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Abstract:

The double-membrane cell envelope of Gram-negative bacteria is a formidable barrier to intracellular
antibiotic accumulation. A quantitative understanding of antibiotic transport in these cells is crucial for
drug development, but this has proved elusive due to the complexity of the problem and a dearth of
suitable investigative techniques. Here we combine microfluidics and time-lapse auto-fluorescence
microscopy to quantify antibiotic uptake label-free in hundreds of individual Escherichia coli cells. By
manipulating the microenvironment, we showed that drug (ofloxacin) accumulation is higher in growing
versus non-growing cells. Using genetic knockouts, we provide the first direct evidence that growth
phase is more important for drug accumulation than the presence or absence of individual transport
pathways. We use our experimental results to inform a mathematical model that predicts drug
accumulation kinetics in subcellular compartments. These novel experimental and theoretical results
pave the way for the rational design of new Gram-negative antibiotics.

Introduction:

Life depends on the exchange of molecules between cells and their surroundings®. Cells have evolved
elaborate, adaptable envelope structures to optimize nutrient accumulation while restricting the uptake
of xenobiotics, particularly those that negatively impact their survival. However, it is these very attributes
that make the study of these molecular transport processes extremely challenging. Transport across the
cell envelope may occur passively via diffusion?, either through lipids or specific protein pores?, or via
active transporters®, which move substrates both into and out of the cell. Furthermore, the expression of
these different pathways is often strongly regulated by the surrounding microenvironment® and can vary
from cell to cell®. Due to the many complexities of studying these transport problems, biophysical and
mathematical modelling has been used extensively to uncover detailed features of molecular transport in
synthetic model systems. For instance, a mathematical study of hydrodynamic entrance effects showed
that the hourglass shape of aquaporins might be a result of natural selection processes optimizing water
permeability’. One-dimensional diffusional models, both theoretical® and experimental® have been used
to shed light on the single-file motion of particles through narrow constrictions, simulating molecular
transport through biological nanopores. Colloidal model systems have been used to investigate Brownian
dynamics in biomimetic systems', with recent reports showing the breakdown of transition-path-time
symmetry on molecular and meso-scales out of equilibrium?*,

However, these molecular-scale modelling studies do not capture the kinetics of substrate uptake in living
cells and, from a biomedical perspective, a key transport challenge involves quantitatively understanding
the intracellular uptake of antibiotics in bacteria'>!3, Antibiotic failure in the treatment of microbial
infections is predicted to cause 10 million deaths annually by 2050*. Gram-negative bacterial infections
are of particular concern, due to the protection against antibiotics provided by their complex double-
membrane cell envelopes (Figure 1A). These structures include an asymmetric outer membrane that
contains lipopolysaccharide (LPS) molecules, which create a formidable permeability barrier to the
cellular entry of both hydrophilic and hydrophobic molecules'?!°. Antibiotic permeation across the outer
membrane is therefore dependent on the drug’s ability to utilize protein pores (or porins)®!617 typically
used for nutrient uptake, to circumvent this barrier. These porins show a preference for hydrophilic,
charged compounds; however, antibiotics that are active against targets located in the cytoplasm have to
also cross the inner membrane phospholipid bilayer, which acts as a selectivity barrier against polar,
charged molecules!?>. Additionally, Gram-negative bacteria harbor active efflux mechanisms, which
pump toxic compounds out of the cell'®, Successful drugs must minimize their propensity for recognition
and removal by these efflux pumps, in addition to displaying specific physicochemical properties to

permeate both through the outer membrane porins and inner membrane phospholipids®®.
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The study of drug uptake is further complicated by the fact that the expression and activity of porins and
efflux pumps vary i) with the microenvironment conditions® and ii) within an isogenic population
exposed to the same environmental landscape®®. Many existing experimental techniques suffer from the
requirement of complex washing steps!?!3, with cells only studied after resuspension in contrived
nutrient environments?®2; the washes also increase the chance of cell lysis and efflux or diffusion of the
analyte from the cells, besides affecting cellular physiology. Furthermore, the most commonly used
techniques are population level assays which cannot investigate uptake at the single-cell or at the
subcellular level. Finally, most of the available techniques only provide a static picture of drug
accumulation rather than the dynamic evolution of drug uptake. There is therefore a need to
fundamentally change the experimental approach for quantifying antibiotic accumulation in individual
bacteria after exposure to different nutrient conditions or in different metabolic states. Ideally, this
approach should also be simple to implement to ensure its uptake in pharmaceutical companies and in
clinical settings.

Here, we address these myriad challenges by introducing a unique combination of single-cell uptake
analysis and mathematical modelling to study drug accumulation and kinetics in up to hundreds of
individual cells per experiment. To do so we used Escherichia coli as a model organism for Gram-
negative bacteria, seeded a small aliquot of bacterial culture into a microfluidic “mother-machine”
device?? (Figure 1B) and dosed E. coli either in a non-growing or a growing state with the
fluoroquinolone antibiotic ofloxacin (12.5 ug/ml) while imaging the kinetics of ofloxacin accumulation
in individual E. coli (Figure 1C-D) using the auto-fluorescence of the drug. Quinolones such as ofloxacin
disrupt the DNA replication process in the cytoplasm of bacteria; in E. coli, the primary target is the
enzyme DNA gyrase, a tetramer which is composed of two copies each of its subunits, GyrA and GyrB23,
Therefore ofloxacin activity depends directly on its ability to accumulate in the cytoplasm.

Using biophysical experimental model systems, we and others have previously shown in vitro that porins
such as OmpF facilitate quinolone transport across the outer membrane®?4, and that quinolones also
diffuse freely across phospholipid bilayers such as those found in the cytoplasmic membrane®. However,
the role of the TolC efflux protein in quinolone transport is currently a matter of debate. Although a tolC
deficient strain of a fluoroquinolone-resistant clinical E. coli isolate was shown to be more susceptible
to fluoroquinolones than the parental strain®®, TolC levels alone do not necessarily limit drug efflux
capabilities in E. coli?’. Cellular quinolone accumulation data comparing parental strains and their
corresponding tolC knockouts also show contradictions, with some reports showing increased
accumulation?® in the knockout and others showing no significant differences between the strains?.

