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Abstract 
The transformation of chronic lymphocytic leukemia (CLL) to high-grade diffuse large B-cell 

lymphoma (DLBCL), also called Richter’s Syndrome (RS), is a rare cancer with dismal prognosis. 

Drug discovery for RS is hampered by the lack of suitable experimental models, and effective 

therapies remain elusive rendering RS an area of high unmet clinical need. We performed whole 

genome sequencing (WGS) to interrogate paired CLL and RS samples from 17 patients enrolled in 

a prospective multicenter Phase 2 clinical trial (CHOP-OR) and we found that subclones affected 

by mutations in MAPK and PI3K pathways show a high expansion probability during 

transformation. We also demonstrate for the first time that non-coding mutation clusters in a 

PAX5 enhancer, situated 330kb upstream from the transcription initiation site, correlate with 

transformation. Finally, we confirm our findings by employing targeted DNA sequencing (TGS) and 

RNA expression profiling on an extended cohort of 38 patients. 

 

Statement of significance 
Through integrated analysis of WGS, TGS and RNA expression data, we identified drivers of 

transformation not previously implicated in RS, which can be targeted therapeutically and tested 

in the clinic. Our results have informed the design of a new clinical platform study, which is now 

open to recruitment in the UK.  
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Introduction 
The transformation of chronic lymphocytic leukemia (CLL) into an aggressive, high-grade diffuse 

large B-cell lymphoma (DLBCL) called Richter’s syndrome (RS) occurs in 2-15% of CLL patients1–4. 

Based on the annual prevalence of CLL in the UK (5220 cases)5,6, RS is a rare cancer with a 

prevalence of approximately 100 cases per year (0.17 per 100,000), while its incidence increases 

significantly in heavily pre-treated patients7. RS has an overall survival from diagnosis of 5.9 to 

11.4 months using standard-of-care therapy with cyclophosphamide, doxorubicin, vincristine, 

prednisolone and rituximab (CHOP-R) and therefore remains an area of high unmet clinical 

need3,5,8. Although small molecule inhibitors (SMIs) targeting the B-cell receptor (BCR) pathway 

and BCL29–11 have significantly improved the outlook of patients with CLL, RS is a frequent cause 

of SMI failure4,11–14. Although RS shares the histological characteristics of DLBCL, it has a distinct 

molecular profile compared to de novo DLBCL as 90% of cases described in the literature carry 

molecular lesions that emerge from a CLL-related clone in at least one of the following genes: 

TP53 (60-80%), CDKN2A (30%), MYC (30%), MGA (7%) or NOTCH1 (30%)3,15–19. 

 

Drug discovery for RS is hampered by the lack of suitable in vitro or in vivo models. Novel agents 

and their combinations (including the checkpoint PD-1 inhibitor pembrolizumab, second 

generation BCR inhibitors acalabrutinib and umbralisib, and the XPO-1 inhibitor Selinexor3,8,20) 

are currently under investigation. We previously conducted the first and so far only prospective 

multi-center Phase II study (CHOP-OR) exclusively for patients with treatment-naïve, biopsy-

confirmed DLBCL-type RS21. We concluded that the TP53-independent properties of the Type 2 

anti-CD20 antibody ofatumumab in combination with CHOP followed by ofatumumab 

maintenance therapy did not improve patient outcomes compared to historical controls. The 

study protocol included extensive sample collection aimed at identifying clinically-testable 

putative transformation drivers. 

 

In this study, we present results from the first integrative WGS analysis of paired CLL and RS 

samples using a combination of coding and non-coding single nucleotide variants (SNVs), small 

insertions or deletions (InDels) and copy number aberrations (CNAs), as well as TGS and RNA 
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expression profiling to interrogate genes and pathways involved in the transformation to RS. Using 

a combined cohort of 55 RS patients (the second largest so far), we managed to identify multiple 

targetable pathways as putative transformation drivers for further clinical evaluation.  

 

Results 

Detection of genetic variants in the CHOP-OR discovery cohort 

Mutation Burden 

Paired germline, CLL and lymphoma samples from 17 subjects in the CHOP-OR study21 underwent 

WGS. The clinical characteristics of the subjects and results from IgHV analysis on CLL and RS 

tumor samples are presented in Supplementary Table 1. 

 

Despite optimization of DNA extraction methods, formalin-fixation induces DNA artefacts that 

increase the false positive mutation rate22. We therefore applied a stringent variant allele 

frequency (VAF) filter (see Methods) on all FFPE-derived data, and chose a genomic region 

unlikely to be affected by RS driver mutations (i.e. the non-rearranged T-cell receptor-{C,V,J} gene 

locus) as an internal control for effective filtering. As expected, no somatic variants were detected 

in CLL or RS samples across this locus after filtering (Supplementary Figure 1).  

 

In total, 884 somatic non-synonymous variants remained in CLL and RS samples (Figure 2A and B; 

Supplementary Tables 2 and 3). The mean read depths over the alternate alleles were 82X (±30) 

and 76X (±50) in the CLL samples (n=354 total variants) and RS samples (n=530 total variants), 

respectively. The mean VAFs for the detected variants were 0.27 (±0.16; range 0.05-0.89) and 

0.32 (±0.16; range 0.10-0.88) in the CLL and RS samples, respectively.  

 

A significantly larger SNVs and InDels burden was detected in RS (31.2±22.5 variants per subject) 

compared to CLL phase (20.8±12.7 variants per subject) (Figure 2B; p=0.031; one-sided Wilcoxon 

signed rank test with continuity correction), and significantly more genes were mutated in RS 

(n=457 mutated genes; 29.6±21.3 mutated genes per subject) compared to CLL (n=306 mutated 

genes; 19.8±12.4 mutated genes per subject) (p=0.022; same test as above). Most mutated genes 
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and variants detected were non-recurrent (i.e. only detected once and in one subject). Missense 

mutations were most common. No specific type of mutation was associated with disease phase 

(Figure 2C). The same pattern was found across all coding mutations and most patients, although 

three patients (03, 09 and 19) had a particularly high mutational burden.  

 

Several types of acquired copy number aberrations were detected in both CLL and RS phases, 

including homozygous (CN=0) and heterozygous (CN=1) copy number loss, copy number gain 

(CN=3) and high copy number gain (CN>3) with or without loss of heterozygosity (LOH) 

(Supplementary Figure 2 and Supplementary Table 4). The number of genes affected by a CNA 

varied largely between disease phases and subjects. In some cases (e.g. no’s 03, 09 and 11), the 

total number of genes affected in the RS phase was close to or higher than 20K genes 

(Supplementary Figure 2A). Heterozygous copy number loss was the most common CNA, followed 

by CNA gain (Supplementary Figure 2B). 

