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Abstract

Evolutionary modifications of the temporo-parietal cortex are considered to be a critical
adaptation of the human brain. Cortical adaptations, however, can affect different aspects of
brain architecture, including areal expansion or changes in connectivity profiles. We propose
to distinguishing different types of brain reorganization using a computational neuroanatomy
approach. We investigate the extent to which between-species alignment based on cortical
myelin can predict changes in connectivity patterns across macaque, chimpanzee and human.
We show that expansion and relocation of brain areas are sufficient to predict terminations
of several white matter tracts in temporo-parietal cortex, including the middle and superior
longitudinal fasciculus, but not of the arcuate fasciculus. This demonstrates that the arcuate
fasciculus underwent additional evolutionary modifications affecting the connectivity pattern
of the temporal lobe. The presented approach can flexibly be extended to include other
features of cortical organization and other species, allowing direct tests of comparative
hypotheses of brain organization.

Introduction

The temporal lobe is a morphological adaptation of the brain that is unique to primates
(Bryant and Preuss, 2018). Its origins likely include expansion of higher-order visual areas to
accompany the primate reliance on vision (Allman, 1982). Temporal association cortex
contains areas devoted to higher-level visual processing and social information processing
(Rushworth et al., 2013; Sallet et al., 2011) that, in turn, rely strongly on visual information in
primates (Perrett et al., 1992). The expanded temporal cortex in apes and humans contains
several multimodal areas and areas associated with semantics and language (Dronkers et al.,
2004; Hickok and Poeppel, 2007; Price, 2000). As such, understanding the evolution of
temporal cortex across the primate order is a vital step to understanding primate behavioral
adaptations.

Two lines of evidence are often brought to bear on differences in temporal lobe organization
across humans and other primates. The first line emphasizes selective local expansions of
temporal cortex and subsequent relocation of areas. Morphologically, great apes possess an
extra sulcus in the temporal cortex, suggesting at the very least expansion of this part of
cortex. Mars and colleagues (2013) reported a region in the middle part of the superior
temporal sulcus of the macaque that shares anatomical features of the human temporo-
parietal junction area located at the caudal end of the temporal cortex, suggesting a major
relocation of this area. In a similar vein, Patel and colleagues (2019) suggest that expansion
of the temporo-parietal junction and superior temporal sulcus gave rise to a modified ventral
visual processing stream to support increased social abilities in humans. The second line of
evidence emphasizes changes in the connectivity of the temporal lobe. Rilling and colleagues
(2008) first suggested dramatic expansion of the arcuate fasciculus temporal cortex
projections in the human, but more recent studies also emphasize increased projections of
the middle longitudinal and inferior fronto-occipital fasciculi and their role in language-
related processes in the human (Catani and Bambini, 2014; Makris et al., 2013; Makris and
Pandya, 2009; Saur et al., 2008).
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These different schools place different emphasis on what happened to temporal cortex across
different primate lineages. Their results, however, should be interpreted in relation to one
another as species differences in brain organization can come in many forms that can interact
in unpredictable ways (Krubitzer and Kaas, 2005; Mars et al., 2018a, 2017). Dissociating such
different types of species differences is challenging (Figure 1A,B). For instance, given an
ancestral or reference state, local expansions of the cortical sheet can lead to the relocation
of homologous areas between two species. As a case in point, human MT+ complex is located
much more ventrally in posterior temporal cortex than its macaque homolog (Huk et al.,
2002). Such cortical relocations also affect the location of connections of these areas, but this
situation is distinct from the scenario in which a tract extends into new cortical territory.

These two scenarios are illustrated in Figure 1B. The red area in the top panel has expanded,
leading to a relocation of the blue area with respect to the purple and yellow area. The
connections of the areas do not change in this scenario, resulting in a relocation of the
connections of the blue area. In the bottom panel, a yellow area’s tract terminations have
invaded the neighboring purple territory, but this change is independent from cortical
expansion. Thus, in both cases connections are located in a different place from those in the
ancestral state, but the causes are different.
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Figure 1. Cortical specializations. A: Cortical brain organization can be described using different modalities such
as brain areas defined by myelin content (top left) or the pattern of brain connections (top right). B: Anatomical
changes can affect both modalities differentially. Top and bottom panel show different evolutionary scenarios.
C: Alignment of homologous brain areas derived from myelin maps can model cortical expansion across species,
here shown for human and chimpanzee. D: Applying the cross-species registration field to surface tract maps
allows us to distinguish evolutionary scenarios. Here shown are toy example maps of one tract that extended
due to areal expansion alone (top panel) and one tract that additionally extended into new brain areas (bottom
panel). Red: human tract map; dark blue: chimpanzee tract map; light blue: transformed chimpanzee tract map.

In this study we investigate to which extent species differences in temporal lobe organization
are due to cortical relocation and tract extension. To be able to do this, we propose a
framework to test among different forms of cortical reorganization by registering brains


https://doi.org/10.1101/645234
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/645234; this version posted November 1, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

together into a single shared coordinate system (Figure 1C,D). Such an approach allows us to
place different brains into a common space based on one feature and then compare the
results to registration based on another feature. This ‘common space’ concept proved
feasible in a previous study testing whether the extension of the human arcuate fasciculus
(AF) compared with the macaque AF could be accounted for by differential cortical expansion
between the two brains (Eichert et al., 2019). In the present study, we generalize this
approach to develop a cross-species registration based on a multimodal surface matching
algorithm (MSM, Robinson et al., 2018, 2014, 2013) to derive a cortical registration between
different species.

We based our registration framework on whole brain neuroimaging data of macaque,
chimpanzee and human brains. Neuroimaging allows one to acquire high-resolution data
from the same brains using different modalities within a short time. The digital nature of the
data allows easy manipulation, making it ideal for the present purposes (Thiebaut de Schotten
et al., 2019). As primary modality we use surface maps derived from the cortical ribbon of T1-
and T2-weighted scans, which have been shown to correlate well with cortical myelinization
and which are available and all three species (Glasser et al., 2014; Glasser and Van Essen,
2011). Such ‘myelin maps’ can be used to identify homologous areas across brains and
species, such as primary sensory and motor cortex, which is high in myelin, and association
cortex which is low in myelin (Glasser et al., 2014; Large et al., 2016). As second modality, we
use diffusion MRI tractography to reconstruct long range white matter fibers of the temporal
and parietal lobe to establish its connections (Bryant et al., 2019; Mars et al., 2018c).

