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Abstract:  1 

 2 

The double-membrane cell envelope of Gram-negative bacteria is a formidable barrier to intracellular 3 

antibiotic accumulation. A quantitative understanding of antibiotic transport in these cells is crucial for 4 

drug development, but this has proved elusive due to the complexity of the problem and a dearth of 5 

suitable investigative techniques. Here we combine microfluidics and time-lapse auto-fluorescence 6 

microscopy to quantify antibiotic uptake label-free in hundreds of individual Escherichia coli cells. By 7 

manipulating the microenvironment, we showed that drug (ofloxacin) accumulation is higher in growing 8 

versus non-growing cells. Using genetic knockouts, we provide the first direct evidence that growth 9 

phase is more important for drug accumulation than the presence or absence of individual transport 10 

pathways. We use our experimental results to inform a mathematical model that predicts drug 11 

accumulation kinetics in subcellular compartments. These novel experimental and theoretical results 12 

pave the way for the rational design of new Gram-negative antibiotics.  13 

 14 

Introduction: 15 

 16 

Life depends on the exchange of molecules between cells and their surroundings1. Cells have evolved 17 

elaborate, adaptable envelope structures to optimize nutrient accumulation while restricting the uptake 18 

of xenobiotics, particularly those that negatively impact their survival. However, it is these very attributes 19 

that make the study of these molecular transport processes extremely challenging. Transport across the 20 

cell envelope may occur passively via diffusion2, either through lipids or specific protein pores3, or via 21 

active transporters4, which move substrates both into and out of the cell. Furthermore, the expression of 22 

these different pathways is often strongly regulated by the surrounding microenvironment5 and can vary 23 

from cell to cell6. Due to the many complexities of studying these transport problems, biophysical and 24 

mathematical modelling has been used extensively to uncover detailed features of molecular transport in 25 

synthetic model systems. For instance, a mathematical study of hydrodynamic entrance effects showed 26 

that the hourglass shape of aquaporins might be a result of natural selection processes optimizing water 27 

permeability7. One-dimensional diffusional models, both theoretical8  and experimental9 have been used 28 

to shed light on the single-file motion of particles through narrow constrictions, simulating molecular 29 

transport through biological nanopores. Colloidal model systems have been used to investigate Brownian 30 

dynamics in biomimetic systems10, with recent reports showing the breakdown of transition-path-time 31 

symmetry on molecular and meso-scales out of equilibrium11. 32 

 33 

However, these molecular-scale modelling studies do not capture the kinetics of substrate uptake in living 34 

cells and, from a biomedical perspective, a key transport challenge involves quantitatively understanding 35 

the intracellular uptake of antibiotics in bacteria12,13. Antibiotic failure in the treatment of microbial 36 

infections is predicted to cause 10 million deaths annually by 205014. Gram-negative bacterial infections 37 

are of particular concern, due to the protection against antibiotics provided by their complex double-38 

membrane cell envelopes (Figure 1A). These structures include an asymmetric outer membrane that 39 

contains lipopolysaccharide (LPS) molecules, which create a formidable permeability barrier to the 40 

cellular entry of both hydrophilic and hydrophobic molecules12,15. Antibiotic permeation across the outer 41 

membrane is therefore dependent on the drug’s ability to utilize protein pores (or porins)3,16,17, typically 42 

used for nutrient uptake, to circumvent this barrier. These porins show a preference for hydrophilic, 43 

charged compounds; however, antibiotics that are active against targets located in the cytoplasm have to 44 

also cross the inner membrane phospholipid bilayer, which acts as a selectivity barrier against polar, 45 

charged molecules12,15. Additionally, Gram-negative bacteria harbor active efflux mechanisms, which 46 

pump toxic compounds out of the cell18. Successful drugs must minimize their propensity for recognition 47 

and removal by these efflux pumps, in addition to displaying specific physicochemical properties to 48 

permeate both through the outer membrane porins and inner membrane phospholipids15.  49 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/645507doi: bioRxiv preprint 

https://doi.org/10.1101/645507
http://creativecommons.org/licenses/by/4.0/


 

3 

 

The study of drug uptake is further complicated by the fact that the expression and activity of porins and 50 

efflux pumps vary i) with the microenvironment conditions5 and ii) within an isogenic population 51 

exposed to the same environmental landscape19. Many existing experimental techniques suffer from the 52 

requirement of complex washing steps12,13, with cells only studied after resuspension in contrived 53 

nutrient environments20,21; the washes also increase the chance of cell lysis and efflux or diffusion of the 54 

analyte from the cells, besides affecting cellular physiology. Furthermore, the most commonly used 55 

techniques are population level assays which cannot investigate uptake at the single-cell or at the 56 

subcellular level. Finally, most of the available techniques only provide a static picture of drug 57 

accumulation rather than the dynamic evolution of drug uptake. There is therefore a need to 58 

fundamentally change the experimental approach for quantifying antibiotic accumulation in individual 59 

bacteria after exposure to different nutrient conditions or in different metabolic states. Ideally, this 60 

approach should also be simple to implement to ensure its uptake in pharmaceutical companies and in 61 

clinical settings.  62 

 63 

Here, we address these myriad challenges by introducing a unique combination of single-cell uptake 64 

analysis and mathematical modelling to study drug accumulation and kinetics in up to hundreds of 65 

individual cells per experiment. To do so we used Escherichia coli as a model organism for Gram-66 

negative bacteria, seeded a small aliquot of bacterial culture into a microfluidic “mother-machine” 67 

device22  (Figure 1B) and dosed E. coli either in a non-growing or a growing state with the 68 

fluoroquinolone antibiotic ofloxacin (12.5 g/ml) while imaging the kinetics of ofloxacin accumulation 69 

in individual E. coli (Figure 1C-D) using the auto-fluorescence of the drug. Quinolones such as ofloxacin 70 

disrupt the DNA replication process in the cytoplasm of bacteria; in E. coli, the primary target is the 71 

enzyme DNA gyrase, a tetramer which is composed of two copies each of its subunits, GyrA and GyrB23. 72 

Therefore ofloxacin activity depends directly on its ability to accumulate in the cytoplasm.  73 

 74 

Using biophysical experimental model systems, we and others have previously shown in vitro that porins 75 

such as OmpF facilitate quinolone transport across the outer membrane16,24, and that quinolones also 76 

diffuse freely across phospholipid bilayers such as those found in the cytoplasmic membrane25. However, 77 

the role of the TolC efflux protein in quinolone transport is currently a matter of debate. Although a tolC 78 

deficient strain of a fluoroquinolone-resistant clinical E. coli isolate was shown to be more susceptible 79 

to fluoroquinolones than the parental strain26,  TolC levels alone do not necessarily limit drug efflux 80 

capabilities in E. coli27. Cellular quinolone accumulation data comparing parental strains and their 81 

corresponding tolC knockouts also show contradictions, with some reports showing increased 82 

accumulation26 in the knockout and others showing no significant differences between the strains28. 83 

 84 

We use our novel approach to investigate this complex membrane transport landscape by performing 85 

ofloxacin accumulation experiments in three E. coli strains from the Keio collection29, encompassing the 86 

parental strain (PS) BW25113, an OmpF porin knockout (ompF) and a TolC efflux protein knockout 87 

(tolC) strain. We confirmed that OmpF plays a significant role in ofloxacin transport30, but found that 88 

the absence of TolC appears to have no significant impact on drug accumulation compared to the PS. 89 