We use our novel approach to investigate this complex membrane transport landscape by performing
ofloxacin accumulation experiments in three E. coli strains from the Keio collection?®, encompassing the
parental strain (PS) BW25113, an OmpF porin knockout (AompF) and a TolC efflux protein knockout
(AtolC) strain. We confirmed that OmpF plays a significant role in ofloxacin transport®°, but found that
the absence of TolC appears to have no significant impact on drug accumulation compared to the PS.
Even more surprisingly, our ability to directly compare the role of these transport proteins and the nutrient
environment in drug uptake revealed, for the first time, that the microenvironment affects ofloxacin
accumulation to a greater extent than the loss of the key transport pathways that we investigated.

Furthermore we applied a set of three ordinary differential equations to model the uptake process®! across
the three strains in order to complement our experiments. This allowed us to estimate the Kinetic
parameters associated with early stage ofloxacin uptake. We combined this with Bayesian inference to
investigate how specific model parameters varied between individual cells in the different strains. We
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used the parameters obtained from the modelling and statistical inference to predict the kinetics of drug
accumulation in the various subcellular compartments of the cells across the different strains. For the
avoidance of any confusion, we stress that the modelling results are theoretical results®? inferred from
our experimental data which provide predictions of the levels of subcellular drug accumulation; the
experimental validation of these predictions is beyond the scope of any currently available technology,
particularly at the single-cell level. Finally, although this study focuses on Gram-negative bacteria, the
experimental and theoretical framework that we employ may be repurposed, with appropriate
modifications, for advancing our understanding of molecular transport in a range of fundamental
phenomena in both cellular and synthetic systems. This will pave the way for a direct, quantitative
evaluation of the role of growth phases, nutrient conditions and transport pathways in drug accumulation
in cells.

Results:

Figure 2A-D report bacterial drug uptake profiles (red lines) from representative experiments studying
growing PS (2A), non-growing PS (2B), growing AompF (2C) and growing AtolC (2D) E. coli. The drug
uptake profiles for AtolC (non-growing) E. coli and all the biological repeats performed are reported in
Figure S6. We quantify drug dosage precisely via its fluorescence (SI Note 1) in every experiment.
Further, we performed cellular autofluorescence controls in the absence of the drug and show that this
has a negligible effect on our results (SI Note 2).

We observe an increase in cellular drug fluorescence within seconds after the arrival of the drug in the
vicinity of the cells. Please note that previous population-level studies have shown biphasic ofloxacin
uptake in E. coli over longer timescales of up to an hour®3, but here we focus our attention on the initial
stages of drug uptake, studying the immediate cellular response to drug dosage (t <400 s) at the single-
cell level.

1. Growing bacteria accumulate more ofloxacin than non-growing bacteria:

Comparing growing versus non-growing PS cells (Figure 2A-B) immediately reveals that growing cells
accumulate more ofloxacin than non-growing cells. To quantify this difference, we compared the
distributions of cellular fluorescence (normalized to the value of drug fluorescence) at t = 400 s across
all experimental repeats in Figure 3 (see Methods). In all datasets, growing PS cells show an
approximately 3-fold higher fluorescence than non-growing cells (growing: norm. fluor. = 0.34 + 0.11,
N =317, mean + s.d.; non-growing: norm. fluor. = 0.10 + 0.03, mean + s.d., N = 405; p<1071°). A similar
result was obtained when comparing growing and non-growing cells in the AtolC mutant strain (growing:
norm. fluor. = 0.31 £ 0.08, N = 211, mean * s.d.; non-growing: norm. fluor. = 0.12 + 0.06, mean + s.d.,
N = 193; p<1029),

2. Knocking out ompF lowers ofloxacin accumulation compared to the PS:

From Figure 2A and 2C, we also observe that the growing AompF mutant strain accumulates lower
amounts of ofloxacin than the PS (growing) over the timescales investigated. This is quantified in Figure
3 (AompF: norm. fluor. = 0.20 + 0.11, mean * s.d., N = 250; PS: norm. fluor. = 0.34 £ 0.11, N = 317,
mean + s.d.; p<107%): knocking out the OmpF porin thus lowers the ability of ofloxacin to permeate into
the cell compared to the parental strain. Our result agrees with previous reports that show that OmpF
facilitates fluoroquinolone transport across Gram-negative outer membranes®24,


https://doi.org/10.1101/645507
http://creativecommons.org/licenses/by/4.0/

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

bioRxiv preprint doi: https://doi.org/10.1101/645507; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

3. Khnocking out tolC does not increase ofloxacin accumulation compared to the PS:

Interestingly, we were unable to detect an increase in ofloxacin accumulation in growing AtolC mutant
cells compared to the PS at the 400 s time-point (Figure 3). In fact, as reported above, we measured a
small decrease in the drug fluorescence in growing AtolC cells compared to the growing PS cells (AtolC:
norm. fluor. =0.31 £ 0.08, N = 211, mean % s.d.; PS: norm. fluor. = 0.34 £ 0.11, N = 317, mean % s.d.;
p=2.7x10"). This finding is addressed in detail in the Discussion.

4. Direct comparison reveals that growth phase plays a more significant role in ofloxacin accumulation
than knocking out ompF:

Our ability to directly compare drug accumulation in different metabolic states revealed that the growing
AompF mutant strain accumulates more ofloxacin than the non-growing PS (growing AompF: norm.
fluor. = 0.20 £ 0.11, mean + s.d., N = 250; non-growing PS: norm. fluor. = 0.10 + 0.03, N = 405, mean
+s.d.; p<10719), suggesting that the growth phase plays an even bigger role than the removal of OmpF in
drug uptake. We believe this is the first time such a direct comparison has been performed. These results
emphasize the importance of studying the role of the cellular metabolic state in drug uptake.

5. Ofloxacin uptake is homogeneous across a clonal population:

A major advantage of single-cell approaches is their ability to quantify heterogeneity (or the lack thereof)
in the cellular response to treatment within the individual cells in a population®*. In order to estimate
heterogeneity in drug uptake across the bacteria, we first estimated the variation in cellular fluorescence
in the absence of the drug and found a mean coefficient of variation (CV) of approximately 10% (see
Methods). We found a similar CV when quantifying the heterogeneity in the cellular fluorescence
corresponding to drug uptake. As seen in Figure S6, such variation is representative across the biological
repeats. We thus conclude that ofloxacin uptake is homogeneous across the clonal populations that we
studied, which is remarkable considering the recent reports on cellular heterogeneity within microbial
populations®®, including considerable heterogeneity in glucose uptake in E. coli cells®,

Theoretical predictions from a mathematical model of drug transport across the Gram-negative cell
envelope:

