

1 **Functional genomics reveals extensive diversity in *Staphylococcus epidermidis***
2 **restriction modification systems compared to *Staphylococcus aureus*.**

3

4 **Authors:** Jean YH Lee*¹, Glen P Carter^{1,2,3}, Sacha J Pidot¹, Romain Guérillot¹,
5 Torsten Seemann^{1,2,3}, Anders Gonçalves da Silva^{2,3}, Timothy J Foster⁴, Benjamin P
6 Howden^{#2,3,5}, Timothy P Stinear^{#1,3}, Ian R Monk*^{#1}

7 [#]Joint senior authors, ^{*}Corresponding authors

8

9 **Corresponding authors**

10 Dr Jean Lee: jean.lee@unimelb.edu.au; Dr Ian Monk: ian.monk@unimelb.edu.au

11

12 **Affiliations:**

13 ¹Department of Microbiology and Immunology, The University of Melbourne at The
14 Doherty Institute for Infection and Immunity, Victoria, Australia

15 ²Microbiological Diagnostic Unit Public Health Laboratory, Department of
16 Microbiology and Immunology, The University of Melbourne at The Doherty
17 Institute for Infection and Immunity, Victoria, Australia

18 ³Doherty Applied Microbial Genomics, Department of Microbiology and
19 Immunology, The University of Melbourne at The Doherty Institute for Infection and
20 Immunity, Victoria, Australia

21 ⁴Moyné Institute of Preventative Medicine, Department of Microbiology, School of
22 Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland

23 ⁵Infectious Diseases Department, Austin Health, Victoria, Australia

24

25 **Abstract**

26 *Staphylococcus epidermidis* is a significant opportunistic pathogen of humans.
27 Molecular studies in this species have been hampered by the presence of restriction-
28 modification (RM) systems that limit introduction of foreign DNA. Here we establish
29 the complete genomes and methylomes for seven clinically significant, genetically
30 diverse *S. epidermidis* isolates and perform the first systematic genomic analyses of
31 the type I RM systems within both *S. epidermidis* and *Staphylococcus aureus*. Our
32 analyses revealed marked differences in the gene arrangement, chromosomal location
33 and movement of type I RM systems between the two species. Unlike *S. aureus*, *S.*
34 *epidermidis* type I RM systems demonstrate extensive diversity even within a single
35 genetic lineage. This is contrary to current assumptions and has important
36 implications for approaching the genetic manipulation of *S. epidermidis*. Using
37 *Escherichia coli* plasmid artificial modification (PAM) to express *S. epidermidis*
38 *hsdMS*, we readily overcame restriction barriers in *S. epidermidis*, and achieved
39 transformation efficiencies equivalent to those of modification deficient mutants.
40 With these functional experiments we demonstrate how genomic data can be used to
41 predict both the functionality of type I RM systems and the potential for a strain to be
42 transformation proficient. We outline an efficient approach for the genetic
43 manipulation of *S. epidermidis* from diverse genetic backgrounds, including those that
44 have hitherto been intractable. Additionally, we identified *S. epidermidis* BPH0736, a
45 naturally restriction defective, clinically significant, multidrug-resistant ST2 isolate as
46 an ideal candidate for molecular studies.

47

48 **Importance**

49 *Staphylococcus epidermidis* is a major cause of hospital-acquired infections,
50 especially those related to implanted medical devices. Understanding how *S.*
51 *epidermidis* causes disease and devising ways to combat these infections has been
52 hindered by an inability to genetically manipulate “hospital-adapted” strains that
53 cause clinical disease. Here we provide the first comprehensive analyses of the
54 mechanisms whereby *S. epidermidis* resists the uptake of foreign DNA and
55 demonstrate that these are distinct from those described for *S. aureus*. Until now it
56 had been assumed that these are the same. Using these insights, we demonstrate an
57 efficient approach for the genetic manipulation of *S. epidermidis* to enable the study
58 of clinically relevant isolates for the first time.

59

60 **Introduction**

61 *Staphylococcus epidermidis* is a ubiquitous coloniser of human skin (1). Invasive
62 medical procedures, specifically insertion of prosthetic devices on which the bacteria
63 can form a biofilm, enables evasion of both antibiotics and the host immune system
64 and has contributed to its rise as a significant nosocomial pathogen. A leading cause
65 of surgical site and central-line-associated bloodstream infections (2), *S. epidermidis*
66 poses a major economic burden (3). In the hospital environment two multi-locus
67 sequence types (MLSTs), ST2 and ST23, account for most clinical disease (4, 5).
68 Three hospital adapted clones (two ST2, and one ST23) were recently demonstrated
69 to be globally disseminated and have evolved to become nearly untreatable though the
70 acquisition of multiple antibiotic resistance determinants and resistance conferring
71 mutations (5). Knowledge of the molecular genetics, pathogenesis and treatment of *S.*
72 *epidermidis* has been limited by barriers preventing the genetic manipulation of
73 clinically relevant isolates and the assumption that *S. epidermidis* is similar to *S.*
74 *aureus*.

75

76 Restriction-modification (RM) systems have evolved as a form of bacterial immunity
77 that degrades incoming DNA from foreign donors such as bacteriophage (6). Type I
78 and IV RM systems are a significant barrier to genetic manipulation of staphylococci.
79 Type I RM systems are comprised of three host specificity of DNA (*hsd*) genes that
80 encode (i) a specificity protein (HsdS), (ii) modification proteins (HsdM) and (iii) a
81 restriction endonuclease (HsdR). Together these function as a single protein complex
82 in which HsdS determines the DNA target recognition motif (TRM) in which adenine
83 residues are methylated by HsdM, while HsdR cleaves unmodified and non-self-

84 modified DNA (7, 8). Type IV RM systems consist of a single restriction
85 endonuclease that cleaves DNA with inappropriate cytosine methylation (8).

86 Plasmid artificial modification (PAM) is a method to overcome the barrier
87 imposed by RM systems, where plasmid DNA is passaged through a cytosine
88 methylation deficient *Escherichia coli* host (DC10B) that has been engineered to
89 heterologously express the *hsdMS* system of a staphylococcal strain to be
90 transformed. Plasmid DNA extracted from this *E. coli* host mimics the DNA
91 methylation profile of the target strain, thus enabling introduction of plasmid DNA
92 and subsequent genetic manipulation (9).

93

94 Type I RM systems of staphylococci are best understood in *S. aureus*. The
95 distribution of *hsdS* alleles corresponds with clonal complex (CCs) for the 10
96 dominant *S. aureus* lineages (10). Far less is known about the type I RM systems in *S.*
97 *epidermidis*. A recent study suggested that *S. epidermidis* type I RM systems adhered
98 to lineage specific groupings like *S. aureus*. However, this inference was based on
99 only four new *S. epidermidis* methylomes (11) plus the one methylome that was
100 already characterised; the ST2 reference genome of strain BPH0662 (12).

101

102 Here, we present the first systematic genomic analyses of the type I RM systems in *S.*
103 *aureus* and *S. epidermidis* and demonstrate how this data can be used to predict
104 functionality of type I RM systems and transformational competence of strains. We
105 show that PAM is a highly efficient method to enable genetic manipulation of *S.*
106 *epidermidis*, particularly hospital-adapted isolates that possess multiple functional
107 type I RM systems.

108

109 **Results and Discussion**

110 ***S. aureus* type I RM systems are lineage specific**

111 We began this study by testing the notion that *S. aureus* type I RM systems are
112 lineage specific. We compared 128 publicly available finished *S. aureus* genome
113 sequences (Table S1A) and confirmed the chromosomal location and structure for
114 type I RM systems in *S. aureus* is highly conserved. One hundred and ten genomes
115 had a single *hsdR* and two copies of *hsdMS* with the first in forward orientation
116 located in the alpha pathogenicity island and the second in the opposite orientation,
117 located within the beta pathogenicity island (10, 13) (Figure 1A). The remaining 18
118 strains possessed *hsdR* and a single copy of forward oriented *hsdMS* in the alpha
119 pathogenicity island. Five of the 128 strains possessed a third type I RM system at a
120 non-mobile chromosomal location downstream of *lacA*. Twenty-three strains carried
121 an additional type I RM system on a mobile genetic element, 22 were on
122 staphylococcal cassette chromosome (SCC) elements (Figures 2 & S1) and one type I
123 RM system on a plasmid (strain HUV05). Single variants of both HsdR (NCBI
124 protein accession WP_000331347.1; n = 127) and HsdM (WP_000028628.1; n = 222)
125 were demonstrated for the type I RM systems situated in non-mobile chromosomal
126 locations, indicating stable vertical inheritance. Interruptions in *hsdR* and *hsdMS* due
127 to horizontal gene transfer were rarely seen in *S. aureus*. A solitary example of *hsdS*
128 truncation due to insertion of a bacteriophage was noted in Sa17_S6. Most changes
129 were due to SNPs leading to amino acid substitutions (N = 35) or nonsense mutations
130 (N = 31) in *hsdS* (Figure 2). See Table 1 for a comparison of *S. aureus* and *S.*
131 *epidermidis* type I RM systems.

132

133 We next established a high-resolution phylogeny using 144,727 core genome single
134 nucleotide polymorphisms (SNPs) for the 128 *S. aureus* genomes covering 40 STs
135 (Figure 2). The occurrence of *hsdMS* genes for each genome was mapped across the
136 phylogeny. A total of 48 HsdS subunits were identified with associated TRMs (Table
137 2, Table S2A). Although the same *hsdMS* genes were present in genetically distinct
138 lineages, the combination of *hsdMS* genes were conserved within each lineage (Figure
139 2). For example, the same two HsdMS were present in ST250 and ST254 which are
140 single locus variants of ST8. A notable exception to the lineage specificity were the
141 type I RM systems carried on SCC elements (Figure S1B) that may have been
142 acquired from coagulase negative staphylococci (CoNS). The complete *S. epidermidis*
143 BPH0736 *hsdMSR* (non-disrupted, identical sequence) was observed in four *S. aureus*
144 strains from three different STs (ST5, ST59 and ST338) suggesting gene transfer
145 between the species (Figure S1).

146

147 ***S. epidermidis* type I RM systems are carried on mobile genetic elements**

148 Seven complete *S. epidermidis* reference genomes were publicly available at the
149 beginning of this study (Table S1). Of these only BPH0662 (12) and RP62a had
150 characterised type I RM system motifs. However the RP62a methylome was
151 determined independently (11) of the finished genome (14). The methylomes of *S.*
152 *epidermidis* isolates 1457 (15) and 14.1.R1 (16) confirmed that neither possessed a
153 functional type I RM system, consistent with the absence of *hsdM* genes. To improve
154 understanding of the type I RM systems in *S. epidermidis* we conducted PacBio
155 SMRT sequencing and established complete genomes and adenine methylomes for
156 six additional *S. epidermidis* strains from ST2, ST5, ST59 and ST358 and we re-
157 sequenced RP62a (ST10) (See Table S3 for metadata).

