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ABSTRACT 

Clustering is an essential step in the analysis of single cell RNA-seq (scRNA-seq) data to shed light on 

tissue complexity including the number of cell types and transcriptomic signatures of each cell type. Due to 

its importance, novel methods have been developed recently for this purpose. However, different 

approaches generate varying estimates regarding the number of clusters and the single-cell level cluster 

assignments. This type of unsupervised clustering is challenging and it is often times hard to gauge which 

method to use because none of the existing methods outperform others across all scenarios. We present 

SAME-clustering, a mixture model-based approach that takes clustering solutions from multiple methods 

and selects a maximally diverse subset to produce an improved ensemble solution.  We tested SAME-

clustering across 15 scRNA-seq datasets generated by different platforms, with number of clusters varying 

from 3 to 15, and number of single cells from 49 to 32,695. Results show that our SAME-clustering 

ensemble method yields enhanced clustering, in terms of both cluster assignments and number of clusters. 

The mixture model ensemble clustering is not limited to clustering scRNA-seq data and may be useful to a 

wide range of clustering applications. 
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INTRODUCTION 

Recent technological advances in single-cell RNA sequencing (scRNA-seq) have allowed researchers to 

catalog the transcriptomes across a large number of individual cells, empowering us to systematically study 

the heterogeneity at the cellular level. scRNA-seq has transformed the paradigm of genomic studies by 

investigating biology down to the single-cell resolution, which unveils information masked from the 

commonly used bulk RNA sequencing (RNA-seq). scRNA-seq analysis has led to, among others, the 

identification of existing and novel cell types, characterization of cells, prediction of cell fate, classification 

of tumor subpopulations, and investigation of cellular heterogeneity (1-3). Single cell clustering is a 

crucialstep to achieve above-mentioned utilities(4). For example, only after clustering the single cells, the 

following analyses can be meaningfully and conveniently carried out: identification and examination of cell 

type specific gene expression signatures, adjustment of cell type compositions for differential expression, 

and deconvolution of bulk RNA-seq expression data. Due to its importance, it is not surprising to find many 

existing scRNA-seq clustering methods (5-10). Unforunately, we find that clustering results from different 

methods are rather dissimilar (Supplementary Figure 1), which is consistent with literature (11,12) and not 

surprising because different methods employ different strategies for essential components of clustering 

(including choice of distance metric, dimension reduction, clustering approach and estimation of number of 

clusters) (Supplementary Table 1). Each scRNA-seq clustering approach has its own strengths and 

limitations. Thus, the use of two or more clustering methods is recommended for more accurate and 

comprehensive overview of cell clustering. However, when true (“gold-standard”) cluster labels are not 

available, it is difficult to select the best method(s), either before or after clustering analysis.  

To address the challenging issue of selecting the optimal method(s) when true cell types are 

unknown, combining information from multiple individual methods becomes an appealing alternative. We 

present Single-cell Aggregated Clustering via Mixture Model Ensemble clustering (SAME-clustering), a 

well-grounded statistical model to solve the problem of consensus clustering. We use a cluster ensemble 

method because it is known to provide robust and improved quality solutions (13). Moreover, the 

multinomial mixture model cluster ensemble approach underlying SAME-clustering accommodates varying 

numbers of clusters from individual solutions, addresses the issue regarding correspondence of cluster 

labels across different solutions, and solves the issue of missing labels from some solution(s) (13,14). 
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Furthermore, mixture model is a maximum likelihood-based approach where we can conveniently leverage 

model selection criterion to determine the optimal number of clusters for the final ensemble solution.  

MATERIAL AND METHODS 

Overview of SAME-clustering 

In the current implementation of SAME-clustering, we first input a gene expression matrix into five individual 

clustering methods, SC3 (5), CIDR (6), Seurat (8), t-SNE (15)+ k-means, and SIMLR (9), to obtain five sets 

of clustering solutions. Of the five sets of solutions, we choose a maximally diverse subset of four according 

to variation in pairwise adjusted Rand index (ARI). The four individual solutions selected are then combined 

into a 𝑛 × 4 matrix, where 𝑛	represents the number of single cells. Inferred cell labels from the four sets of 

solutions are then used as input for the essential ensemble module of SAME-clustering, which assumes 

that these labels are drawn from a mixture of multivariate multinomial distributions (14) to build an ensemble 

solution by solving a maximum likelihood problem using the expectation-maximization (EM) algorithm. 