 

Recurrently mutated genes in the RS phase 

Next, we performed integrated analysis of all acquired SNVs/InDels and CNAs in 44 CLL drivers23 

(Figure 2D; Supplementary Table 5). Consistent with previous studies3,15,16,24, we found lesions in 

the TP53, NOTCH1 and CDKN2A genes to approximately the same extent as in comparable RS 

cohorts (Figure 2D; Supplementary Tables 2 and 4). In our cohort, at least one of these genomic 

lesions was found in 9 CLL samples (52.9%) compared to 13 RS samples (76.5%).  

 

Overall, we found mutations in 38 CLL driver genes (38/44; 86.4%), either in the RS phase only, or 

in both phases. Thirteen CLL samples (76.5%) and all but one RS samples (n=16; 94.1%) had at 

least one CLL driver mutation (Figure 2D and E). As previously reported for RS, the NOTCH1 (n=6; 

35.3%) and TP53 (n=7; 41.2%) genes frequently harboured genetic lesions (Figure 2D). In addition, 

we found the XPO1 (n=6; 35.3%) and TRAF3 (n=6; 35.3%) genes to be mutated at a similar 

frequency in the RS phase (Figure 2D). Mutations in four CLL driver genes were recurrently 

detected in the RS phase only: PTPN11 (n=3; 17.6%), MGA (n=3; 17.6%), IKZF3 (n=2; 11.8%) and 

BAZ2A (n=2; 11.8%) (Figure 2D).  
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Furthermore, because RS is often associated with primary chemotherapy resistance, we 

investigated mutations in a custom set of 21 DNA damage response (DDR) genes (Supplementary 

Table 5; Supplementary Figure 3) and we found 13 out of 17 RS samples (76.5%) compared to 9 

out of 17 CLL samples (52.9%) with mutations in at least one DDR gene. Of the recurrently 

mutated DDR genes, BRIP1, RAD51C and RAD51D acquired lesions in the transition from CLL to 

RS, but overall, DDR genes were found to be mutated in both disease phases (Supplementary 

Figure 3). Notice that 4 out of the 21 DDR genes (RAD50, FANCA, ERCC3 and MRE11) were not 

found to harbour any lesions in either CLL or RS and they were omitted from Supplementary 

Figure 3.  

 

Genes with mutations exclusively found or clonally expanded in the RS phase 

In order to identify genes and specific variants associated with malignant transformation from 

CLL to RS, we next focused the analysis on recurrent SNVs/InDels that either occurred exclusively 

in RS or that clonally expanded in RS compared to the CLL phase of the same patient. We identified 

33 recurrently mutated genes in RS harboring 80 unique SNVs/InDels (Supplementary Table 6). 

Among these, 51 variants (63.8%) across 30 genes (90.9%) were exclusively present in RS or 

showed clonal expansion during transformation to RS. Seventeen of these 30 genes (56.7%; 

indicated in red) were found recurrently mutated: ABCD1P3, CSMD3, DND1, DNER, DST, DUSP2, 

IGSF3, IRF2BP2, KMT2C, MGA, PRAMEF1, RHPN2, SLC9B1, SVIL, TP53, VEZT, WWP1. Most variants 

detected in this group of genes were non-recurrent in our cohort (Supplementary Table 6), but 7 

among them (13.7%; indicated in red) were found to recur in two samples each: 

chr1:g.117156459C>T (in gene IGSF3), chr10:g.29784072G>C (in gene SVIL), 

chr16:g.32487123T>C (in gene ABCD1P3), chr19:g.33490566T>C (in gene RHPN2), 

chr4:g.103826757T>C and chr4:g.103826769G>A (in gene SLC9B1), and chr5:g.140050940C>T (in 

gene DND1). The only other recurrent mutations in RS were chr9:g.139390648CAG>C (in NOTCH1; 

n=5 samples; 29.4%) and chr2:g.61719472C>T (in XPO1; n=3 samples; 17.6%), both of which are 

well-known hotspot mutations. 
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Targeted sequencing on the extended cohort 

In order to extend the analysis of gene mutation recurrence to a larger cohort, we performed 

targeted sequencing on 38 additional cases. After combining SNVs/InDels detected in the 

discovery and in the independent cohort (n=55), TP53, NOTCH1, XPO1, ATM, SF3B1, MGA, BIRC3 

and EGR2, all associated with poor risk CLL, were the most commonly mutated genes (Figure 2E; 

Supplementary Table 7). In four genes, specific variants were recurrent: NOTCH1 

chr9:g.139390648CAG>C, EGR2 chr10:g.64573248G>T, XPO1 chr2:g.61719472C>T and TP53 

chr17:g.7578212G>A (Supplementary Tables 2 and 8). The EGR2 variant has never been reported 

in RS before, but other EGR2 mutations have25. The TP53 chr17:g.7578212G>A stop variant has 

never been reported in any hematological malignancies before, but it has been reported in more 

than 80 cases of carcinoma26.  

 

Pathway analysis 

Up to this point, we have examined the overall mutation burden of RS samples compared to CLL 

samples with respect to all different types of genomic aberrations, but the combined impact of 

these aberrations on cellular pathways is unknown. We therefore expanded our analysis to 

include extensive gene lists covering previously identified CLL drivers, DNA damage response 

(DDR) genes, cell signaling, cell cycle, apoptosis and general cancer pathways (Supplementary 

Table 5). In total, we examined 45 different gene sets for enrichment of genomic aberrations 

(somatic SNVs/InDels and CNAs) in the RS and CLL phases. Pathways more likely to harbor both a 

somatic SNV/InDel and a CNA in the RS phase (when compared to CLL) with a probability higher 

than 95% (false discovery rate or FDR<5%; see Supplementary Statistical Methods) were 

considered differentially mutated (Figure 3A). Using this approach, we found that the MAPK 

pathway had a higher burden (FDR=3.12%) in RS compared to CLL (Figure 3A). Lesions in at least 

one MAPK pathway gene were detected in 9 (52.9%) CLL and 15 (88.2%) RS samples (Figure 3B). 