The quantitative comparisons above provide a static picture regarding the impact of porins, pumps and
growth stages on ofloxacin accumulation in Gram-negative bacteria at the whole-cell level. However, the
most desirable information concerns the dynamics governed by the kinetics of drug accumulation in
different subcellular compartments. It is crucial to understand how much of a drug actually reaches its
target which, in the case of ofloxacin, lies in the cytoplasm3. However, there are currently no
experimental techniques capable of quantifying subcellular drug accumulation at the single-cell level.
We therefore turn to theoretical modelling to investigate this process. We rationalize our experimental
single-cell drug uptake data via a mathematical model (see Methods), where parameters governing porins
(M,) and efflux pumps (v) are allowed to vary between cells in the population according to a log-normal
distribution®”. The inferred parameter distributions for growing bacteria from the three investigated
strains are presented in Figure 4A-B; the different experimental repeats are signified by solid, dotted and
dashed lines (PS, red; AompF, blue; AtolC, green). We found similar values across the different replicates
for the PS cells, whereas the knockout mutants showed greater variability both between replicates and
within individual experiments, as observed in Figure 4A-B. The parameter estimations also confirmed
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lower porin concentrations in the AompF mutant compared to the PS. Note that due to the flatness of the
uptake profiles of the non-growing cells, we chose not to infer model parameters from those experiments.

Once model parameters were inferred from all the individual experiments (using the corresponding drug
dosage profiles for each experiment), we used these parameters in the model to predict drug accumulation
in the various subcellular compartments for cells belonging to the three strains (Figure 4C). In this
estimation for Figure 4C, we used an average experimental drug dosage profile (dashed black line, top
panel, Figure 4C) as the input. The overlap (or lack thereof) between the [20,80] posterior predictive
intervals (shaded regions in Figure 4C) allows us to predict the probability of PS cells having a
higher/lower ofloxacin concentration than each of the mutants, at the subcellular level. The pairwise
comparisons (at t = 400 s) for the different strains/compartments are presented in Table S4.

The model predicts that the drug saturates all the binding sites in the outer membrane within
approximately 175 s in all three strains. The PS strain has the highest outer membrane drug concentration,
with the AompF mutant having an approximately 2.25-fold lower concentration, which corresponds to
the fewer binding sites available in the mutant (Figure 4A). At the end of the experiment, the probability
that the PS strain has a higher drug concentration than the AompF mutant in the outer membrane is 0.924;
in contrast, between the PS and the AtolC mutant, the probability that the PS has more drug in the outer
membrane is 0.525, suggesting no appreciable difference (Table S4).

The periplasm is also predicted to contain approximately 30-fold lower ofloxacin concentrations than the
cytoplasm for all three strains at t = 400 s — this is likely due to the binding of the ofloxacin molecules to
their targets within the cytoplasm. The model also predicts a lag time of approximately 100 s between
drug accumulation in the outer membrane versus drug uptake in the cytoplasm. In the cytoplasm, the
difference between the PS and the mutant strains is less obvious. The model predicts that, at the end of
the experiment, the PS strain has a probability of 0.719 of having a higher drug concentration in the
cytoplasm than the AompF mutant (Table S4). Comparing the PS and the AtolC mutant, the
corresponding probability is 0.549.

Discussion:

Drug uptake in Gram-negative bacteria is an extremely complex biophysical phenomenon because of the
different physicochemical pathways and combination of active and passive transport processes involved.
However, it is essential to understand the roles of these pathways in a quantitative manner to rationally
design drugs that can accumulate in the vicinity of their targets, which will crucially contribute to
overcoming the void in Gram-negative drug discovery.

We have developed a novel combination of experiment and theoretical modelling to tackle the challenge
of quantifying antibiotic uptake in single Gram-negative bacteria. Unlike the majority of techniques,
which involve complex washing steps after drug delivery, or are limited to certain specific media
conditions!>*3, our microfluidic platform facilitates the study of drug uptake in different
microenvironments and cellular metabolic states. We quantify drug dosage in every experiment, which
allows us to correct for any variations in fluorescence intensities/flow conditions between experiments.
Since we use microfluidics, we quantify drug uptake from the moment the drug arrives in the vicinity of
the cells, facilitating the real-time measurement of the transport process.

It is worth noting that we can measure over a hundred cells in an experiment; by reducing the time
resolution it is also possible to correspondingly increase the number of cells measured, since typically
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thousands of cells are confined in the microfluidic device. This ability will be used in future studies,
especially for drugs whose uptake timescales are longer than fluoroquinolones. Since our excitation
wavelength is 365 nm, in contrast to previous studies using deep UV illumination to study antibiotic
uptake in single cells?*3, we can work with standard optics and light sources, rather than needing quartz
objectives and cover slips, and deep UV light sources which may not be easily accessible. Although
cellular metabolites may also fluoresce at similar wavelengths, we have corrected this by subtracting the
baseline cellular fluorescence as described in the Methods (and in SI Note 2). Note that metabolite
concentrations are known to fluctuate in response to fluoroquinolone treatment, but this is typically less
than a two-fold change within the timescales of our experiment and includes both increases and
decreases®®. The baseline cellular autofluorescence (growing PS cells, Figure S1B) shows typical
intensities of approximately 1700 (arb. units), while the fluorescence increases in the cells due to drug
accumulation are approximately 5200 (arb. units, Figure S1C). Therefore, we estimate that the maximum
contribution of metabolites to our fluorescence signal, in the case where all the metabolites were to
double in number (and assuming that the fluorescence scales linearly), would be approximately 33% in
this case; however, considering that the metabolites show both increases and decreases in response to
fluoroquinolone treatment, we estimate that the actual contribution is significantly lower, and would
constitute a higher order correction to our results. Note that a non-fluorescent version of ofloxacin does
not exist, making a direct measurement of the changes in metabolite autofluorescence in response to
ofloxacin treatment intractable. However, we reiterate that the baseline cellular autofluorescence is
already accounted for in our analysis.

Using our novel approach, we established that within the timescales investigated, ofloxacin accumulates
to a greater degree in growing versus non-growing bacteria (Figures 2 and 3). It is likely that this
reduction in ofloxacin accumulation contributes to the significant increase in cell survival to this drug
that was previously observed as the cells enter stationary phase compared with early exponential phase
cultures*®#, In previous work, we profiled the entire transcriptome of E. coli (BW25113) growing in LB
media at various time points across the growth cycle; this revealed that the expression of the genes
encoding the ofloxacin target DNA gyrase (specifically, its subunits GyrA and GyrB) does not change
substantially across the growth cycle®°. This agrees with a previous study which showed that the levels
of the Gyr proteins do not change appreciably as cells grow from exponential into stationary phase;
indeed, the authors found no appreciable degradation of the Gyr proteins even after 72 h of starvation®.
However, our transcriptomics revealed that the expression of the genes encoding the major E. coli porins
OmpF and LamB, through which antibiotics diffuse, was significantly upregulated in exponentially
growing compared to stationary phase E. coli cells*®. For convenience, we have reproduced the
transcriptomic data of the genes relevant to our study in Figure S7 in the SI. This strongly suggests that
the differences in ofloxacin uptake that we observe between growing and non-growing cells are due to
phenotypic modifications of the cell envelope transport pathways, rather than phenotypic modifications
at the drug target level.