Figure 1 shows the overview of our SAME-clustering method. 

Benchmark datasets 

We assembled a total of 15 published datasets (1,3,7,16-22) that have “gold-standard” (deemed as true) 

cluster labels assigned to each single cell. For the Li dataset (7), there were seven cell lines, two of which 

have two batches per cell line. Since the individual clustering methods used in SAME-clustering, except for 

Seurat, do not have an option for batch effect correction, we kept only the larger batch for each of the two 

cell lines with two batches. We created our two large datasets by mixing single cells from purified peripheral 

blood mononuclear cells (PBMC) generated by 10X genomics (21), following Sun et al (10). Specifically, 

the simple case consists of three highly distinct cell types: CD56+ natural killer cells, CD19+ B cells and 

CD4+/CD25+ regulatory T Cells. In contrast, single cells from three similar cell types, namely 

CD8+/CD45RA+ naïve cytotoxic T cells, CD4+/CD45RA+/CD25- naïve T cells and CD4+/CD25 regulatory 

T cells, are combined to form the challenging case dataset. Supplementary table 2 shows the wide variety 

of published datasets that we adopted and tested SAME-clustering on. 

Implementation of the five individual clustering methods 

SC3 filters out genes/ transcripts that are expressed in <10% or >90% of cells to remove rare and ubiquitous 

genes/transcripts. We applied SC3 with this default gene filtering step to all datasets to reduce 
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dimensionality and without substantial impact on clustering results (Supplementary Table 3). For the simple 

and challenging PBMC mixture datasets, SC3 estimated 906 and 943 clusters respectively. As the number 

of clusters determined by the default method in SC3 performs unsatisfactorily for large datasets, we run 

principal component analysis (PCA) on the 1000 most variable genes, based on log2 transformed counts 

per million (CPM) data, to visually estimate the number of clusters. PCA plot shows three clear clusters for 

the simple case and two vague clusters for the challenging case (Supplementary Figure 2). We therefore 

used these numbers when applying SC3 to these PBMC mixture datasets.  

For Seurat, dimension was reduced according to the number of principal coordinates (PCo) 

determined by CIDR implementation because CIDR provides an automatic way to select the number of 

PCos and SAME-clustering performs robustly across different number of PCs selected (Supplementary 

Figure 3, Supplementary Table 4). When applying t-SNE+k-means, we added an intermediate step to 

automatically detect the number of clusters and cluster centroids using ADPclust (23), which we have found 

previously to stabilize the performance of t-SNE+k-means(12). Although this automatic detection of 

centroids may affect cluster results for t-SNE+k-means when compared with manual inspection of centroids 

(Supplementary Figure 4 & 5, Supplementary Table 5), SAME ensemble results remained stable 

(Supplementary Table 5). For SIMLR, we set the number of clusters at the true values for the simple and 

challenging datasets, because the computational costs are high for SIMLR to determine the number of 

clusters for such large datasets.  

 Unlike SC3 and Seurat, CIDR, t-SNE+k-means, and SIMLR do not perform gene filtering. In order 

to test the potential impact of gene filtering on clustering performance, we adopted the method used by 

SC3. Specifically, we assessed the impact of different levels (ranging 0-10%) of filtering on individual 

methods (Supplementary Table 6) and the extent to which gene filtering affects SAME ensemble clustering 

(Supplementary Table 7). Our results suggest that gene filtering tends to improve clustering and we 

therefore conducted all our analysis with the 10% filtering criterion. More details on the implementation of 

these individual methods can be found in the Supplementary Data. 

SAME-clustering method 

We adopted the notation laid out by Topchy (14). Suppose that we have 𝑛 single cell data points 𝑋 =

{𝑥),… , 𝑥,}. 𝑋 serves as input to various (five in SAME by default) individual clustering methods to return a 
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set of labels. Let 𝐻 be the number of individual clustering methods (by default, H = 4 as SAME selects four 

out of five), then for each data point 𝑥/ there would be 𝐻 elements in the set of inferred cluster labels. 

