *Zanthoxylum* species in China based on cpDNA markers. *Tree Genet Genomes* 12:
342 45

343

344 Gupta DD, Mandi SS (2013) Species specific AFLP markers for authentication of
345 *Zanthoxylum acanthopodium* & *Zanthoxylum oxyphyllum*. *J Med Plants* 6: 1-9

346 Kim J, Jeong CH, Bae YI, Shim KH (2000) Chemical components of *Zanthoxylum*
347 *schinifolium* and *Zanthoxylum piperitum* leaves. *Korean J Food Preserv* 7:189-194

348

349 Kim WJ, Ji Y, Lee YM, Kang YM, Choi G, Moon BC (2015) Development of Molecular
350 Markers for the authentication of *Zanthoxyli Pericarpium* by the analysis of rDNA-ITS DNA
351 barcode regions. *Korea J Herbol* 30: 41-47

352

353 Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding
354 *rbcL* gene complements the non-coding *trnH-psbA* spacer region. *PLoS One* 2: e508

355

356 Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis
357 version 7.0 for bigger datasets. *Mol Biol Evol* 33: 1870-1874

358

359 Ko YS, Han HJ (1996) Chemical constituents of Korean chopi (*Zanthoxylum piperitum*) and
360 sancho (*Zanthoxylum schinifolium*). *Korean J Food Sci Technol* 28: 19-27

361

362 Lee TB (2003) Coloured flora of Korea. Vol. I. *Hyangmunsa*: Seoul, South Korea

363

364 Lee J, Lee HJ, Kim K, Lee SC, Sung SH, Yang TJ (2016) The complete chloroplast genome
365 sequence of *Zanthoxylum piperitum*. *Mitochondrial DNA Part A* 27: 3525-3526

366

367 Lee HJ, Koo HJ, Lee J, Lee SC, Lee DY, Giang VNL, Kim M, Shim H, Park JY, Yoo KO,
368 Sung SH, Yang TJ (2017) Authentication of *Zanthoxylum* species based on integrated analysis
369 of complete chloroplast genome sequences and metabolite profiles. *J Agric Food Chem* 65:
370 10350-10359

371

372 Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA
373 polymorphism data. *Bioinformatics* 25: 1451-1452

374

375 Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from
376 gene to genome. *Biol Rev* 90: 157-166

377

378 Liu Y, Wei A (2017) The complete chloroplast genome sequence of an economically
379 important plant, *Zanthoxylum bungeanum* (Rutaceae). *Conserv Genet Resour* 9 : 25-27
380

381 Nakai T (1930) Notulæ and Plantas Japoniæ & Koreæ XXXIX. *Shokubutsugaku Zasshi* 44:
382 507-537
383

384 Negi JS, Bisht VK, Bh AK, Singh P, Sundriyal RC (2011) Chemical constituents and
385 biological activities of the genus *Zanthoxylum*: a review. *Afr J Pure Appl Chem* 5: 412-416
386

387 Patiño LOJ, Prieto RJA, Cuca SLE (2008) *Zanthoxylum* genus as potential source of
388 bioactive compounds. *Bioact Compd Phytomed* 185-218
389

390 Sun XW, Duan ZX (1996) Progress in the studies on medicinal plants of the genus
391 *Zanthoxylum* Linn. *Yao xue xue bao=Acta pharm Sin B* 31: 231-240
392

393 Sun Y-L, Park W-G, Kwon O-W, Hong S-K (2010) The internal transcribed spacer rDNA
394 specific markers for identification of *Zanthoxylum piperitum*. *Afr J Biotechnol* 9: 6027-6039
395

396 Supaphol R, Tangjitjareonkun J (2014) Chemical constituents and biological activities of
397 *Zanthoxylum limonella* (Rutaceae): A review. *Trop J Pharm Res* 13: 2119-2130
398

399 Whitlock BA, Hale AM, Groff PA (2010) Intraspecific inversions pose a challenge for the
400 *trnH-psbA* plant DNA barcode. *PloS One* 5: e11533
401

402 Yang X (2008) Aroma constituents and alkylamides of red and green huajiao (*Zanthoxylum*
403 *bungeanum* and *Zanthoxylum schinifolium*). *J Agri Food Chem* 56: 1689-1696
404