In growing cells, knocking out the ompF gene led to a decrease in drug accumulation compared to the
parental strain, in line with previous results®, confirming that fluoroquinolones utilize porins to enter E.
coli cells. The model predicts an approximately 4-fold lower median cytoplasmic concentration of
ofloxacin in the AompF mutant compared to the PS (growing cells) at the end of the experiment (Figure
4C). However, the effect of the growth phase was more significant than the removal of the porin — non-
growing PS cells accumulated lower amounts of ofloxacin than the growing AompF mutant (Figure 3).
Previous studies have reported that nutrient-starved bacteria show reduced drug uptake®, but these
studies did not determine the extent to which environmental factors, and subsequent cell phenotypic
acclimation, predetermine drug uptake compared to genotypic changes which result in protein loss.
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As described in the Results, we did not measure any increase in drug accumulation in the AtolC strain.
This is a matter of debate in the literature; as noted in the introduction, different groups have investigated
the role of TolC in fluoroquinolone accumulation in E. coli, and have reported contradictory results?®28,
The TolC outer membrane efflux protein forms an important part of multi-drug efflux systems such as
AcrAB-TolC that eject antibiotics and other toxins from E. coli cells?’, and naively one would have
expected that losing TolC negatively affects the ability of the cell to efflux the antibiotic, thus increasing
its intracellular accumulation. It has also been reported that the inactivation of tolC increases the
susceptibility of bacteria to a range of antibacterial agents, ostensibly due to the inactivation of the
corresponding efflux systems?’. However, although the overproduction of the AcrAB-TolC efflux system
has been implicated in the antibiotic resistance of clinical isolates of E. coli species, there was no
significant correlation between the overexpression of the acrAB and tolC genes?’*4. With regards to
fluoroquinolone antibiotics, it was reported that average tolC expression levels in fluoroquinolone-
susceptible and fluoroquinolone-resistant clinical isolates of E. coli were not statistically different?”44,
Zgurskaya and co-workers therefore concluded that TolC quantities alone do not limit the drug efflux
capabilities of E. coli?’. Our data further corroborate this hypothesis.

The use of mathematical modelling and Bayesian inference to rationalize our data enabled us to maximize
the information embedded in our time-lapse single-cell measurements, leading to predictions of the
kinetics of the uptake process. We extracted kinetic parameters corresponding to the single-cell drug
uptake profiles and quantified changes in these parameters in the different strains (Figure 4A-B). To
validate our inference procedure, we used data simulated by the model and showed that we can indeed
recover the parameter values which were used for generating these (Fig. S8). Importantly, the model
allowed us to predict drug accumulation in the different subcellular compartments, which is a major
milestone for the entire research community working on this problem. It is important to note that these
are predictions, arising out of our whole-cell data; validation of the model predictions regarding
subcellular levels of drug concentration will only be possible once the considerable experimental
challenges for these measurements at the single-cell level are overcome. There are currently no
techniques capable of resolving the concentrations of drugs in different subcellular compartments in
individual cells. Future work will also involve studying drug accumulation after modulation of other
transport pathways in the Gram-negative double membrane to estimate their relative contributions to
drug uptake at the subcellular level.

Our single-cell platform allows us to quantify heterogeneity in the cellular response to antibiotic
treatment®. However, as detailed in the Results section, quantitative estimates of systematic and
biological variation revealed no detectable heterogeneity in ofloxacin uptake in our experiments.
Considering the large variations in gene and protein expression reported in bacterial cells and the
corresponding heterogeneity in phenotypic traits including glucose uptake!®54¢ it is striking that
ofloxacin uptake appears robust, i.e. uniform across cells within each of our experiments; however, a
detailed investigation of this is beyond the scope of this study and will be further investigated in future
work.

Conclusions:

We have developed a novel experimental and theoretical approach to study antibiotic accumulation label-
free in individual Gram-negative bacteria in well-controlled microenvironments. Our experiments
enabled us to quantify the role of the nutrient microenvironment and metabolic state of the cells in drug
uptake at the single-cell level. We reported, to the best of our knowledge, the first quantitative
comparisons between drug uptake in cells in different metabolic states and in cells with specific transport
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pathways disabled. Our experimental results showed that the growth phase of the cells, as determined by
the nutrient microenvironment, plays a more significant role in ofloxacin uptake than either the porin
OmpF or the efflux protein TolC. More generally, this suggests that the metabolic state of the cell is a
crucial determinant of cellular drug uptake, which deserves detailed, quantitative investigation in well-
controlled microenvironments. Combining our data with mathematical modelling and Bayesian inference
enabled us to predict the kinetic parameters underlying ofloxacin accumulation in the different
subcellular compartments of E. coli cells. This has previously proved extremely challenging primarily
due to the small size of typical bacterial cells and the need for complicated washing steps before
measuring drug uptake!2*, which may bias the results. We used the parameters extracted from fitting
the model to our experimental data to predict drug accumulation in the outer membrane, the periplasm
and the cytoplasm in parental, AompF and AtolC E. coli.

Our approach offers possibilities for scaling up the number of drugs/pathogens that can be tested on the
same chip, via parallelization of the cell trapping chambers. We also require small volumes of
concentrated cultures for seeding the chip (<10 ul), which may facilitate its use in clinical settings. The
assay also has the advantage of needing only micrograms of chemicals for testing, which is important
when evaluating novel, candidate drugs that are typically expensive to manufacture. Our readout is based
on fluorescence, and can be used to test the permeation properties of newly developed fluorescent
antibiotic probes*’, providing information about Gram-negative drug permeability for a range of different
antibiotic classes. It could also be used to study the influence of specific functional groups on the uptake
of closely related compounds. For instance, biophysical measurements of different fluoroquinolones
revealed orders of magnitude differences in their lipid permeabilities®®; our system facilitates similar
studies on the bacteria themselves. The experimental setup is relatively simple to implement on standard
epi-fluorescence microscopes and will provide researchers with a new, transferrable platform with which
to study this vitally important permeation process in a range of pathogenic microbes.