Even more surprisingly, our ability to directly compare the role of these transport proteins and the nutrient 90 

environment in drug uptake revealed, for the first time, that the microenvironment affects ofloxacin 91 

accumulation to a greater extent than the loss of the key transport pathways that we investigated.  92 

 93 

Furthermore we applied a set of three ordinary differential equations to model the uptake process31 across 94 

the three strains in order to complement our experiments. This allowed us to estimate the kinetic 95 

parameters associated with early stage ofloxacin uptake. We combined this with Bayesian inference to 96 

investigate how specific model parameters varied between individual cells in the different strains. We 97 
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used the parameters obtained from the modelling and statistical inference to predict the kinetics of drug 98 

accumulation in the various subcellular compartments of the cells across the different strains. For the 99 

avoidance of any confusion, we stress that the modelling results are theoretical results32 inferred from 100 

our experimental data which provide predictions of the levels of subcellular drug accumulation; the 101 

experimental validation of these predictions is beyond the scope of any currently available technology, 102 

particularly at the single-cell level. Finally, although this study focuses on Gram-negative bacteria, the 103 

experimental and theoretical framework that we employ may be repurposed, with appropriate 104 

modifications, for advancing our understanding of molecular transport in a range of fundamental 105 

phenomena in both cellular and synthetic systems. This will pave the way for a direct, quantitative 106 

evaluation of the role of growth phases, nutrient conditions and transport pathways in drug accumulation 107 

in cells. 108 

 109 

Results: 110 

 111 

Figure 2A-D report bacterial drug uptake profiles (red lines) from representative experiments studying 112 

growing PS (2A), non-growing PS (2B), growing ompF (2C) and growing tolC (2D) E. coli. The drug 113 

uptake profiles for tolC (non-growing) E. coli and all the biological repeats performed are reported in 114 

Figure S6. We quantify drug dosage precisely via its fluorescence (SI Note 1) in every experiment. 115 

Further, we performed cellular autofluorescence controls in the absence of the drug and show that this 116 

has a negligible effect on our results (SI Note 2). 117 

 118 

We observe an increase in cellular drug fluorescence within seconds after the arrival of the drug in the 119 

vicinity of the cells. Please note that previous population-level studies have shown biphasic ofloxacin 120 

uptake in E. coli over longer timescales of up to an hour33, but here we focus our attention on the initial 121 

stages of drug uptake, studying the immediate cellular response to drug dosage (t ≤ 400 s) at the single-122 

cell level. 123 

 124 

1. Growing bacteria accumulate more ofloxacin than non-growing bacteria: 125 

 126 

Comparing growing versus non-growing PS cells (Figure 2A-B) immediately reveals that growing cells 127 

accumulate more ofloxacin than non-growing cells. To quantify this difference, we compared the 128 

distributions of cellular fluorescence (normalized to the value of drug fluorescence) at t = 400 s across 129 

all experimental repeats in Figure 3 (see Methods). In all datasets, growing PS cells show an 130 

approximately 3-fold higher fluorescence than non-growing cells (growing: norm. fluor. = 0.34 ± 0.11, 131 

N = 317, mean ± s.d.; non-growing: norm. fluor. = 0.10 ± 0.03, mean ± s.d., N = 405; p<10-10). A similar 132 

result was obtained when comparing growing and non-growing cells in the tolC mutant strain (growing: 133 

norm. fluor. = 0.31 ± 0.08, N = 211, mean ± s.d.; non-growing: norm. fluor. = 0.12 ± 0.06, mean ± s.d., 134 

N = 193; p<10-10).  135 

 136 

2. Knocking out ompF lowers ofloxacin accumulation compared to the PS: 137 

 138 

From Figure 2A and 2C, we also observe that the growing ompF mutant strain accumulates lower 139 

amounts of ofloxacin than the PS (growing) over the timescales investigated. This is quantified in Figure 140 

3 (ompF: norm. fluor. = 0.20 ± 0.11, mean ± s.d., N = 250; PS: norm. fluor. = 0.34 ± 0.11, N = 317, 141 

mean ± s.d.; p<10-10); knocking out the OmpF porin thus lowers the ability of ofloxacin to permeate into 142 

the cell compared to the parental strain. Our result agrees with previous reports that show that OmpF 143 

facilitates fluoroquinolone transport across Gram-negative outer membranes3,24.  144 

 145 
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3. Knocking out tolC does not increase ofloxacin accumulation compared to the PS: 146 

  147 

Interestingly, we were unable to detect an increase in ofloxacin accumulation in growing tolC mutant 148 

cells compared to the PS at the 400 s time-point (Figure 3). In fact, as reported above, we measured a 149 

small decrease in the drug fluorescence in growing tolC cells compared to the growing PS cells (tolC: 150 

norm. fluor. = 0.31 ± 0.08, N = 211, mean ± s.d.; PS: norm. fluor. = 0.34 ± 0.11, N = 317, mean ± s.d.; 151 

p=2.7×10-4). This finding is addressed in detail in the Discussion. 152 

 153 

4. Direct comparison reveals that growth phase plays a more significant role in ofloxacin accumulation 154 

than knocking out ompF:  155 

 156 

Our ability to directly compare drug accumulation in different metabolic states revealed that the growing 157 

ompF mutant strain accumulates more ofloxacin than the non-growing PS (growing ompF: norm. 158 

fluor. = 0.20 ± 0.11, mean ± s.d., N = 250; non-growing PS: norm. fluor. = 0.10 ± 0.03, N = 405, mean 159 

± s.d.; p<10-10), suggesting that the growth phase plays an even bigger role than the removal of OmpF in 160 

drug uptake. We believe this is the first time such a direct comparison has been performed. These results 161 

emphasize the importance of studying the role of the cellular metabolic state in drug uptake. 162 

 163 

5. Ofloxacin uptake is homogeneous across a clonal population: 164 

 165 

A major advantage of single-cell approaches is their ability to quantify heterogeneity (or the lack thereof) 166 

in the cellular response to treatment within the individual cells in a population34. In order to estimate 167 

heterogeneity in drug uptake across the bacteria, we first estimated the variation in cellular fluorescence 168 

in the absence of the drug and found a mean coefficient of variation (CV) of approximately 10% (see 169 

Methods). We found a similar CV when quantifying the heterogeneity in the cellular fluorescence 170 

corresponding to drug uptake. As seen in Figure S6, such variation is representative across the biological 171 

repeats. We thus conclude that ofloxacin uptake is homogeneous across the clonal populations that we 172 

studied, which is remarkable considering the recent reports on cellular heterogeneity within microbial 173 

populations19, including considerable heterogeneity in glucose uptake in E. coli cells35.  174 

 175 

Theoretical predictions from a mathematical model of drug transport across the Gram-negative cell 176 

envelope: 177 

 178 

The quantitative comparisons above provide a static picture regarding the impact of porins, pumps and 179 

growth stages on ofloxacin accumulation in Gram-negative bacteria at the whole-cell level. However, the 180 

most desirable information concerns the dynamics governed by the kinetics of drug accumulation in 181 

different subcellular compartments.  It is crucial to understand how much of a drug actually reaches its 182 

target which, in the case of ofloxacin, lies in the cytoplasm36. However, there are currently no 183 

experimental techniques capable of quantifying subcellular drug accumulation at the single-cell level. 184 

We therefore turn to theoretical modelling to investigate this process. We rationalize our experimental 185 

single-cell drug uptake data via a mathematical model (see Methods), where parameters governing porins 186 