In addition, the phosphoinositide 3-kinase (PI3K) pathway fell just below the 95% cut-off 

(FDR=5.05%; Figure 3A and Supplementary Figure 4). At least one PI3K pathway gene lesion was 

detected in 10 (58.8%) CLL and 14 (82.4%) RS samples. Furthermore, the analysis confirmed that 

neither CLL drivers nor DDR genes were more often mutated in RS compared to CLL (Figure 3A).  
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Lesions (SNVs, InDels and/or CNAs) were detected in 14 of 270 (5.2%) MAPK genes tested. In the 

majority of these (n=13; 92.9%), mutations were detected in at least two separate RS samples 

(recurrently mutated genes; Figure 3B). TP53 (n=7; 41.2%) and BRAF (n=5; 29.4%) were most 

frequently mutated in RS, followed by DUSP5, RAF1, MAP2K2, KRAS, CACNA1D with four (23.5%) 

mutated samples each. Among these genes, KRAS25, BRAF27 and TP5315,16,24 have been previously 

reported mutated in other RS cohorts. Furthermore, similar to the CLL8 trial28, our analysis could 

not confirm association between the NOTCH signaling pathway and transformation from CLL to 

RS16 (FDR=51.23%; Figure 3A). 

 

Clonal evolution from CLL to RS 

To further test the clinical and biological relevance of our findings, we wanted to understand 

whether any of the pathways mentioned above played a role in the clonal transition from CLL to 

RS. Therefore, we investigated clonal evolution patterns between CLL and RS in paired patient 

samples. Consistent with what is expected for a cohort of consecutively recruited patients, 

analysis of the IgHV locus demonstrated that all successfully tested RS cases carried related IgHV 

rearrangements implying that they originated from the same lymphoma stem cell 

(Supplementary Table 1). Only one case (08) was associated with EBV infection and was therefore 

likely to carry unrelated IgHV rearrangements due to an independent transformation event 

secondary to EBV.  

 

For all 884 filtered somatic variants in our cohort, we estimated cancer cell fraction (CCF) values 

for all variants residing on autosomes (n=852, 96.4%; Supplementary Tables 2 and 3). Overall, we 

detected 186 subclonal and 145 clonal variants in the CLL phase and 294 subclonal and 211 clonal 

variants in the RS phase. A common pattern of clonal evolution observed in 10 out of 17 cases 

(58.8%) was characterized by clones in RS, which were present as either subclones (n=45 variants; 

e.g. cases 32 and 42 in Supplementary Figure 5) or clones in CLL (n=82 variants; e.g. case 01 in 

Supplementary Figure 5). More generally, we observed in all cases a degree of clonal expansion 

or contraction (i.e. a CCF increase or decrease in the transition from CLL to RS), or clonal stability 
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(i.e. CCF values remain roughly the same between the two phases). In three cases (cases 03, 08 

and 09), these transitions involved mutations that were mutually exclusive in CLL and RS samples 

(which explains the absence of connecting lines between them in Supplementary Figure 5). In 

case 08, very few mutations were detected in either CLL or RS consistent with the alternative 

transformation mechanism of EBV infection for this patient (Figure 2A, Supplementary Figure 5 

and Supplementary Table 3).  

 

The 211 clonal variants detected in RS were to a large extent not detectable at all in the 

corresponding CLL sample (n=84; 39.8%), hence they are putative contributors to the malignant 

transformation from CLL to RS. The SVIL and DUSP2 genes showed this pattern in two recurrent 

samples each with clonal variants evolving at the time of transformation. In addition, TP53 

demonstrated both patterns of clonal evolution, each in two samples, with mutations that were 

either absent or subclonal in CLL evolving into clonal in RS (Supplementary Table 3).  

 

Next, we performed an analysis of clonal evolution across different pathways, which 

demonstrated a high expansion probability for clones containing mutations in MAPK and 

transcriptional regulation genes, as well as mutations in DDR genes (Figure 4A). Among the MAPK 

pathway genes, purity-corrected CCFs of TP53, DUSP2, KRAS, BRAF, CACNA1D, CACNA1H, GNA12, 

MECOM and RAF1 genes significantly increased during transformation from CLL to RS (Figure 4B). 

Some subjects harbored more than one MAPK pathway mutation in CLL and in some cases (03, 

16 and 42) more than one expanding mutation was detected, while in other cases (17, 19 and 30) 

one particular mutation expanded, whereas the others contracted or remained relatively stable 

during the malignant transformation (Figure 4B). 

 

Non-coding variants 

Furthermore, we explored the landscape of non-coding mutations during transformation. 

Considering only non-coding SNVs that were predicted to be functionally active (see Methods), 

we found a significantly higher number of mutations in the RS phase compared to the CLL phase 

(P=0.007; one-sided Wilcoxon signed rank test with continuity correction; Supplementary Figure 
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6). One sample had the known NOTCH1 3’UTR mutation in both CLL and RS (Supplementary Table 

9). Interestingly, five patients carried mutation clusters in a region previously characterized as a 

functionally active PAX5 enhancer in CLL19. Three of these occurred in the RS phase only (Figure 

5). When expanding this analysis to all filtered mutations in the entire PAX5 enhancer region, we 

found ten samples, each with 1-8 mutations, of which six had mutations only in the RS phase 

(Supplementary Table 9). 

 

Using the functionally active non-coding SNVs to define regions of hypermutation, we found one 

kataegis region shared between the CLL and RS phase, 4 kataegis regions unique to the CLL phase 

and 103 unique to the RS phase (Supplementary Table 10). We examined the top three kataegis 

regions with the highest mutation burden in both CLL and RS (Supplementary Table 11). This 

showed that chromosome 9 contains an active non-coding kataegis region that is only present in 

RS and that is situated in close proximity to the gene RORB, which has been linked to multiple 

cancer types (Figure 5). We also found a kataegis region on chromosome 11 in the RS samples, 

which is topographically linked to CD44, and it is expected to contain an enhancer (Supplementary 

Figure 7A). 

 

Mutation signatures were calculated from both exonic data (Supplementary Figure 7B) and 

functional non-coding data (Supplementary Figure 7C). Signatures were found in the functional 

non-coding data that were present in CLL or RS samples only. However, all three of these were 

signatures with an unknown function (Signatures 8, 12 and 16). 

 

Investigation of the transcriptome – confirmation of pathways 

As a prelude to future functional analyses, we examined whether genomic aberrations seen at 

the DNA level (Figure 3) were mirrored by changes in gene expression. To address this question, 

we performed RNA expression profiling on 31 RS and 13 CLL lymph node samples using the 

NanoString PanCancer Pathways Panel (PANC), which includes 770 genes representing 13 

canonical cancer pathways involved in various cellular processes, such as cell cycle regulation, 
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apoptosis, proliferation and differentiation, plus 30 genes selected based on results of the WGS 

and previous RS reports (see Supplementary Table 5).  

 

We found 22 down-regulated and 21 up-regulated genes in RS compared to CLL (Figure 6A). 