405 Zhao LL, Feng SJ, Tian JY, Wei AZ, Yang T X (2018) Internal transcribed spacer 2 (ITS 2)
406 barcodes: A useful tool for identifying Chinese *Zanthoxylum*. *Appl Plant Sci* 6: e01157
407

408

409 **Figure legends**

410

411 **Figure 1.** Comparison of the four *Zanthoxylum* cp genomes using mVISTA. The complete cp
412 genomes of four *Zanthoxylum* species obtained from GenBank were compared, with *Z.*
413 *piperitum* used as a reference. Purple blocks: conserved genes; pink blocks: conserved non-
414 coding sequences (CNS). White represents regions with high levels of sequence variation
415 among the four *Zanthoxylum* species.

416 **Figure 2.** Sliding window analysis of the whole cp genomes of four *Zanthoxylum* species
417 (window size: 600 bp; step size: 300 bp). X-axis: position of the midpoint of a window, y-
418 axis: nucleotide diversity (P_i) of each window.

419 **Figure 3.** Gel profiles of fragments amplified from seven *Z. schinifolium* and six *Z. piperitum*
420 samples using four pairs of primers derived from the *trnH-psbA* (A), *psbZ-trnG* (B), *trnfM-*
421 *rps14* (C), and *trnF-ndhK* (D) loci in the four *Zanthoxylum* cp genomes. M: 100 bp ladder; 1–
422 7: amplicons from *Z. schinifolium* DNA; 8–13: amplicons from *Z. piperitum* DNA.

423 **Figure 4.** PCR identification of 16 commercial sancho and chopi products comprising dried
424 or powdered seeds and pericarps. Lanes on 1.5% agarose gel; M: 100 bp ladder; 1–16:
425 purchased commercial sancho and chopi products comprising dried or powdered seeds and
426 pericarps (see Table 4 for details); 16 samples were amplified by PCR using four primer pairs;
427 *ZanID1_F* and *R* (A), *ZanID2_F* and *R* (B), *ZanID3_F* and *R* (C), and *ZanID4_F* and *R* (D).

428 **Figure 5.** PCR-RFLP profiles of partial regions of *trnH-psbA* from all samples digested with
429 *PleI*. Numbers indicate sancho and chopi samples, as described in Table 4.

430

431

432 **Table legends**

433

434 **Table 1.** Primers used to amplify and sequence four highly variable loci

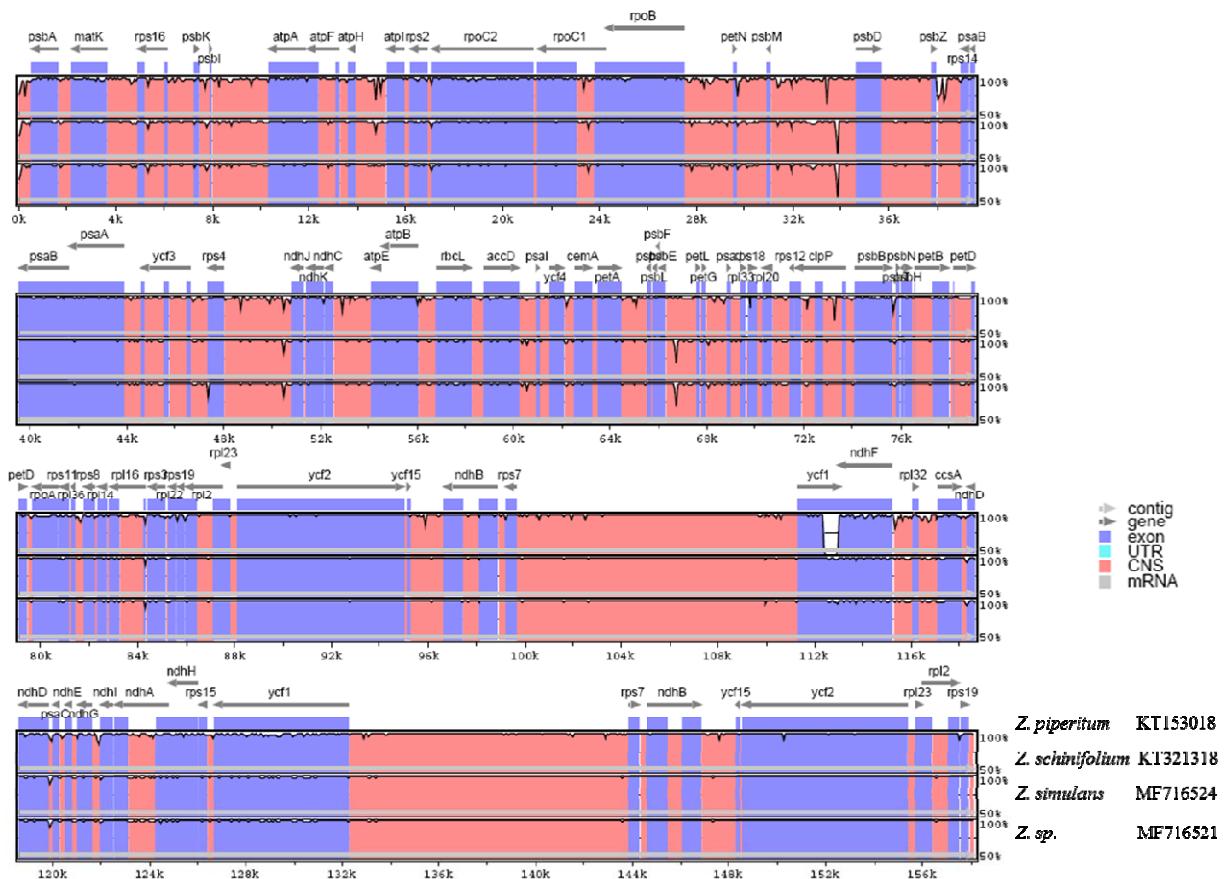
435 **Table 2.** Complete cp genomes of the four *Zanthoxylum* species used in this study