Materials and Methods:
Chemicals:

Chemicals were purchased from Sigma-Aldrich unless otherwise stated. Ofloxacin stock solutions were
prepared at a concentration of 10 mg/ml in 1 M NaOH. For the ofloxacin uptake experiments, the stock
was diluted to a concentration of 12.5 ug/ml (100xMIC) in PBS. The minimal media used in the
experiments was prepared in sterile water and contained 1xM9 salts, 2 mM MgSQOs, 0.1 mM CacCl; and
1 mg/L thiamine hydrochloride. The LB medium used for cell culture was the Melford high salt version
containing 10 g/L casein digest peptone, 5 g/L yeast extract and 10 g/L NaCl; LB Agar plates were
prepared with 15 g/L agar. Glucose stock solutions were prepared at a concentration of 0.5 M in sterile
water and diluted to 1 g/L in minimal media for use in the experiments. Stock solutions of bovine serum
albumin (BSA) were prepared at a concentration of 50 mg/ml in sterile water. A stock solution of
propidium iodide (P1) was purchased from Thermo Fisher Scientific, and diluted 1:1000 in PBS for use
in the experiments.

Bacterial cell culture:

All the E. coli strains used were BW25113 strains purchased from the Keio collection. The mutant strains
contained kanamycin resistance cassettes in place of the deleted chromosomal gene. The strains were
stored at -80 °C ina 1:1 ratio of overnight culture and 50% glycerol solution. 200 ml cultures were grown
in LB (with 25 pg/ml kanamycin as necessary) at 37 °C overnight (with shaking at 200 rpm). Streak
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plates were prepared on LB agar (containing 25 pug/ml kanamycin as necessary), stored at 4 °C and used
for a maximum of one week.

Microfluidic chip fabrication:

The complete protocol for the fabrication of the “mother-machine” microfluidic devices was reported
previously*®. The epoxy mold used was constructed from replicas of devices kindly provided by the Jun
lab*®. The final devices used were created by pouring polydimethylsiloxane (PDMS, Dow Corning, 9:1
base : curing agent) on to the epoxy mold; the PDMS was baked at 70 °C for 2 h in an oven. The PDMS
chips were cut out and fluidic inlet/outlet columns punched using a 1.5 mm biopsy punch (Miltex). The
PDMS chips were bonded to a type 1 coverslip using an air plasma treatment (10 s exposure at 30 W
plasma power, Plasma etcher, Diener electronic GmbH, Germany) and left at 70 °C for 5 min to improve
the adhesion. The chips were then filled with a 50 mg/ml solution of bovine serum albumin (BSA, in
milliQ water) and incubated at 37 °C for 1 h. The BSA treatment passivates the internal surfaces of the
chip thus preventing cells from adhering to the microchannels during experiments.

An overnight culture of cells (ODsgs typically between 4.5-5) was resuspended in spent LB and
concentrated to an OD of 50 (at 595 nm). The spent LB was prepared by centrifuging the overnight
culture (10 min at 3000 g and 20 °C) — the supernatant was filtered twice through a 0.2 um pore filter
(Millipore). A 2 ul aliquot of this solution was injected into the microfluidic device and incubated at 37
OC for 20 min, enabling cells to enter the small side channels of the device. The filled device was then
left overnight at room temperature before starting experiments.

Drug uptake assay:

Microfluidic flows were controlled using three parallel neMESYS syringe pumps (Cetoni GmbH,
Germany) with glass syringes (ILS, Germany) of volumes 5 ml, 250 ul and 100 ul respectively. The
syringes were interfaced with the microfluidic chips using FEP tubing (Upchurch Scientific 1520, I.D. =
0.03” and O.D. = 0.0625”). The syringes and the associated tubing were rinsed thoroughly with milliQ
water and the appropriate experimental solutions before beginning the experiments, and with 70%
ethanol after completion of the experiments.

All the experiments were performed on an Olympus 1X73 epifluorescence microscope with an LED light
source (WLS pE300, QImaging) using a 365 nm excitation wavelength LED. A standard DAPI filter set
(Chroma ET series) modified with a ZET 365/20x excitation filter (Chroma) was used to better match
the 365 nm excitation wavelength. An Olympus UPLSAPO 60xW (N.A 1.2) objective was used for all
the experiments. We used a heating stage (Linkam Scientific THL60-16, UK) to maintain the cells at 37
OC throughout the experiments. All the ofloxacin experiments’ fluorescence intensity traces are presented
in Figure S6 in the SI.

For the experiments on growing cells, chips containing initially non-growing E. coli were flushed with a
continuous flow of fresh LB (100 pl/h) for 3 h, which led the cells to start growing and dividing. This
was followed by a 10 min flush (at 300 pl/h) with minimal media containing 1 g/L glucose to wash away
the LB. The glucose was added to the minimal media to prevent the cells from starving. Thereafter,
ofloxacin (100xMIC, 12.5 pg/ml dissolved in PBS) was perfused through the chip at 100 ul/h, with
images acquired at 5 s intervals using an Evolve 512 EMCCD camera (Photometrics) with 10 ms
exposure times and an EM gain of 200 (bin 1, clearing mode — pre-exposure). The camera was controlled
using pManager 1.4*°. We chose to always dissolve the ofloxacin in PBS to ensure that the pH conditions
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remained uniform during drug exposure across all experiments and metabolic conditions; it is well known
that pH regulates the charge state of fluoroquinolones, which affects their membrane permeabilities?>°,
The LED was triggered by the camera to ensure that the cells were only exposed to the excitation light
during image acquisition. It must be noted that to reduce the background auto-fluorescence at 365 nm,
prior to the ofloxacin flush the imaging area was bleached with the excitation light for 5 s. As detailed
below, we performed controls (see Figure S2) with propidium iodide staining after UV and ofloxacin
exposure to confirm that the UV light used did not compromise the cells’ membrane integrity.

For experiments on non-growing cells, the chips containing non-growing E. coli were flushed for 10 min
with PBS (300 pl/h) to wash away residual LB, the imaging area was bleached for 5 s with the UV light
(365 nm) and subsequently the ofloxacin was perfused through the chip, with the drug concentration and
imaging settings exactly the same as for the growing cell experiments.

For both growing and non-growing cell experiments, we performed auto-fluorescence controls where
instead of the ofloxacin, PBS was perfused through the chip (the rest of the protocols remained identical).
A representative dataset is reported in Figure S1(B) in the SI.