Twenty-three of these have been reported in CLL or other lymphomas26. The remaining 

differentially expressed genes (n=20) were down-regulated in RS and they are known tumor-

suppressor genes (e.g. TSC1, STK11, IKBKB, PIK3R1). The majority of up-regulated genes in RS are 

known oncogenes (e.g. GRB2, HSP90, CDK4) (Figure 6A). Pathway enrichment analysis showed 

that the PI3K, JAK-STAT and P53 pathways are the most likely to harbor differentially expressed 

genes (FDR<5%) (Figure 6B). Moreover, five pathways (PI3K, cell cycle and apoptosis, RAS, PANC 

Drivers and MAPK) harbored 10 or more differentially expressed genes (Figure 6C).  

 

Discussion 
During the last decade, significant advances in the treatment of CLL have translated into greatly 

improved clinical outcomes. However, CLL still remains largely incurable, and high-grade 

transformation, most commonly seen in heavily pre-treated patients with CLL, remains an area of 

high unmet clinical need with a dismal outcome. Due to the rarity and aggressive nature of RS, 

clinical trials of novel agents are difficult to perform, and there is a lack of suitable disease models 

for rational drug design. Contrary to other rare cancers characterized by a specific single genetic 

aberration, the molecular profile of RS is highly heterogeneous3,15,16,19 making genomic analysis 

challenging. 

 

Here, we show results from a novel approach of integrative WGS analysis of paired CLL and RS 

samples from a cohort of patients recruited into a frontline clinical trial. We use a combination of 

coding and non-coding SNVs, InDels and CNAs, as well as RNA expression profiling of 800 cancer-

related genes, to interrogate specific genes and pathways involved in the evolution of RS.  

 

We confirm the frequent presence of acquired pathogenic SNVs in TP53, the recurrent indels in 

the PEST domain of NOTCH1, acquired CNAs in CDK2NA, and MYC deregulation (over-expression) 
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in the RS phase identified through differential RNA expression analysis. Moreover, we identify 

activating mutations and amplification in XPO1 and copy number losses of TRAF3 as additional 

genes frequently targeted by mutations in RS. TRAF3 is a negative regulator of the non-canonical 

NFkB signaling pathway. Deletions of TRAF3 lead to overexpression of NFkB-inducing kinase 

(NIK). Inhibitors of NIK belong to a promising new class of drugs entering clinical development29. 

Exportin 1 (XPO1) belongs to a family of proteins providing cytoplasmic-nuclear transport for a 

large number of cargo molecules. Activating mutations and copy number gains in XPO1 have been 

reported in both hematologic and solid neoplasms18,23,30,31. The XPO1 inhibitor Selinexor has 

recently been evaluated in a phase 1 trial of patients with relapsed or refractory non-Hodgkin 

lymphomas demonstrating acceptable safety and response (CR and PR) in 35% of patients, 

including patients with RS32. 

 

Four CLL driver genes were recurrently mutated in the RS phase only, suggesting a role as clonal 

drivers: PTPN11, a positive regulator of MAPK-RAS-ERK signaling pathway33,34; MGA, a repressor 

of MYC function known to be mutually exclusive to MYC genetic lesions in RS; the B-cell 

transcription factor IKZF3 35,36 and BAZ2A regulated by the microRNAs MIR15a/16-137, which are 

commonly deleted in CLL. Importantly, our extended analysis of 55 patients shows that 

SNVs/InDels in MGA are one of the most common findings in RS. 

 

Our genome-wide approach allowed us to associate mutations in targetable pathways that have 

not previously been implicated in RS transformation. We show that the MAPK pathway has a 

higher somatic SNVs/InDels and CNAs burden in RS compared to the CLL phase. Clones containing 

MAPK pathway mutations demonstrate high expansion probability. The MAPK pathway was also 

one of the pathways with the highest number of differentially expressed genes between RS and 

CLL phases.  

 

Targeted treatments with RAF and MEK inhibitors are approved for clinical use in malignant 

melanoma38. In B-cells, MAPK signaling is initiated downstream to BCR activation and therapeutic 
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targeting of BCR signaling through BTK, PI3K and SYK inhibition has a suppressive effect on MAPK 

signalling39. 

 

In CLL, mutations in MAPK pathway genes have been reported at a frequency of 8% with an 

accumulation in poor-prognosis cases23,40 and treatment failure on BTK inhibitors is associated 

with the emergence of RS. Treatment of primary CLL cells in vitro with MEK inhibitors resulted in 

induction of apoptosis, suggesting potential activity against CLL40,41. The effect of MEK inhibition 

on RS has not been studied and there are no clinical trials studying MAPK pathway inhibition in 

CLL or RS.  

 

Finally, we extend previous observations of the functional significance of non-coding mutations 

in cancer. A hypermutated region 330kb upstream of the PAX5 gene was previously described as 

an enhancer region of PAX5. In this cohort, which was enriched for good prognosis CLL, mutations 

were seen more frequently in patients with hypermutated IgVH and del13q abnormalities. The 

authors therefore hypothesized that these PAX5 enhancer mutations are implicated in driving 

early CLL development. Interestingly, the same enhancer region was also mutated in 29% of 

DLBCL controls. Here, we show that non-coding mutations in PAX5 enhancer elements are also 

potential drivers of transformation, as they occur preferentially in RS.  

 

In conclusion, we show that integrated WGS combined with RNA expression profiling identifies 

multiple potential therapeutic targets for clinical evaluation. A UK Phase 2 adaptive clinical 

platform trial, The STELLAR study (2017-004401-40), is now open to recruitment for patients with 

RS to evaluate the novel therapies identified in this study.  

 

Methods 

Samples acquisition 

Peripheral blood (CLL), tumor (RS; Formalin-Fixed Paraffin-Embedded blocks, FFPE) and germline 

(GL; from saliva) triplet samples were available from 17 of the 37 evaluable patients enrolled in 
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the CHOP-OR trial21. Ethics approval for CHOP-OR was obtained from the National Research Ethics 

Service Committee South Central – Oxford A (REC reference number: 10/H0604/85). 

 

An independent cohort of patients diagnosed with RS between 2005 and 2016 by the Department 

of Pathology, Skåne University Hospital, Lund University, Sweden underwent DNA sequencing 

(n=21) and RNA expression profiling (n=21) (ethics approval: Southern Sweden, reference 

number: 2016/1054). Moreover, DNA from RS tumors was available from 7 additional patients 

from the CHOP-OR study and from 10 patients with biopsy-confirmed RS treated outside of the 

clinical trial (ethics approval: Hematology Collection Protocol, HTA License Number 12217, 

Oxfordshire C, REC: 09/H0606/5). See Figure 1. 

 

Purification of DNA and RNA 

CHOP-OR cohort 

Paraffin was removed from FFPE 10μm sections scraped from 5-10 slides using the Adaptive 

Focused Acoustics (AFA™) on the M220 Focused-ultrasonicator. DNA was thereafter purified with 

the truXTRAC FFPE DNA Kit according to the manufacturer’s protocol (Covaris Inc., Woburn, MA, 

USA), but using optimized reverse cross-linking conditions as previously described22. Peripheral 

blood samples were subjected to a ficoll gradient centrifugation to isolate mononuclear cells. 