Given data from these two modalities, we developed an approach to reveal different types of
cortical reorganization. We argue this approach is particularly suitable to study the temporal
lobe, as it has well described myelin markers and cortical connections (Glasser et al., 2014;
Large et al., 2016; Mars et al., 2013; Ruschel et al., 2014). First, we register the cortical
surfaces of the different species to one another based on myelin maps (Figure 1C). This
cortical alignment uses the distinction of primary and higher order areas in myelin maps as
anchor points across all three species. Next, we apply this registration to overlay homologous
parts of the cortex and to calculate the underlying distortions of the cortical sheet. This
registration field effectively models areal expansion or contraction underlying cortical
relocation of homologous areas. We then apply this registration to the cortical projection
maps of temporal and inferior parietal lobe white matter tracts to assess how well the myelin-
based registration can predict changes in tract projection patterns across species (Figure 1D).
A good prediction, i.e. a high overlap of the tract maps, indicates that cortical expansion and
relocation of targets zones alone can predict tact projections (Figure 1D, top), a poor
prediction indicates that the tract is reaching new cortical territory (Figure 1D, bottom).

Here, we distinguish different scenarios of cortical evolution for a set of temporal and parietal
white matter tracts. By applying a cross-species registration we can infer if only cortical
relocation was affecting a tract’s connectivity profile or if a tract is reaching into new cortical
territory. A deeper understanding of species differences in brain reorganization is essential
for our understanding how evolutionary specializations of the temporal lobe underlie
uniquely human cognitive functions.
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Results

We set out to investigate different types of cortical reorganization affecting the temporal lobe
across macaque, chimpanzee, and human brains. First, we investigated cortical relocation of
brain areas by registering myelin maps of the cortical surface to one another and derived the
local distortions required. Second, we used the resulting mesh deformations to transform
maps of cortical projections of major white matter tracts that terminate in temporal and
inferior parietal lobe. This allowed us to assess how well the myelin registration predicts
actual projection maps across species or whether it cannot capture them, providing an index
of tract extensions in the human brain.

Myelin Registration

We developed a surface registration between species based on myelin maps using
multimodal surface matching (MSM). Figure 2 shows the final results of chimpanzee-to-
human, macaque-to-chimpanzee, and macaque-to-human brain registrations. The cross-
species registration aligns the myelin maps well, with the predicted human maps showing
most of the distinctive features of the actual human myelin map (Figure 2, top row). Posterior
areas such as V1 are well aligned, with the highest myelin evident on the medial part of the
occipital cortex, having relocated quite substantially from a more lateral orientation in the
macaque. The prominent myelin hot spot in the location of the MT+ complex is also
noticeable. Areas where the myelin maps showed fewer distinctive features to guide the
registration, such as in the prefrontal cortex, showed some differentiation between the
predicted and actual human maps. Spatial correlation maps of the human myelin maps and
the predicted myelin maps as well as the deformation fields underlying the registrations are
provided in the Supplementary Material (Figure S2).
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Figure 2. Myelin registration. Species average myelin maps (left panel) and myelin maps resampled across
species after applying the MSM-derived registration.

Tract Maps

We constructed the cortical projection maps of the following tracts in all three species:
Middle longitudinal fasciculus (MDLF), inferior longitudinal fasciculus (ILF), the third branch
of the superior longitudinal fasciculus (SLF3), the inferior fronto-occipital fasciculus (IFO), and
the arcuate fasciculus (AF) (Figure 3A,C,E). The human and macaque tract maps resemble
those obtained in previous studies (Mars et al., 2018c; Schmahmann and Pandya, 2009) and
the chimpanzee SLF3 and AF are similar to previous reports (Hecht et al., 2015; Rilling et al.,
2008). The other chimpanzee tracts are reported here for the first time, apart from a previous
exploratory study (Mars et al., 2019).

We applied the myelin-based surface registration to assess whether the cortical relocation
demonstrated in the myelin registration above fully explains the changes in tracts. Figure 3
shows actual and predicted tract maps. For visual assessment, a thresholded overlay of actual
human and predicted tract maps is shown in Figure 4A. As described above, we focus on a
description of temporo-parietal cortex given the multiple competing theories of its
reorganization in different primate lineages.

We accessed the success of the myelin registration in predicting the tract projections in a
number of ways. First, weighted correlation maps provide a visualization of the local quality
of the prediction (Figure 4B,C). A high value means that the myelin registration alone is
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sufficient to predict a tract’s projection in this part of the brain. A low correlation value
indicates that reorganization of a tract’s connectivity pattern took place in addition to cortical
relocation modelled by the myelin registration. Second, the Dice coefficient of similarity
provides a more general measure of similarity between the predicted and actual tract maps,
where a Dice coefficient of ‘1’ indicates perfect overlap and thus no tract extension into areas
other than would be predicted by cortical relocation assessed using the myelin map
registration. Finally, we calculated a ‘tract extension ratio’ that indicates how much of the
actual human tract projections extends into parts of the surface not predicted, where a value
of > 1 indicates a tract extension into novel territory. Both the Dice coefficients and tract
extension ratios were computed for thresholded tract maps defined by the human tract map
covering 40 % of the brain’s surface, but the resulting pattern of values is robust across a
range of thresholds (see Figure S4).

In general, it can be observed that the myelin-based registration can predict the tract maps
well in both hemispheres, with the notable exception of AF and to a lesser extent ILF and SLF3
(Figure 3B,D). AF in particular shows the lowest Dice coefficient and the highest extension
ratio (Figure 5A,B), indicating that this tract’s differential projections in the human brain are
not merely due to relocation of areas. The maps for macaque and chimpanzee are overall
predicted to a similar degree, as can be seen in the overlay and correlation maps, with the
exception of AF (Figure 4). The effect for AF is captured in the Dice coefficients and tract
extension measures (Figure 5A,B).

A statistical two-way analysis was performed in both hemispheres to assess the effect of
species and tract on the extension ratios. In the left hemisphere, there was no significant main
effect of species (F(1, 179) = 1.38, p = 0.47), but a highly significant main effect of tract (F(4,
792) = 565.00, p < 0.001) and a highly significant interaction effect of species and tract (F(4,
792) = 207.73, p < 0.001). In the right hemisphere, we found a significant main effect of
species (F(1, 179) = 16.76, p < 0.001) as well as a highly significant effect of tract (F(4, 792) =
261.94, p < 0.001) and a highly significant interaction effect (F(4, 792) = 225.70, p < 0.001).
We will discuss the various tracts in more detail below.

A macaque actual B macaque predicted C chimpanzee actual D chimpanzee predicted E human actual

10 intensity (%) 100
Figure 3. Actual and predicted tract maps. Actual tract maps of macaque (A), chimpanzee (C) and human (E). B
and D show the tract maps in human space, predicted by the myelin-based registration for macaque and
chimpanzee.
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Figure 4. Cross-species comparison results. A: Thresholded actual human tract maps (red) and tract maps
predicted by the myelin-based registration for chimpanzee (blue) and macaque (green) (thresholds (t): MDLF: t
=0.7,ILF: t=0.7,SLF3: t=0.85, IFO: t =0.75, AF: t = 0.75). B, C: Weighted correlation maps of actual human map
and predicted chimpanzee and macaque map.