(𝑀0) and efflux pumps (𝑣) are allowed to vary between cells in the population according to a log-normal 187 

distribution37. The inferred parameter distributions for growing bacteria from the three investigated 188 

strains are presented in Figure 4A-B; the different experimental repeats are signified by solid, dotted and 189 

dashed lines (PS, red; ompF, blue; tolC, green). We found similar values across the different replicates 190 

for the PS cells, whereas the knockout mutants showed greater variability both between replicates and 191 

within individual experiments, as observed in Figure 4A-B. The parameter estimations also confirmed 192 
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lower porin concentrations in the ompF mutant compared to the PS. Note that due to the flatness of the 193 

uptake profiles of the non-growing cells, we chose not to infer model parameters from those experiments.   194 

 195 

Once model parameters were inferred from all the individual experiments (using the corresponding drug 196 

dosage profiles for each experiment), we used these parameters in the model to predict drug accumulation 197 

in the various subcellular compartments for cells belonging to the three strains (Figure 4C). In this 198 

estimation for Figure 4C, we used an average experimental drug dosage profile (dashed black line, top 199 

panel, Figure 4C) as the input. The overlap (or lack thereof) between the [20,80] posterior predictive 200 

intervals (shaded regions in Figure 4C) allows us to predict the probability of PS cells having a 201 

higher/lower ofloxacin concentration than each of the mutants, at the subcellular level. The pairwise 202 

comparisons (at t = 400 s) for the different strains/compartments are presented in Table S4.  203 

 204 

The model predicts that the drug saturates all the binding sites in the outer membrane within 205 

approximately 175 s in all three strains. The PS strain has the highest outer membrane drug concentration, 206 

with the ompF mutant having an approximately 2.25-fold lower concentration, which corresponds to 207 

the fewer binding sites available in the mutant (Figure 4A). At the end of the experiment, the probability 208 

that the PS strain has a higher drug concentration than the ompF mutant in the outer membrane is 0.924; 209 

in contrast, between the PS and the tolC mutant, the probability that the PS has more drug in the outer 210 

membrane is 0.525, suggesting no appreciable difference (Table S4).  211 

 212 

The periplasm is also predicted to contain approximately 30-fold lower ofloxacin concentrations than the 213 

cytoplasm for all three strains at t = 400 s – this is likely due to the binding of the ofloxacin molecules to 214 

their targets within the cytoplasm. The model also predicts a lag time of approximately 100 s between 215 

drug accumulation in the outer membrane versus drug uptake in the cytoplasm. In the cytoplasm, the 216 

difference between the PS and the mutant strains is less obvious. The model predicts that, at the end of 217 

the experiment, the PS strain has a probability of 0.719 of having a higher drug concentration in the 218 

cytoplasm than the ompF mutant (Table S4). Comparing the PS and the tolC mutant, the 219 

corresponding probability is 0.549.  220 

 221 

Discussion: 222 

 223 

Drug uptake in Gram-negative bacteria is an extremely complex biophysical phenomenon because of the 224 

different physicochemical pathways and combination of active and passive transport processes involved. 225 

However, it is essential to understand the roles of these pathways in a quantitative manner to rationally 226 

design drugs that can accumulate in the vicinity of their targets, which will crucially contribute to 227 

overcoming the void in Gram-negative drug discovery.  228 

 229 

We have developed a novel combination of experiment and theoretical modelling to tackle the challenge 230 

of quantifying antibiotic uptake in single Gram-negative bacteria. Unlike the majority of techniques, 231 

which involve complex washing steps after drug delivery, or are limited to certain specific media 232 

conditions12,13, our microfluidic platform facilitates the study of drug uptake in different 233 

microenvironments and cellular metabolic states. We quantify drug dosage in every experiment, which 234 

allows us to correct for any variations in fluorescence intensities/flow conditions between experiments. 235 

Since we use microfluidics, we quantify drug uptake from the moment the drug arrives in the vicinity of 236 

the cells, facilitating the real-time measurement of the transport process. 237 

 238 

It is worth noting that we can measure over a hundred cells in an experiment; by reducing the time 239 

resolution it is also possible to correspondingly increase the number of cells measured, since typically 240 
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thousands of cells are confined in the microfluidic device. This ability will be used in future studies, 241 

especially for drugs whose uptake timescales are longer than fluoroquinolones. Since our excitation 242 

wavelength is 365 nm, in contrast to previous studies using deep UV illumination to study antibiotic 243 

uptake in single cells20,38, we can work with standard optics and light sources, rather than needing quartz 244 

objectives and cover slips, and deep UV light sources which may not be easily accessible. Although 245 

cellular metabolites may also fluoresce at similar wavelengths, we have corrected this by subtracting the 246 

baseline cellular fluorescence as described in the Methods (and in SI Note 2). Note that metabolite 247 

concentrations are known to fluctuate in response to fluoroquinolone treatment, but this is typically less 248 

than a two-fold change within the timescales of our experiment and includes both increases and 249 

decreases39. The baseline cellular autofluorescence (growing PS cells, Figure S1B) shows typical 250 

intensities of approximately 1700 (arb. units), while the fluorescence increases in the cells due to drug 251 

accumulation are approximately 5200 (arb. units, Figure S1C). Therefore, we estimate that the maximum 252 

contribution of metabolites to our fluorescence signal, in the case where all the metabolites were to 253 

double in number (and assuming that the fluorescence scales linearly), would be approximately 33% in 254 

this case; however, considering that the metabolites show both increases and decreases in response to 255 

fluoroquinolone treatment, we estimate that the actual contribution is significantly lower, and would 256 

constitute a higher order correction to our results. Note that a non-fluorescent version of ofloxacin does 257 

not exist, making a direct measurement of the changes in metabolite autofluorescence in response to 258 

ofloxacin treatment intractable. However, we reiterate that the baseline cellular autofluorescence is 259 

already accounted for in our analysis. 260 

 261 

Using our novel approach, we established that within the timescales investigated, ofloxacin accumulates 262 

to a greater degree in growing versus non-growing bacteria (Figures 2 and 3). It is likely that this 263 

reduction in ofloxacin accumulation contributes to the significant increase in cell survival to this drug 264 

that was previously observed as the cells enter stationary phase compared with early exponential phase 265 

cultures40,41. In previous work, we profiled the entire transcriptome of E. coli (BW25113) growing in LB 266 

media at various time points across the growth cycle; this revealed that the expression of the genes 267 

encoding the ofloxacin target DNA gyrase (specifically, its subunits GyrA and GyrB) does not change 268 

substantially across the growth cycle40. This agrees with a previous study which showed that the levels 269 

of the Gyr proteins do not change appreciably as cells grow from exponential into stationary phase; 270 

indeed, the authors found no appreciable degradation of the Gyr proteins even after 72 h of starvation42. 271 

However, our transcriptomics revealed that the expression of the genes encoding the major E. coli porins 272 

OmpF and LamB, through which antibiotics diffuse, was significantly upregulated in exponentially 273 

growing compared to stationary phase E. coli cells40. For convenience, we have reproduced the 274 

transcriptomic data of the genes relevant to our study in Figure S7 in the SI. This strongly suggests that 275 

the differences in ofloxacin uptake that we observe between growing and non-growing cells are due to 276 

phenotypic modifications of the cell envelope transport pathways, rather than phenotypic modifications 277 

at the drug target level. 278 

 279 

In growing cells, knocking out the ompF gene led to a decrease in drug accumulation compared to the 280 

parental strain, in line with previous results3, confirming that fluoroquinolones utilize porins to enter E. 281 

coli cells. The model predicts an approximately 4-fold lower median cytoplasmic concentration of 282 

ofloxacin in the ompF mutant compared to the PS (growing cells) at the end of the experiment (Figure 283 