158

159 The typical chromosomal arrangement of the type I RM system in *S. epidermidis* is
160 shown for the BPH0736 (ST2) (Figure 1B). Unlike *S. aureus* (Figure 1A), in *S.*
161 *epidermidis* type I RM systems are arranged as a complete three gene operon in either
162 an *hsdRMS* or *hsdMSR* organisation, unless interrupted (Figure S1). Analyses of the
163 11 closed *S. epidermidis* genomes containing type I RM systems demonstrated their
164 co-occurrence with cassette chromosome recombinase (*ccr*) genes (with or without
165 the presence of *mec*). The 16 type I RM systems present within these 11 genomes
166 were located a mean distance of 11.5 kb (minimum 2.3 kb, maximum 51.0 kb) from
167 the nearest *ccr* (Figure S1A). Similarly, in the 22 *S. aureus* genomes with a SCC-
168 associated type I RM system, the mean distance between *hsdRMS/MSR* and the
169 nearest *ccr* was 6.9 kb (minimum 1.6 kb, maximum 20.9 kb) (Figure S1B).

170 Cassette chromosome recombinases typically integrate at *orfX* (corresponding
171 to the last 15 nucleotides of the rRNA large subunit methyltransferase (17)) that is
172 located at 31.6 kb in the *S. epidermidis* chromosome (33.3 kb in *S. aureus*). This is the
173 start of a highly plastic region of the chromosome, in which multiple antibiotic
174 resistance genes, drug transporters and insertion sequence (IS) elements have
175 accumulated (12) (Figure S1). All 11 *S. epidermidis* and 22 *S. aureus* with *ccr*-
176 associated type I RM systems were integrated at *orfX* (Figure S1). For type I RM
177 system variants present in multiple isolates, conservation of genes surrounding the
178 system and *ccr* was observed, consistent with the mobilisation of an entire element
179 (Figure S1). Preserved cassette structure between isolates and both species (Figure
180 S1B) led us to hypothesise that the movement of type I RM systems in *S. epidermidis*
181 is mediated by *ccr*, enabling mobilisation on SCC elements between strains and to
182 other staphylococcal species. Localisation in this region of the genome also

183 predisposes *S. epidermidis* type I RM systems to disruption, potentially rendering
184 variants restriction deficient. This is seen with interruption of *hsdR* by IS elements in
185 BPH0736 (Figure 1B).

186

187 ***S. epidermidis* type I RM systems are not strictly conserved within lineages**

188 To expand the *S. epidermidis* dataset we added short read data for 234 publicly
189 available *S. epidermidis* genomes to the 13 finished genomes (Table S1). Unlike *S.*
190 *aureus*, variability was noted in both the HsdR and HsdM subunits for *S. epidermidis*.
191 Across the 247 genomes, 183 intact HsdR were identified, with five major variants
192 (<90% amino acid pairwise identity threshold) (Table S2). The two variants of HsdR
193 in strain BPH0662 shared only 22% amino acid identity. Similarly, 178 complete
194 HsdM genes were identified with six major variants (Table 3; Table S2). The amino
195 acid sequences of these six variants were markedly divergent. The two variants of
196 HsdM present in BPH0662 shared only 31% amino acid identity.

197

198 A maximum likelihood phylogeny for the 247 *S. epidermidis* genomes, derived from
199 83,210 core-SNPs, sampled from 72 STs was established and the 31 different *S.*
200 *epidermidis* HsdS subunits identified were overlaid (Figure 3). Where known, their
201 associated TRMs are shown in Table 3 with NCBI protein accession numbers (Table
202 S2). The distribution of *S. epidermidis* HsdS within the population differed markedly
203 from that observed within *S. aureus*, with no strict concordance to lineage specificity.
204 For example, the HsdS from BPH0723 (BPH0723-S; Table 3) was present in 13
205 isolates from five STs (ST5, ST21, ST46, ST210, and one unclassified), while
206 BPH0662-S2 was identified in 52 isolates from three STs (ST2, ST23 and ST35).
207 Although a high proportion of ST2 isolates shared the same predicted methylome

208 (Figure 3), the majority of these were known to be clones of internationally
209 disseminated, multidrug resistant strain BPH0662 (5). However, even within this
210 highly clonal group (n = 36), some predicted methylation variation existed. For
211 example, BPH0662-S2 was absent from two isolates, six isolates (including
212 BPH0662) had a truncation in the 12228-S orphan system while two isolates were
213 missing the 12228-S orphan system completely. Furthermore, within ST2, seven
214 different variants of HsdS were identified in 11 arrangements, including the absence
215 of any type I RM system (Figure 3). Of the 247 *S. epidermidis* genomes analysed,
216 38% did not contain any *hsdS* alleles and were predicted to be restriction deficient.

217

218 Our genome sequencing of RP62a_UoM indicated the presence of a single type I RM
219 system with a GAGN₇TAC TRM (Table 3). Although this motif was consistent with
220 that previously reported by Costa *et al.*, the three additional motifs previously
221 described (lacking apparent associated genes) were not detected by our methylome
222 analysis; the low complexity of the motifs (e.g. GGBNNH) and low frequency of
223 detected methylation (12-29%) (11) suggest these may have been artefacts rather than
224 true motifs. Similarly, the three additional low complexity and frequency motifs
225 reported for VCU036 (11) were probable artefacts. Although the ST type was not
226 specified, VCU036 that shared the same methylome as ST89 isolate NIH051475 was
227 reported as CC89 by Costa *et al.* leading to the conclusion that *S. epidermidis* type I
228 RM systems follows *S. aureus*-like lineage specificity (11). We performed *in silico*
229 MLST by two independent methods and determined VCU036 to belong to ST4.
230 Furthermore, our analysis of the 247 *S. epidermidis* genomes demonstrated VCU036
231 to be phylogenetically distinct from ST89 (Figure 3).

232

233 Overall, our analyses demonstrated that contrary to current assumptions (11) the type
234 I RM systems of *S. epidermidis* do not adhere to the lineage specific distribution
235 observed in *S. aureus*. These differences are attributable to the arrangement of *S.*
236 *epidermidis* type I RM systems as complete three gene operons that reside within a
237 highly mobile region of the chromosome, the movement of which we hypothesise to
238 be mediated by *ccr*.

239

240 **Recombinant target recognition domains generate HsdS variants with low**
241 **conservation of amino acid identity**

242 The structure of a typical type I RM system HsdS allele is shown in Figure S2A,
243 composed of two highly variable target recognition domains (TRDs) flanked and
244 separated by conserved regions (CRs) that collectively determine the TRM to be
245 methylated by HsdM. Recombinant pairings of TRDs result in different variants of
246 HsdS (13, 18). Alignments for the range of *S. aureus* and *S. epidermidis* HsdS
247 identified in this study are shown in Figures S2B and S3 respectively. Within our *S.*
248 *aureus* and *S. epidermidis* collections, 77 variants of HsdS that shared only 24%
249 pairwise identity were identified. This low conservation poses a potential challenge to
250 the high throughput bioinformatic screening for HsdS variants within genomic
251 datasets. However, using the HsdS from ATCC 12228 as the reference translation
252 with our described method, we were able to detect the partial if not complete presence
253 of all HsdS variants in both species. Of note, 12228-S was the only HsdS variant
254 found within both species that clustered with the majority of *S. aureus* variants. In
255 comparison, RP62a-S only captured 18 of the 31 *S. epidermidis* HsdS variants and
256 fragments of under half the *S. aureus* HsdS variants.

257

258 ***S. epidermidis* HsdS variants will only interact as part of a specific complex**

259 The arrangement of some *S. epidermidis* type I RM systems, with the presence of a
260 truncated *hsdS* between complete *hsdR* and *hsdMS* genes, suggested that
261 recombination of component genes occurs (e.g. SepiBPH0662I, SepiRP62aI and
262 SepiBPH0704I; Figure S1). Analyses of the 247 genomes indicated that each variant
263 of *hsdS* in *S. epidermidis* is always associated with a specific *hsdR* and *hsdM* gene,
264 with a conserved gene arrangement (unless interrupted), frequently with the same
265 surrounding genes in association with *ccr* (Figure S1A). These observations support
266 our hypothesis for a role for SCC elements in the mobilisation of *S. epidermidis* type I
267 RM systems.

268

269 The presence of an orphan *hsdS* without a partner *hsdM* gene in *S. epidermidis*
270 introduces additional complexity to the prediction of type I RM system functionality.
271 This was demonstrated by 12228-S, the most prevalent HsdS within the dataset, that
272 is found in 64 *S. epidermidis* (Table 3, Figure 3) and three *S. aureus* (Table 2, Figure
273 2) isolates. All examples of this *hsdS* variant followed a truncated *hsdR*, without an
274 *hsdM* gene. We determined that 12228-S is only expressed if its specific interacting
275 variant of *hsdM* (BPH0662-M1; WP_002504638.1) is also present (see Table S4 for
276 full explanation). In contrast, conservation of a single variant of *hsdM* present twice
277 within the same *S. aureus* genome provides redundancy for the expression of type I
278 RM methylation. This is consistent with previous findings where the product of a
279 single copy of the conserved *S. aureus* *hsdM* allele could functionally interact with
280 both CC8 HsdS when heterologously expressed in *E. coli* (9).

281

282 **Plasmid artificial modification to overcome the type I RM systems in *S.***
283 ***epidermidis* provides equivalent transformation efficiency as deletion of**
284 **functional type I systems**

285 To determine the restriction barrier posed by type I RM systems in *S. epidermidis* and
286 assess the efficiency of PAM as a means of bypassing restriction barriers (Figure 4),
287 $\Delta hsdS$ mutants and *E. coli* hosts for PAM were constructed for *S. epidermidis* isolates
288 BPH0662, RP62a and BPH0736. Two different plasmids (pRAB11 (19) and pIMAY
289 (8)) were used in transformation experiments, as each carried a different number of
290 TRMs recognised by the type I RM systems present in each isolate (Figure 4D).
291 Clinical ST2 isolate, BPH0662-WT, was found to have an intractable restriction
292 barrier unless both functional type I RM systems were overcome through complete
293 bypass with PAM in an *E. coli* host (Ec_Se662I-II), by deletion of both complete
294 *hsdS* genes (BPH0662 $\Delta hsdSI\Delta hsdSII$), or a combination of both approaches (plasmid
295 from Ec_Se662I transferred into BPH0662 $\Delta hsdSII$ or plasmid from Ec_Se662II
296 transferred into BPH0662 $\Delta hsdSI$) (Figure 4A).