The myelin-based registration results in good prediction for tract projections in the temporo-
parietal cortex. The actual human tract terminations of MDLF span the superior temporal
gyrus and reach the inferior parietal cortex (Figure 3E). In the macaque and chimpanzee, the
actual MDLF terminates in superior temporal gyrus but reaches only to a small part of the
inferior parietal cortex. When applying the myelin-based registration, macaque and
chimpanzee MDLF are both predicted to reach a comparable portion of the human temporal
lobe and parts of both angular and supramarginal gyri of the inferior parietal lobe (Makris et
al., 2013). This overlap is captured in the weighted correlation maps, which have high values
in the temporal lobe (Figure 4B,C). The Dice coefficients for the chimpanzee and macaque
MDLF are high and the extension ratio is close to 1 indicating no tract extension in addition
to cortical expansion (Figure 5A,B).

A similar observation can be made for the posterior terminations of SLF3 and IFO. The myelin-
based registration can predict the parietal cortical projections to a large degree. The predicted
cortical terminations of the tract show a strong overlap with the actual human tract
terminations. In line with the overlay maps and the weighted correlation maps, the Dice
coefficients are relatively high. Taken together, this suggests that expansion and relocation
of brain areas is largely sufficient to model the posterior cortical terminations of SLF3 and IFO,
while extension of the tract’s connectivity pattern plays a minor role in explaining the species
differences.

Predicted ILF terminations show that the expected occito-temporal connection can be
modelled well (Catani and Thiebaut de Schotten, 2008). The extension ratio for ILF is elevated
indicating that there is some remaining tract extension that has not been modelled by cortical
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relocation. This is also reflected in the tract overlay (Figure 4A), which shows that human ILF
has more extended posterior projections as is predicted by the myelin registration. Thus,
although the overall architecture of the tracts is well predicted, this tract seems to have
extended into new cortical territory in the human lineage.

The clearest case of a tract extension in the human brain was presented by AF. Human AF
reaches anteriorly to inferior and dorsal frontal areas. The posterior projections of human AF
reach into middle and inferior temporal cortex. The chimpanzee posterior terminations are
in inferior parietal lobe and superior temporal cortex and in the macaque, the temporal
projections reach superior temporal areas. For AF, the myelin-based registration does not
provide a good prediction of the tract map across species, especially for the macaque. The
correlation map for the chimpanzee shows low correlation along the temporal lobe and for
the macaque, correlation values in temporal lobe are extremely low. AF has the lowest Dice
coefficient and the extension ratio is high, especially in the macaque, which is in line with
overlay and correlation maps. The ‘failure’ of the myelin registration in the temporal lobe
indicates that extension and relocation of cortical areas is not sufficient to explain the
posterior tract projections of AF, but that the tract extended into new cortical territory in the
temporal lobe.

Connectivity Fingerprints

To further characterize the effects in the predicted tract maps, we obtained connectivity
fingerprints at two representative vertices on the left brain surface: One in inferior parietal
lobe, where most tracts are predicted well and one in the middle temporal gyrus, where we
observed strong species differences in AF. The connectivity fingerprints were derived using
an extended set of tracts to give a more detailed picture (see Supplementary Material). Figure
5C demonstrates that in the inferior parietal lobe, the connectivity fingerprint of actual
human and predicted chimpanzee and macaque tract maps are highly similar, except for a
small extension of the ILF as discussed above. This indicates that the myelin-derived
registration can predict this area’s connectivity profile well, despite the local expansion of the
cortical sheet. For the temporal vertex, however, there is a strong mismatch regarding
connectivity with the arcuate fasciculus, which indicates that the connectional fingerprint of
this area is different in the human than would be predicted purely based on cortical
relocation. Thus, the connectivity fingerprints of the two areas match the pattern that
emerged from the results above.
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Figure 5. Quantification of cross-species comparisons. Dice coefficients of overlap (A) and tract extension ratios
(B) computed from thresholded human tract maps and tract maps predicted by the other species. Shown are
mean and standard deviation derived from all pairs of human (n = 20) and macaque or chimpanzee (n = 5)
subjects in left (LH) and right (RH) hemisphere. C: Connectional fingerprints at two vertices in inferior parietal
and temporal lobe derived from an extended set of tracts. Shown are mean and standard deviation (human: n
= 20, chimpanzee and macaque: n = 5).

Discussion

The goal of this study was to study brain specializations of the temporal lobe across multiple
primate species in the context of two forms of cortical reorganization: cortical relocation due
to local expansions and extensions of tracts into new cortical territory (Figure 1). For this
reason, we developed a cross-species surface registration method based on cortical myelin
content, which gives us an index of how cortical areas have relocated during evolution. In a
subsequent step, we tested if cortical relocation can predict the connectivity patterns of a set
of tracts across species. We showed that cortical expansion and resulting relocation of brain
areas alone provide a good prediction of several tracts’ terminations in posterior temporal
and parietal cortex. In the case of AF in particular, we showed that tract extension was an
additional driving factor of brain reorganization.

As pointed out in the introduction, different lines of evidence on temporal reorganization
across primate species have emphasized either the expansion and subsequent relocation of
brain areas or changes in temporal lobe connectivity. Both approaches are valuable and we
here demonstrate that both are applicable to different parts of the temporal lobe. Previous
work has suggested expansion and relocation of areas in posterior temporal cortex and
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adjacent parietal cortex (Mars et al., 2013; Patel et al., 2019), which is consistent with the
ventral location of MT+ complex in humans compared to other primates. Similar
reorganizations have been suggested by Haak and colleagues (2018), who proposed further
major relocations of the myelin-rich primary visual cortex in the human. These major
relocations were captured by our myelin registration and demonstrated to predict certain
features of white matter tracts, such as the posterior projections of MDLF.

Separate from cortical relocation, changes in connectivity between humans and other species
have been described for a variety of association tracts, including the temporal projections of
AF into middle temporal gyrus (Eichert et al., 2019; Rilling et al., 2008), the frontal projections
of SLF3 (Hecht et al., 2015), and expansion of the ventral route consisting of MDLF and IFO
(Forkel et al., 2014; Makris et al., 2013, 2009). Both of these latter tracts have been suggested
to play a role in language functions in the human brain (Catani and Bambini, 2014; Hagoort,
2016; Makris et al., 2009; Makris and Pandya, 2009; Saur et al., 2008).

In the case of MDLF, the human tract projections can be predicted well by the cortical
relocation model. This indicates that the pattern of cortical terminations changed according
to the general expansion and relocation of brain areas, without additional extension into new
regions of the brain. For other tracts reaching to temporo-parietal areas, such as ILF, IFO and
SLF3, the posterior tract projections can also be modelled well, despite the large distortions
of target areas within the cortical sheet. These tracts seem to follow the evolutionary scenario
described in the upper row in Figure 1B,D, where a tract’s extension in the human brain can
be explained by relocation of areas along the cortical sheet. This does not necessarily mean
that the tracts have not been recruited for new functions, but the type of change is different
from that of tracts such as AF.