𝑥/ → {𝜋)(𝑥/),… , 𝜋4(𝑥/)} 

𝜋5(𝑥/) is the label assigned to single cell data point 𝑥/ by the 𝑗78 clustering method with 𝑖 = 1,2, … , 𝑛 and 𝑗 =

1,2,… , 𝐻. We make no assumption for the correspondence of labels across the 𝐻 methods. Hereafter, we 

will use the notation 𝑦/5 = 𝜋5(𝑥/) or 𝑦/ = 𝜋(𝑥/), which is the dataset used to generate our final consensus 

partition 𝜋= . This problem can now be considered as a categorical clustering problem, where we find a 

partition 𝜋= of a set of vectors  𝑌 = {𝑦/}.  

We define 

𝛿(𝑎, 𝑏) = B 1, 𝑖𝑓	𝑎 = 𝑏
0, 𝑖𝑓	𝑎	 ≠ 𝑏	 

Then we model 𝑦/′𝑠 as random variables from a mixture of 𝑀 multivariate densities. Each component 𝑚 is 

parameterized by 𝜃K, where 𝑀 is the resulting number of clusters in the final consensus clustering and 𝑚 =

1,2,… ,𝑀. 𝛼K is the prior probability of the 𝑚78 cluster. The model assumes that 𝑦/′𝑠 are generated from 

first drawing from a cluster according to probabilities 𝛼K′𝑠, then sampling a point from the cluster-specific 

density 𝑃K(𝑦/|𝜃K). Taken together, we have: 

𝑃(𝑦/|Θ) = Q 𝛼K𝑃K(𝑦/|𝜃K)
R

KS)

						(𝐸𝑞. 1) 

Assuming i.i.d for 𝑦/′𝑠, the log likelihood function for {𝛼),… , 𝛼K, 𝜃),… , 𝜃K)	can be written as: 

log 𝐿(Θ|𝑌) = logZ𝑃(𝑦/|Θ)
,

/S)

=Qlog Q 𝛼K𝑃K(𝑦/|𝜃K)
R

KS)

,

/S)

								(𝐸𝑞. 2) 

And now to find the best fitting mixture density for data 𝑌, we need to maximize this likelihood function. 

Θ∗ = argmax`𝑙𝑜𝑔𝐿(Θ|𝑌)								(𝐸𝑞. 3) 

To simplify the problem, we assume conditional independence among individual clustering methods with 

each method weighted equally, so the conditional probability of 𝑦/ can be represented as the following: 

𝑃K(𝑦/|𝜃K) =Z𝑃K
(5) e𝑦/5f𝜃K

(5)g
4

5S)

								(𝐸𝑞. 4) 
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Since 𝑦/5  are nominal values reflecting cluster labels from partition 𝜋5 , the probability density can be 

represented as a multinomial distribution: 

𝑃K
(5) e𝑦/5f𝜃K

(5)g =Z𝜈5K(𝑘)jklmn,op
q(5)

oS)

								(𝐸𝑞. 5) 

In (Eq. 5), 𝐾(𝑗) is the number of clusters from partition 𝜋5, clustering result from the jth method. The cluster 

label 𝑘 in 𝜋5 therefore takes values from {1, … ,𝐾(𝑗)}, and the probabilities of cluster labels are defined as 

𝜃K
(5) = 𝜈5K(𝑘), with the constraint that these probabilities sum to 1. 

Q𝜈5K(𝑘)
q(5)

oS)

= 1, ∀𝑗 ∈ {1,… ,𝐻}, ∀𝑚 ∈ {1,… ,𝑀}							(𝐸𝑞. 6) 

For a concrete example, when individual clustering method SC3 produced three clusters, (Eq. 5) can be 

represented as: 

𝑃K
(w=x)k𝑦/5y𝜃K

(w=x)p = 𝜈w=x,K(1)jklm,z{|,)p𝜈w=x,K(2)jklm,z{|,}p e1 − 𝜈w=x,K(1) − 𝜈w=x,K(2)g
jklm,z{|,xp

 

 

Note that each component 𝑚 has a corresponding set of 𝜈�𝑠, ∀𝑚 ∈ {1,… ,𝑀}. 