297

298 Using our protocol, the type I restriction barrier in RP62a-WT was found to be
299 incomplete. Low numbers of transformants (10^1 CFU/ml) were obtained with plasmid
300 DNA isolated from DC10B, indicating that bypassing the type IV restriction barrier
301 alone was sufficient to allow genetic manipulation of this strain (Figure 4B) as
302 previously demonstrated (8). Complete bypass of the single type I RM system in this
303 isolate with *E. coli* host Ec_SeRP62aI significantly improved transformation
304 efficiency to 10^4 CFU/ml, which was equivalent to complete absence of a functional
305 type I RM system as determined with the RP62a $\Delta hsdS$ mutant (Figure 4B). In
306 contrast, when expressing the RP62a *hsdMS* genes from a plasmid in DC10B, Costa

307 *et al*, were unable to completely bypass the type I RM barrier. This discrepancy was
308 attributed to additional RM systems with low frequency methylation (11). However,
309 our results showed that only one type I RM system is present in RP62a, suggesting
310 that the heterologous expression of type I RM systems on a plasmid in DC10B rather
311 than from a single copy of the genes integrated into the chromosome may be
312 suboptimal. Previously, we found that plasmid-based expression of *hsdMS* was both
313 unstable and cells were unable to tolerate high level expression required for complete
314 methylation of the target DNA (Monk *et al* 2015).

315

316 Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer
317 sequence directed immunity against phages and other foreign DNA, and are another
318 recognised barrier to horizontal gene transfer in *S. epidermidis* (20). Our analysis of
319 the CRISPR spacers for RP62a (Table S3D) did not demonstrate the presence any
320 targets on pSK236 (5.6 kb) used by Costa *et al.*, or on pRAB11 (6.4 kb) or pIMAY
321 (5.7 kb) used in this study, that would account for their lower transformation
322 efficiency (10^2 CFU/ml per 5 μ g plasmid DNA) (11) compared to our protocol (10^4
323 CFU/ml per 5 μ g plasmid DNA for both pRAB11 and pIMAY).

324

325 Isolate BPH0736-WT was predicted to be naturally restriction deficient due to the
326 interruption of *hsdR* by IS elements (Figure 1B) but was demonstrated to retain
327 functional methylation conferred by an intact *hsdMS* system. Due to the complex and
328 infrequently occurring TRM dictated by the single *hsdS* (Table 3), neither pIMAY nor
329 pRAB11 had any BPH0736-S TRMs present. Therefore, pIMAY bearing the
330 Δ 736*hsdS* insert (pIMAY Δ 736*hsdS*) was used as this contained three TRMs (Figure
331 4D). BPH0736-WT was functionally confirmed to be restriction deficient with the

332 same transformation efficiency of 10^4 CFU/ml demonstrated for both BPH0736-WT
333 and BPH0736 $\Delta hsdS$ using plasmid isolated from non-specific *E. coli* host DC10B and
334 PAM tailored mutant Ec_Se736I (Figure 4C). Further supporting our bioinformatic
335 predictions, like BPH0736, ATCC 12228 (truncated *hsdR* and no *hsdM*; ST8) and
336 BPH0710 (truncation at amino acid 81 of HsdS; ST2) were both predicted to have no
337 functional restriction barrier. Similar to BPH0736, both these strains were
338 transformable in the order of 10^4 CFU/ml with plasmid isolated from DC10B,
339 suggesting that this was the maximum transformation efficiency expected for our
340 protocol. Clinical ST2 strain, BPH0676, was also predicted to have no restriction
341 barrier with complete absence of a type I RM system, however similar to BPH0662
342 the maximum transformation efficiency achieved was only 10^3 CFU/ml suggesting
343 inherent strain dependent factors other than type I RM systems impacted on
344 transformation of these isolates e.g. cell wall thickness (21).

345
346 Although the above data demonstrates PAM to be an efficient method to overcome
347 the type I restriction barrier of *S. epidermidis*, we observed potential instability with
348 the integration of multiple *S. epidermidis hsdMS* of particular TRMs in a DC10B *E.*
349 *coli* background. With serial passage of Ec_Se662I-II the transformational efficiency
350 of plasmid isolated from this *E. coli* host into BPH0662 declined from 10^3 to 10^1
351 CFU/ml despite all other experimental parameters remaining the same. This was not
352 observed for any of the *E. coli* PAM mutants expressing single *hsdMS*, including
353 Ec_Se662I and Ec_Se662II, that maintained high-level methylation (89.65 – 99.90%)
354 of motifs within the genome (12) (Table S3). Illumina sequencing of the Ec_Se662I-II
355 genome confirmed integration of both *hsdMS* at the expected chromosomal sites but
356 loss of approximately half the coding sequence of both *hsdS* genes for the majority of

357 the population sequenced. This instability was hypothesised to be due to the burden of
358 excessive DNA methylation (10,930 sites from heterologous expression of two
359 BPH0662 *S. epidermidis* type I RM systems in addition to 38,592 sites of endogenous
360 *E. coli* *dam* methylation) that may interfere with normal cellular function, rendering
361 expression toxic in *E. coli*. The same likely accounts for the poor transformation
362 efficiency reported when using PAM for NIH4008 (100-fold lower than that observed
363 for isolates with only a single type I RM system) by Costa *et al.* (11). NIH4008
364 possesses the same type I RM systems as BPH0662, without the truncation of the
365 orphan *hsdS* (Figure 3). Furthermore, although stable chromosomal integration of
366 three *S. aureus* *hsdMS* systems in *E. coli* DC10B (IM93B) has been described by
367 Monk *et al.*, decreased efficiency of methylation was observed with only 10,135 of
368 14,602 total TRM sites demonstrating detectable methylation (9).

369
370 Collectively, our current and previous (9, 12) data suggests that DC10B *E. coli* is
371 unlikely to consistently maintain the heterologous expression of staphylococcal type I
372 RM systems in the setting of high frequency methylation (>10,000 sites). This
373 limitation should not impact plasmid transformation for mutant creation by allelic
374 exchange, which theoretically requires only a single transformant. However, should
375 high efficiency transformation be sought (e.g. direct transposon mutant library
376 selection), then suitable strains can be predicted using genomic data to identify
377 restriction deficient isolates, such as our newly described reference isolate BPH0736,
378 a clinically significant, ST2 isolate. Clinical metadata, genome characteristics,
379 CRISPR spacers (when present), *in silico* resistome, Vitek 2 antibiogram for clinically
380 relevant antibiotics and common plasmid selection markers for the seven new

381 reference isolates and BPH0662 are shown in Table S3. Metadata and sequencing
382 accession for mutant isolates is listed in Table S5.

383

384 **Phage transduction of plasmid is subject to type I restriction**

385 Phage transduction is an alternate method for the genetic manipulation of *S.*
386 *epidermidis*. Particularly, *S. aureus* ST395 lineage specific Φ 187, that shares wall
387 teichoic acid (WTA) receptors with *S. epidermidis* (22, 23). Dependent upon the
388 incidental packaging of plasmid introduced into restriction deficient intermediary
389 host, *S. aureus* PS187 Δ hsdR Δ sauPSI, with Φ 187 phage machinery (24), the method
390 can be used to transduce a number of CoNS but is not universally applicable to all *S.*
391 *epidermidis* isolates (23). The observed ability of ST395 *S. aureus* to exchange DNA
392 with some CoNS led Winstel *et al.* to conclude that overlap may exist between the
393 DNA methylation of ST395 *S. aureus* and CoNS that share the same WTA receptors
394 (22, 23). Phage Φ 187 transduction experiments performed using our WT isolates and
395 Δ hsdS mutants for BPH0662, RP62a and BPH0736 are shown in Figure 5 examining
396 the transfer of pRAB11. These experiments demonstrate that even if successfully
397 transduced into a *S. epidermidis* isolate, plasmids are still subject to degradation by
398 type I RM systems if they bear a recognised TRM. However, in BPH0736 (absent
399 type I restriction) or mutant strains in which systems have been rendered inactive,
400 transduced plasmid remains viable. The methylome for ST395 *S. aureus* has not been
401 characterised, however the draft genome sequence for PS187 (GCA_000452885.1)
402 indicates that both type I RM systems in this isolate are identical to those in *S. aureus*
403 isolate JS395 (ST1093, belonging to CC395 (25)). We predicted the methylome of the
404 isolate to include GAGN₆TCG (same as AUS0325-MS2) and another unknown TRM
405 (Figure 2, Table 2). The results of our experiments and analyses of the diversity of *S.*

406 *epidermidis* type I RM systems suggest that successful phage transduction of some *S.*
407 *epidermidis* isolates with Φ 187 is more likely related to the absence of a functional
408 system, rather than the presence of a shared methylome with ST395 *S. aureus*. This is
409 further supported by experiments performed by Winstel *et al.*, (23) in which Φ 187
410 could only transduce pTX15 (26) into RP62a, but not pKOR1 (27). Based on our
411 characterised RP62a TRM, we determined that pTX15 possesses no RP62a motifs,
412 while both pRAB11 and pKOR1 each bear four motifs explaining why neither
413 plasmid is transducible into RP62a-WT.

414

415 Temperature sensitive plasmid, pIMAY, is frequently used for allelic exchange in
416 staphylococci due to the presence of inducible *secY* antisense counter selection, and
417 the lower likelihood of unintended mutations (such as occur with pKOR1) as
418 integrants are selected at 37°C instead of 43°C (28). However, we found that Φ 187
419 was not capable of transducing pIMAY into any of the tested strains, including the
420 $\Delta hsdS$ mutants and naturally restriction deficient BPH0736. We hypothesised this was
421 due to the low copy number of pIMAY in staphylococci, resulting in low levels of
422 incidental packaging of the plasmid within Φ 187, as compared to high copy number
423 plasmid pRAB11. Other limitations to Φ 187 transduction include a recommendation
424 to use plasmids <10 kb (24), that should not have impacted on pIMAY (5.7 kb),
425 which is smaller than pRAB11 (6.4 kb). Although a simplified harvesting and
426 infection protocol was used compared to that described by Winstel *et al.* (24), in
427 restriction deficient *S. epidermidis* strain BPH0736 we achieved an efficiency of 10^4
428 transductants per ml, equivalent to their anticipated results of 10^1 - 10^4 (24). Of note,
429 the efficiency of the $\Delta hsdS$ mutants, BPH0662 $\Delta hsdS$ I $\Delta hsdS$ II and RP62a $\Delta hsdS$ were
430 both two-log lower compared to BPH0736 (Figure 5), further supporting the presence

431 of strain dependent factors beyond the barriers posed by type I RM systems and WTA
432 in these backgrounds.

433

434 **Conclusions**

435 Our results demonstrate marked differences between the type I RM systems in *S.*
436 *aureus* and *S. epidermidis* that had hitherto been assumed to be same (11). These
437 differences are predominantly attributable to the arrangement and genome location of
438 the *S. epidermidis* type I system as a complete three-gene operon, we hypothesise to
439 be mobilised by *ccr*. Localisation of the operon in a highly plastic region of the
440 chromosome increases the likelihood of horizontal transfer of these complete systems
441 between *S. epidermidis* as well as to other staphylococci. This results in a lack of
442 lineage specificity and higher probability of spontaneous interruption of component
443 genes. This is in contrast to *S. aureus* where the type I systems are typically arranged
444 as one *hsdR* and two *hsdMS* genes located distant from one another in stable regions
445 of the chromosome. The diversity of *S. epidermidis* type I RM systems that do not
446 strictly adhere to ST/CC groupings indicates that genetic manipulation of *S.*
447 *epidermidis* requires tailoring to each isolate of interest. Attempting transformation
448 without genomic analysis of the methylome could be successful, as our analyses
449 found that 38% of *S. epidermidis* strains did not possess a type I RM system, and not
450 all systems pose an intractable barrier (e.g. RP62a). However, some isolates such as
451 the internationally disseminated, near pan-drug resistant, clone BPH0662 have
452 complex and absolute type I restriction barriers.