AF showed the lowest consistency across species when applying the myelin-based
registration. Dice ratio and extension ratio reflect the increased tract termination especially
into the temporal lobes, which can be observed in the tract maps. This points to further
evolutionary adaptations that specifically affected the connectivity pattern of AF independent
of cortical relocation, the scenario described in the bottom figure in Figure 1B,D. Our result is
consistent with previous accounts in the literature (Ardesch et al., 2019; Eichert et al., 2019;
Rilling et al., 2008), but the approach described here enabled us to formally test this
hypothesis in the wider context of cortical reorganization across three primate species and to
quantify the species differences. Importantly, extension of a tract into new cortical territories
alters the unique connectivity fingerprint of the innervated areas, which profoundly changes
the computational capabilities that area supports (Mars et al., 2018b). Being able to dissociate
different modifications of brain architecture can inform us about how temporal lobe
specializations link to uniquely human higher cognition (Qi et al., 2019; Roelofs, 2014;
Schomers et al., 2017).

Apart from modifications of AF, we also noted some minor extensions of ILF into temporo-
parietal cortex. ILF’s extension in the human brain is consistent with reports that in the human
brain this tract has split into multiple subtracts due to the expansion of parts of the temporal
cortex, including the fusiform gyrus (Latini et al., 2017; Roumazeilles et al., submitted). This
extensions could be related to the increase of cortical territory related to processing social
information, such as social networks and faces (Noonan et al., 2018; Sallet et al., 2011).
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Previously, it been shown that parietal SLF3 projections are most prominent in the human
brain, which is has been linked to our unique capacity of social learning (Hecht et al., 2013).
We show, however, that species differences in the posterior projections of SLF3 can be mostly
explained by local expansion of the posterior temporal and parietal cortex. Similarly, we show
that cortical expansion can model the terminations of MDLF, a tract which has been linked to
visuospatial and integrative audiovisual function (Makris et al., 2013). Our results thus suggest
that SLF3 and MDLF didn’t undergo additional evolutionary modifications that affected their
posterior terminations.

The MSM framework we adopted is ideally suited to work with multimodal descriptors of the
cerebral cortex. It has become a vital tool for human surface registration (Abdollahi et al.,
2014; Garcia et al., 2018; Glasser et al., 2016) and here we demonstrated its utility for cross-
species research. With the presented surface matching method, we showed that a
registration based on T1lw/T2w MRI data can match critical landmarks across species. We
have referred to these maps as ‘myelin maps’ in accordance with other studies in the
literature (Glasser et al., 2014) but it should be noted that this is a heuristic. TIw/T2w maps
are sensitive to other features than myelin and other sequences are sensitive to aspects of
cortical myelin (Lutti et al., 2014). The crucial point is that the maps we employed here are
similar across species, allowing us to compare like with like.

The presented approach can be flexibly modified to include a variety of cortical features,
which can be compared across species. Myelin does not provide high contrast in the large
human frontal cortex and, as such, it is difficult to provide a good registration in frontal areas.
Furthermore, the effects we report can only be reliably interpreted within the spatial
resolution of brain areas. More fine scale species differences and homology assignments are
not possible with the data shown here. However, the current method can be generalized to
any modality of cortical organization, so future studies can incorporate modalities that have
greater contrast in this part of the brain such as neurite orientation dispersion and density
imaging (NODDI) measures (Zhang et al., 2012) and resting state fMRI networks (Vincent et
al., 2007).

In sum, here we present a framework for analyzing structural reorganization of the temporo-
parietal cortex across different primate brains. We dissociated cortical relocation of areas due
to local expansion and modifications of white matter tract connectivity. Future work will
expand this approach not only to different modalities, but also to a much wider range of
species, which is now becoming increasing possible due to the availability of multi-species
datasets (Heuer et al., 2018; Milham et al., 2018). This provides a crucial step towards the
understanding of phylogenetic diversity across the primate brain.

Materials and Methods

Human Data and Pre-processing
Human data were acquired in 20 subjects (12 females, 18-40 years) on a 3T Siemens Prisma

scanner with a 32-channel head coil. The study was approved by the Central University (of
Oxford) Research Ethics Committee (CUREC, R55787/RE001) in accordance with the

12


https://doi.org/10.1101/645234
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/645234; this version posted November 1, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

regulatory standards of the Code of Ethics of the World Medical Association (Declaration of
Helsinki). All participants gave informed consent to their participation and were monetarily
compensated for their participation.

High-resolution structural images were acquired using a (MPRAGE) T1w sequence (TR = 1900
ms; TE = 3.97 ms; flip angle = 8°; 192 mm FoV; voxel size 1 mm isotropic) and (SPC) T2w
sequence (TR = 3200 ms; TE =451 ms; 256 mm FoV; voxel size 1 mm isotropic; Grappa factor
= 2). Diffusion-weighted (DW) MRI data were acquired in the same subjects using a sequence
from the UK Biobank Project (Miller et al., 2016). In brief, we used a monopolar Stejskal-
Tanner diffusion encoding scheme (Stejskal and Tanner, 1965). Sampling in g-space included
2 shells at b = 1000 and 2000 s/mm? (voxel size 2 mm, MB = 3). For each shell, 50 distinct
diffusion-encoding directions were acquired (covering 100 distinct directions over the two b-
values). Five b = 0 images were obtained together with additional three b = 0 images with the
phase-encoding direction reversed.

T1w and T2w scans were pre-processed using the HCP-pipeline (Glasser et al., 2013) cloned
from the ‘OxfordStructural’ - fork (https://github.com/lennartverhagen/Pipelines). The
processing pipeline includes automatic anatomical surface reconstruction using FreeSurfer
and provides measures of sulcal depth and surface maps of cortical myelin content (Fischl,
2012; Jenkinson et al., 2012). The mean image of the T1lw scans was divided by the mean
image of the T2w scans to create a T1w/T2w image. The bias corrected T1lw/T2w-ratio was
mapped onto the mid-thickness surface using Connectome Workbench command-line tools.
We refer to this surface map as T1w/T2w ‘myelin map’ (Glasser et al., 2014; Glasser and Van
Essen, 2011). In order to create a human average myelin map, the subject’s individual myelin
maps were aligned using MSM. The myelin alignment was initialized using alignment based
on maps of sulcal depth (parameters are provided in Table S1). To create the species average
maps, we used an implementation of MSM that optimizes based on a first-order (pairwise)
cost function to penalize against distortions, given that no excessive distortions were
expected. Human volume data were registered to the Montreal Neurological Institute
standard space (MNI152) and surface data was transformed to a surface template space
(fs_LR).

Chimpanzee Data and Pre-processing

In vivo chimpanzee structural MRI and DW-MRI data were obtained from the National
Chimpanzee Brain Resource (www.chimpanzeebrain.org). Data were acquired at the Yerkes
National Primate Research Center (YNPRC) at Emory University through separate studies
covered by animal research protocols approved by YNPRC and the Emory University
Institutional Animal Care and Use Committee (approval no. YER-2001206). These chimpanzee
MRI scans were obtained from a data archive of scans obtained prior to the 2015
implementation of U.S. Fish and Wildlife Service and National Institutes of Health regulations
governing research with chimpanzees. All the scans reported in this publication were
completed by the end of 2012.