4C). However, the effect of the growth phase was more significant than the removal of the porin – non-284 

growing PS cells accumulated lower amounts of ofloxacin than the growing ompF mutant (Figure 3). 285 

Previous studies have reported that nutrient-starved bacteria show reduced drug uptake43, but these 286 

studies did not determine the extent to which environmental factors, and subsequent cell phenotypic 287 

acclimation, predetermine drug uptake compared to genotypic changes which result in protein loss. 288 
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As described in the Results, we did not measure any increase in drug accumulation in the tolC strain. 289 

This is a matter of debate in the literature; as noted in the introduction, different groups have investigated 290 

the role of TolC in fluoroquinolone accumulation in E. coli, and have reported contradictory results26,28. 291 

The TolC outer membrane efflux protein forms an important part of multi-drug efflux systems such as 292 

AcrAB-TolC that eject antibiotics and other toxins from E. coli cells27, and naively one would have 293 

expected that losing TolC negatively affects the ability of the cell to efflux the antibiotic, thus increasing 294 

its intracellular accumulation. It has also been reported that the inactivation of tolC increases the 295 

susceptibility of bacteria to a range of antibacterial agents, ostensibly due to the inactivation of the 296 

corresponding efflux systems27. However, although the overproduction of the AcrAB-TolC efflux system 297 

has been implicated in the antibiotic resistance of clinical isolates of E. coli species, there was no 298 

significant correlation between the overexpression of the acrAB and tolC genes27,44. With regards to 299 

fluoroquinolone antibiotics, it was reported that average tolC expression levels in fluoroquinolone-300 

susceptible and fluoroquinolone-resistant clinical isolates of E. coli were not statistically different27,44. 301 

Zgurskaya and co-workers therefore concluded that TolC quantities alone do not limit the drug efflux 302 

capabilities of E. coli27. Our data further corroborate this hypothesis.  303 

 304 

The use of mathematical modelling and Bayesian inference to rationalize our data enabled us to maximize 305 

the information embedded in our time-lapse single-cell measurements, leading to predictions of the 306 

kinetics of the uptake process. We extracted kinetic parameters corresponding to the single-cell drug 307 

uptake profiles and quantified changes in these parameters in the different strains (Figure 4A-B). To 308 

validate our inference procedure, we used data simulated by the model and showed that we can indeed 309 

recover the parameter values which were used for generating these (Fig. S8). Importantly, the model 310 

allowed us to predict drug accumulation in the different subcellular compartments, which is a major 311 

milestone for the entire research community working on this problem. It is important to note that these 312 

are predictions, arising out of our whole-cell data; validation of the model predictions regarding 313 

subcellular levels of drug concentration will only be possible once the considerable experimental 314 

challenges for these measurements at the single-cell level are overcome. There are currently no 315 

techniques capable of resolving the concentrations of drugs in different subcellular compartments in 316 

individual cells. Future work will also involve studying drug accumulation after modulation of other 317 

transport pathways in the Gram-negative double membrane to estimate their relative contributions to 318 

drug uptake at the subcellular level.  319 

 320 

Our single-cell platform allows us to quantify heterogeneity in the cellular response to antibiotic 321 

treatment45. However, as detailed in the Results section, quantitative estimates of systematic and 322 

biological variation revealed no detectable heterogeneity in ofloxacin uptake in our experiments. 323 

Considering the large variations in gene and protein expression reported in bacterial cells and the 324 

corresponding heterogeneity in phenotypic traits including glucose uptake19,35,46, it is striking that 325 

ofloxacin uptake appears robust, i.e. uniform across cells within each of our experiments; however, a 326 

detailed investigation of this is beyond the scope of this study and will be further investigated in future 327 

work.  328 

 329 

Conclusions: 330 

 331 

We have developed a novel experimental and theoretical approach to study antibiotic accumulation label-332 

free in individual Gram-negative bacteria in well-controlled microenvironments. Our experiments 333 

enabled us to quantify the role of the nutrient microenvironment and metabolic state of the cells in drug 334 

uptake at the single-cell level. We reported, to the best of our knowledge, the first quantitative 335 

comparisons between drug uptake in cells in different metabolic states and in cells with specific transport 336 
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pathways disabled. Our experimental results showed that the growth phase of the cells, as determined by 337 

the nutrient microenvironment, plays a more significant role in ofloxacin uptake than either the porin 338 

OmpF or the efflux protein TolC. More generally, this suggests that the metabolic state of the cell is a 339 

crucial determinant of cellular drug uptake, which deserves detailed, quantitative investigation in well-340 

controlled microenvironments. Combining our data with mathematical modelling and Bayesian inference 341 

enabled us to predict the kinetic parameters underlying ofloxacin accumulation in the different 342 

subcellular compartments of E. coli cells. This has previously proved extremely challenging primarily 343 

due to the small size of typical bacterial cells and the need for complicated washing steps before 344 

measuring drug uptake12,13, which may bias the results. We used the parameters extracted from fitting 345 

the model to our experimental data to predict drug accumulation in the outer membrane, the periplasm 346 

and the cytoplasm in parental, ompF and tolC E. coli.  347 

 348 

Our approach offers possibilities for scaling up the number of drugs/pathogens that can be tested on the 349 

same chip, via parallelization of the cell trapping chambers. We also require small volumes of 350 

concentrated cultures for seeding the chip (<10 l), which may facilitate its use in clinical settings.  The 351 

assay also has the advantage of needing only micrograms of chemicals for testing, which is important 352 

when evaluating novel, candidate drugs that are typically expensive to manufacture. Our readout is based 353 

on fluorescence, and can be used to test the permeation properties of newly developed fluorescent 354 

antibiotic probes47, providing information about Gram-negative drug permeability for a range of different 355 

antibiotic classes. It could also be used to study the influence of specific functional groups on the uptake 356 

of closely related compounds. For instance, biophysical measurements of different fluoroquinolones 357 

revealed orders of magnitude differences in their lipid permeabilities25; our system facilitates similar 358 

studies on the bacteria themselves. The experimental setup is relatively simple to implement on standard 359 

epi-fluorescence microscopes and will provide researchers with a new, transferrable platform with which 360 

to study this vitally important permeation process in a range of pathogenic microbes.  361 

 362 

Materials and Methods: 363 

 364 

Chemicals: 365 

 366 

Chemicals were purchased from Sigma-Aldrich unless otherwise stated. Ofloxacin stock solutions were 367 

prepared at a concentration of 10 mg/ml in 1 M NaOH. For the ofloxacin uptake experiments, the stock 368 

was diluted to a concentration of 12.5 g/ml (100×MIC) in PBS. The minimal media used in the 369 

experiments was prepared in sterile water and contained 1×M9 salts, 2 mM MgSO4, 0.1 mM CaCl2 and 370 