Image Analysis:

The image analysis was performed using a custom Python module®.. First, a specified range of frames
of the dataset are loaded. Optionally, manually selected out-of-focus time-points are ignored. Cell
detection is performed on a frame-by-frame basis as follows. First the frame is filtered using a Difference-
of-Gaussian (DoG) scale-space filter®? spanning a small range of scales, corresponding to the scale range
of bacterial widths. The resulting scale-space volume is maximum-projected along the scale axis, and the
automatic threshold detected using the Triangle method®®.

The centroids of the regions in the binary image resulting from applying this threshold are used to
determine the axis of the side channels by using Principal Component Analysis. The axis of the side
channels is then used to determine the upper and lower extents of the side-channel-region, which are then
used to generate a side-channel-region mask, in addition to two candidate main-channel-region masks.
The side-channel-region mask is then used to select bacterial regions from the binary image. The correct
channel is identified from the two candidate regions by analysing the fluorescence for the region whose
mean signal exhibits the most variation.

Cells are tracked frame-to-frame by matching positions such that nearest-matching bacteria are assigned
only if the match is cross-validated in both forward and backward temporal directions®. Bacterial
trajectories are filtered to remove short trajectories (less than 10% of the full length).

The final trajectories are analysed as follows. First, a pre-determined dark-count (which is the average
intensity of an image captured with the camera sensor covered) is subtracted from each bacterium's mean
fluorescence, vyielding the dark-count-corrected mean intensities. The corresponding dark-count-
corrected PDMS background values for each bacterium are obtained by averaging the pixel intensity
values of the PDMS to the immediate left and right of the individual bacterium and applying a similar
dark-count correction. This bacterium-specific dark-count-corrected PDMS background is subtracted
from the corresponding bacterium. Finally, the background subtracted bacterium’s intensity at the
starting time point is subtracted from all the values at later time points, yielding the background corrected
bacterial fluorescence profiles over the course of the experiment (solid lines in Figures 2, S1 and S6).
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For the drug dosage fluorescence, the initial intensity value of the dosage “main” channel (dark-count-
corrected) is subtracted from all subsequent time points to initialise the drug fluorescence value to 0
(before drug arrival) — this also accounts for the subtraction of the background in the main channel. This
reveals the drug dosage fluorescence profile over the course of the experiment (dashed lines in Figures
2, S1A,C and S6).

To account for any differences in absolute drug fluorescence between experiments, for the comparative
analysis of drug uptake across the different experiments, all the background corrected cell and drug
dosage fluorescence values in an experiment are normalised to the final value of the drug fluorescence
in the main channel (t = 400 s) for that experiment. Note that this drug fluorescence value at t = 400 s is
post-subtraction of the initial main channel background (measured before drug arrival) and thus always
corresponds to the same concentration of ofloxacin (100xMIC, 12.5 ug/ml) across all experiments. These
values are shown for a representative experiment in Figure 1D, and used for all comparative analysis
(Figure 3) and modelling results in the paper. It is important to note that, since we are using this
normalization in the model, we are assuming that the correspondence between drug fluorescence and
concentration is the same in the main channel and in the vicinity of the cells. It is not possible to
accurately resolve the drug fluorescence in the side channels in the immediate vicinity of each cell. The
cells themselves are brighter than the surrounding channel and are hence easier to detect and track and,
as specified above, we have established a protocol to subtract the scattering and fluorescence background
for the cells.

Finally, since the cellular auto-fluorescence profiles were flat (Figure S1B,D), we did not need to correct
for this effect when analysing the drug uptake experimental data; we simply subtracted the initial cellular
fluorescence (at t = 0) from the cell fluorescence at all the time-points, as detailed above. We should also
mention that the automated tracking works better for growing cells than for non-growing cells, which
were smaller in size and therefore more difficult to detect. However, this does not significantly affect the
average results, and the cell fluorescence values obtained through the automated code were similar to
those obtained by manually selecting and measuring the cells in ImageJ; since we do not fit the model to
the data for non-growing cells, we used the automated tracking results in all the figures in this manuscript.

Quantifying intra-experimental variability:

In order to estimate the variation in cellular fluorescence in the absence of the drug, we used the auto-
fluorescence control experiment shown in Figure S1B to estimate the underlying biological and
systematic variation in our experiments. These measurements report the auto-fluorescence of the same
cells measured at different time points in the experiment. We quantified the coefficient of variation (CV)
of the cell auto-fluorescence intensities (over the timescales of the experiment) of the 103 individual cells
shown in Figure S1B. The mean CV across all the cells was 10 £ 3 % (N = 103, mean % s.d.). This gives
a quantitative estimate of the measurement (systematic and underlying biological) heterogeneity for
individual cells within a single experiment.

We compare this variability in cellular auto-fluorescence with the apparent heterogeneity in drug uptake
in the cells in Figure S1A. To estimate this value, we measured the intensity of the cells at the end of the
drug uptake experiment (t = 400 s). The heterogeneity in the cellular fluorescence corresponding to drug
uptake (in the knowledge that this includes the systematic and underlying biological variation mentioned
above) is extracted by measuring the CV of the fluorescence across all the cells at this time-point. Unlike
the CV measurement of the control which was for individual cells across all time-points, to estimate drug
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uptake heterogeneity amongst the 126 different cells, we measured the CV in the fluorescence of all the
cells at the final time-point. This analysis yields a CV of 9.7%.

Mathematical model:

We model drug uptake in the different compartments of a Gram-negative bacterium (Figure 1A) using
the following set of ordinary differential equations (ODES):

Vi 2 = kDo (Mo — Dyy) + kyDp(Mo — Dyy) — 2k, Dy (i)

V,F = kyDy — kyDp(Mo — Dyy) — k3Dp + ks D + kaDo — kaDp — vaDfDP (ii)