436 **Table 3.** *Z. schinifolium* and *Z. piperitum* samples used in this study

437 **Table 4.** The 16 commercial sancho and chopi spices and herbal products used in this study

438

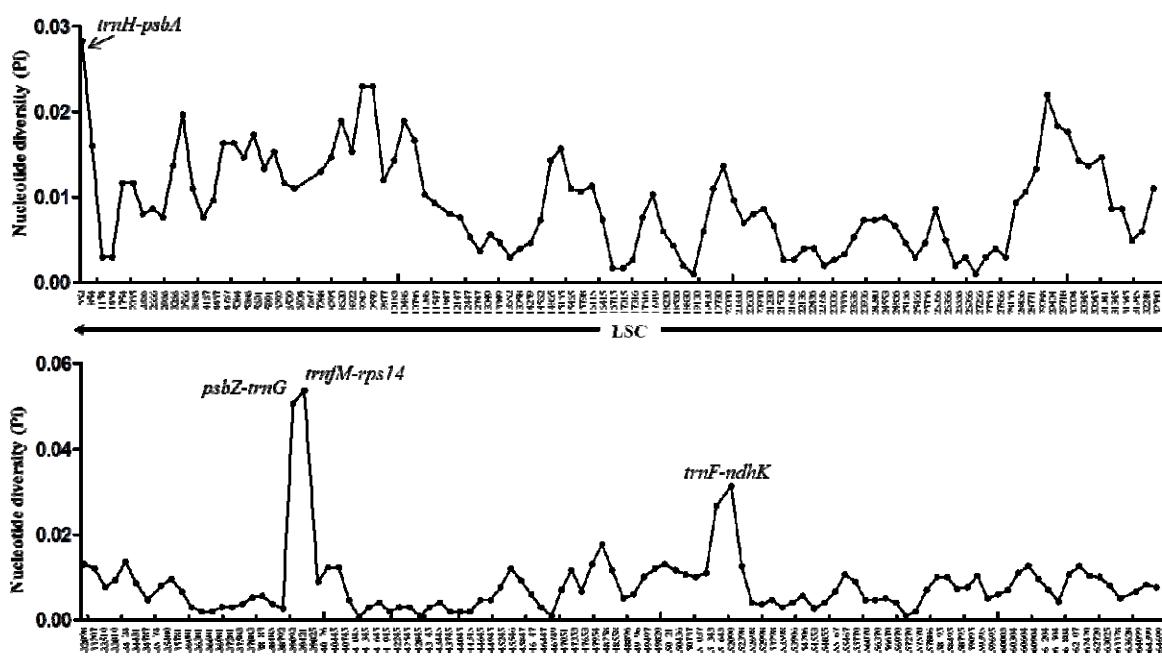
439

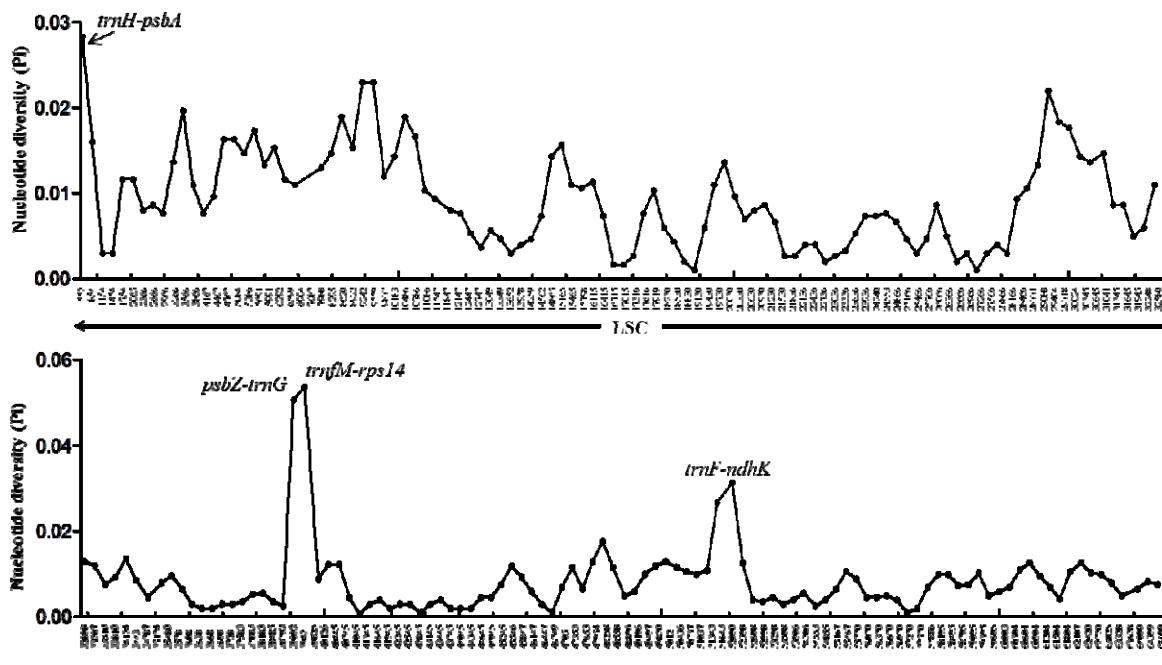

440

441

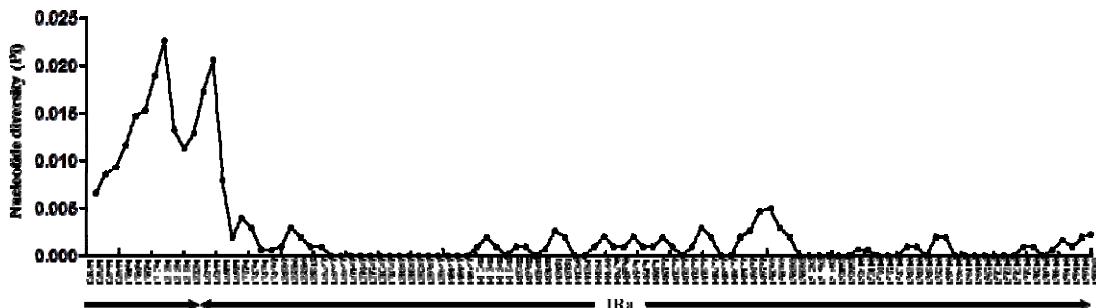
442

443 **Figure 1.**


444

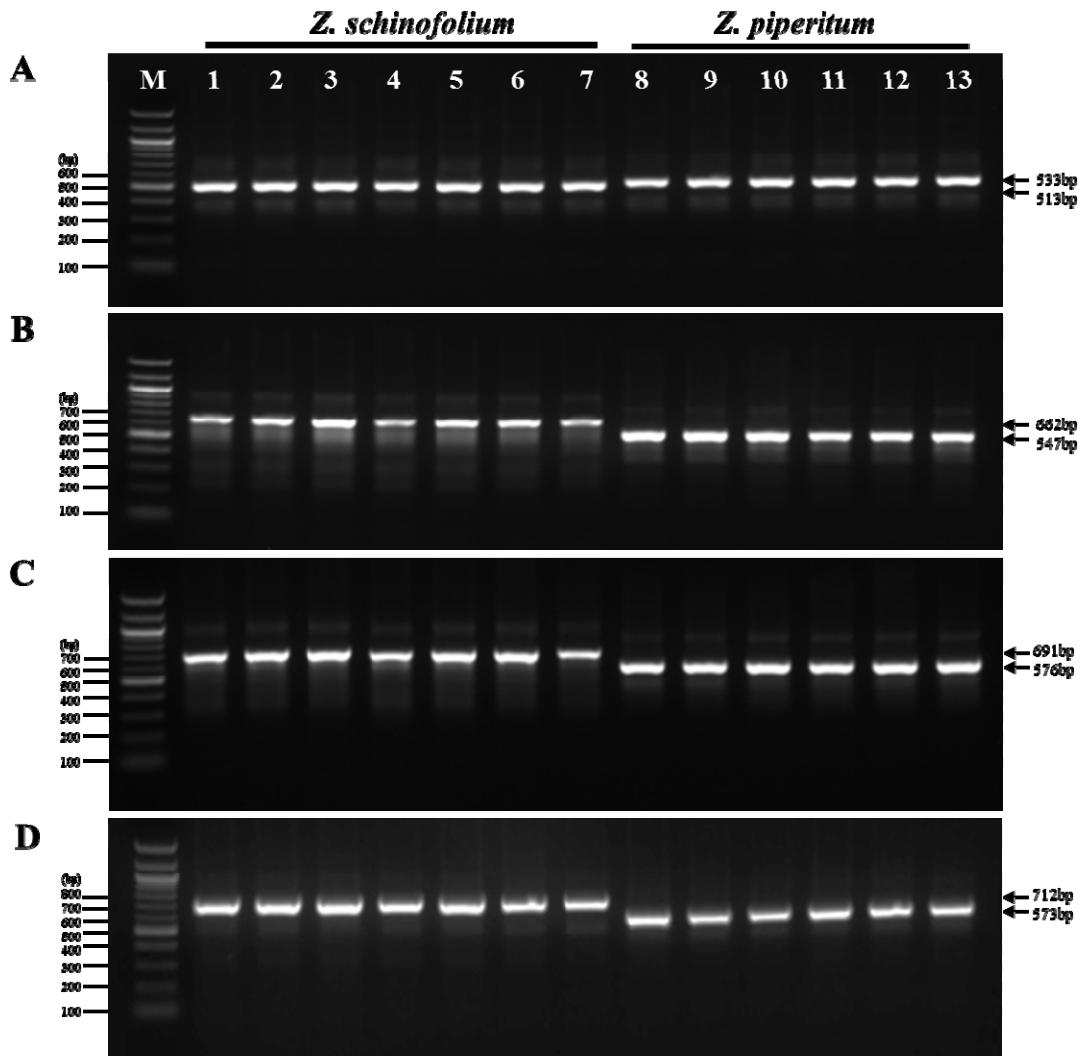

445

446


447 **Figure 2.**

448

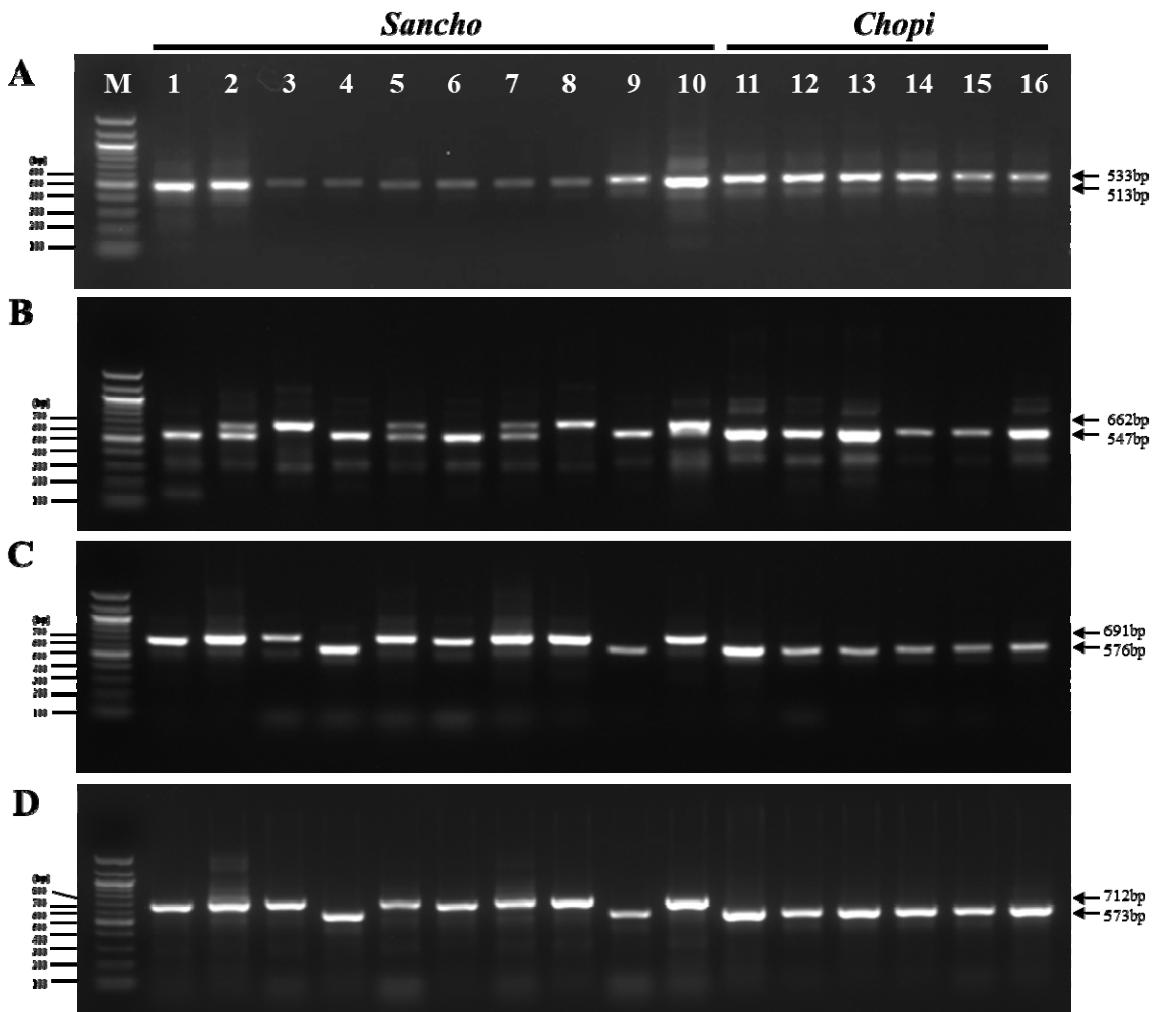
449



450

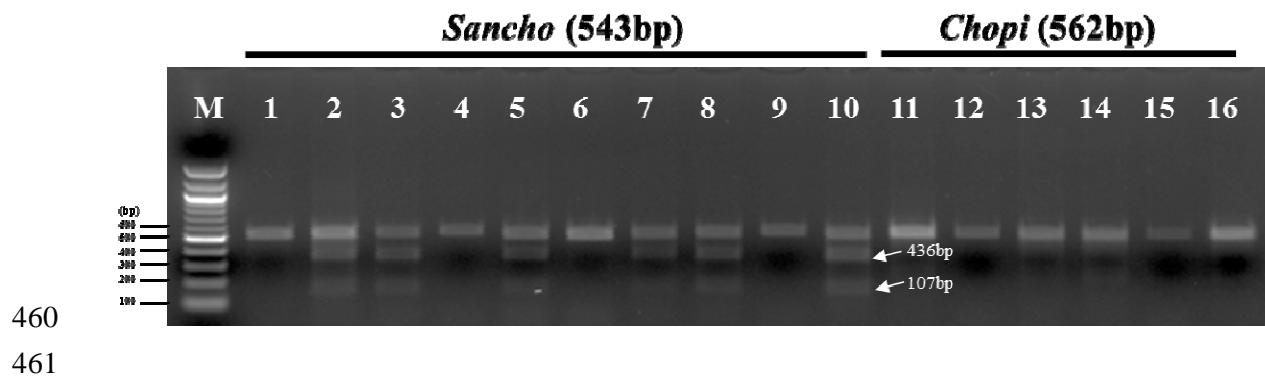
451

452


453 **Figure 3.**

454

455


456 **Figure 4.**

457

458

459 **Figure 5.**

462 **Table 1.**