Tiw/T2w myelin maps were obtained from a group of 29 adult chimpanzees (all female),
scanned at 0.8 mm isotropic resolution (Donahue et al., 2018; Glasser et al., 2014). DW-MRI
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data were obtained in a subset of five individuals. Acquisition and pre-processing was
previously described (Li et al., 2013; Mars et al., 2019). Two DW images (TR = 5900 ms; TE =
86 ms; 41 slices; 1.8 mm isotropic resolution) were acquired using a single-shot spin-echo
echo planar sequence for each of 60 diffusion directions (b = 1000 s/mm?), each with one of
the possible left-right phase-encoding directions and 4 repeats, allowing for correction of
susceptibility-related distortion. For each repeat of diffusion-weighted images, five images
without diffusion weighting (b = 0 s/mm?) were also acquired with matching imaging
parameters.

Chimpanzee volume and surface data were registered to a standard space template based on
29 chimpanzee scans acquired at the YNPRC (Donahue et al., 2018). A species average myelin
map was derived using MSM as described for the human.

Macaque Data and Pre-processing

Ex vivo DW-MRI data were obtained from four rhesus macaques (one female, age at death:
range 4-14 years) using a 7T magnet. Data acquisition and DW-MRI pre-processing have been
previously described in detail (Eichert et al., 2019). Data were acquired using a 2D diffusion-
weighted spin echo multi slice protocol with single line readout (DW-SEMS; TE = 25 ms; TR =
10 s; matrix size: 128 x 128; resolution 0.6 mm; number of slices: 128; slice thickness: 0.6
mm). Nine non-diffusion-weighted (b = 0 s/mm?) and 131 diffusion-weighted (b = 4000
s/mm?) volumes were acquired with diffusion encoding directions evenly distributed over the
whole sphere, except in one monkey were 7 non-diffusion-weighted images and 128 diffusion
directions were collected. This protocol and similar ones have previously shown to be
sufficient for comparison with in vivo human data (see for example: D’Arceuil et al., 2007;
Dyrby et al., 2011; Eichert et al., 2019; Mars et al., 2016).

Additionally, ex vivo data from one male macaque were obtained (de Crespigny et al., 2005)
and pre-processed as described previously (Jbabdi et al., 2013). Relevant imaging parameters
for DW-MRI data were: 4.7T Oxford magnet equipped with BGA 12 gradients; 3D segmented
spin-echo EPI1 430 um isotropic resolution, 8 shots, TE = 33 ms, TR = 350 ms, 120 isotropically
distributed diffusion directions, b = 8000 s/mm?. Despite the different scanning parameters,
data quality was appropriate to allow pooling of the ex vivo data sets. In vivo data from the
same macaque subjects was not available.

To obtain macaque T1w/T2w myelin maps, in vivo Tlw and T2w scans data were obtained
from a previous study on five separate rhesus macaques (4 females, age range 3.4 years -
11.75 years). Data acquisition and pre-processing of the macaque data have been described
previously (Large et al.,, 2016). Procedures of the in vivo macaque data acquisition were
carried out in accordance with Home Office (UK) Regulations and European Union guidelines
(EU directive 86/609/EEC; EU Directive 2010/63/EU).

Macaque surface reconstruction and average myelin maps were derived as described for the

human. Macaque volume and surface data were registered to a standard space, which is
based on data from 19 macaques acquired at YNPRC (Donahue et al., 2018, 2016).
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Myelin-based Surface Registration

Our aim was to derive a cross-species registration to model expansion and relocation of
cortical brain areas. Therefore, we performed registration based on average surface myelin
maps in the three species using MSM with higher-order smoothness constraints (Ishikawa,
2014; Robinson et al., 2018). We derived a transformation of the cortical surface so that
homologous myelin landmarks across species matched. The general processing steps were as
follows, but a more detailed description of the methodology and an explanatory figure are
provided in the Supplementary Material.

We obtained a ‘chimpanzee-to-human’ and a ‘macaque-to-chimp’ registration. A ‘macaque-
to-human’ registration was derived as a concatenation of both registration stages to minimize
the between-species distortions needed. As input for the registration we used the species
average myelin maps and we performed the registration for both hemispheres separately.
We derived these registrations (macaque-to-chimpanzee and chimpanzee-to-human)
because they allowed us to directly compare those brains that have the smallest phylogenetic
distance. We are, of course, not implying that the three species evolved from one another.

In general, the registration was derived using two stages. The first stage was based on three
regions-of-interest (ROIs) to handle the gross distortions that are involved in matching myelin
landmarks across species. Two ROIs captured the highly myelinated precentral motor cortex
(MC) and MT+ complex and a third ROI covered the medial wall (MW). We used MSM to
obtain a registration so that the ROIs are roughly matched across species. In the second stage,
the ROI-based registration was used as initialization for the subsequent alignment of the
whole-hemisphere myelin maps. To derive a macaque-to-human registration, we resampled
the average macaque myelin map to chimpanzee space using the MSM-derived macaque-to-
chimpanzee registration. Then we aligned the resampled macaque map in chimpanzee space
with that of the human and used the chimpanzee-to-human registration as initialization.

The quality of the registration performance was assessed by computing a local spatial
correlation between the human myelin map and the result of the chimpanzee and macaque
registration. Furthermore, we visualized the deformations underlying the registration in form
of a surface distortion map. The methods and results for these two analyses are provided in
the Supplementary Material.

Tractography

Human and chimpanzee DW-MRI data were pre-processed using tools from FDT (FMRIB's
Diffusion Toolbox, part of FSL 5.0 (Smith et al., 2004)). We applied the TOPUP distortion
correction tool followed by eddy-current distortion and motion correction (Andersson et al.,
2003; Andersson and Sotiropoulos, 2016) as implemented in FSL. Macaque ex vivo DW-MRI
data were processed using tools from FSL as implemented in an in-house MR Comparative
Anatomy Toolbox (Mr Cat, www.neuroecologylab.org).
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Pre-processed DW-MRI images were processed by fitting diffusion tensors (FSL's DTIFIT
(Behrens et al., 2003)) and by fitting a model of local fiber orientations including crossing
fibers (FSL's BedpostX, Behrens et al., 2007; Jbabdi et al., 2012). Up to three fiber orientations
per voxel were allowed. Tractography was performed using FSL’s probtrackx2. Registration
warp-fields between each subject's native space and standard space were created using FSL's
FNIRT (Andersson et al., 2007).