Percentage of CD19+ cell was verified by flow cytometry and samples with a purity <70% were 

purified using magnetic beads according to the manufacturer’s protocol (Miltenyi Biotec, Bergisch 

Gladbach, Germany). Extraction of genomic DNA was done using the QIAamp Mini kit according 

to the manufacturer’s protocol (Qiagen, Hilden, Gemany). For the germlines, DNA was extracted 

from saliva using the prepIT•L2P according to the manufacturer’s protocol (DNA Genotek, 

Ottawa, Ontario, Canada). RNA was extracted from 11 FFPE blocks using the protocol specified 

below. 

 

Independent cohort 

FFPE blocks were prepared in 10μm sections, transferred to 1.5 mL tubes (60-100 μm per tube) 

and in order to prevent RNA degradation stored in -80 degrees C immediately after the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

preparation. 46 μm of FFPE tissue was used for combined DNA and RNA purification. After 

removing the paraffin from the FFPE sections using Qiagen’s Deparaffinization Solution (Qiagen, 

Hilden, Germany), total RNA and genomic DNA were purified using the AllPrep® DNA/RNA FFPE 

Kit according to the manufacturer’s protocol (Qiagen, Hilden, Germany). DNA was obtained from 

21 samples and RNA extraction was successful in 21 of 23 Lund University cohort samples. 

 

DNA from all cohorts was quantified using the Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, 

Waltham, MA, USA). DNA and RNA quantity and fragment length were analyzed using the Agilent 

Bioanalyzer (Agilent, Santa Clara, CA, USA). 

 

Whole Genome Sequencing  

WGS libraries were prepared using optimized Illumina protocols depending on DNA type 

(Illumina, San Diego, California, United States). The Early Access FFPE-extracted gDNA Library 

preparation kit (Illumina) was used for FFPE-derived DNA. In this protocol, FFPE DNA was first 

treated with the FFPE DNA Restoration kit (Illumina) in order to repair damaged DNA and to 

achieve high-quality DNA for further WGS library preparation. The TruSeq DNA HT Sample Prep 

Kit (PCR-free) or TruSeq Nano DNA LT Library Prep Kit (with PCR amplification) were used, both 

according to the manufacturer’s protocol, for CLL and germline DNA library preparation 

depending on the amount of DNA available (Illumina, San Diego, California, United States). 

 

Libraries were subjected to 2×100 bp paired-end sequencing on a HiSeq 2500 or 2×150 bp a HiSeq 

4000 instrument (Illumina, San Diego, California, United States), to a mean sequencing depth of 

87X for CLL (range 34X-129X), 88X for RS (range 42X-132X), and 44X for germline (range 25X–67X) 

samples.  

 

Bioinformatics analysis of WGS data 

Raw reads from each triplet of germline (GL), blood (CLL) and lymphoma (RS) samples for each 

patient were aligned against the hg19 human reference genome (release GRCh37) using 

Illumina’s Whole Genome Sequencing workflow v4.0.0, and somatic SNVs and InDels were called 
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for each GL/CLL and GL/RS pair using Illumina’s Tumor-Normal workflow v1.1.0. Somatic variants 

with PASS filter, read depth DP≥10, and VAF≥5% in the CLL phase or VAF≥10% in the RS phase 

were retained, and they were annotated using Ensembl’s Variant Annotation Predictor v90, which 

included functional predictions from SIFT and PolyPhen. Variants which were predicted as having 

HIGH impact by VEP, or which were flagged as deleterious by SIFT or probably damaging by 

PolyPhen were kept for further analysis. Copy number analyses were carried out as described in 

Schuh et al (2018)42.  

 

Targeted Sequencing of independent cohorts 

A targeted xGen® Lockdown® Probes panel (Integrated DNA Technologies, Inc., Skokie, IL, USA) 

and a TruSeq Custom Amplicon (TSCA, Illumina, Inc., San Diego, CA, USA) panel were designed to 

target 56 and 28 genes and hotspots, respectively, of specific relevance to aggressive CLL, 

Richter’s transformation, and other genes of interest. Gene selection was based on findings in the 

WGS of the training cohort (CHOP-OR) and/or on the available literature. Targets are specified in 

Supplementary Table 12. Sequencing was performed using the MiSeq platform (Illumina, Inc., San 

Diego, CA, USA) 2x150bp paired-end sequencing.  

 

Bioinformatics analysis of TGS data 

For the 56-genes panel, alignment was performed using BWA-mem v0.7.10 against the hg19 

human reference genome (reference GRCh37) and deduplication and error correction were 

performed by Connor v0.5.1 (https://github.com/umich-brcf-bioinf/Connor) changing the default 

min_family_size_threshold to 1. Variant calling was performed using Platypus v0.8.143.  

 

For the 28-genes panel, the TSCA workflow MiSeq Somatic Variant Caller v3.2.3 (Illumina) was 

used to perform initial alignment against the same human reference genome and variant calling 

using the default settings. Following this, a second alignment using BWA-mem v0.7.12-r1039 and 

indel realignment with GATK v3.5 were used before variant calling using Platypus v0.8.143 in order 

to detect additional variants.  
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For both panels, functional sequence variants were identified by filtering on quality, functional 

consequence as determined by VEP v84, and predicted pathogenicity by in silico tools (SIFT and 

PolyPhen), previous published literature, or presence in the COSMIC database v73. Variants 

reported in ³5% of general population or reported as germline in ClinVar were removed. All 

variants were confirmed by visual inspection in IGV44,45.  

 

IgHV mutational status  

IgHV mutational status was determined by Sanger and targeted next-generation sequencing as 

previously described46. IgHV analysis was performed on CLL and RS tumor samples in order to 

determine their clonal relatedness. However, the analysis was conclusive in only eight cases. 

Therefore, comparative analysis of clonally related versus unrelated RS cases was not possible to 

perform (see Supplementary Table1). 

 

Annotation and processing of non-coding regions 

Non-coding annotation was performed by intersection with sites of expected non-coding 

functionality in CLL. Functional non-coding sites were determined as follows: the region must be 

within a peak of ATAC-seq activity in 20% of CLL samples (>21/106) from Beekman et al. (2018)47. 