Ve g = (ksDp — ksDe) (i)

where Dy, Dy, Dp and D, denote the drug concentrations in the external environment, the outer
membrane, the periplasm and the cytoplasm, respectively. Importantly, we used the measured drug
dosage traces for estimating D, for every experiment, which allows us to control for any variations in
the drug dosage profiles across different experiments (Figure S6). We model porin-mediated drug
transport through the outer membrane as a two-step reversible process: drug molecules bind to porins
with rate constant k, from either side of the outer membrane and unbind to either side at rate k,. M,
denotes the concentration of functional porins in the outer membrane; based on literature values of the
numbers of porins in typical Gram-negative outer membranes, we assumed that the total number of porins
would vary between approximately 1x10° to 2x10° per cell (PS)®°; this was used to restrict the range of
possible values for M. As a first approximation, we assume that diffusion through the LPS-lipid bilayer
is negligible (k,~0) in comparison to porin-mediated transport!2, Furthermore, we postulate that
ofloxacin molecules, like other fluoroquinolones®>®, diffuse across the inner membrane lipid bilayer
(rate constants k5 and ks) and that the efflux of drug molecules from the periplasm to the external
medium follows Michaelis-Menten kinetics with maximal rate v and Michaelis constant K,,%!.
Parameters Vy, Vp and V. denote the volumes of the outer membrane, periplasm and cytoplasm,
respectively (Table S2). The parameter k5 was calculated on the basis of passive diffusion measurements
of ofloxacin permeability across lipid vesicle bilayers (Figure S3). To account for any potential binding
of the drug to targets within the cytoplasm, we do not assume any equivalence between k5 and ks, an
approach similar to that applied by Westfall et al.®'; we only make the assumption that ks < ks.
Crucially, the parameters (kq, k,, ks, My, K., v) Were inferred from the experimental data obtained with

the PS, AompF and AtolC E. coli strains (Figure S6). The total drug concentration was calculated as:
DT — Dy*V iy + Dp*xVp + DcxV e (IV)
VMmM+Vp+Ve

To model drug uptake in the AompF strain, we used equations (i-iii) above, additionally assuming a
possible decrease in the number of porins relative to the PS, i.e., My aompr < M,. Similarly, for the case

of the AtolC strain, we assumed that the maximal efflux rate may decrease relative to the PS, i.e., Vr¢p1c <
V.

All model simulations were run in Matlab (R2018b) using the in-built explicit Runge-Kutta (4, 5) solver
(function ode45; default settings). The codes are available via GitHub.
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Parameter estimation:

We obtained maximum likelihood estimates (MLEs) of the free model parameters (Table S2) using the
medians of the drug uptake profiles for all the cells in an experiment. Please note that for convenience
we use the term “population-averaged” throughout the text to refer to these median values of the drug
uptake profiles. Since our data was normalized based on the fluorescence of the drug dose (see Methods;
image analysis), estimates of parameters k;, M,, K,,,, v incorporate a constant factor related to the
concentration of the drug dose (see Table S2). We denote the scaled version of these parameters using
the prime symbol ("). We compiled a library of 18 datasets by combining population-averaged profiles
from: (i) growing PS cells (3 experimental repeats); (ii) growing AompF cells (3 experimental repeats)
and (iii) growing AtolC cells (2 experimental repeats). We obtained parameter MLEs from each dataset,
and to mitigate the risk of overfitting we then selected out of those parameter vectors the one that best
fitted all 18 datasets. Under the assumption of Gaussian measurement error, the MLEs for each dataset

.. . DT t—¥¢)? _ .
correspond to parameter values minimising the following sum of squares: € = Zt%. Here, y; is
t

the population-averaged drug uptake measurement at time t; Dy, is the drug uptake predicted by the
model; g, is the measurement error calculated based on a coefficient of variation of 4% (we obtained this
from fluorescence measurements of the PDMS background); and the sum runs over all the time-points 0
to 400 s. Minimization was performed using Matlab’s in-built nonlinear least-squares solver (Isqcurvefit;
with the maximum number of iterations set to 15). To find the global optimum of e, we repeated the
minimization task starting from 500 different initial points (generated using a Sobol sequence of quasi-
random numbers) covering the entire parameter space.

We analyzed the single-cell data using a Bayesian hierarchical version of the model in which parameters
M, and v vary between single-cells. In particular, we postulate that these model-parameters are
distributed at the population level according to two independent log-normal distributions®’. Below,
My and v’ denote the rescaled versions of M, and v which accommodate fitting the model to data
normalized by the fluorescence of the drug dose (Table S2). The mean (MM(',' Uy,,) and standard deviation
parameters (o-Mé,a,,,) of each log-normal distribution dictate the average value of the corresponding
model-parameter and its spread across a bacterial population. Posterior estimates of these population
parameters (uMé.#v,,aMé,av,) were inferred from single-cell data (experimental repeats were treated
separately) using Gibbs sampling and informative priors based on the MLE estimates obtained in the step
above (see Figures S4, S5 and Table S3 in the Sl). In the first iteration (j = 1) of the algorithm,

MS{?:HS);O_A(,I?, and a,f,l) were drawn from their corresponding prior distributions and for each cell i =
e
i

1, ..., K model-parameters M(')(ll) were obtained by minimizing the discrepancy between the model-
predicted uptake profile and the single-cell measurements y; = {yi_t: t=1, Z} Subsequent iterations
(j > 1) involve sampling in-turn from the full conditionals:

{O)IRI0)) -1 G- _(-1) _(G-D).
a) Mo,l 'vl ~P (' |yl'#M[’) ’ILLU’ ’O-M(,) ’O-U/ )’

0 1D uPp (MDDt = 1, K}, 007,080,
o 0, aP~p (1Mot =1, K} W0 D)

In our analysis, we used conjugate priors for Hals Bon Ol Oy i.e., normal priors for [T, and py,, and
gamma priors for anj,g and a,,,%. This choice greatly simplifies steps (b) and (c) as the target sampling
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distributions are the updated normal and gamma distributions, respectively. In step (a) for each cell i we
sampled from the target distribution:

’ j—1 j—1 j—1 j—1 / ’ / ’ j—1 j—1 j—1 j—1
P(M(’),i'vilyi'ﬂj(d[’) ):.Ul(;]r )JU,E/,](; )»Ug ))°<P()’i|Mo,i»Vi)P(Mo,i'viw,(\,],é ):#1(711 ):UI(WJ(') )'015{ ))

using a single Metropolis-Hasting step with a bivariate normal as the proposal distribution (covariance
matrix set to 101, where 1 is the 2x2 identity matrix). All results presented were obtained by running
the Gibbs sampler for 2000 iterations (after having discarded 500 ‘warm-up’ iterations).