Marker name	Locus	Location	Forward primer (5' to 3')	Reverse primer (5' to 3')	Product range (bp)	Mean pairwise distance
ZanID1	<i>trnH-psbA</i>	35...578	GATTTCACAATCCACT GCCTTGAT	GCTCATAACTTCCC TCTAGACCT	513-533	0.02833
ZanID2	<i>psbZ-trnG</i>	38882... 39545	GTGGGTATCCTTAAT TCTCTCATC	GATACTCTCTTCAG GGTAATTCCA	547-662	0.05067
ZanID3	<i>trnfM-rps14</i>	39040... 39730	GGAGGGATCAAAC TCTGGAAC	AGAACCACTATACT ATCACGGTCA	576-691	0.05367
ZanID4	<i>trnF-ndhK</i>	51439... 52158	GATTTGAGCAAGGA ATCCCCATTG	TCTTCATTGGACC CGATATTCAA	573-712	0.02667 0.03133

463

464 **Table 2.**

No.	Species	Research group	GenBank accession number	Sequence length (bp)
1	<i>Z. schinifolium</i>	Crop Science and Biotechnology, Department of Plant Sciences, Seoul National University, Korea	KT321318	158,963
2	<i>Z. piperitum</i>		KT153018	158,154
3	<i>Z. simulans</i>	College of Forestry, Northwest A&F University, China	MF716524	158,461
4	<i>Z. sp.</i>		MF716521	158,572

465

466

467 **Table 3.**

No.	Scientific name	Common name	Collection site	Collection number
1			Hyogok-ri, Ganjeon-myeon, Gurye-gun, Jeollanam-do, Korea	NIBRVP0000278863
2			Galcheon-ri, Seo-myeon, Yangyang-gun, Gangwon-do, Korea	NIBRVP0000448009
3			Daebubuk-dong, Danwon-gu, Ansan-si, Gyeonggi-do, Korea	NIBRVP0000538396