453

454 We have demonstrated that PAM using a DC10B *E. coli* host is a simple and effective
455 means to bypass the type I RM barrier in *S. epidermidis*, with a plasmid transfer

456 efficiency equivalent to a complete absence of type I RM systems. The decreasing
457 cost and ready availability of whole genome sequencing has made the sequencing of
458 isolates planned for mutagenesis and their mutant derivatives commonplace, and a
459 practice that is recommended to ensure the absence of acquired secondary mutations
460 (29). If the genome sequence of an isolate is known, its methylome and ability to be
461 transformed can be predicted as follows: 1. Does the isolate possess an intact type I
462 RM system? If not type I methylation will not be expressed and the isolate should be
463 inherently transformable. 2. Each complete type I RM system within a genome should
464 be functional. For an HsdS protein with known TRMs, presence of the TRMs on a
465 vector will likely prevent transformation. 3. Orphaned, complete *hsdS* genes in the
466 absence of an adjacent *hsdM* may be expressed if their associated *hsdM* allele is
467 present elsewhere in the genome. In view of the above, when designing an *E. coli*
468 PAM host, we recommend including all complete *hsdMS* and any complete orphan
469 *hsdS* genes from the *S. epidermidis* strain to be manipulated, to ensure complete
470 recapitulation of the endogenous type I methylome.

471
472 The 247 genomes we analysed are by no means an exhaustive representation of all *S.*
473 *epidermidis* and additional examples of type I RM systems will undoubtedly be
474 catalogued as further sequencing of this organism is performed. However, this
475 genomic sampling together with our functional data was sufficient to draw the above
476 conclusions. In view of the identified complexities associated with the genetic
477 manipulation of *S. epidermidis*, the reference isolate BPH0736 should prove
478 particularly useful. A clinical ST2 isolate representative of international circulating
479 clones (5), BPH0736 is naturally transformable due to the spontaneous interruption of

480 *hsdR*, rendering it highly amenable to both transformation and phage transduction,
481 making it an ideal strain for future molecular studies.

482

483 **Materials and Methods**

484 **Media and reagents.** Bacterial strains, plasmids and oligonucleotides used in this
485 study are listed in Table S6. *S. epidermidis* were routinely cultured at 37°C in brain
486 heart infusion broth (BHI)(Difco). See Supplementary Methods for detailed
487 description of culture media, antibiotics and enzymes.

488

489 **Genome sequencing and analysis.** Refer to Supplementary Methods.

490

491 **Electroporation.** Early stationary phase cultures (8 h) of *S. epidermidis* grown in 10
492 ml of B Media (BM) were added to 90 ml of fresh, prewarmed BM. Cultures were
493 reincubated to an OD₆₀₀ between 0.8 - 0.9 and chilled in an ice slurry for 10 min.
494 Cells were harvested at 3,900 *xg* for 5 min at 4°C in a swinging bucket rotor and the
495 cell pellet resuspended in 100 ml of autoclaved, ice-cold water. Centrifugation was
496 repeated, and the pellet resuspended in 50 ml of autoclaved ice-cold water. Cells were
497 centrifuged and successively resuspended in 20 ml, 10 ml then 250 µl of autoclaved
498 ice-cold 10% (weight/volume) glycerol. Equal aliquots (50 µl) were frozen at -80°C.
499 Prior to electroporation, cells were thawed on ice for 5 min, then at room temperature
500 for 5 min. Following centrifugation at 5,000 *xg* for 1 min, cells were resuspended in
501 50 µl of 10% glycerol with 500 mM sucrose (filter sterilised). Pellet paint (Novagen)
502 precipitated plasmid DNA was added to the cells, then cells were transferred into a 1
503 mm electroporation cuvette (Bio-Rad) and pulsed at 21 kV/cm, 100 Ω, 25 µF at room
504 temperature. Routinely, 5 µg of plasmid DNA was used, with concentration

505 determined by fluorometric assay (Qubit 2.0; Life Technologies). Cells were
506 incubated in 1 ml of BHI supplemented with 500 mM sucrose (filter sterilised) at
507 28°C for 2 h prior to plating on BHIA containing chloramphenicol 10 µg/ml.

508

509 **Construction of Ec_Se736I and Ec_SeRP62aI E. coli hosts.** *E. coli* mutants
510 expressing the relevant *S. epidermidis* type I RM systems in a DC10B background
511 were created using the primers listed in Table S6 as previously described (8, 9, 12).

512 Detailed methodology in Supplementary Methods.

513

514 **Construction of S. epidermidis ΔhsdS mutants.** The pIMAY(ΔhsdS) vectors were
515 constructed using amplified by overlap extension PCR (30) with the A/B/C/D primer
516 sets specified for each strain in Table S6; cloning into the pIMAY vector backbone;
517 subsequent cloning of the insert into the vector; mutant selection and screening were
518 conducted as previously described (5). Detailed methodology in Supplementary
519 Methods.

520

521 **Harvesting Φ187 + pRAB11/pIMAY lysate from S. aureus PS187ΔhsdRΔsauPSI**
522 Φ187 containing pRAB11/pIMAY was harvested from *S. aureus*
523 PS187ΔhsdRΔsauPSI using a protocol adapted from Winstel (24). See Supplementary
524 Methods for detailed methodology.

525

526 **Φ187 + pRAB11/pIMAY transduction of S. epidermidis.** A phage transduction
527 protocol was adapted from Foster (31). Detailed methodology in Supplementary
528 Methods.

529

530 **Accession numbers**

531 The datasets supporting the results of this article are available from NCBI under
532 BioProject No. PRJNA532483 (sequencing and closed genome assemblies) and
533 Figshare ([*S. aureus* HsdS](#); [*S. epidermidis* HsdS](#); [*S. epidermidis* HsdM](#); [*S. epidermidis* HsdR](#)).

535

536 **Funding information**

537 This project was supported by the Royal Australasian College of Physicians, Basser
538 Research Entry Scholarship/Australian Government Research Training Program
539 Scholarship to JYHL; National Health and Medical Research Council of Australia
540 (NHMRC) Senior Research Fellowship to TPS (GNT1105525); NHMRC Practitioner
541 Fellowship to BPH (GNT1105905); and NHMRC Project Grant (GNT1066791).

542

543 **Acknowledgments**

544 We thank Volker Winstel for supply of Φ 187 and *S. aureus* strain
545 PS187 Δ hsdR Δ sauPSI. We also acknowledge Bernhard Krismer for providing the
546 assembled DNA sequence of pTX15.

547

548 **Author contributions**

549 Project conceived by JYHL, TPS, BPH and IRM. Experimental work performed by
550 JYHL and IRM, with PacBio sequencing performed by GPC and SJP. Bioinformatic
551 analysis performed by JYHL with assistance from TS, RG and AGdS. JYHL, TJF,
552 BPH, TPS and IRM drafted the manuscript; all authors reviewed and contributed to
553 the final manuscript.

554

555 **References**

- 556 1. Human Microbiome Project Consortium. 2012. Structure, function and
557 diversity of the healthy human microbiome. *Nature* 486:207–214.
- 558 2. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen
559 A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team
560 and Participating NHSN Facilities. 2013. Antimicrobial-resistant pathogens
561 associated with healthcare-associated infections: summary of data reported to
562 the National Healthcare Safety Network at the Centers for Disease Control and
563 Prevention, 2009-2010. *Infect Control Hosp Epidemiol* 34:1–14.
- 564 3. Otto M, Chatterjee. 2009. *Staphylococcus epidermidis* – the ‘accidental’
565 pathogen. *Nat Rev Microbiol* 7:555-567.
- 566 4. Thomas JC, Zhang L, Robinson DA. 2014. Differing lifestyles of
567 *Staphylococcus epidermidis* as revealed through Bayesian clustering of
568 multilocus sequence types. *Infect Genet Evol* 22:257–264.
- 569 5. Lee JYH, Monk IR, Gonçalves da Silva A, Seemann T, Chua KYL, Kearns A,
570 Hill R, Woodford N, Bartels MD, Strommenger B, Laurent F, Dodémont M,
571 Deplano A, Patel R, Larsen AR, Korman TM, Stinear TP, Howden BP. 2018.
572 Global spread of three multidrug-resistant lineages of *Staphylococcus*
573 *epidermidis*. *Nat Microbiol* 3:1175-1185.
- 574 6. Casadesús J, Low D. 2006. Epigenetic gene regulation in the bacterial world.
575 *Microbiol Mol Biol Rev* 70:830–856.
- 576 7. Roberts RJ. 2003. A nomenclature for restriction enzymes, DNA
577 methyltransferases, homing endonucleases and their genes. *Nucleic Acids Res*
578 31:1805–1812.

- 579 8. Monk IR, Shah IM, Xu M, Tan M-W, Foster TJ. 2012. Transforming the
580 untransformable: application of direct transformation to manipulate genetically
581 *Staphylococcus aureus* and *Staphylococcus epidermidis*. *mBio* 3 e00277-11.
- 582 9. Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ. 2015. Complete bypass
583 of restriction systems for major *Staphylococcus aureus* lineages. *mBio*
584 6:e00308–15.
- 585 10. Waldron DE, Lindsay JA. 2006. Sau1: a novel lineage-specific type I
586 restriction-modification system that blocks horizontal gene transfer into
587 *Staphylococcus aureus* and between *S. aureus* isolates of different lineages. *J*
588 *Bacteriol* 188:5578–5585.
- 589 11. Costa SK, Donegan NP, Corvaglia A-R, Francois P, Cheung AL. 2017.
590 Bypassing the restriction system to improve transformation of *Staphylococcus*
591 *epidermidis*. *J Bacteriol* 199:e00271–17.
- 592 12. Lee JYH, Monk IR, Pidot SJ, Singh S, Chua KYL, Seemann T, Stinear TP,
593 Howden BP. 2016. Functional analysis of the first complete genome sequence
594 of a multidrug resistant sequence type 2 *Staphylococcus epidermidis*. *Microb*
595 *Genom* 2:e000077.
- 596 13. Roberts GA, Houston PJ, White JH, Chen K, Stephanou AS, L. P. Cooper,
597 Dryden DTF, Lindsay JA. 2013. Impact of target site distribution for type I
598 restriction enzymes on the evolution of methicillin-resistant *Staphylococcus*
599 *aureus* (MRSA) populations. *Nucleic Acids Res* 41:7472–7484.
- 600 14. Gill SR, Fouts DE, Archer GL, Mongodin EF, DeBoy RT, Ravel J, Paulsen IT,
601 Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R,
602 Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee
603 C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson

- 604 KE, Fraser CM. 2005. Insights on evolution of virulence and resistance from
605 the complete genome analysis of an early methicillin-resistant *Staphylococcus*
606 *aureus* strain and a biofilm-producing methicillin-resistant *Staphylococcus*
607 *epidermidis* strain. *J Bacteriol* 187:2426–2438.
- 608 15. Galac MR, Stam J, Maybank R, Hinkle M, Mack D, Rohde H, Roth AL, Fey
609 PD. 2017. Complete genome sequence of *Staphylococcus epidermidis* 1457.
610 *Genome Announc* 5:e00450-17.
- 611 16. Lassen SB, Lomholt HB, Brüggemann H. 2017. Complete genome sequence of
612 a *Staphylococcus epidermidis* strain with exceptional antimicrobial activity.
613 *Genome Announc* 5:e00004-17.
- 614 17. Boundy S, Safo MK, Wang L, Musayev FN, O'Farrell HC, Rife JP, Archer GL.
615 2013. Characterization of the *Staphylococcus aureus* rRNA methyltransferase
616 encoded by *orfX*, the gene containing the Staphylococcal Chromosome
617 Cassette *mec* (SCC*mec*) insertion site. *J Biol Chem* 288:132–140.
- 618 18. Cooper LP, Roberts GA, White JH, Luyten YA, Bower EKM, Morgan RD,
619 Roberts RJ, Lindsay JA, Dryden DTF. 2017. DNA target recognition domains
620 in the Type I restriction and modification systems of *Staphylococcus aureus*.
621 *Nucleic Acids Res* 7:3395-2406.
- 622 19. Helle L, Kull M, Mayer S, Marincola G, Zelder M-E, Goerke C, Wolz C,
623 Bertram R. 2011. Vectors for improved Tet repressor-dependent gradual gene
624 induction or silencing in *Staphylococcus aureus*. *Microbiology* 157:3314–
625 3323.
- 626 20. Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal
627 gene transfer in staphylococci by targeting DNA. *Science* 322:1843–1845.

- 628 21. Löfblom J, Kronqvist N, Uhlén M, Ståhl S, Wernérus H. 2007. Optimization of
629 electroporation-mediated transformation: *Staphylococcus carnosus* as model
630 organism. *J Appl Microbiol* 102:736–747.
- 631 22. Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM,
632 Penadés JR, Nübel U, Holst O, Dandekar T, Peschel A, Xia G. 2013. Wall
633 teichoic acid structure governs horizontal gene transfer between major bacterial
634 pathogens. *Nat Commun* 4:2345.
- 635 23. Winstel V, Kühner P, Krismer B, Peschel A, Rohde H. 2015. Transfer of
636 plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using
637 a unique bacteriophage. *Appl Environ Microbiol* 81:2481–2488.
- 638 24. Winstel V, Kühner P, Rohde H, Peschel A. 2016. Genetic engineering of
639 untransformable coagulase-negative staphylococcal pathogens. *Nat Protoc*
640 11:949–959.
- 641 25. Larsen J, Andersen PS, Winstel V, Peschel A. 2017. *Staphylococcus aureus*
642 CC395 harbours a novel composite staphylococcal cassette chromosome *mec*
643 element. *J Antimicrob Chemother* 72:1002-1005.
- 644 26. Peschel A, Götz F. 1996. Analysis of the *Staphylococcus epidermidis* genes
645 *epiF*, *-E*, and *-G* involved in epidermin immunity. *J Bacteriol* 178:531–536.
- 646 27. Bae T, Schneewind O. 2006. Allelic replacement in *Staphylococcus aureus*
647 with inducible counter-selection. *Plasmid* 55:58–63.
- 648 28. Monk IR, Foster TJ. 2012. Genetic manipulation of Staphylococci - breaking
649 through the barrier. *Front Cell Infect Microbiol* 2:49.
- 650 29. Monk IR, Howden BP, Seemann T, Stinear TP. 2017. Correspondence:
651 Spontaneous secondary mutations confound analysis of the essential two-

- 652 component system WalKR in *Staphylococcus aureus*. Nat Commun
653 8:ncomms14403.
- 654 30. Heckman KL, Pease LR. 2007. Gene splicing and mutagenesis by PCR-driven
655 overlap extension. Nat Protoc 2:924–932.
- 656 31. Foster TJ. 1998. 7.9 Molecular genetic analysis of staphylococcal virulence.
657 Method Microbiol 27:433-454.
- 658 32. Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K. 2008. Genome
659 sequence of *Staphylococcus aureus* strain Newman and comparative analysis
660 of staphylococcal genomes: polymorphism and evolution of two major
661 pathogenicity islands. J Bacteriol 190:300–310.
- 662 33. Roberts RJ, Vincze T, Posfai J, Macelis D. 2005. REBASE--restriction
663 enzymes and DNA methyltransferases. Nucleic Acids Res 33:D230–2.
- 664

665 **Figure 1. Comparison of the structure and chromosomal location of *S. aureus***
666 **and *S. epidermidis* type I restriction modification systems. A. *S. aureus***
667 **Newman_UoM (29, 32). B. *S. epidermidis* BPH0736.** For consistency, the
668 chromosome was orientated forwards starting at *dnaA* and native type I RM systems
669 were sequentially numbered, with any imported systems numbered thereafter.

670

671 **Figure 2. *S. aureus* native type I restriction modification systems are lineage**
672 **specific.** Maximum-likelihood core-SNP based phylogeny of 128 closed *S. aureus*
673 genomes originating from 40 STs, using Newman_UoM as the reference genome.
674 Overlaid are the results of in silico multi-locus sequence type (MLST), clonal cluster
675 (CC), bayesian analysis of population structure (BAPS), presence of CRISPR-Cas
676 systems and type I restriction modification system HsdS variants. Bold red font
677 indicates isolates with PacBio characterised methylomes; Bold blue font indicates
678 isolates with methylomes determined by DNA cleavage with purified enzyme. Boxes
679 around strain names are coloured according ST type. Open circle = amino acid
680 substitutions present in HsdS. *indicates truncated HsdS subunit. Scale bar indicates
681 number of nucleotide substitutions per site (bold) with an approximation of SNP rate
682 (in parentheses).

683

684 **Figure 3. *S. epidermidis* type I restriction modification systems are not conserved**
685 **within lineages.** Maximum-likelihood, core-SNP based phylogeny for 247 *S.*
686 *epidermidis* genomes: seven newly closed reference genomes; six existing reference
687 genomes; 156 genomes curated from NCBI sequence read archive (SRA); 75 isolates
688 from Lee *et al.* (5); and the three draft genomes with methylation data (11). BPH0736
689 was used as the reference genome for analyses. Overlaid are the results of in silico

690 multi-locus sequence type (MLST), bayesian analysis of population structure (BAPS),
691 presence of CRISPR-Cas systems and type I restriction modification system HsdS
692 variants. Bold red font indicates isolates with characterised methylomes. Isolates were
693 from 70 recognised and two unclassified MLST groups. Boxes around strain names
694 are coloured according ST type; when background colour is same as BAPS group,
695 indicates an ST represented by a single isolate. *Truncated HsdS subunit. Scale bar
696 indicates number of nucleotide substitutions per site (bold) with an approximation of
697 SNP rate (in parentheses).

698

699 **Figure 4. Plasmid artificial modification to overcome the type I RM systems in *S.***
700 ***epidermidis*.** Biological triplicate data for 5 ug of plasmid passaged through DC10B
701 *E. coli* compared to the relevant *E. coli* PAM construct, transformed into *S.*
702 *epidermidis* wild type (WT) and $\Delta hsdS$ mutant strains. Error bars represent mean \pm
703 standard deviation of three independent experiments. CFU = colony forming units.
704 *No transformants. **A.** Transformation of BPH0622-WT, BPH0662 $\Delta hsdS1$,
705 BPH0662 $\Delta hsdS2$ and BPH0662 $\Delta hsdS1\Delta hsdS2$ with plasmid pIMAY or pRAB11
706 isolated from DC10B and strain specific *E. coli* Ec_Se662I (expressing
707 BPH0662 $hsdMS1$), Ec_Se662II (expressing BPH0662 $hsdMS2$) and Ec_Se662I-II
708 (expressing both BPH0662 $hsdMS1$ and BPH0662 $hsdMS2$). **B.** Transformation of
709 RP62a-WT and RP62a $\Delta hsdS$ with plasmid pIMAY or pRAB11 isolated from DC10B
710 and strain specific *E. coli* Ec_SeRP62aI (expressing RP62a $hsdMS$). **C.**
711 Transformation of BPH0736-WT and BPH0736 $\Delta hsdS$ with plasmid
712 pIMAY $\Delta 736 hsdS$ isolated from DC10B and strain specific *E. coli* Ec_Se736I
713 (expressing BPH0736 $hsdMS$). Note, pIMAY $\Delta 736 hsdS$ was used as neither pIMAY

714 nor pRAB11 possessed any TRM. **D.** Number of *S. epidermidis* strain specific HsdS
715 TRM present on each plasmid.

716

717 **Figure 5. *S. epidermidis* phage transduction is subject to type I restriction.**

718 Biological triplicate data for phage transduction of Φ 187-pRAB11 lysate transduced
719 into *S. epidermidis* wild type (WT) and *hsdS* mutant strains. Error bars represent mean
720 \pm standard deviation of three independent experiments. *No transformants.

721

722 **Table 1. Comparison of *S. aureus* and *S. epidermidis* type I restriction**
723 **modification systems.**

724

725 **Table 2. Diversity of *S. aureus* type I restriction modification system methylation**
726 **profiles.** Isolate HsdS motifs were collated from publications by Monk *et al.*, 2015
727 (9), Cooper *et al.*, 2017 (18) and the REBASE database (33). HsdS names in bold
728 black font have motifs determined by PacBio sequencing of the isolate after which the
729 representative HsdS was named. HsdS names in bold blue font have motifs
730 determined by DNA cleavage with purified restriction enzyme. Multi-locus sequence
731 types (MLSTs) in which each HsdS are found are listed according to the order they
732 appear in Figure 2 phylogeny (top to bottom); STs within the same clonal complex
733 (CC) are listed within square brackets; STs within parentheses are single locus
734 variants of the ST group they are listed after. trunc = truncated; **A** (red) = methylated
735 adenine residue; **T** = complementary partner to methylated adenine residue. ^a
736 Truncation at amino acid 203. ^b Truncation at amino acid 249. ^c Truncation at amino
737 acid 8. *HUV05_RMS3 is carried on a plasmid, not integrated in the chromosome.

738 Full amino acid translations of all 48 HsdS variants are accessible at Figshare [DOI](#):

739 [10.26188/5cb01fc089ab2](https://doi.org/10.26188/5cb01fc089ab2).