1 mg/L thiamine hydrochloride. The LB medium used for cell culture was the Melford high salt version 371 

containing 10 g/L casein digest peptone, 5 g/L yeast extract and 10 g/L NaCl; LB Agar plates were 372 

prepared with 15 g/L agar. Glucose stock solutions were prepared at a concentration of 0.5 M in sterile 373 

water and diluted to 1 g/L in minimal media for use in the experiments. Stock solutions of bovine serum 374 

albumin (BSA) were prepared at a concentration of 50 mg/ml in sterile water. A stock solution of 375 

propidium iodide (PI) was purchased from Thermo Fisher Scientific, and diluted 1:1000 in PBS for use 376 

in the experiments.  377 

 378 

Bacterial cell culture: 379 

 380 

All the E. coli strains used were BW25113 strains purchased from the Keio collection. The mutant strains 381 

contained kanamycin resistance cassettes in place of the deleted chromosomal gene. The strains were 382 

stored at -80 oC in a 1:1 ratio of overnight culture and 50% glycerol solution. 200 ml cultures were grown 383 

in LB (with 25 g/ml kanamycin as necessary) at 37 oC overnight (with shaking at 200 rpm). Streak 384 
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plates were prepared on LB agar (containing 25 g/ml kanamycin as necessary), stored at 4 oC and used 385 

for a maximum of one week.  386 

 387 

Microfluidic chip fabrication:  388 

 389 

The complete protocol for the fabrication of the “mother-machine” microfluidic devices was reported 390 

previously45. The epoxy mold used was constructed from replicas of devices kindly provided by the Jun 391 

lab48. The final devices used were created by pouring polydimethylsiloxane (PDMS, Dow Corning, 9:1 392 

base : curing agent) on to the epoxy mold; the PDMS was baked at 70 0C for 2 h in an oven. The PDMS 393 

chips were cut out and fluidic inlet/outlet columns punched using a 1.5 mm biopsy punch (Miltex). The 394 

PDMS chips were bonded to a type 1 coverslip using an air plasma treatment (10 s exposure at 30 W 395 

plasma power, Plasma etcher, Diener electronic GmbH, Germany) and left at 70 0C for 5 min to improve 396 

the adhesion. The chips were then filled with a 50 mg/ml solution of bovine serum albumin (BSA, in 397 

milliQ water) and incubated at 37 0C for 1 h. The BSA treatment passivates the internal surfaces of the 398 

chip thus preventing cells from adhering to the microchannels during experiments.  399 

 400 

An overnight culture of cells (OD595 typically between 4.5-5) was resuspended in spent LB and 401 

concentrated to an OD of 50 (at 595 nm). The spent LB was prepared by centrifuging the overnight 402 

culture (10 min at 3000 g and 20 0C) – the supernatant was filtered twice through a 0.2 m pore filter 403 

(Millipore). A 2 l aliquot of this solution was injected into the microfluidic device and incubated at 37 404 
0C for 20 min, enabling cells to enter the small side channels of the device. The filled device was then 405 

left overnight at room temperature before starting experiments.  406 

 407 

Drug uptake assay: 408 

 409 

Microfluidic flows were controlled using three parallel neMESYS syringe pumps (Cetoni GmbH, 410 

Germany) with glass syringes (ILS, Germany) of volumes 5 ml, 250 l and 100 l respectively. The 411 

syringes were interfaced with the microfluidic chips using FEP tubing (Upchurch Scientific 1520, I.D. = 412 

0.03” and O.D. = 0.0625”). The syringes and the associated tubing were rinsed thoroughly with milliQ 413 

water and the appropriate experimental solutions before beginning the experiments, and with 70% 414 

ethanol after completion of the experiments.    415 

 416 

All the experiments were performed on an Olympus IX73 epifluorescence microscope with an LED light 417 

source (wLS pE300, QImaging) using a 365 nm excitation wavelength LED. A standard DAPI filter set 418 

(Chroma ET series) modified with a ZET 365/20x excitation filter (Chroma) was used to better match 419 

the 365 nm excitation wavelength. An Olympus UPLSAPO 60×W (N.A 1.2) objective was used for all 420 

the experiments. We used a heating stage (Linkam Scientific THL60-16, UK) to maintain the cells at 37 421 
0C throughout the experiments. All the ofloxacin experiments’ fluorescence intensity traces are presented 422 

in Figure S6 in the SI.  423 

  424 

For the experiments on growing cells, chips containing initially non-growing E. coli were flushed with a 425 

continuous flow of fresh LB (100 l/h) for 3 h, which led the cells to start growing and dividing. This 426 

was followed by a 10 min flush (at 300 l/h) with minimal media containing 1 g/L glucose to wash away 427 

the LB. The glucose was added to the minimal media to prevent the cells from starving. Thereafter, 428 

ofloxacin (100×MIC, 12.5 g/ml dissolved in PBS) was perfused through the chip at 100 l/h, with 429 

images acquired at 5 s intervals using an Evolve 512 EMCCD camera (Photometrics) with 10 ms 430 

exposure times and an EM gain of 200 (bin 1, clearing mode – pre-exposure). The camera was controlled 431 

using Manager 1.449. We chose to always dissolve the ofloxacin in PBS to ensure that the pH conditions 432 
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remained uniform during drug exposure across all experiments and metabolic conditions; it is well known 433 

that pH regulates the charge state of fluoroquinolones, which affects their membrane permeabilities25,50. 434 

The LED was triggered by the camera to ensure that the cells were only exposed to the excitation light 435 

during image acquisition. It must be noted that to reduce the background auto-fluorescence at 365 nm, 436 

prior to the ofloxacin flush the imaging area was bleached with the excitation light for 5 s. As detailed 437 

below, we performed controls (see Figure S2) with propidium iodide staining after UV and ofloxacin 438 

exposure to confirm that the UV light used did not compromise the cells’ membrane integrity.  439 

 440 

For experiments on non-growing cells, the chips containing non-growing E. coli were flushed for 10 min 441 

with PBS (300 l/h) to wash away residual LB, the imaging area was bleached for 5 s with the UV light 442 

(365 nm) and subsequently the ofloxacin was perfused through the chip, with the drug concentration and 443 

imaging settings exactly the same as for the growing cell experiments.  444 

 445 

For both growing and non-growing cell experiments, we performed auto-fluorescence controls where 446 

instead of the ofloxacin, PBS was perfused through the chip (the rest of the protocols remained identical). 447 

A representative dataset is reported in Figure S1(B) in the SI. 448 

 449 

Image Analysis: 450 

 451 

The image analysis was performed using a custom Python module51. First, a specified range of frames 452 

of the dataset are loaded. Optionally, manually selected out-of-focus time-points are ignored. Cell 453 

detection is performed on a frame-by-frame basis as follows. First the frame is filtered using a Difference-454 

of-Gaussian (DoG) scale-space filter52 spanning a small range of scales, corresponding to the scale range 455 

of bacterial widths. The resulting scale-space volume is maximum-projected along the scale axis, and the 456 

automatic threshold detected using the Triangle method53. 457 

 458 

The centroids of the regions in the binary image resulting from applying this threshold are used to 459 

determine the axis of the side channels by using Principal Component Analysis. The axis of the side 460 

channels is then used to determine the upper and lower extents of the side-channel-region, which are then 461 

used to generate a side-channel-region mask, in addition to two candidate main-channel-region masks. 462 

The side-channel-region mask is then used to select bacterial regions from the binary image. The correct 463 

channel is identified from the two candidate regions by analysing the fluorescence for the region whose 464 

mean signal exhibits the most variation. 465 

 466 

Cells are tracked frame-to-frame by matching positions such that nearest-matching bacteria are assigned 467 

only if the match is cross-validated in both forward and backward temporal directions54. Bacterial 468 

trajectories are filtered to remove short trajectories (less than 10% of the full length). 469 