We performed tractography of the following tracts: Middle longitudinal fasciculus (MDLF),
inferior longitudinal fasciculus (ILF), the third branch of the superior longitudinal fasciculus
(SLF3), the inferior fronto-occipital fasciculus (IFO), and the arcuate fasciculus (AF). Placement
of seed, waypoint, and exclusion masks was based on previous studies, in order to reconstruct
known pathways for these tracts in all three species (human and macaque: De Groot et al.,
2013; Mars et al., 2018c, protocols for AF: Eichert et al., 2019; chimpanzee: Bryant et al.,
2018). Masks were drawn in standard space and warped to native subject diffusion MRI space
for probabilistic tractography. The resulting tractograms were normalized by dividing each
voxel’s value by the total number of streamlines that successfully traced the required route
(‘waytotal’). To decrease computational load for further processing all tractograms were
down-sampled (human: 2 mm, chimpanzee: 1.5 mm, macaque: 1 mm). In addition,
tractography and surface-based analysis was performed for cortico-spinal tract (CST) and
vertical occipital fasciculus (VOF). Results for the all tracts are reported in the Supplementary
Material (Figure S3).

Surface Tract Maps

To assess which part of the cortical grey matter might be reached by the tracts, we derived
the surface representation of each individual tractogram using a matrix multiplication
method described previously (Figure S1B(2)) (Mars et al., 2018c). We calculated whole-
hemisphere vertex-wise connectivity matrices, tracking from the 20k-vertices mid-thickness
surface to all voxels in the brain. These matrices were computed for both hemispheres and
each subject individually in the three species. In the macaque we used the five subject’s
average mid-thickness in standard space as input for the computation instead of individual
surfaces.

To rebalance the weights in the tracts to be more homogenous, connectivity values were
weighted by the distance between vertex and voxel. A distance matrix across all vertices of
the mid-thickness surface and all brain voxels was computed using MATLAB’s pdist2-function
resulting in @ matrix of the same size as the connectivity matrix. Each element in the
connectivity matrix was then divided by the corresponding value in the vertex-to-voxel
distance matrix. To decrease data storage load (approximately 10 GB per matrix) the
weighted connectivity matrices of the five subjects were averaged for each hemisphere and
species.

To visualize a tract's surface representation, we multiplied the averaged connectivity matrix
with a tract’s tractogram (‘fdt_paths’). We refer to the tract surface representation here as
‘tract map’. The approach described above decreases gyral bias in the resulting tract map
notably when compared to surface-based tractography or surface projections of the
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tractogram. However, the method introduced spurious effects on the medial wall and insula
cortex, which are generally not well captured in the tract map. Given that both areas are not
of interest in this study, they were masked out for further analysis. Tract maps were derived
for each subject and both hemisphere separately. Individual surface maps were smoothed on
the mid-thickness surface (human: 4 mm kernel (sigma for the gaussian kernel function),
smoothing on individual surface; chimpanzee: 3 mm kernel, smoothing on average surface;
macaque: 2 mm kernel, smoothing on average surface), logNorm-transformed and averaged
across subjects.

Predicted Tract Maps

Next, we tested if our myelin-based registration can be used to predict the tract maps across
species. We resampled individual chimpanzee and macaque tract maps to human space using
the macaque-to-human and the chimpanzee-to-human registration (Figure S1B(3)). Intensity
values in actual and predicted tract maps ranged from 0 to 1. We averaged all predicted tract
maps and displayed the average map onto a human average surface (Q1-Q6_R440). For visual
inspection we also assessed and showed thresholded tract maps. Thresholds were chosen
different for each tract, ranging from 0.6 to 0.85, so that the most characteristic termination
is visible.

To visualize and quantify the prediction of macaque and chimpanzee tracts in human space,
we derived weighted whole-hemisphere local correlation maps of the human map and the
map predicted by macaque or chimpanzee. The local correlation map was computed using a
sliding window around every vertex on the sphere using MATLAB’s corrcoef-function
(Mathworks, Natick, MA). We used a search kernel of 40° that corresponds to a circular search
window with a radius of approximately 7 cm. The correlation map was modified to up-weight
the brain areas where the tract is represented on the surface. A weighting mask was derived
by multiplication of the intensities in the actual human tract map and the other species’
predicted map. The values for the weighted correlation map are thus high in parts of the brain
where both actual human and predicted tract show a termination, and where the spatial
patterns of intensity values correlate. Weighted correlation maps were derived for each pair
of 20 human subjects and five subjects of the other species. As result figure we display the
averaged correlation map onto the human average surface.

In order to quantify how well a tract is predicted, we computed Dice coefficients of similarity
(Dice, 1945), which quantifies the amount of overlap of the tract maps. The metric was
derived for each pair of 20 human subjects and five subjects of the other species. The Dice
coefficient was computed for the binarized and thresholded actual human tract map and the
map predicted by the other species. The threshold was chosen for each tract individually so
that 40 % of surface vertices were covered by the human tract map. The same threshold was
applied to the macaque and chimpanzee map.

As a quantification of tract extension, we computed the ratio of the number of vertices
covered by the thresholded human tract map and the number of vertices covered by both
the human and the other tract map. To confirm that the pattern of values is robust, both Dice
coefficients and tract extension ratios were computed for a range of percentages of surface
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coverage and data for a coverage of 20 %, 30 % and 50 % is provided in the Supplementary
Material (Figure S4).

The differences in tract extension ratios at a surface coverage of 40 % were assessed in a non-
parametric permutation test implemented in PALM (Winkler et al., 2014) using 5000
permutations. A two-factorial model was fitted separately for both hemispheres to compare
the main effects of species (‘macaque’ and ‘chimpanzee’) and tract and the interaction effect
between the two factors. As the 100 data points for each tract and species were derived based
on 20 human subjects and five subjects of the other species, we also modelled crossed-
random effects for each subject. The model matrix was constructed using R software (Core
Team and Foundation for Statistical Computing). The reported p-values were corrected for
family-wise error over multiple contrasts.

To demonstrate in which areas of the cortex connectivity can be explained well by cortical
expansion, we computed connectivity fingerprints (Passingham et al., 2002) in two
representative locations of the brain. Two vertices in the left human average surface were
selected manually in the middle temporal gyrus and the inferior parietal lobe. Then we
derived the intensity value of human tract maps and the tract maps predicted by the other
species in each subject. The whole set of tracts investigated (CST, MDLF, VOF, IFO, ILF, SLF3
and AF) was included to give a more detailed estimate of the connectivity fingerprint.
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Supplementary Material

Supplementary Methods

Myelin-based Surface Registration

We implemented a cross-species registration based on surface myelin maps using multimodal
surface matching (MSM) (Figure S1A). MSM is a cortical surface registration algorithm, which
works by projecting sheet-like models of the cortical surface to spheres; then aligning these
by driving deformation of an input (or moving) mesh until features on the surface (i.e. myelin
map intensities) increase in similarity with those represented on a fixed (or reference) mesh.
We used a version of MSM that uses higher-order smoothness constraints and strain-based
regularization for the regularization mode. MSM can work with multidimensional feature
maps and use cross correlation across features to drive a registration. Multiple registration
steps can be combined by using the output of a previous registration as initialization.