740

741 **Table 3. Diversity of *S. epidermidis* type I restriction modification methylation**

742 **profiles.** Isolate HsdS motifs were collated from methylomes newly characterised in

743 this study and publications by Lee *et al.*, 2016 (12) and Costa *et al.*, 2017 (11). HsdS

744 names in bold black font have motifs determined by PacBio sequencing of the isolate

745 after which the representative HsdS was named. Multilocus sequence types (MLSTs)

746 in which each HsdS are found are listed according to the order they appear in Figure 3

747 phylogeny (clockwise); ST185 is a single locus variant of ST2. trunc = truncated; A

748 (red) = methylated adenine residue; T = complementary partner to methylated

749 adenine residue. ^a ATCC 12228 type I RM system is non-functional with truncated

750 *hsdR*, complete *hsdS* and no *hsdM*; all 64 isolates possessed the same incomplete type

751 I RM system; Motif identified based on methylome for NIH4008 due to presence of

752 HsdM capable of interacting with 12228 HsdS. ^b 14.1.R1 type I RM system is non-

753 functional with truncated *hsdR*, complete *hsdS* and no *hsdM*. ^c L1M substitution. ^d 1st

754 81 amino acids truncated. ^e S295P substitution. ^f 11 amino acid substitutions (K26E, I

755 56V, E59K, E171K, K174R, K175T, E178A, I193V, D201N, Y386F, V434I). Amino

756 acid translations of all 31 HsdS variants ([DOI: 10.26188/5cb01e8f23305](https://doi.org/10.26188/5cb01e8f23305)) and their

757 interacting HsdM ([DOI: 10.26188/5cb019b506f53](https://doi.org/10.26188/5cb019b506f53)) are accessible through Figshare.

758

759 **Figure S1. A hypothesised role for cassette chromosome recombinase (ccr) in the**

760 **mobilisation of *S. epidermidis* and *S. aureus* type I restriction modification**

761 **systems. A.** Complete *S. epidermidis* genomes with type I RM systems. **B.** *S. aureus*

762 genomes with imported type I RM systems. Genomes are orientated forwards starting

763 at *dnaA*. [#]NCBI uploaded genome does not start at *dnaA*. *SEI not classifiable by
764 existing MLST scheme.

765

766 **Figure S2. Alignment of *S. aureus* HsdS variants. A.** Structure of an HsdS allele
767 with conserved regions (CRs) flanking two variable regions known as target
768 recognition domains (TRD1 & TRD2). **B.** Each TRD typically specifies three to four
769 defined base pairs including a methylated adenine residue (red **A**; **T** = complementary
770 partner to methylated adenine residue); with a four to seven base pair non-specific
771 spacer (N) between the two defined halves, collectively these TRDs determine the full
772 target recognition motif (TRM) specified by an HsdS variant. HsdS names in bold
773 black font have motifs determined by PacBio sequencing of the isolate after which the
774 representative HsdS was named. HsdS names in bold blue font have motifs
775 determined by DNA cleavage with purified restriction enzyme. Alignments of the
776 identified variants of *S. aureus* HsdS are shown adjacent to their TRMs, each formed
777 by a different TRD pairing. Scale above alignments indicates the position in the
778 consensus alignment with mean pairwise identity at each site graphed (green = 100%
779 identity; khaki = 30-100%; red <30%). Blue (TRD1) and red (TRD2) outlines
780 highlight examples of TRDs that recur within the alignments and the TRM base pairs
781 they define. Yellow boxes highlight alignments of HsdS imported into *S. aureus* on
782 Staphylococcal cassette chromosome elements.

783

784 **Figure S3. Alignment of *S. epidermidis* HsdS variants.** HsdS names in bold black
785 font have motifs determined by PacBio sequencing of the isolate after which the
786 representative HsdS was named. Target recognition motifs (TRMs) (when known)
787 and amino acid alignments are shown adjacent. Scale above alignments indicates the

788 position in the consensus alignment with mean pairwise identity at each site graphed
789 (green = 100% identity; khaki = 30-100%; red <30%). Red outline highlights an
790 example of a target recognition domains that recurs within the alignments and the
791 TRM base pairs they define. Yellow box highlights the 12228-S alignment, this HsdS
792 variant was found to be present in both *S. aureus* and *S. epidermidis* and shared
793 conserved regions with the *S. aureus* HsdS variants located within stable
794 chromosomal islands (Figure S2).

795

796 **Table S1. Metadata associated with pre-existing *S. aureus* and *S. epidermidis***
797 **sequencing.** **A.** *S. aureus* reference genomes; **B.** *S. epidermidis* reference genomes;
798 **C.** *S. epidermidis* SRA isolate metadata; **D.** Lee *et al.*, 2018 isolate metadata; **E.** Costa
799 *et al.*, 2017 isolate metadata.

800

801 **Table S2. *S. aureus* and *S. epidermidis* type I restriction modification systems**
802 **subunit protein accession numbers and references.** **A.** *S. aureus* HsdS; **B.** *S.*
803 *aureus* HsdR and HsdM; **C.** *S. epidermidis* HsdS; **D.** *S. epidermidis* HsdR and HsdM.

804

805 **Table S3. *S. epidermidis* reference isolates metadata.** **A.** Clinical metadata; **B.**
806 Closed genome statistics; **C.** PacBio methylation statistics; **D.** CRISPR; **E.** Vitek 2
807 susceptibilities; **F.** Resistome; **G.** Susceptibilities to commonly used plasmid selection
808 markers.

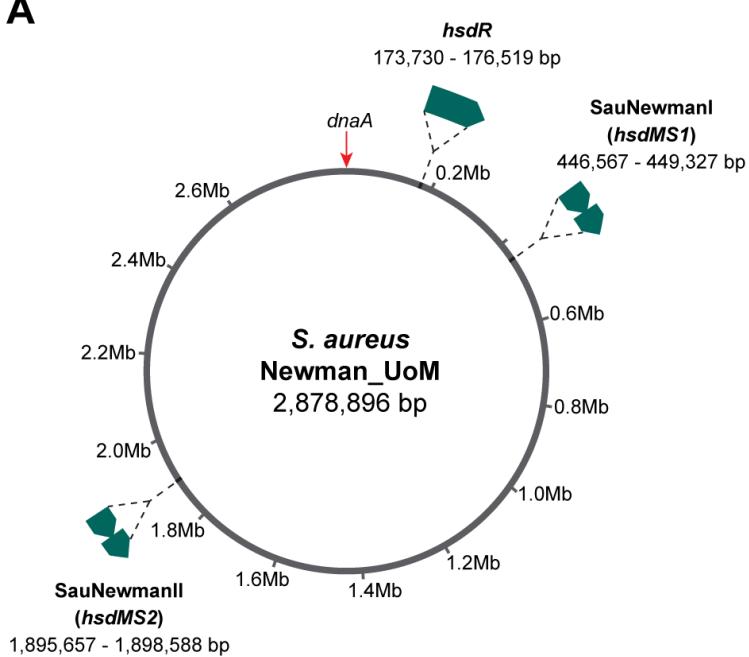
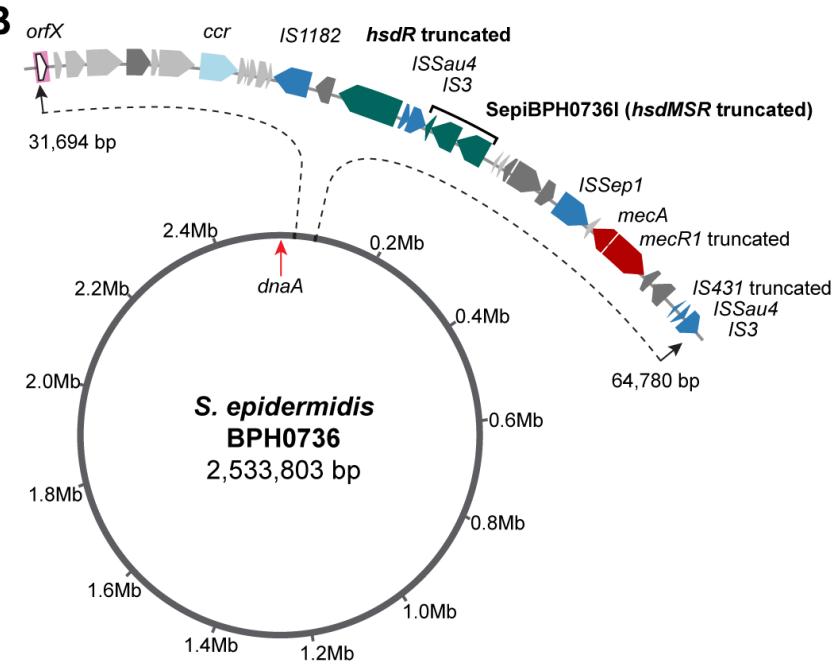
809

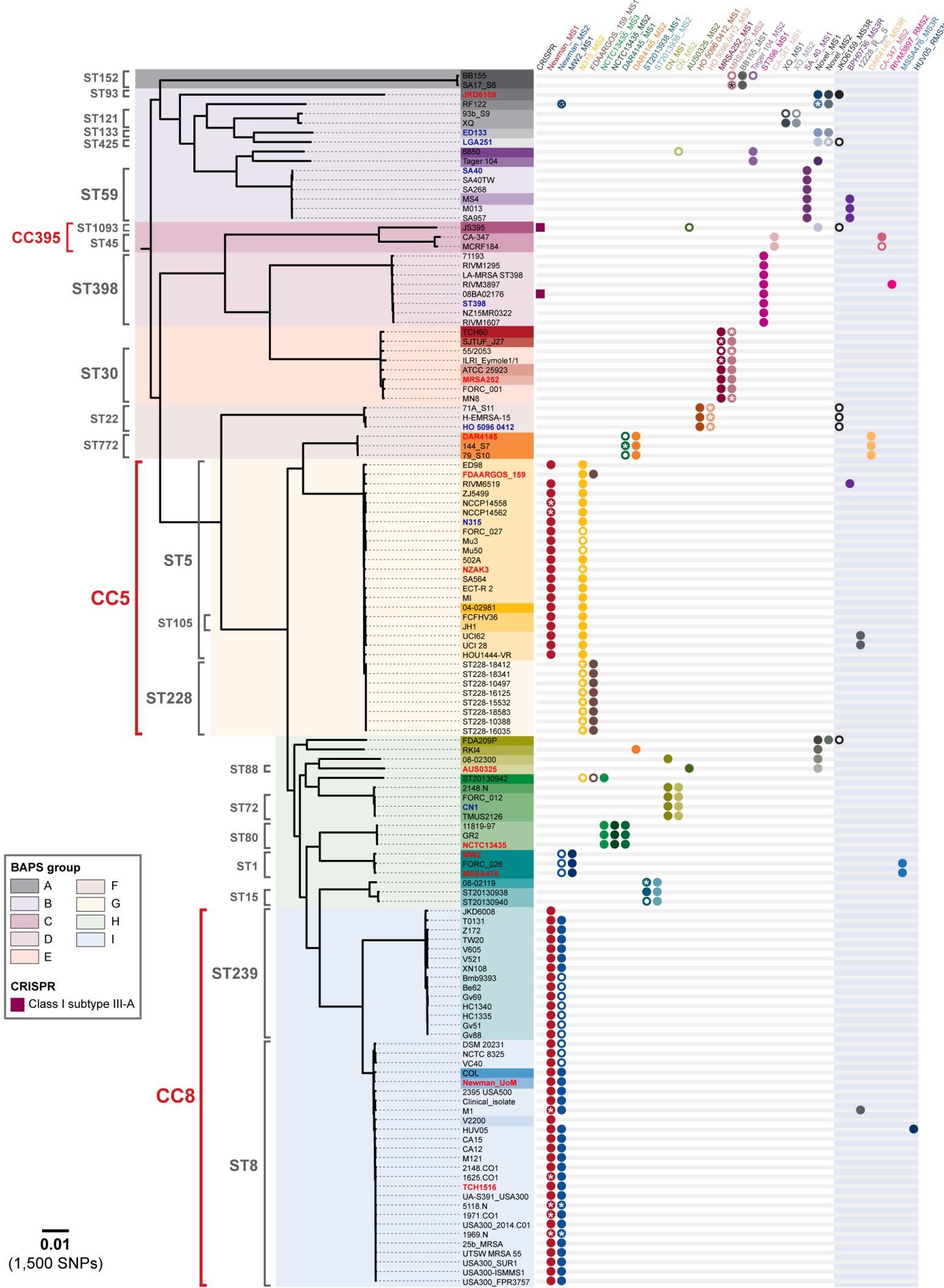
810 **Table S4. Determining the HsdM variant that interacts with 12228 HsdS.**