One cannot analytically solve the maximum likelihood function in 𝐸𝑞. 3, when all the parameters 

(𝛼’s and 𝜈’s) are unknown. Fortunately, however, we can optimize 𝐸𝑞. 1 via the EM algorithm. Specifically, 

we introduce hidden data Z, the distribution of which should be consistent with the observed values Y: 

log 𝑃(𝑌|Θ) = logQ𝑃(𝑌, 𝑧|Θ)
�∈�

							(𝐸𝑞. 7) 

The values 𝑧/′𝑠 represent the mixture components used to generate data points 𝑦/′𝑠. 𝑧/ = {𝑧/),… , 𝑧/R},	such 

that 𝑧/K = 1  if 𝑦/  belongs to the 𝑚 -th component and 𝑧/K = 0,	 otherwise. The complete data (𝑌, 𝑍) 

likelihood can be written as: 

log 𝐿(Θ|𝑌, 𝑍) = logZ𝑃(𝑦/, 𝑧/|Θ)
,

/S)

	

= 𝑙𝑜𝑔ZZ𝛼K𝑃K(𝑦/|θK)�m�
R

KS)

,

/S)

	

=QQ 𝑧/K𝑙𝑜𝑔𝛼K𝑃K(𝑦/|𝜃K)
R

KS)

,

/S)

									(𝐸𝑞. 8) 
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Following the general EM approach, the following function is defined, serving as the lower bound of the 

observed data likelihood: 

𝑄(Θ; Θ�) =Qlogk𝑃(𝑌, 𝑧|Θ)p 𝑝(𝑧|𝑌, Θ�)
�

	

=QQQ 𝑧/K𝑙𝑜𝑔𝛼K𝑃K(𝑦/|𝜃K)
R

KS)

,

/S)

𝑝(𝑧|𝑌, Θ�)
�

	

=QQ 𝐸[𝑧/K]𝑙𝑜𝑔𝛼K𝑃K(𝑦/|𝜃K)
R

KS)

,

/S)

						(𝐸𝑞. 9) 

Maximizing 𝑄(Θ; Θ�)  is equivalent to maximizing the observed likelihood function in 𝐸𝑞. 2  where Θ =

{𝛼),… , 𝛼K, 𝜃),… , 𝜃K} (24,25). We optimize Q via the following Expectation (E) and Maximization (M) steps. 

In the E step, we compute 𝐸[𝑧/K] with current estimates of the parameters. In the M step, we apply the 

Lagrange multiplier along with the constraint ∑ 𝛼K = 1K ,	and ∑ 𝜈5K(𝑘)o = 1 to estimate the parameters with 

updated expected values of the hidden variables. 

Expectation (E) Step: 

𝐸[𝑧/K] =
𝛼K� ∏ ∏ e𝜈5K� (𝑘)jklmn,opg

q(5)
oS)

4
5S)

∑ 𝛼�� ∏ ∏ e𝜈5�� (𝑘)jklmn,opg
q(5)
oS)

4
5S)

R
�S)

						(𝐸𝑞. 10) 

Maximization (M) Step: 

𝛼K =
∑ 𝐸[𝑧/K],
/S)

∑ ∑ 𝐸[𝑧/K]R
KS)

,
/S)

											(𝐸𝑞. 11) 

𝜈5K(𝑘) =
∑ 𝛿k𝑦/5, 𝑘p𝐸[𝑧/K],
/S)

∑ ∑ 𝛿k𝑦/5, 𝑘p𝐸[𝑧/K]
q(5)
oS)

,
/S)

								(𝐸𝑞. 12) 

Each run of SAME initializes 𝛼�𝑠 and 𝜈�𝑠 according to a Dirichlet prior with a vector of 1’s. We 

repeat the E and M steps until convergence criterion is met. The convergence criterion we used for our 

implementation is 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑�7���7/�, − 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑�7���7/�,�) < 0.0001.	After convergence is achieved, 