Additionally, the region must be identified as either active promotor, strong enhancer1, or strong 

enhancer2 by CHROMHMM48 in 3 or more samples including 7 CLL and a further 15 from various 

blood cells (2x csMBC, 1x ncsMBC, 3x GCBC, 3x NBCB, 3x NBCT and 3x PCT). Briefly, CHROMHMM 

was used to combine 6 histone modification marks in each CLL sample to identify genomic 

functionally active regions, as described in Beekman et al. (2018)47. Association with TAD 

(Topographically Associated Domains) was carried out using CLL and B-cell Hi-C, ATAC-seq and 

H3k27ac histone modification marks. Using the combination of histone modification marks and 

ATAC-seq together is expected to increase the proportion of mutations of functional impact 

caused by AID. Kataegis was identified according to Lawrence et al. (2013)49 using the pooled 

functional non-coding data, and plots were produced with the R library KaryoploteR50. Mutation 

signatures were analyzed on the same data based on the methods of Alexandrov et al. (2013)51, 

using the R package deconstructSigs52. 
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Digital-multiplexed Gene Expression Profiling 

To assess gene expression differences in tumor tissue from CLL lymph nodes versus transformed 

Richter’s DLBCL we applied the NanoString PanCancer Pathways Panel (NanoString Technologies, 

Seattle, WA, USA) including 770 genes representing 14 canonical cancer pathways and 30 custom-

selected genes (in total 800 genes) selected based on findings in the initial WGS and also based 

on potential importance to RS, as presented in previous publications (Supplementary Table 5). In 

total 13 CLL lymph node samples (Lund University cohort) and 31 Richter’s DLBCL samples were 

analyzed (11 CHOP-OR RS samples and 20 Lund University RS samples). After purification, RNA 

was quantified and quality-assessed with the Agilent Bioanalyzer (Agilent, Santa Clara, CA, USA). 

All samples were controlled for degree of RNA integrity and also for fragment length using the 

smear analysis function in the Agilent Bioanalyzer software. To correct for suboptimal RNA 

integrity, based on the percentage of degraded RNA with a fragment length falling between 50-

300nt, a target input of 140 ng was calculated using the following formula: 

!"#$%&'"	)*+$& = -./0'&	)*+$&	(140*0)
100 − [%9'&:''*	50 − 300*&] × 100 

RNA was hybridized for 16 hours at 65° C with the PanCancer Pathway Code Set and the spike-in 

custom CodeSet including the additional 30 genes of interest (NanoString Technologies, Seattle, 

WA, USA) (Supplementary Table 2). Purification, binding and scanning of the hybridized probes 

to the cartridge was performed on the nCounter® SPRINT Profiler. Raw data files from the 

nCounter® SPRINT Profiler were imported into the nSolver 4.0.62 Analysis software (NanoString 

Technologies, Seattle, WA, USA) and were checked for data quality using default quality control 

settings. 

 

Statistical analysis 

All statistical analyses were performed and graphics were generated using R v3.5.153. A detailed 

mathematical description of the various statistical analyses we used is given in the Supplementary 

Material. Below, we give a general overview of these analyses. 
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First, we examined whether the CLL and RS phases were differentially mutated. In order to 

increase the power of our analysis, instead of focusing on individual variants or on individual 

genes, we focused on sets of genes (i.e. pathways). These included all KEGG signalling, cell cycle, 

apoptosis, and DNA damage repair (DDR) pathways, all NanoString PanCancer pathways, a set of 

44 CLL driver genes, and a custom set of 21 DDR genes previously described in solid tumours. In 

total, we examined 45 different gene sets/pathways. By adopting a Bayesian approach, we 

calculated, for each pathway and each phase (CLL or RS), the posterior probability (i.e. the 

probability given the data) that the phase harbours both a somatic SNV/InDel and a CN event. 

The pathways that were more likely to harbour genomic aberrations in the RS rather than in the 

CLL phase with probability higher than 95% (FDR<5%) were identified as differentially mutated, 

and they were retained for further analysis.  

 

In a second stage, we examined the clonal structure of each tumour sample, using a previously 

published statistical approach54,55. Briefly, we used a Bayesian non-parametric clustering 

methodology, which considers the purity of each sample, as well as the multiplicity and VAF of 

each somatic variant, and it estimates a cancer cell fraction (CCF) for each. Variants with CCF>0.85 

with probability higher than 95% were considered clonal, those with CCF<0.85 with equally high 

probability were consider sub-clonal, while the rest were deemed of uncertain clonality. Somatic 

variants demonstrating an increase in CCF from CLL to RS larger than 25% were deemed indicative 

of a clonal expansion event, while those with a CCF decrease of equal magnitude were considered 

evidence of clonal contraction. By examining the clonal expansion and contraction events in each 

pathway, we identified those pathways that had more than 95% probability (FDR<5%) of 

harbouring clonal expansion instead of clonal contraction events in the transition from CLL to the 

RS phase.  

 

Finally, we performed differential gene expression analysis between 13 CLL and 31 RS samples. 

Only genes with at least 100 counts per million in each sample were analysed, resulting in a 

dataset with 301 genes. edgeR v3.24.056 was used for normalisation and for testing for differential 

expression using likelihood ratio tests. Genes with FDR<1% were identified as differentially 
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expressed, and they were further tested for enrichment against the 45 pathways mentioned 

above.  

 

Acknowledgments  
We acknowledge the contribution to this study made by the Oxford Centre for Histopathology 

Research and the Oxford Radcliffe Biobank, which are supported by the NIHR Oxford Biomedical 

Research Centre. JK was supported by research grants from the Tegger Foundation, the Gunnar 

Nilsson Cancer Foundation, Blodsjukas förening i Södra sjukvårdsregionen, Stiftelsen Siv-Inger och 

Per-Erik Anderssons minnesfond, the Royal Swedish Academy and the Swedish Medical 

Association. This study was partly funded by the National Institute for Health Research Oxford 

Biomedical Research Centre. This publication presents independent research commissioned by 

the Health Innovation Challenge Fund (R6-388 / WT 100127), a parallel funding partnership 

between the Wellcome Trust and the Department of Health. This research was also supported by 

by the Wellcome Trust Core Award (203141/Z/16/Z).  The views expressed in this publication are 

those of the authors and not necessarily those of the National Institute for Health Research, the 

UK National Health Service, the UK Department of Health, the University of Oxford or the 

Wellcome Trust. 

 

References 
1. TSIMBERIDOU, A. & KEATING, M. Richter’s Transformation in Chronic Lymphocytic Leukemia. 

Semin. Oncol. 33, 250–256 (2006). 

2. Rossi, D. et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts 

survival after transformation. Blood 117, 3391–3401 (2011). 

3. Rossi, D., Spina, V. & Gaidano, G. Biology and treatment of Richter syndrome. Blood 131, 2761–

2772 (2018). 

4. Maddocks, K. J. et al. Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients With 

Chronic Lymphocytic Leukemia. JAMA Oncol. 1, 80 (2015). 