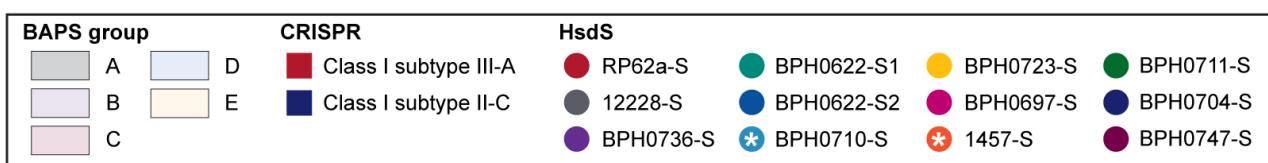
811

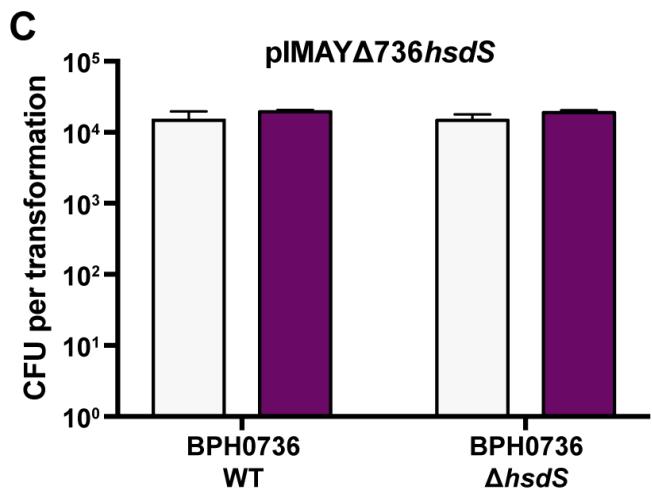
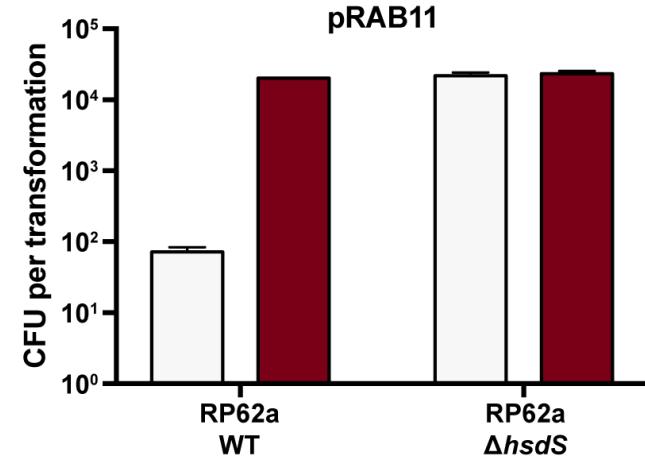
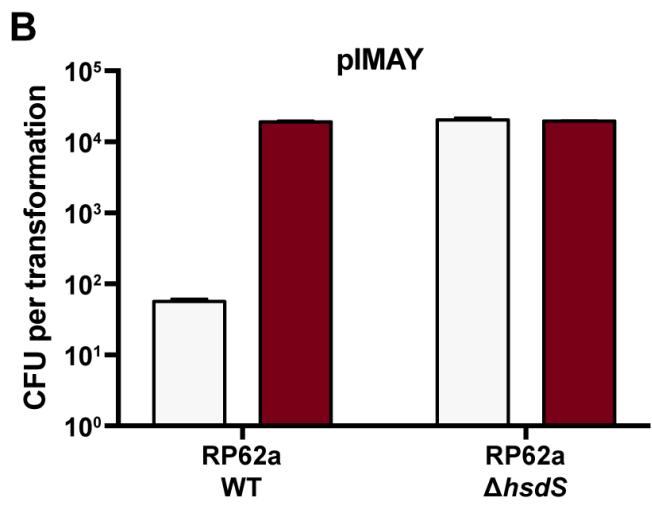
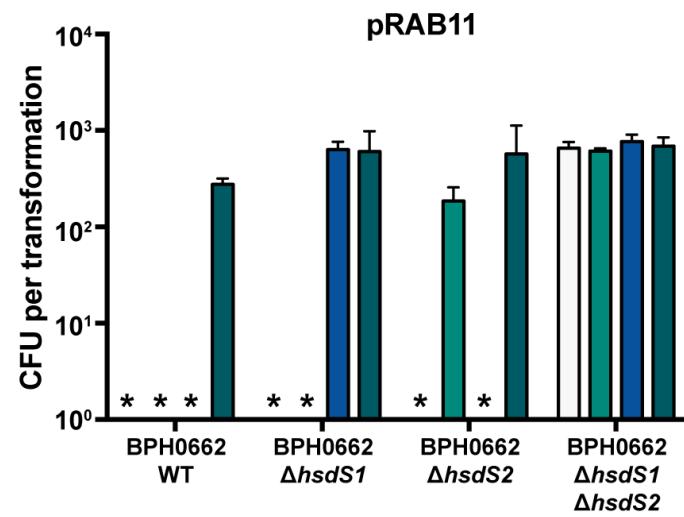
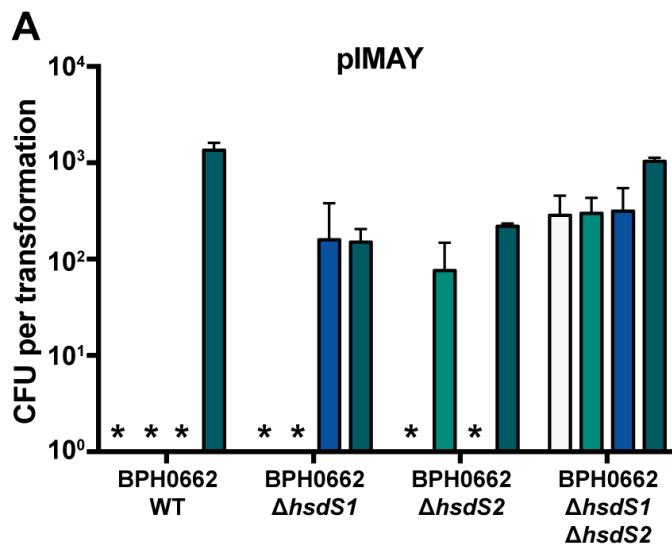
812 **Table S5.** *S. epidermidis* $\Delta hsdS$ and *E. coli* plasmid artificial modification mutant

813 sequencing accession data. **A.** PacBio sequencing; **B.** PacBio methylation; **C.**



814 Illumina sequencing.

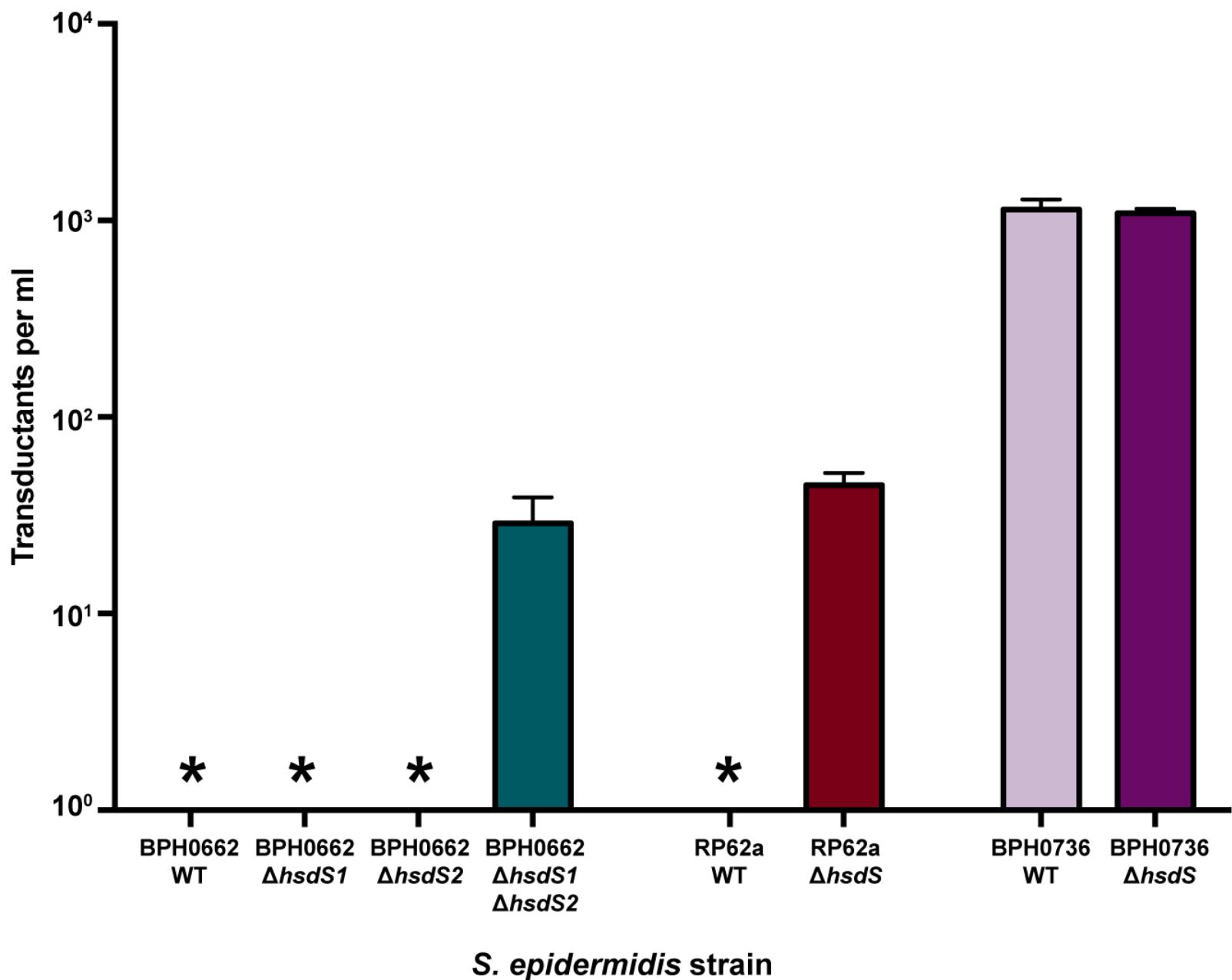

815


816 **Table S6.** Strains, plasmids & oligonucleotides used in this study.