𝑦/ is assigned to the component that has the largest expected value for the hidden label 𝑧/ = {𝑧/),… , 𝑧/K},	as 

𝐸[𝑧/K] denotes the probability that 𝑦/ is drawn from the 𝑚th mixture component. This results in our final 

consensus partition 𝜋=. Since EM Algorithm does not guarantee reaching the global maximum (26,27), we 

run three chains of EM with random initializations by default in SAME as we observe ARI results stabilize 

with three chains of EM (Supplementary Figure 6). 
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EM with missing labels 

Some clustering methods, such as Seurat, give missing cluster labels for some of the data points. Therefore, 

our EM algorithm needs to be modified to accommodate such missing data. Now 𝑦/ = (𝑦/���, 𝑦/K/�). For the 

E-step, 𝐸[𝑧/] is computed over the observed 𝑦/′𝑠, denoted as 𝐸[𝑧/|𝑦/���, 𝜃�], which means the product 

changes from ∏ 	4
5S) to ∏ 	5:l��  . For the M-step, complete data log likelihood function is maximized to obtain 

estimates for parameters 𝜈5K(𝑘) with 𝐸[𝑧/|𝑦/���, 𝜃�] and 𝐸[𝑧/𝑦/K/�|𝑦/���, 𝜃�] calculated and substituted into the 

M-step 𝐸𝑞. 11	and	12 (28). For missing observations in 𝐸𝑞. 12,	𝛿k𝑦/5, 𝑘p	would be replaced by the current 

estimate of 𝜈5K(𝑘). 

Determining the final estimated number of clusters 

To determine the final number of clusters/ components, we run the multinomial mixture ensemble method 

multiple times over a range of 𝑀 values. In our implementation, we run our ensemble SAME-clustering 

method for 𝑀 = 2…maxk𝑘£�¤7�w=x	, 𝑘£�¤7�=�¥¦	, 𝑘£�¤7�w�§��7	, 𝑘£�¤7�7w¨©ªoK��,�, 𝑘£�¤7�w�R«¦p.  We calculate MLE 

by maximizing the following log likelihood function until convergence criterion is met. 

log 𝐿(Θ|𝑌) = logZ𝑃(𝑦/|Θ)
,

/S)

=Qlog Q 𝛼K𝑃K(𝑦/|𝜃K)
R

KS)

,

/S)

=Qlog Q 𝛼KZZe𝜈5K� (𝑘)jklmn,opg
q(5)

oS)

4

5S)

R

KS)

,

/S)

 

Next, we calculate AIC or BIC for each 𝑀	we attempt the ensemble method, where 𝑛 is the number 

of single cells, 𝑝 is the number of parameters and 𝐿£ is the maximized value of the likelihood function.  

𝐴𝐼𝐶 = 2𝑝 − 2ln	(𝐿£) 

𝐵𝐼𝐶 = ln(𝑛) 𝑝 − 2ln	(𝐿£) 

For the number of parameters, we have 𝑀 − 1	parameters for the mixture weights, plus ∑ (𝐾(𝑗) − 1)4
5S)  for 

each of the 𝑀 component, leading to the total 𝑝 = (𝑀 − 1) + 𝑀 ×∑ (𝐾(𝑗) − 1)4
5S) . 𝑘£�¤7/K��  would be the 𝑀 

value that gives the lowest BIC or lowest AIC, depending on our choice of the model selection criterion. We 

found that BIC either outperforms AIC, or is merely slightly inferior to AIC in terms of ARI for the benchmark 

datasets (Supplementary Figures 7-9). Therefore, we choose BIC as our default model selection criterion. 