The main inputs of MSM were the average species myelin maps (Figure S1A(1)). All surface
and metric files were resampled to a regular 20k-vertices mesh (radius of the sphere: 10 cm).
For all species, the same sphere was used for resampling, so that the vertices had
correspondence across species (Figure S1A(2)).

Given the substantial distortions that are required to match myelin landmarks across species,
we initialized the myelin registration using a region-of-interest-(ROI)-driven registration.
Three binary ROIs were manually drawn in Connectome Workbench’s wb_view onto each
species’ myelin map (Figure S1A(3)). The value inside the ROl was 1 and outside 0. Two ROls
captured the highly myelinated precentral motor cortex (MC) and MT+ complex and a third
ROI covered the medial wall (MW).

The first initialization step aligned a single ROI for MT+ complex between species to facilitate
alignment of the remaining two ROIs (Figure S1A(5)). Next, the three ROIs were combined in
a multidimensional file, i.e. in a metric file that contained three data-arrays, or columns
(Figure S1A(6)). MSM alignment of these sets of ROIs was initialized by the MT+ ROI
registration  (Figure  S1A(7)). Initialization ~was performed using the ‘-
trans=X.sphere.reg.surf.gii’-setting in the MSM-command. In the following step, the whole-
hemisphere myelin maps were aligned by using the three-ROI registration step as initialization
(Figure S1A(10)).

To derive a macaque-to-human registration, we resampled the macaque myelin map to
chimpanzee space using the MSM-derived macaque-to-chimpanzee registration. Then we
registered the resampled macaque map to the human map while using the chimpanzee-to-
human registration as initialization. This approach allowed refinement of the macaque-to-
human mapping rather than just applying the chimpanzee-to-human registration to the
resampled map. The surface registration was derived for both hemispheres separately with
mirrored versions of the ROIs. For registration steps involving ROIs, the registration sphere
derived from the left hemisphere was flipped to the right hemisphere. For the steps using
myelin maps, we derived the registration separately for both hemispheres. Configuration

20


https://doi.org/10.1101/645234
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/645234; this version posted November 1, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

parameters for all MSM-steps were determined empirically and were kept constant for the
two hemispheres (all parameters are provided in Table S2).

The quality of the registration performance was visualized by computing a local spatial
correlation between the human myelin map and the result of the chimpanzee and macaque
registration. The correlation was computed using a sliding window around every vertex on
the sphere using MATLAB’s corrcoef-function (Mathworks, Natick, MA). We used a search
kernel of 40° that corresponds to a circular search window with a radius of approximately 7
cm.

To visualize the shifts underlying the three cross-species registrations, we derived a map of
surface distortions. We computed the areal distortion between original and distorted mesh,
as implemented in ‘wb_command -surface-distortion’. Here, distortions for each mesh face
are estimated as log2(A1/Ao), where Ag is the area of the original mesh face and A; is the area
of a deformed mesh face. The values per vertex are calculated as a weighted average, where
weights are calculated from the relative size of the vertices adjoining mesh faces. We are
representing distortions between original and distorted sphere thus the numerical values of
the distortion map indicate relative expansion or contraction.
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Figure S1. Related to Methods. A: MSM registration between chimpanzee and human myelin maps. (1) average
species myelin maps. (2) myelin maps displayed on common sphere. (3) ROl for MT+ complex drawn on native
surface. (4) MT+ ROI displayed on common sphere. (5) chimpanzee MT+ ROI (blue) registered to human (red)
using MSM. (6) Set of three ROIs (MC, MT+, MW). (7) Effect of MT+ ROI-derived initialization on the set of ROIs
(only MW and MC visible). (8) Registration of chimpanzee set of ROIs to human ROIs using MSM. (9) Effect of
ROI-derived registration on whole hemisphere chimpanzee myelin map. (10) Registration of whole brain myelin
maps initialized by set of ROIs using MSM. B: Tract surface analysis. (1) Tractography result for an example tract
(CST). (2) Tract map obtained by matrix multiplication. (3) The myelin-derived cross-species registration (A(10))
is applied to transform the actual chimpanzee tract map to human space. (4) Having both tract mapsin the same
space allows a direct species comparison and quantification of the differences (5).
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Supplementary Results

Correlation of Myelin Maps

The performance of the myelin-based registration is visualized in the local correlation maps
of actual human and predicted myelin maps (Figure S2A). The vast majority of the cortical
myelin maps correlates well after applying the registration. The correlation map shows that
inferior frontal parts of the cortex and anterior temporal lobe remain most dissimilar. Despite
the good alignment of critical posterior landmarks, such as V1 and MT+ complex, the
correlation in posterior parietal areas is lower than in more central areas indicating some
residual dissimilarity in the registered myelin maps.

Expansion Maps

The deformations underlying the registration can be visualized using a surface distortion map,
which is based on the logarithmic ratio of mesh triangle size before and after applying the
transformation (Figure S2B). These expansions are underlying the shifts that lead to
relocation of cortical areas. A value > 1 indicates a relative increase of the underlying mesh
triangles and a value < 1 indicates a relative decrease in size. Note that the overall increase in
brain size across species is not accounted for in this calculation so that some areas show a
distortion value smaller than 1. The macaque-to-chimpanzee distortion map demonstrates
that the largest expansion happened in frontal areas. Other areas that show expansion are
parietal cortex, posterior temporal and dorsal medial areas. The largest expansion from
chimpanzee to human happened in superior temporal and prefrontal cortex, but the
distortions are overall smaller and less extended than from macaque to chimpanzee. The
macaque-to-human distortion map shows a similar pattern than chimpanzee-to-human, but
indicates a stronger distortion in frontal areas.

A macaque-to-chimpanzee chimpanzee-to-human macaque-to-human

o correlation —

distortion

©
~

Figure S2. Related to Figure 2. Myelin correlation and mesh distortion. A: Local correlation of myelin maps after
applying the MSM-derived registration. B: Relative distortion of the mesh underlying the registrations. The
values indicate a relative expansion (> 1) or contraction (< 1) of the mesh.
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Tract Maps

In addition to studying tracts in temporo-parietal cortex, we also assessed if the terminations
of two further white matter tracts can be predicted by the myelin-based registration. We
tracked cortico-spinal tract (CST) and vertical occipital fasciculus (VOF), which both terminate
in areas of the cortex that are characteristically high in myelin (Dum and Strick, 1991; Glasser
etal., 2014; Schmahmann and Pandya, 2009; Takemura et al., 2017). We included these tracts
to demonstrate that the registration captures major relocations of highly myelinated areas
across the whole cortex. Our proposed framework is thus not restricted to studying temporal
lobe architecture, but it can be applied to comparative questions across the whole brain.