817

818 **Supplementary Methods.**

A**B**



D

Motif	Nº motifs per plasmid		
	pIMAY	pRAB11	pIMAY $\Delta 736hsdS$
BPH0662 HsdS1	3	6	-
BPH0662 HsdS2	2	4	-
RP62a HsdS	2	4	-
BPH0736 HsdS	0	0	3

<i>Staphylococcus aureus</i>	<i>Staphylococcus epidermidis</i>
Organised as a single <i>hsdR</i> gene separated from one, two or three distant <i>hsdMS</i> gene pairs	Organised as complete three gene operon (<i>hsdRMS</i> or <i>hsdMSR</i>)
Conserved, stable chromosomal location for each gene	Close proximity with <i>ccr</i> genes integrated at <i>orfX</i> , located in highly plastic region of genome
Most have two type I RM systems	Most have a single type I RM system
All have at least one type I RM system	Many (38.1%) have no type I RM system
Up to three functional type I RM systems per isolate	Up to three functional type I RM systems per isolate
99.7% amino acid pairwise identity for all native HsdR	At least five identified variants of HsdR
99.3% amino acid pairwise identity for all native HsdM	At least six identified variants of HsdM
At least 48 different variants of HsdS (eight likely imported from coagulase negative staphylococci)	At least 31 different variants of HsdS
Relative conservation of HsdS present within ST groups	No clear conservation of HsdS according to ST group
Conservation of HsdM provides redundancy, enabling interaction with multiple different HsdS in <i>S. aureus</i>	HsdS are only be capable of interacting with their specific paired HsdM, therefore not all orphan <i>hsdS</i> will be functional
Complete three gene <i>hsdRMS/MSR</i> type I systems carried on SCC elements do not adhere to lineage specificity are likely imported from coagulase negative staphylococci	

Representative HsdS	Motif	Nº isolates	MLST	HsdS NCBI Protein Accession
1. ● Newman_UoM_MS1	AGG(N)₅GAT	60	CC5 [5 (225, 105)], CC8 [239, 8 (250, 254, 923)]	WP_000072584.1
2. ● Newman_UoM_MS2	CCAY(N)₆TGT	42	151, 1, CC8 [8 (250, 254, 923)]	WP_000072576.1
3. ● MW2_MS1	CCAY(N)₅TTAA	3	1	WP_000072566.1
4. ● N315_MS2	CCAY(N)₆GTA	30	CC5 [5 (225, 105), 228]	WP_000072627.1
5. ● FDAARGOS_159_MS1	CCAY(N)₅GAT	10	CC5 [5, 228], 25	WP_000072629.1
6. ● NCTC13435_MS3	TCTA(N)₆RTTC	4	25, 72	WP_000072557.1
7. ● NCTC13435_MS2	GAC(N)₆TTYG	3	72	WP_000072638.1
8. ● DAR4145_MS1	CTA(N)₇TAG	6	772, 72	WP_000072592.1
9. ● DAR4145_MS2	GAA(G(N)₆TTRG	4	772, 27	WP_000072555.1
10. ● ST20130938_MS1	predict ?-RTGA	3	582, 15	WP_000066763.1
11. ● ST20130938_MS2	predict GGHA?-TTYG	3	582, 15	WP_000072556.1
12. ● CN1_MS1	GARA(N)₆RTGT	5	7, unclassified, 72	WP_000072573.1
13. ● CN1_MS2	GGA(N)₇TGC	5	50, unclassified, 72	WP_000072558.1
14. ● AUS0325_MS2	GAG(N)₆TCG	2	1093, 88	WP_069992008.1
15. ● HO 5096 0412_MS1	AGG(N)₆TGAR	3	22	WP_000072565.1
16. ● HO 5096 0412_MS2 _{trunc}	not functional	3	22	WP_000323907.1
17. ● MRSA252_MS1	GWAG(N)₅GAT	8	unclassified, 30 (36, 243), 433	WP_000072632.1
18. ● MRSA252_MS2	GGA(N)₇TCG	10	unclassified, 30 (36, 243), 433	WP_000072622.1
19. ● BB155_MS1	predict AGG?-	2	152	WP_054190421.1
20. ● Tager 104_MS2	predict ?-RTTC	3	152, 50, 49	WP_000072571.1
21. ● S0385(ST398_MS1)	ACC(N)₅RTGA	8	398	WP_000072568.1
22. ● CA-347_MS1	GWAG(N)₆TAAA	2	45	WP_000072579.1
23. ● XQ_MS1	GGA(N)₆CCT	2	121	WP_058008355.1
24. ● XQ_MS2	GAC(N)₆TAYG	2	121	WP_058008121.1
25. ● SA40_S	GGA(N)₆RTGT	6	59 (338)	WP_000072559.1
26. ● JKD6159_MS1	CAG(N)₆TTC	1	93	WP_000072616.1
27. ● JKD6159_MS2	GGHA(N)₇TCG	1	93	WP_000072554.1
28. ● RF122_MS1	unknown	1	151	WP_000072567.1
29. ● RF122_MS2 _{trunc}	not functional	1	151	WP_070007671.1 ^a
30. ● ED133_MS1	CAG(N)₅RTGA	1	133	WP_000072617.1
31. ● ED133_MS2	GGA(N)₇TTRG	1	133	WP_000072562.1
32. ● LGA251_MS1	GWAG(N)₅RTGA	1	425	WP_000072635.1
33. ● LGA251_MS2 _{trunc}	not functional	1	425	WP_044122248.1 ^b
34. ● Tager 104_S1	predict GGA?-RTGA	1	49	WP_000072560.1
35. ● JS395_MS1	predict CAG?-	1	1093	WP_000072352.1 ^c
36. ● FDA209P_MS1	CCAY(N)₆RTC	1	464	WP_000072586.1
37. ● FDA209P_MS2	predict CCAY?-TTYG	1	464	WP_047210362.1
38. ● RKI4_MS1	TCTA(N)₆TTAA	1	27	WP_000072580.1
39. ● 08-02300_MS2	predict ?-RTTC	1	7	WP_000072588.1
40. ● AUS0325_MS1	ACC(N)₅RTGT	1	88	WP_000072613.1
Imported systems				
41. ● JKD6159_MS3R	GAAG(N)₅TAC	7	93, 425, 1093, 22, 464	WP_000394004.1
42. ● BPH0736_MS3R	GAT(N)₄CTTA	4	59 (338), 5	WP_000456234.1
43. ● 12228_R _{trunc} S3	GAA(N)₆CTTA	3	5, 8	WP_001631029.1
44. ● DAR4145_MS3R	TTAC(N)₅TAC	3	772	WP_000394606.1
45. ● CA-347_MS2	unknown	2	45	WP_000809140.1
46. ● RIVM3897_MS2R	unknown	1	398	WP_060585130.1
47. ● MSSA476_MS3R	unknown	2	1	WP_000085808.1
48. ● HUV05_RMS3*	unknown	1	8	WP_048520805.1

	Representative HsdS	Motif	Nº isolates	MLST	HsdS NCBI Protein Accession	Interacting HsdM
1.	● 12228-S ^a	GAA(N) ₆ CTTA	64	22, 5, 6, 8, 59, 22, 2 (185)	WP_001631029.1	BPH0662-M1
2.	● BPH0662-S2	CAG(N) ₄ ATC	52	23, 35, 2	WP_002504701.1	BPH0662-M2
3.	● BPH0662-S1	ATT(N) ₅ CTC	43	2	WP_002504637.1	BPH0662-M1
4.	● BPH0736-S	TAAG(N) ₄ ATC	18	210, 16, 2	WP_000456234.1	BPH0662-M2
5.	● BPH0723-S	GAAY(N) ₅ TGC	13	32, 46, 83, 5, 210, 21	WP_002469391.1	BPH0662-M2
6.	● RP62a-S	GAG(N) ₇ TAC	9	230, 71, 23, 10, 40	WP_002489618.1	BPH0662-M1
7.	● BPH0697-S	AC(A(N) ₅)GTG	4	89, 4, 22	WP_002505893.1	BPH0697-M1
8.	● BPH0711-S	GGAA(N) ₆ TAG	2	59	WP_002437522.1	BPH0662-M2
9.	● BPH0704-S	CYYA(N) ₆ CGT	1	358	WP_061544233.1	BPH0662-M1
10.	● BPH0747-S	CNAC(N) ₄ RTTA	1	2	WP_100481761.1	BPH0662-M2
11.	● UCLA-14-S	unknown	7	186, 2	WP_002504281.1	BPH0662-M2
12.	● 1457-S _{trunc}	non-functional	4	86	WP_079118799.1 ^c	unknown
13.	● 972_SEPI-S	unknown	4	5, 6, 20	WP_049387567.1	BPH0662-M2
14.	● 288_GRE41-S	unknown	3	83	WP_049366366.1	BPH0662-M2
15.	● 300_ITL34-S	unknown	3	66, 57	WP_021298801.1 ^d	BPH0662-M1
16.	● 308_MEX35-S _{trunc}	non-functional	2	328, 559	WP_080035763.1	unknown
17.	● 332_1340N-S1 _{trunc}	non-functional	2	402	novel	BPH0662-M2
18.	● 332_1340N-S2	unknown	2	402	novel	332_1340N-M
19.	● BPH0710-S _{trunc}	non-functional	2	2	WP_064584491.1 ^e	BPH0710-M
20.	● 14.1.R1-S ^b	unknown	1	unclassified	WP_102841642.1	unknown
21.	● 248_DEN19-S	unknown	1	1	novel	BPH0662-M1
22.	● 271_ICE87-S	unknown	1	40	novel	BPH0662-M1
23.	● 290_TAW113-S	unknown	1	85	novel	BPH0662-M1
24.	● 298_JAP60-S1	unknown	1	33	novel	unknown
25.	● 298_JAP60-S2	unknown	1	33	novel	298_JAP60-M
26.	● 307_HFA173B-S	unknown	1	37	novel	BPH0662-M2
27.	● 313_93N-S1	unknown	1	329	WP_104992793.1	BPH0662-M1
28.	● 313_93N-S2 _{trunc}	non-functional	1	329	novel	unknown
29.	● 315_148 N-S	unknown	1	390	WP_107639500.1 ^f	BPH0662-M2
30.	● 327_790N-S	predict ?-ATC	1	406	WP_080352270.1	BPH0662-M2
31.	● 328_803NLR2-S	unknown	1	595	WP_002490392.1	BPH0662-M1