Diversity of individual cluster results to improve SAME-clustering 
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Existing literature has pointed out the importance of diversity in partitions from individual methods to 

enhance the performance of ensemble solution (29-32). To assess the diversity of the five individual 

clustering methods, we calculate pairwise ARI’s to quantify similarity between any two individual clustering 

solutions. Note that a low pairwise similarity represents a higher diversity. After attaining all the pairwise 

similarities, which can be represented as a heatmap, we calculate the variance for the vector of similarities 

with each method, including the similarity of value 1 for the method to itself. Due to the inclusion of this 

value 1 (self-similarity), this method-specific variance-based statistic tends to be larger for methods that are 

dissimilar to others. In comparison, the method with the lowest variance is most similar to other methods, 

with evidence aggregated from all pairwise comparisons. We, therefore, removed the method with the 

lowest variance, since the method would contribute the least in terms of diversity. We observed that this 

diversity-filtering approach results in improved performance in six datasets (Darmanis, Deng, Li, 

Baron_human1, Baron_human2, and Baron_human 3), same performance in two datasets (Ting and Yan), 

and impaired performance in five datasets (Supplementary Figure 10). The average increase in ARI for the 

six datasets (0.048) is slightly higher than the average decrease in the five datasets (0.038). Taking the 

reduced computational costs also into consideration, we proceeded with removing the method that 

contributes the least diversity.  

RESULTS 

We benchmarked our SAME-clustering method and the five individual methods on 15 published datasets 

that represent a wide variety of sequencing technologies, tissue of origins, data units, numbers of single 

cells and numbers of cell types (Supplementary Table 2). Figure 2 summarizes clustering results, gauged 

by ARI. Among the 15 attempted datasets, SAME-clustering produces the best results in eight datasets 

(Darmanis, Baron_human1, Baron_human3, Baron_human4, Baron_mouse1, Goolam, Zeisel, and the 

challenging case), and the second best in four datasets (Biase, Baron_human2, Li, Yan). Additionally, 

SAME-clustering outperforms at least three individual methods in all 15 datasets. To further support 

consistency of SAME in producing reliable results we rank each method from 1st to 6th for all datasets, 

where ties are replaced by their mean rank. Figure 3 clearly shows that SAME-clustering outperforms all 

other methods rank-wise. The worst rank of 5.5 came from the Biase dataset, where only one cell was 

misplaced by SAME, leading to a high ARI but didn’t perform well rank-wise because there were 3 methods 
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that achieved perfect clustering when compared to the “gold-standard”. We also compare our results to our 

previously published SAFE method (12), which performed overall second best and remains an attractive 

alternative (33), particularly when analyzing large datasets to save computation time.  

We further investigated the performance of SAME-clustering in terms of estimating the number of 

clusters, compared to the five individual methods. Generally speaking, SC3 tends to overestimate the 

number of clusters, while CIDR, t-SNE+k-means, and Seurat underestimate the number of clusters. SIMLR 

performs reasonably well in most datasets achieving the best estimates. SAME-clustering also tends to 

underestimate the number of clusters, especially for the Baron datasets where the true number of clusters 

are either 13 or 14 (Supplementary Figure 11). For the five Baron datasets, there are five to eight rare cell 

types (defined as <1% of total single cells, with actual number of single cells ranging from 1-36). Individual 

clustering methods and SAME-clustering are not able to classify rare clusters accurately, which is a 

common problem with clustering methods. When we focus on the non-rare cell types, it becomes more 

apparent that SAME-clustering outperforms all other methods (Figure 4). Additionally, we have also 

assessed the several other computing and performance aspects of SAME-clustering, including the potential 

factors that may influence SAME’s performance, computing time and performance for large datasets, and 

simulation evaluation. Details are given in the Supplementary Materials (Supplementary Figures 12-23). 

Interestingly, SAME-clustering demonstrates its capability to identify novel clusters. Figures 5 and 

6 show an example from the simple case PBMC dataset, where SAME-clustering separates a novel cluster 

of single cells. According to the “gold-standard” labels defined by cell surface markers used in the original 

FACS experiments (34), there are three clusters in this dataset: CD56+ natural killer (NK) cells, CD19+ B 

cells and CD4+/CD25+ regulatory T Cells. The new fourth cluster is comprised of only 72 cells out of a total 

of 27,733 cells. Of these 72, 67 are a priori annotated as NK cells, 1 as a B cell, and 4 as regulatory T cells. 