 470 

The final trajectories are analysed as follows. First, a pre-determined dark-count (which is the average 471 

intensity of an image captured with the camera sensor covered) is subtracted from each bacterium's mean 472 

fluorescence, yielding the dark-count-corrected mean intensities. The corresponding dark-count-473 

corrected PDMS background values for each bacterium are obtained by averaging the pixel intensity 474 

values of the PDMS to the immediate left and right of the individual bacterium and applying a similar 475 

dark-count correction. This bacterium-specific dark-count-corrected PDMS background is subtracted 476 

from the corresponding bacterium. Finally, the background subtracted bacterium’s intensity at the 477 

starting time point is subtracted from all the values at later time points, yielding the background corrected 478 

bacterial fluorescence profiles over the course of the experiment (solid lines in Figures 2, S1 and S6).  479 
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For the drug dosage fluorescence, the initial intensity value of the dosage “main” channel (dark-count-480 

corrected) is subtracted from all subsequent time points to initialise the drug fluorescence value to 0 481 

(before drug arrival) – this also accounts for the subtraction of the background in the main channel. This 482 

reveals the drug dosage fluorescence profile over the course of the experiment (dashed lines in Figures 483 

2, S1A,C and S6).  484 

 485 

To account for any differences in absolute drug fluorescence between experiments, for the comparative 486 

analysis of drug uptake across the different experiments, all the background corrected cell and drug 487 

dosage fluorescence values in an experiment are normalised to the final value of the drug fluorescence 488 

in the main channel (t = 400 s) for that experiment. Note that this drug fluorescence value at t = 400 s is 489 

post-subtraction of the initial main channel background (measured before drug arrival) and thus always 490 

corresponds to the same concentration of ofloxacin (100×MIC, 12.5 g/ml) across all experiments. These 491 

values are shown for a representative experiment in Figure 1D, and used for all comparative analysis 492 

(Figure 3) and modelling results in the paper. It is important to note that, since we are using this 493 

normalization in the model, we are assuming that the correspondence between drug fluorescence and 494 

concentration is the same in the main channel and in the vicinity of the cells. It is not possible to 495 

accurately resolve the drug fluorescence in the side channels in the immediate vicinity of each cell. The 496 

cells themselves are brighter than the surrounding channel and are hence easier to detect and track and, 497 

as specified above, we have established a protocol to subtract the scattering and fluorescence background 498 

for the cells.  499 

 500 

Finally, since the cellular auto-fluorescence profiles were flat (Figure S1B,D), we did not need to correct 501 

for this effect when analysing the drug uptake experimental data; we simply subtracted the initial cellular 502 

fluorescence (at t = 0) from the cell fluorescence at all the time-points, as detailed above. We should also 503 

mention that the automated tracking works better for growing cells than for non-growing cells, which 504 

were smaller in size and therefore more difficult to detect. However, this does not significantly affect the 505 

average results, and the cell fluorescence values obtained through the automated code were similar to 506 

those obtained by manually selecting and measuring the cells in ImageJ; since we do not fit the model to 507 

the data for non-growing cells, we used the automated tracking results in all the figures in this manuscript. 508 

 509 

Quantifying intra-experimental variability: 510 

 511 

In order to estimate the variation in cellular fluorescence in the absence of the drug, we used the auto-512 

fluorescence control experiment shown in Figure S1B to estimate the underlying biological and 513 

systematic variation in our experiments. These measurements report the auto-fluorescence of the same 514 

cells measured at different time points in the experiment. We quantified the coefficient of variation (CV) 515 

of the cell auto-fluorescence intensities (over the timescales of the experiment) of the 103 individual cells 516 

shown in Figure S1B. The mean CV across all the cells was 10 ± 3 % (N = 103, mean ± s.d.). This gives 517 

a quantitative estimate of the measurement (systematic and underlying biological) heterogeneity for 518 

individual cells within a single experiment. 519 

 520 

We compare this variability in cellular auto-fluorescence with the apparent heterogeneity in drug uptake 521 

in the cells in Figure S1A. To estimate this value, we measured the intensity of the cells at the end of the 522 

drug uptake experiment (t = 400 s). The heterogeneity in the cellular fluorescence corresponding to drug 523 

uptake (in the knowledge that this includes the systematic and underlying biological variation mentioned 524 

above) is extracted by measuring the CV of the fluorescence across all the cells at this time-point. Unlike 525 

the CV measurement of the control which was for individual cells across all time-points, to estimate drug 526 
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uptake heterogeneity amongst the 126 different cells, we measured the CV in the fluorescence of all the 527 

cells at the final time-point. This analysis yields a CV of 9.7%.  528 

 529 

Mathematical model: 530 

 531 

We model drug uptake in the different compartments of a Gram-negative bacterium (Figure 1A) using 532 

the following set of ordinary differential equations (ODEs): 533 

 534 

𝑉𝑀
𝑑𝐷𝑀

𝑑𝑡
= 𝑘1𝐷𝑂(𝑀0 − 𝐷𝑀) + 𝑘1𝐷𝑃(𝑀0 − 𝐷𝑀) − 2𝑘2𝐷𝑀                                        (i) 535 

 536 

𝑉𝑝
𝑑𝐷𝑃

𝑑𝑡
=  𝑘2𝐷𝑀 − 𝑘1𝐷𝑃(𝑀0 − 𝐷𝑀) − 𝑘3𝐷𝑃 + 𝑘5𝐷𝐶 + 𝑘4𝐷𝑂 − 𝑘4𝐷𝑃 − 𝑣

𝐷𝑃

𝐾𝑚+𝐷𝑃
      (ii) 537 

 538 

𝑉𝐶
𝑑𝐷𝐶

𝑑𝑡
= (𝑘3𝐷𝑃 − 𝑘5𝐷𝐶)                                                                                       (iii) 539 

 540 

where 𝐷𝑂, 𝐷𝑀, 𝐷𝑃 and 𝐷𝐶  denote the drug concentrations in the external environment, the outer 541 

membrane, the periplasm and the cytoplasm, respectively. Importantly, we used the measured drug 542 

dosage traces for estimating 𝐷𝑂 for every experiment, which allows us to control for any variations in 543 

the drug dosage profiles across different experiments (Figure S6). We model porin-mediated drug 544 

transport through the outer membrane as a two-step reversible process: drug molecules bind to porins 545 

with rate constant 𝑘1 from either side of the outer membrane and unbind to either side at rate 𝑘2. 𝑀0 546 

denotes the concentration of functional porins in the outer membrane; based on literature values of the 547 

numbers of porins in typical Gram-negative outer membranes, we assumed that the total number of porins 548 

would vary between approximately 1×105 to 2×105 per cell (PS)55; this was used to restrict the range of 549 

possible values for 𝑀0.  As a first approximation, we assume that diffusion through the LPS-lipid bilayer 550 

is negligible (𝑘4~0) in comparison to porin-mediated transport12. Furthermore, we postulate that 551 

ofloxacin molecules, like other fluoroquinolones25,50, diffuse across the inner membrane lipid bilayer 552 

(rate constants 𝑘3 and  𝑘5) and that the efflux of drug molecules from the periplasm to the external 553 

medium follows Michaelis-Menten kinetics with maximal rate 𝑣 and Michaelis constant 𝐾𝑚
31. 554 

Parameters 𝑉𝑀, 𝑉𝑃 and 𝑉𝐶 denote the volumes of the outer membrane, periplasm and cytoplasm, 555 

respectively (Table S2). The parameter 𝑘3 was calculated on the basis of passive diffusion measurements 556 

of ofloxacin permeability across lipid vesicle bilayers (Figure S3). To account for any potential binding 557 

of the drug to targets within the cytoplasm, we do not assume any equivalence between 𝑘3 and 𝑘5, an 558 

approach similar to that applied by Westfall et al.31; we only make the assumption that 𝑘5 ≤ 𝑘3. 559 