Propidium lodide (P1) staining to test membrane inteqrity after UV and ofloxacin treatment:

To ensure that the combination of UV (365 nm) exposure and ofloxacin treatment does not compromise
the cells’ membranes, we treated PS E. coli cells (growing) after an experiment with PI (1 ul dissolved
in 1 ml PBS) for 10 min at a flow rate of 100 ul/h. Pl is a stain commonly used to identify bacterial cells
with compromised membranes. Pl fluorescence was captured using an mCherry filter set (Chroma) using
the green LED for excitation. A combined bright-field and mCherry fluorescence image representative
of these experiments is shown in Figure S2, where it can be seen that less than 5% of the cells are stained
with PI. Similar levels of PI staining were obtained for cells treated with ofloxacin but not bleached
directly with the focused UV light. This suggests that our UV exposures do not compromise membrane
integrity for the majority (>95%) of the cells.
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Fig. 1. Quantifying and modelling ofloxacin uptake label-free in individual E. coli cells. A) Schematic of the main
processes involved in drug translocation across Gram-negative cell envelopes. Drug molecules penetrate the outer membrane
(M) primarily through protein porins, with association and dissociation rates k; and k,, respectively. M, refers to the
concentration of functional porin binding sites in the outer membrane. Any residual (non-porin) transport across the outer
membrane LPS barrier is modelled with k,. Drug transport through the inner membrane is modelled with kinetic parameters
ks and k5. Drug molecules are subject to removal from the cell via active efflux mechanisms which follow Michaelis-Menten
kinetics (K,,, v). B) Schematic of the microfluidic chip used for the ofloxacin uptake experiment. A main channel of height
25 um and width 100 um is used for continuously exchanging the microenvironment with nutrient, drug or dye delivery; cells
are confined single-file in a network of side channels whose height and width are both 1.4 um, with length 25 um. C) Section
of epifluorescence images showing the delivery of ofloxacin (100xMIC, 12.5 ug/ml in PBS) and its corresponding uptake by
the cells in the side channels. The ofloxacin molecules within and around the bacteria are tracked using their auto-fluorescence
at Aex= 365 nm. Scale bar =5 um. D) Quantitative estimation of the temporal profile of ofloxacin delivery in the chip, and the
corresponding ofloxacin uptake profile of 90 individual E. coli cells; the thick red line represents the mean and the grey shaded
area the standard deviation of the ofloxacin uptake profiles of the 90 cells investigated. The fluorescence values are reported
after correcting for the background and normalizing to the fluorescence of the drug as detailed in the Methods. The complete
datasets prior to normalization for the three different E. coli strains investigated are presented in the Sl in Figure S6.
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Fig. 2. Representative ofloxacin uptake experiments for the bacterial strains/conditions investigated. The E. coli strains
(Parental Strain, PS; AompF; AtolC), conditions (growing, G; non-growing, NG) and number of cells (N) are indicated inset.
All values are reported after subtracting the background and the initial cellular fluorescence (before drug arrival) as explained
in the Methods. For reference, the complete datasets for all strains/conditions including all the biological repeats are provided
in Figure S6 in the SI. Dashed lines represent the drug dosage profiles (right Y-axes) in the main channel. These individual
drug dosage profiles are provided as inputs when modelling the drug uptake in the corresponding cells in an experiment. The
cell fluorescence profiles are shown in red (left Y-axes), along with the mean (thick red line) and standard deviation (grey
shading) for all the cells in an experiment. Comparing growing versus non-growing PS bacteria (panels A and B) directly
shows that the growing cells accumulate more drug than non-growing cells. This is apparent in the AtolC strain as well (Figure
S6). Comparing the cell fluorescence profiles of growing PS (A), AompF (C) and AtolC (D) also clearly shows that the AompF
mutant accumulates less ofloxacin than the other two strains. A quantitative analysis of the amount of drug accumulated at
the end of the experiments for each strain/condition is provided in Figure 3.
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Fig. 3. Final level of normalized whole cell fluorescence for the different strains and nutritional conditions. (A)
Fluorescence distributions across the different strains and conditions. In the insets, n refers to number of experimental repeats,
N reports the total number of bacteria and CV refers to the coefficient of variation of the data. All comparisons are made at t
=400 s. (B) Comparison of data pooled from the different experiments shows that non-growing PS E. coli show significantly
lower ofloxacin uptake than growing PS E. coli (p<10%9). This was also true in the AtolC strain, where non-growing cells
showed significantly lower uptake (p<10-1%) than growing cells, suggesting ofloxacin uptake critically depends on the growth
phase of the cells within the timescales of our experiment. Growing AompF E. coli showed lower whole cell drug
accumulation than growing PS (p<10°) and AtolC (p<10) cells, in line with expectations. However, growing AompF E.
coli accumulated more ofloxacin than non-growing PS cells (p<10-19), suggesting that the growth phase of the cells as set by
the nutrient environment plays an even more important role than the deletion of ompF in drug uptake. The horizontal lines in
the interior of the boxes report the medians of the respective distributions. Statistical significance tested using a 2-sample t-
test incorporating Welch’s correction; the complete set of p-values is reported in the SI (Table S1).
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Fig. 4. Drug accumulation Kinetics predicted by fitting the single-cell data to the drug uptake model. Maximum
aposteriori estimates of the population distribution of parameters M, (A) and v' (B) for growing parental strain (PS, top),
AompF (middle) and AtolC (bottom) E. coli. The solid, dashed and dotted lines refer to individual experimental repeats. These
distributions were generated using the mode of the joint posterior distribution of the means and standard deviations of the log-
normal distributions for M} and v'; the marginal posterior distributions of the means and standard deviations for the parameters
are provided in the Sl in Figures S4 and S5 respectively. C) Predicted ofloxacin uptake in the different bacterial compartments.
Temporal dependence of the normalized drug concentration in the cytoplasm, periplasm and outer membrane for PS (red),
AompF (blue) and AtolC (green) bacteria in response to the drug dosage input (dashed black line, top panel). These drug
uptake profiles were obtained by using the kinetic parameter values in (A) and (B) and the theoretical model (equations (i)-
(iii)). The concentrations reported are normalized to the drug dosage concentration (12.5 pg/ml ofloxacin). The solid lines
correspond to median accumulation in the respective compartments and the shaded area represents the [20,80] posterior
predictive interval of the accumulation. The results shown were generated by running the model using 500 independent
samples of parameters M; and v' from their joint posterior distributions. All other parameters were fixed to the values given
in Table S2. The model predicts the saturation of binding sites in the outer membrane. The median saturation concentration
in the outer membrane is approximately 2.25-fold higher in the PS compared with the AompF strain. The periplasmic drug
concentrations are approximately 30-fold lower than the cytoplasmic concentrations, which is likely due to the drug binding
to its targets within the cytoplasm. Using the [20,80] posterior predictive intervals, we have calculated the probabilities of
cells from the different strains showing higher/lower accumulation in the different compartments in a pairwise manner. These
results are provided in Table S4.
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