NKG7 and GNLY, which are known NK cell marker genes (21), are highly expressed in NK cells (as 

expected) but not in the new cluster of cells identified by SAME (Figure 5). Although most cells in the novel 

cluster are annotated as NK cells, the low expression of the known marker genes suggests that these cells 

have transcriptomic profiles deviating from the “gold-standard” NK cells. The remaining three clusters 

correspond to B cells, T cells, and NK cells. We feed cluster labels from SAME into Seurat to find the top 

ten cell type marker genes that are expressed in at least 70% of cells of the corresponding cell type. Figure 
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6 shows that, when sampling cells that have concordant labelling between the a priori annotation and SAME 

clustering, there is an apparent separation of B, T, and NK cells (Figure 6: left panel). In contrast, when we 

examine the expression profiles of cells in the new cluster, they separate into three groups. The first and 

third sub-groups (Figure 6: right panel: left most and right most columns) express marker genes of both 

regulatory T and NK cell types, and the second sub-group of single cells (Figure 6: right panel: middle 

columns) do not clearly express marker genes for any of the three cell types. These findings suggest that 

single cells in this new cluster, most (67/72) of which had “gold-standard” NK cell labeling from the original 

publication(21), are different from the typical NK cells and may represent intermediate cell type(s) that 

warrants further investigation. 

Additionally, our SAME-clustering discovers limitations in “gold-standard” cell type annotations. We 

will illustrate with one example in the Darmanis (18) dataset. We combined top 40 cell-type markers of 

astrocytes, oligodendrocytes, and neurons from an independent study (35) and intersected them with 

Seurat to identify marker genes for each corresponding ensemble cluster, resulting in 24 astrocyte markers, 

15 oligodendrocyte markers, and 7 neuron markers. Figure 7 (rightmost three columns) shows three 

discordant cells: one was annotated as an astrocyte but was identified as an oligodendrocyte by SAME 

(“true_astro_ens_oligo” in Figure 7); one was annotated as a neuron but was identified as an astrocyte by 

SAME (“true_neuron_ens_astro” in Figure 7); and one as annotated as an oligodendrocyte but was 

identified as a neuron by SAME (“true_olig_ens_neuron” in Figure 7). The first two discordant cells express 

marker genes from both their annotated cell type and the SAME-classified cell type. Such transcriptomic 

profile indicates that these single cells, containing mRNAs from signature genes of multiple cell types, may 

derive from a transient state, a doublet, or present a novel cell type. The last cell, although annotated as 

an oligodendrocyte, predominantly expresses neuron markers, suggesting that the original annotation 

might be problematic. In contrast, three randomly selected single cells from each of the three cell types, 

whose cluster labels by SAME agree with “gold-standard” annotations, show rather clean expression of 

marker genes from one single cell type.  

DISCUSSION 

We propose and implement SAME-clustering, a mixture model based probabilistic framework, that performs 

ensemble clustering for scRNA-seq data. Results across 15 real datasets show that SAME-clustering 
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provides accurate and robust clustering. The ensemble method is flexible and users may choose to use 

different individual clustering methods. Not only does SAME-clustering provide improved clustering 

performance for labeling individual single cells, it also attains more accurate estimates for the number of 

clusters through the BIC model selection criterion. Overall, SAME-clustering offers an appealing solution to 

the scRNA-seq clustering problem, where individual clustering methods show substantial discrepancy 

(Supplementary Figure 1) with no method being an apparent winner across all datasets (Figure 2). 

Ensemble modeling using mixture of multivariate multinomial distribution provides a well-grounded 

statistical framework that resolves the problem of lacking correspondence in labels across methods and 

naturally addresses the issue of missing cluster labels. SAME-clustering provides accurate, either the best 

or close match to the best, clustering results through combining diverse sets of clustering solutions obtained 

through varied dimensional reduction methods, distance metrics, and clustering methods. In addition, 

SAME-clustering provides more accurate estimate of the number of clusters compared to all individual 

methods examined through the well-established BIC statistical model selection criterion. Furthermore, 

SAME-clustering results are stable when parameters are changed for individual methods (Supplementary 

Tables 4 and 5). Our method is flexible and can easily accommodate additional sets of clustering solutions, 

as new clustering methods continue to be proposed (36). Supplementary Figure 10 shows that adding one 

more set of cluster results may improve ensemble results. We hypothesize that quality and added diversity 

of the additional contributing solution(s) influence whether the ultimate ensemble solution improves. 