4	<i>Zanthoxylum schinifolium</i>	Sanchonamu	Wondeok-ri, Jincheon-eup, Jincheon-gun, Chungcheongbuk-do, Korea	NIBRVP0000538545
5			Sucheol-ri, Punggi-eup, Yeongju-si, Gyeongsangbuk-do, Korea	NIBRVP0000538696
6			Cheongsu-ri, Hangyeong-myeon, Jeju-si, Jeju-do, Korea	NIBRVP0000538748
7			Gujora-ri, Irun-myeon, Geoje-si, Gyeongsangnam-do, Korea	NIBRVP0000538812
8			Hangyeong-myeon, Jeju-si, Jeju-do, Korea	NIBRVP0000354345
9			Guseong-ri, Jugwang-myeon, Goseong-gun, Gangwon-do, Korea	NIBRVP0000470134
10	<i>Zanthoxylum piperitum</i>	Chopinamu	Seoung-ri, Onjeong-myeon, Uljin-gun, Gyeongsangbuk-do, Korea	NIBRVP0000538333
11			Jungjang-ri, Anmyeon-eup, Taeang-gun, Chungcheongnam-do, Korea	NIBRVP0000538652
12			Cheongsu-ri, Hangyeong-myeon, Jeju-si, Jeju-do, Korea	NIBRVP0000538652
13			Husapo-ri, Bubuk-myeon, Miryang-si, Gyeongsangnam-do, Korea	NIBRVP0000538646

468

469 **Table 4.**

No.	Markets	Material component	Origin
1	A		China
2	B		China
3	C		China
4	D		Korea
5	E	Dried or powdered seeds and pericarps:	China
6	F	sancho products	China
7	G	(50–300 g)	China
8	H		China
9	I		Korea
10	J		Korea
11	K		Korea
12	L		Korea
13	M	Dried or powdered seeds and pericarps: chopi products	Korea
14	N	(20–300 g)	Korea
15	O		Korea
16	P		Korea

470