5. Li, J., Smith, A., Crouch, S., Oliver, S. & Roman, E. Estimating the prevalence of hematological 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

malignancies and precursor conditions using data from Haematological Malignancy Research 

Network (HMRN). Cancer Causes Control 27, 1019–26 (2016). 

6. Swerdlow, S. H. et al. The 2016 revision of the World Health Organization classification of 

lymphoid neoplasms. Blood 127, 2375–2390 (2016). 

7. Rossi, D. et al. Molecular history of Richter syndrome: origin from a cell already present at the 

time of chronic lymphocytic leukemia diagnosis. Int. J. Cancer 130, 3006–3010 (2012). 

8. Allan, J. N. & Furman, R. R. Current trends in the management of Richter’s syndrome. Int. J. 

Hematol. Oncol. 7, IJH09 (2018). 

9. Burger, J. A. et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. 

Engl. J. Med. 373, 2425–2437 (2015). 

10. Byrd, J. C. et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. 

Engl. J. Med. 371, 213–223 (2014). 

11. Seymour, J. F. et al. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic 

leukaemia: a phase 1b study. Lancet Oncol. 18, 230–240 (2017). 

12. Woyach, J. A. et al. BTKC481S-Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia. 

J. Clin. Oncol. 35, 1437–1443 (2017). 

13. Jain, P. et al. Long-term outcomes for patients with chronic lymphocytic leukemia who 

discontinue ibrutinib. Cancer 123, 2268–2273 (2017). 

14. Winqvist, M. et al. Long-term real-world results of ibrutinib therapy in patients with relapsed or 

refractory chronic lymphocytic leukemia: 30-month follow-up of the Swedish compassionate use 

cohort. Haematologica haematol.2018.198820 (2018). doi:10.3324/haematol.2018.198820 

15. Chigrinova, E. et al. Two main genetic pathways lead to the transformation of chronic lymphocytic 

leukemia to Richter syndrome. Blood 122, 2673–2682 (2013). 

16. Fabbri, G. et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to 

Richter syndrome. J. Exp. Med. 210, 2273–2288 (2013). 

17. De Paoli, L. et al. {MGA}, a suppressor of {MYC}, is recurrently inactivated in high risk chronic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

lymphocytic leukemia. Leuk. Lymphoma 54, 1087–1090 (2013). 

18. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic 

lymphocytic leukaemia. Nature 475, 101–105 (2011). 

19. Puente, X. S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 

519–524 (2015). 

20. Mato, A. R. et al. Phase I/II Study of Pembrolizumab in Combination with Ublituximab (TG-1101) 

and Umbralisib (TGR-1202) in Patients with Relapsed/Refractory CLL. Blood 130, (2017). 

21. Eyre, T. A. et al. {NCRI} phase {II} study of {CHOP} in combination with ofatumumab in induction 

and maintenance in newly diagnosed Richter syndrome. Br. J. Haematol. 175, 43–54 (2016). 

22. Robbe, P. et al. Clinical whole-genome sequencing from routine formalin-fixed, paraffin-

embedded specimens: pilot study for the 100,000 Genomes Project. Genet. Med. 20, 1196–1205 

(2018). 

23. Landau, D. A. et al. Mutations driving {CLL} and their evolution in progression and relapse. Nature 

526, 525–530 (2015). 

24. Scandurra, M. et al. Genomic profiling of Richter’s syndrome: recurrent lesions and differences 

with de novo diffuse large B-cell lymphomas. Hematol. Oncol. 28, 62–67 (2010). 

25. Vaisitti, T. et al. Novel Richter Syndrome Xenograft Models to Study Genetic Architecture, Biology, 

and Therapy Responses. Cancer Res. 78, 3413–3420 (2018). 

26. Forbes, S. A. et al. {COSMIC} (the Catalogue of Somatic Mutations in Cancer): a resource to 

investigate acquired mutations in human cancer. Nucleic Acids Res. 38, D652--7 (2010). 

27. Sellar, R. S. et al. BRAF V 600E mutations are found in Richter syndrome and may allow targeted 

therapy in a subset of patients. Br. J. Haematol. 170, 282–285 (2015). 

28. Stilgenbauer, S. et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: 

results from the CLL8 trial. Blood 123, 3247–3254 (2014). 

29. Brightbill, H. D. et al. NF-κB inducing kinase is a therapeutic target for systemic lupus 

erythematosus. Nat. Commun. 9, 179 (2018). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

30. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. 

Cell 152, 714–726 (2013). 

31. Reddy, A. et al. Genetic and Functional Drivers of Diffuse Large {B} Cell Lymphoma. Cell 171, 481--

494.e15 (2017). 

32. Kuruvilla, J. et al. Selective inhibition of nuclear export with selinexor in patients with non-

Hodgkin lymphoma. Blood 129, 3175–3183 (2017). 

33. Dance, M., Montagner, A., Salles, J.-P., Yart, A. & Raynal, P. The molecular functions of Shp2 in the 

{Ras/Mitogen-activated} protein kinase ({ERK1/2}) pathway. Cell. Signal. 20, 453–459 (2008). 

34. Voena, C. et al. The tyrosine phosphatase Shp2 interacts with {NPM-ALK} and regulates anaplastic 

lymphoma cell growth and migration. Cancer Res. 67, 4278–4286 (2007). 

35. Nückel, H. et al. The {IKZF3} (Aiolos) transcription factor is highly upregulated and inversely 

correlated with clinical progression in chronic lymphocytic leukaemia. Br. J. Haematol. 144, 268–

270 (2009). 

36. Billot, K. et al. Deregulation of Aiolos expression in chronic lymphocytic leukemia is associated 

with epigenetic modifications. Blood 117, 1917–1927 (2011). 

37. Hanlon, K., Rudin, C. E. & Harries, L. W. Investigating the targets of {MIR-15a} and {MIR-16-1} in 

patients with chronic lymphocytic leukemia ({CLL}). PLoS One 4, e7169 (2009). 

38. Luke, J. J., Flaherty, K. T., Ribas, A. & Long, G. V. Targeted agents and immunotherapies: 

optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 14, 463–482 (2017). 

39. Shukla, A., Shukla, V. & Joshi, S. S. Regulation of {MAPK} signaling and implications in chronic 

lymphocytic leukemia. Leuk. Lymphoma 59, 1565–1573 (2018). 

40. Giménez, N. et al. Mutations in {RAS-BRAF-MAPK-ERK} pathway define a specific subgroup of 

patients with adverse clinical features and provide new therapeutic options in chronic 

lymphocytic leukemia. Haematologica (2018). 