Crucially, the parameters (𝑘1, 𝑘2, 𝑘5, 𝑀0, 𝐾𝑚, 𝑣) were inferred from the experimental data obtained with 560 

the PS, ompF and tolC E. coli strains (Figure S6). The total drug concentration was calculated as:  561 

 562 

𝐷𝑇 =
𝐷𝑀∗𝑉𝑀 + 𝐷𝑃∗𝑉𝑃 + 𝐷𝐶∗𝑉𝐶

𝑉𝑀+𝑉𝑃+𝑉𝐶
                           (iv)  563 

 564 

To model drug uptake in the ompF strain, we used equations (i-iii) above, additionally assuming a 565 

possible decrease in the number of porins relative to the PS, i.e., 𝑀0,𝑜𝑚𝑝𝐹 ≤ 𝑀0. Similarly, for the case 566 

of the tolC strain, we assumed that the maximal efflux rate may decrease relative to the PS, i.e., 𝑣𝑡𝑜𝑙𝐶 ≤567 

𝑣.  568 

 569 

All model simulations were run in Matlab (R2018b) using the in-built explicit Runge-Kutta (4, 5) solver 570 

(function ode45; default settings). The codes are available via GitHub. 571 

 572 
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Parameter estimation: 573 

 574 

We obtained maximum likelihood estimates (MLEs) of the free model parameters (Table S2) using the 575 

medians of the drug uptake profiles for all the cells in an experiment. Please note that for convenience 576 

we use the term “population-averaged” throughout the text to refer to these median values of the drug 577 

uptake profiles. Since our data was normalized based on the fluorescence of the drug dose (see Methods; 578 

image analysis), estimates of parameters 𝑘1, 𝑀0, 𝐾𝑚, 𝑣 incorporate a constant factor related to the 579 

concentration of the drug dose (see Table S2). We denote the scaled version of these parameters using 580 

the prime symbol (′). We compiled a library of 18 datasets by combining population-averaged profiles 581 

from: (i) growing PS cells (3 experimental repeats); (ii) growing ompF cells (3 experimental repeats) 582 

and (iii) growing tolC cells (2 experimental repeats). We obtained parameter MLEs from each dataset, 583 

and to mitigate the risk of overfitting we then selected out of those parameter vectors the one that best 584 

fitted all 18 datasets. Under the assumption of Gaussian measurement error, the MLEs for each dataset 585 

correspond to parameter values minimising the following sum of squares: 𝜖 = ∑
(𝐷𝑇,𝑡−𝑦̅𝑡)2

𝜎𝑡
2𝑡 . Here, 𝑦̅𝑡 is 586 

the population-averaged drug uptake measurement at time 𝑡; 𝐷𝑇,𝑡 is the drug uptake predicted by the 587 

model; 𝜎𝑡 is the measurement error calculated based on a coefficient of variation of 4% (we obtained this 588 

from fluorescence measurements of the PDMS background); and the sum runs over all the time-points 0 589 

to 400 s. Minimization was performed using Matlab’s in-built nonlinear least-squares solver (lsqcurvefit; 590 

with the maximum number of iterations set to 15). To find the global optimum of 𝜖, we repeated the 591 

minimization task starting from 500 different initial points (generated using a Sobol sequence of quasi-592 

random numbers) covering the entire parameter space.  593 

 594 

We analyzed the single-cell data using a Bayesian hierarchical version of the model in which parameters 595 

𝑀0 and 𝑣  vary between single-cells. In particular, we postulate that these model-parameters are 596 

distributed at the population level according to two independent log-normal distributions37. Below, 597 

𝑀0
′  and 𝑣′ denote the rescaled versions of 𝑀0 and 𝑣 which accommodate fitting the model to data 598 

normalized by the fluorescence of the drug dose (Table S2). The mean (𝜇𝑀0
′ , 𝜇𝑣′) and standard deviation 599 

parameters (𝜎𝑀0
′ , 𝜎𝑣′) of each log-normal distribution dictate the average value of the corresponding 600 

model-parameter and its spread across a bacterial population. Posterior estimates of these population 601 

parameters (𝜇𝑀0
′ , 𝜇𝑣′, 𝜎𝑀0

′ , 𝜎𝑣′) were inferred from single-cell data (experimental repeats were treated 602 

separately) using Gibbs sampling and informative priors based on the MLE estimates obtained in the step 603 

above (see Figures S4, S5 and Table S3 in the SI). In the first iteration (𝑗 = 1) of the algorithm, 604 

𝜇
𝑀0

′
(1)

, 𝜇𝑣′
(1)

, 𝜎
𝑀0

′
(1)

, and 𝜎𝑣′
(1)

 were drawn from their corresponding prior distributions and for each cell 𝑖 =605 

1, … , 𝐾 model-parameters 𝑀0,𝑖
′(1)

, 𝑣𝑖
′(1)

 were obtained by minimizing the discrepancy between the model-606 

predicted uptake profile and the single-cell measurements 𝒚𝑖 = {𝑦𝑖,𝑡: 𝑡 = 1, … , 𝑍}. Subsequent iterations 607 

(𝑗 > 1) involve sampling in-turn from the full conditionals: 608 

 609 

a) 𝑀0,𝑖
′(𝑗)

, 𝑣𝑖
′(𝑗)

~𝑃 (∙ |𝒚𝑖, 𝜇
𝑀0

′
(𝑗−1)

, 𝜇𝑣′
(𝑗−1)

, 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

); 610 

b) 𝜇
𝑀0

′
(𝑗)

, 𝜇𝑣′
(𝑗)

~𝑃 (∙ | {𝑀0,𝑖
′(𝑗)

, 𝑣𝑖
′(𝑗)

: 𝑖 = 1, … , 𝐾} , 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

); 611 

c) 𝜎
𝑀0

′
(𝑗)

, 𝜎𝑣′
(𝑗)

~𝑃 (∙ | {𝑀0,𝑖
′(𝑗)

, 𝑣𝑖
′(𝑗)

: 𝑖 = 1, … , 𝐾} , 𝜇
𝑀0

′
(𝑗)

, 𝜇𝑣′
(𝑗)

). 612 

 613 

In our analysis, we used conjugate priors for 𝜇𝑀0
′ , 𝜇𝑣′, 𝜎𝑀0

′ , 𝜎𝑣′, i.e., normal priors for 𝜇𝑀0
′  and 𝜇𝑣′, and 614 

gamma priors for 𝜎𝑀0
′

−1 and 𝜎𝑣′
−1. This choice greatly simplifies steps (b) and (c) as the target sampling 615 
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distributions are the updated normal and gamma distributions, respectively. In step (a) for each cell 𝑖 we 616 

sampled from the target distribution: 617 

 618 

𝑃 (𝑀0,𝑖
′ , 𝑣𝑖

′|𝒚𝑖, 𝜇
𝑀0

′
(𝑗−1)

, 𝜇𝑣′
(𝑗−1)

, 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

) ∝ 𝑃(𝒚𝑖|𝑀0,𝑖
′ , 𝑣𝑖

′)𝑃 (𝑀0,𝑖
′ , 𝑣𝑖

′|𝜇
𝑀0

′
(𝑗−1)

, 𝜇𝑣′
(𝑗−1)

, 𝜎
𝑀0

′
(𝑗−1)

, 𝜎𝑣′
(𝑗−1)

) 619 

 620 

using a single Metropolis-Hasting step with a bivariate normal as the proposal distribution (covariance 621 

matrix set to 10-4I, where I is the 2x2 identity matrix). All results presented were obtained by running 622 

the Gibbs sampler for 2000 iterations (after having discarded 500 ‘warm-up’ iterations). 623 