However, these characteristics of individual cluster solutions are unknown a priori. Therefore, it is hard to 

gauge whether to include additional sets of cluster results. Our results (Supplementary Figure 10) suggest 

that diversity filtering of individual methods before ensemble leads to slightly improved ensemble clustering. 

The diversity filtering strategy is likely more useful when investigators choose to ensemble results from a 

larger number of individual methods, both in terms of clustering performance and computational costs. Our 

extensive evaluations demonstrate that SAME-clustering provides robust and accurate clusters for scRNA-

seq data. Batch effect can potentially heavily influence clustering results. Although SAME has demonstrated 

satisfactory performances across real datasets, it is prudent and highly recommended to perform batch 

effect correction using customized batch effect correction methods (37) before running individual clustering 

methods and subsequently SAME. In addition, implementation of our SAME method provides a general 
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and statistically rigorous framework for ensemble clustering using the mixture model-based method. We 

therefore expect SAME-clustering to be a helpful tool not only for single-cell clustering, but for other 

datasets that benefit from ensemble clustering approaches.  

AVAILABILITY 

SAME-clustering, including source codes and tutorial, is available at https://yunliweb.its.unc.edu/same/ 
and https://github.com/yycunc/SAMEclustering. 
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FIGURES 

 

Figure 1. Overview of SAME-clustering. 

Normalization and transformation of scRNA-seq data are executed as specified by SC3, CIDR, Seurat, t-
SNE+k-means, and SIMLR. From the 5 sets of clustering solutions, we take a subset of 4 diverse sets of 
clustering solutions. Then the 𝑛 × 4 matrix, where 𝑛	represents the number of single cells, is combined 
using SAME-clustering. Maximum likelihood estimation is achieved through EM algorithm and the optimal 
number of clusters is determined according to the BIC criterion, to provide the final consensus clustering 
solution. Notations are detailed in main text. 
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 Figure 2. Benchmarking of SAME-clustering in fifteen published datasets.  

Similarity between estimated and “gold-standard” cluster labels is measured through Adjusted Rand Index 
(ARI), for 15 benchmark datasets. 
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Figure 3. Method ranking across 15 datasets.  

Each method is ranked according ARI for 15 datasets. Lower rank represents better performance (1 is the 
best and 6 is the worst). Ties are replaced by the mean of their ranks.  
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Figure 4. Accuracy of estimated number of clusters for non-rare cell types.  

Correlations between estimated and true number of clusters across 15 benchmark datasets, for SC3 (A), 
CIDR (B), Seurat (C), t-SNE+k-means (D), SIMLR (E), and SAME-clustering (F) respectively. Rare (<1% 
of total single cells) cell types are removed.  
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Figure 5. Identification of a novel cluster in the simple PBMC dataset. 

Expression of two known NK cell-type marker genes in cells labeled as NK cells by both “gold-standard: 
annotation and SAME-clustering (NK_cluster) vs cells in the novel cluster (new_cluster).  
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Figure 6. Marker gene expression for 30 selected single cells with concordant cell labels and 72 
single cells in the novel cluster (simple PBMC dataset). 

Expression of marker genes specific to B, regulatory T, and NK cells. Left: expression heatmap of 30 single 
cells for which SAME cluster labeling agrees with gold-standard annotations. Right: heatmap of 72 single 
cells belonging to the new cluster identified by SAME. 
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Figure 7. Revealing limitations in cell type annotations in the Darmanis Dataset.   

Expression of marker genes for Astrocytes, Oligodendrocytes, and Neurons. First 9 columns correspond to 
9 single cells, by randomly selecting 3 cells from each cell type, for which SAME inferred labels agree with 
the “gold-standard” annotations. Last 3 columns correspond to single cells for which SAME disagree with 
the "gold-standard" annotations. 
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