In the case of CST, the actual tract projections in the three species show terminations in pre-
and post-central gyrus (Figure S3A,C,E). For the chimpanzee and macaque, these terminations
span a relatively large portion of the frontal cortex, while in the human the anterior part of
the frontal lobe does not show any tract terminations. The frontal difference in the three
actual tract maps is related to the relative increase in human prefrontal cortex, which is low
in myelin content. After applying the myelin-based registration to the macaque and
chimpanzee tract maps of CST, the predicted terminations in human space show strong
overlap with the actual human tract map. The myelin-based registration thus can model the
effect of an increased prefrontal cortex on CST tract terminations. This overlap is captured in
the weighted correlation maps, which have a high value in areas surrounding the central
gyrus. The Dice coefficients for chimpanzee and macaque CST are relatively high. The
extension ratio is close to 1 in the left hemisphere and slightly elevated for the macaque right
hemisphere.

The posterior terminations of VOF are also predicted well by the myelin-based registration.
The predicted cortical terminations of the tracts show a strong overlap with the actual human
tract terminations. The termination zones of VOF are found in occipital lobe in all three
species. Primary visual cortex has moved from the lateral surface in the macaque to the
medial surface in the human, which is modelled well in our myelin registration. When
applying the registration, macaque and chimpanzee VOF is predicted to reach posterior and
medial parts of the occipital lobe, overlapping well with the actual human tract map. Dice
coefficients for VOF are high in both species and the extension ratio close to 1. This result
suggests that expansion and relocation of brain areas is largely sufficient to model the
posterior cortical terminations of VOF, similar as for MDLF, IFO, ILF and SLF3.
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Figure S3. Related to Figure 3 and Figure 4. Actual and predicted tract maps and species comparison for the
complete set of tracts investigated. Actual tract maps of macaque (A), chimpanzee (C) and human (E). B and D
show the transformed tract maps in human space, predicted by the myelin-based registration for macaque and
chimpanzee. F: Thresholded actual human tract maps (red) and tract maps predicted by the myelin-based
registration for chimpanzee (blue) and macaque (green) (thresholds (t): CST: t = 0.6, MDLF: t = 0.7, VOF: t = 0.6,
IFO: t=0.75, ILF: t = 0.7, SLF3: t = 0.85, AF: t = 0.75). G, H: Weighted correlation maps of actual human map and
predicted chimpanzee and macaque map.
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Figure S4. Related to Figure 5. Dice coefficients and tract extension ratios for different percentages of surface
coverage. Shown are mean + 95 % confidence interval derived from all pairs of human (n = 20) and macaque or
chimpanzee (n = 5) subjects in left (LH) and right (RH) hemisphere.

Supplementary Tables

sulcal depth myelin map
--simval=1,2,2,2 --simval=2,2,2
--sigma_in=4,4,2,1 --sigma_in=10,5,3
--sigma_ref=2,2,1,1 --sigma_ref=10,5,3
--lambda=0,0.1,0.2,0.3 --lambda=0.1,0.1,0.3
--it=50,3,3,3 --it=10,10,10
--opt=AFFINE,DISCRETE,DISCRETE,DISCRETE | --opt=DISCRETE,DISCRETE,DISCRETE
--CPgrid=0,2,3,4 --CPgrid=2,3,4
--SGgrid=0,4,5,6 --SGgrid=4,5,6
--datagrid=4,4,5,6 --datagrid=4,5,6
--IN

levels=3
levels=4 (--trans: sulcal depth registration)

Table S1. Related to Methods. MSM configuration parameters for the registration of individual subject myelin
maps prior to averaging to create a species myelin map. The parameters were kept constant for the three species
and for both hemispheres.

macaque mesh as input chimpanzee mesh as input

step: 425 step: 425
macaque-to-chimpanzee: MT+ ROI chimpanzee-to-human: MT+ ROI
--sigma_in=25 --sigma_in=20,15,5

--lambda=0.1 --lambda=0.05,0.1,0.1

--it=10 --it=10,10,10

--opt=DISCRETE --opt=DISCRETE,DISCRETE,DISCRETE
--CPgrid=1 --CPgrid=2,3,4
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--SGgrid=3
--regoption=3
--regexp=2
--dopt=HOCR
--VN

--triclique
--k_exponent=2
--bulkmod=1
--shearmod=0.2

--SGgrid=4,5,6
--regoption=3
--regexp=2
--dopt=HOCR
--VN

--triclique
--k_exponent=2
--bulkmod=1
--shearmod=0.2

--shearmod=0.1

level=1 level=3

step: 728 step: 728
macaque-to-chimpanzee: three ROIs chimpanzee-to-human: three ROIs
--sigma_in=25,15,5 --sigma_in=25
--lambda=0.01,0.01,0.1 --lambda=0.001
--it=10,10,10 --it=10
--opt=DISCRETE,DISCRETE,DISCRETE --opt=DISCRETE
--CPgrid=1,2,3 --CPgrid=2
--SGgrid=3,4,5 --SGgrid=4
--regoption=3 --regoption=3
--regexp=2 --regexp=2
--dopt=HOCR --dopt=HOCR
--VN --VN

--triclique --triclique
--k_exponent=2 --k_exponent=2
--bulkmod=1 --bulkmod=1

--shearmod=0.2

macaque-to-chimpanzee: myelin map
--sigma_in=10,5,3
--lambda=0.1,0.1,0.1

--it=10,10,20
--opt=DISCRETE,DISCRETE,DISCRETE
--CPgrid=2,3,4

--SGgrid=4,5,6

--IN

--excl

--regoption=3

--regexp=2

--dopt=HOCR

--triclique

--k_exponent=2

--bulkmod=1

--shearmod=0.2

level=3 level=1
(--trans: single ROI registration) (--trans: single ROI registration)
step: 9210 step: 9210

chimpanzee-to-human: myelin map
--sigma_in=25,10,5
--lambda=0.2,0.5,0.5

--it=10,10,10
--opt=DISCRETE,DISCRETE,DISCRETE
--CPgrid=2,3,4

--SGgrid=4,5,6

--regoption=3

--regexp=2

--dopt=HOCR

--triclique

--k_exponent=2

--bulkmod=1.6

--shearmod=0.1

level=3
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(--trans: three ROI registration)
level=3

(--trans: three ROI registration)

step: 9210

macaque-to-human

(input: macaque myelin map transformed by
applying  the  macaque-to-chimpanzee
registration)

--sigma_in=25,10,5

--sigma_ref=25,10,5

--lambda=0.1,0.1,0.1

--it=10,10,3
--opt=DISCRETE,DISCRETE,DISCRETE
--CPgrid=2,3,4

--SGgrid=4,5,6

--datagrid=4,5,6

--IN

--regoption=3

--regexp=2

--dopt=HOCR

--triclique

--k_exponent=2

--bulkmod=1.6

--shearmod=0.1

level=3
(--trans: chimpanzee-to-human myelin map
registration)

Table S2. Related to Methods ‘Myelin-based Surface Registration’. MSM configuration parameters. Settings for
the MSM command for registrations using the macaque data as input (left panel) and chimpanzee data as input
(right panel). The described ‘step’ refers to the numbering in Figure S1A. Parameters were identical for the left
and right hemisphere.
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