 624 

Propidium Iodide (PI) staining to test membrane integrity after UV and ofloxacin treatment: 625 

 626 

To ensure that the combination of UV (365 nm) exposure and ofloxacin treatment does not compromise 627 

the cells’ membranes, we treated PS E. coli cells (growing) after an experiment with PI (1 l dissolved 628 

in 1 ml PBS) for 10 min at a flow rate of 100 l/h. PI is a stain commonly used to identify bacterial cells 629 

with compromised membranes. PI fluorescence was captured using an mCherry filter set (Chroma) using 630 

the green LED for excitation. A combined bright-field and mCherry fluorescence image representative 631 

of these experiments is shown in Figure S2, where it can be seen that less than 5% of the cells are stained 632 

with PI. Similar levels of PI staining were obtained for cells treated with ofloxacin but not bleached 633 

directly with the focused UV light. This suggests that our UV exposures do not compromise membrane 634 

integrity for the majority (>95%) of the cells.  635 

 636 
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Fig. 1. Quantifying and modelling ofloxacin uptake label-free in individual E. coli cells. A) Schematic of the main 

processes involved in drug translocation across Gram-negative cell envelopes. Drug molecules penetrate the outer membrane 

(M) primarily through protein porins, with association and dissociation rates 𝑘1 and 𝑘2, respectively. 𝑀0 refers to the 

concentration of functional porin binding sites in the outer membrane. Any residual (non-porin) transport across the outer 

membrane LPS barrier is modelled with 𝑘4. Drug transport through the inner membrane is modelled with kinetic parameters 

𝑘3 and 𝑘5. Drug molecules are subject to removal from the cell via active efflux mechanisms which follow Michaelis-Menten 

kinetics (𝐾𝑚, 𝑣). B) Schematic of the microfluidic chip used for the ofloxacin uptake experiment. A main channel of height 

25 m and width 100 m is used for continuously exchanging the microenvironment with nutrient, drug or dye delivery; cells 

are confined single-file in a network of side channels whose height and width are both 1.4 m, with length 25 m. C) Section 

of epifluorescence images showing the delivery of ofloxacin (100×MIC, 12.5 g/ml in PBS) and its corresponding uptake by 

the cells in the side channels. The ofloxacin molecules within and around the bacteria are tracked using their auto-fluorescence 

at ex= 365 nm. Scale bar = 5 m. D) Quantitative estimation of the temporal profile of ofloxacin delivery in the chip, and the 

corresponding ofloxacin uptake profile of 90 individual E. coli cells; the thick red line represents the mean and the grey shaded 

area the standard deviation of the ofloxacin uptake profiles of the 90 cells investigated. The fluorescence values are reported 

after correcting for the background and normalizing to the fluorescence of the drug as detailed in the Methods. The complete 

datasets prior to normalization for the three different E. coli strains investigated are presented in the SI in Figure S6.     
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Fig. 2. Representative ofloxacin uptake experiments for the bacterial strains/conditions investigated. The E. coli strains 

(Parental Strain, PS; ompF; tolC), conditions (growing, G; non-growing, NG) and number of cells (N) are indicated inset. 

All values are reported after subtracting the background and the initial cellular fluorescence (before drug arrival) as explained 

in the Methods. For reference, the complete datasets for all strains/conditions including all the biological repeats are provided 

in Figure S6 in the SI.  Dashed lines represent the drug dosage profiles (right Y-axes) in the main channel. These individual 

drug dosage profiles are provided as inputs when modelling the drug uptake in the corresponding cells in an experiment. The 

cell fluorescence profiles are shown in red (left Y-axes), along with the mean (thick red line) and standard deviation (grey 

shading) for all the cells in an experiment. Comparing growing versus non-growing PS bacteria (panels A and B) directly 

shows that the growing cells accumulate more drug than non-growing cells. This is apparent in the tolC strain as well (Figure 

S6). Comparing the cell fluorescence profiles of growing PS (A), ompF (C) and tolC (D) also clearly shows that the ompF 

mutant accumulates less ofloxacin than the other two strains. A quantitative analysis of the amount of drug accumulated at 

the end of the experiments for each strain/condition is provided in Figure 3. 
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Fig. 3. Final level of normalized whole cell fluorescence for the different strains and nutritional conditions. (A) 
Fluorescence distributions across the different strains and conditions. In the insets, n refers to number of experimental repeats, 

N reports the total number of bacteria and CV refers to the coefficient of variation of the data. All comparisons are made at t 

= 400 s. (B) Comparison of data pooled from the different experiments shows that non-growing PS E. coli  show significantly 

lower ofloxacin uptake than growing PS E. coli (p<10-10). This was also true in the tolC strain, where non-growing cells 

showed significantly lower uptake (p<10-10) than growing cells, suggesting ofloxacin uptake critically depends on the growth 

phase of the cells within the timescales of our experiment. Growing ompF E. coli showed lower whole cell drug 

accumulation than growing PS (p<10-10) and tolC (p<10-10) cells, in line with expectations. However, growing ompF E. 

coli accumulated more ofloxacin than non-growing PS cells (p<10-10), suggesting that the growth phase of the cells as set by 

the nutrient environment plays an even more important role than the deletion of ompF in drug uptake. The horizontal lines in 

the interior of the boxes report the medians of the respective distributions. Statistical significance tested using a 2-sample t-

test incorporating Welch’s correction; the complete set of p-values is reported in the SI (Table S1).  
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Fig. 4. Drug accumulation kinetics predicted by fitting the single-cell data to the drug uptake model. Maximum 

aposteriori estimates of the population distribution of parameters 𝑀0
′ (A) and 𝑣′ (B) for growing parental strain (PS, top), 

ompF (middle) and tolC (bottom) E. coli. The solid, dashed and dotted lines refer to individual experimental repeats. These 

distributions were generated using the mode of the joint posterior distribution of the means and standard deviations of the log-

normal distributions for 𝑀0
′  and 𝑣′; the marginal posterior distributions of the means and standard deviations for the parameters 

are provided in the SI in Figures S4 and S5 respectively. C) Predicted ofloxacin uptake in the different bacterial compartments. 

Temporal dependence of the normalized drug concentration in the cytoplasm, periplasm and outer membrane for PS (red), 

ompF (blue) and tolC (green) bacteria in response to the drug dosage input (dashed black line, top panel). These drug 

uptake profiles were obtained by using the kinetic parameter values in (A) and (B) and the theoretical model (equations (i)-

(iii)). The concentrations reported are normalized to the drug dosage concentration (12.5 g/ml ofloxacin). The solid lines 

correspond to median accumulation in the respective compartments and the shaded area represents the [20,80] posterior 

predictive interval of the accumulation. The results shown were generated by running the model using 500 independent 

samples of parameters 𝑀0
′  and 𝑣′ from their joint posterior distributions. All other parameters were fixed to the values given 

in Table S2. The model predicts the saturation of binding sites in the outer membrane. The median saturation concentration 

in the outer membrane is approximately 2.25-fold higher in the PS compared with the ompF strain. The periplasmic drug 

concentrations are approximately 30-fold lower than the cytoplasmic concentrations, which is likely due to the drug binding 

to its targets within the cytoplasm. Using the [20,80] posterior predictive intervals, we have calculated the probabilities of 

cells from the different strains showing higher/lower accumulation in the different compartments in a pairwise manner. These 

results are provided in Table S4. 
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