41. Crassini, K., Stevenson, W. S., Mulligan, S. P. & Best, O. G. The {MEK1/2} inhibitor, {MEKi-1}, 

induces cell death in chronic lymphocytic leukemia cells under conditions that mimic the tumor 

microenvironment and is synergistic with fludarabine. Leuk. Lymphoma 56, 3407–3417 (2015). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

42. Schuh, A. et al. Clinically actionable mutation profiles in patients with cancer identified by whole-

genome sequencing. Mol. Case Stud. 4, a002279 (2018). 

43. Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling 

variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014). 

44. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011). 

45. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-

performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013). 

46. Stamatopoulos, B. et al. Targeted deep sequencing reveals clinically relevant subclonal IgHV 

rearrangements in chronic lymphocytic leukemia. Leukemia 31, 837–845 (2017). 

47. Beekman, R. et al. The reference epigenome and regulatory chromatin landscape of chronic 

lymphocytic leukemia. Nat. Med. 24, 868–880 (2018). 

48. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. 

Protoc. 12, 2478–2492 (2017). 

49. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-

associated genes. Nature 499, 214–218 (2013). 

50. Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes 

displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017). 

51. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 

(2013). 

52. Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. deconstructSigs: 

delineating mutational processes in single tumors distinguishes DNA repair deficiencies and 

patterns of carcinoma evolution. Genome Biol. 17, 31 (2016). 

53. R Core Team. R: A Language and Environment for Statistical Computing. (2014). 

54. Nik-Zainal, S. et al. The Life History of 21 Breast Cancers. Cell 149, 994–1007 (2012). 

55. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 

11, 396–398 (2014). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

56. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq 

experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012). 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Supplementary Tables 

Supplementary Table 1: Clinical characteristics of the CHOP-OR cohort (n=17) at the time of 

inclusion (n=no of assessed subjects; N=subjects within the group with complete data). The 

second spreadsheet shows IGHV status of the CHOP-OR cohort. 

  

Supplementary Table 2: Filtered SNVs and InDels in each sample and phase identified using whole 

genome sequencing. 

 

Supplementary Table 3: Wide format of the data in Supplementary Table 4 showing the clonal 

transitions of each SNV/InDels from CLL to RS. Only mutations in autosomal chromosomes are 

shown, and only mutations for which the estimated CLONALITY is not UNCERTAIN.    

 

Supplementary Table 4: CNVs in each sample and phase, as well as genes affected by each copy 

number event.  

 

Supplementary Table 5: KEGG, PanCancer and custom gene sets used for the mutational burden, 

clonal structure and pathway enrichment analysis. We also show 30 genes of special interest 

supplementing the 770 genes of the NanoString PanCancer Pathways Panel used for digital 

multiplexed gene expression profiling. 

 

Supplementary Table 6: Recurrent genes (n=33) in the 17 CHOP-OR samples as identified using 

whole genome sequencing. The 17 genes which are recurrent with respect to mutations that 

expand clonally, or which are found exclusively in the RS phase are indicated in red. The second 

spreadsheet shows the mutations (n=80) in these 33 recurrent genes. The seven mutations that 

show clonal expansion in the RS phase and which are also recurrent are indicated in red.  

 

Supplementary Table 7: Mutation frequency of genes inferred using targeted sequencing. For the 

same genes, the mutation frequency from whole genome sequencing is also reported.  
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Supplementary Table 8: Filtered SNVs and InDels in each sample of the independent cohorts 

identified using targeted sequencing. 

 

Supplementary Table 9: Distribution of non-coding mutations between CLL and RS phases in the 

NOTCH1 3’UTR and in a region previously characterized as a functionally active PAX5 enhancer in 

CLL. 

 

Supplementary Table 10: Sites of somatic hypermutation (kataegis) with 6 or more mutations 

less that 2 standard deviations of the inter-mutational distance apart. 

 

Supplementary Table 11: Top 3 kataegis regions with the greatest number of mutations (reported 

for both the CLL and RS phases). TAD – Topographically Associated Domain.  

 

Supplementary Table 12: Targets for targeted sequencing on the Illumina MiSeq platform using 

an xGen® Lockdown® Probes panel and a TruSeq Custom Amplicon panel, covering 56 and 28 

genes and hotspots, respectively. 
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Figures 
 

 
Figure 1: Overview of the study. SNVs, InDels and CNVs were identified in pairs of CLL and lymph-

node samples from 17 CHOP-OR patients21 with Richter’s syndrome using whole genome 

sequencing. Integrated analysis of mutational burden and clonal structure based on these data 

was followed by differential gene expression and enrichment analysis and mutational burden 

analysis based on targeted sequencing on independent cohorts of 38 subjects with Richter’s 

syndrome. 
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Figure 2: SNVs, InDels and CNVs in the cohort of 17 patients with Richter’s syndrome. A) Number 

of SNVs and InDels in the CLL versus the RS phase in each of the 17 patients. B) Number of 

mutations in the CLL vs RS phase across all samples (P=0.031; one-sided Wilcoxon signed rank test 

with continuity correction). C) Consequences of filtered SNVs and InDels and their distribution 

between the CLL and RS phases. D) Distribution of SNVs, InDels and CNVs across samples and 

phases in CLL driver genes, CDKN2A and MYC. 44 CLL driver genes were considered23, only 38 of 

which harbored an aberration in our cohort. Grey dots indicate cases with MYC over-expression 

in the RS phase (range: 33.9% in case 18 to 754.9% in case 07; mean: 147.8%). MYC deregulation 

(i.e. over-expression) was confirmed using differential RNA expression analysis. E) Frequency of 

mutated genes identified using targeted sequencing (n=38) merged with results from WGS 

analysis (n=17). Only SNVs and InDels are illustrated.  
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Figure 3: Pathway-based mutational burden analysis. A) For each pathway, we give the mean and 

95% credible intervals of the ratio ?@(@A?B)(@A?@)?B (in log2 scale), where P1 and P2 are the posterior 

probabilities that the RS and CLL phases, respectively, harbor an aberration. Separate estimates 

are given for SNVs/InDels (circles) and CNVs (squares). The percentages are the combined 

posterior probabilities that a particular pathway is more likely to harbor both a SNV/InDel and a 

CNV in the RS rather than the CLL phase. When this probability exceeds a threshold of 95%, which 

corresponds to FDR<5%, the pathway is considered significantly more mutated in the RS phase. 

B) Genes harboring SNVs, InDels and CNVs in the MAPK pathway. In total, 45 pathways were 

examined, but pathways appearing in both KEGG and PANC were merged resulting in 38 distinct 

pathways.  
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Figure 4: Pathway-based clonal analysis. A) For each pathway, we give the mean and 95% credible 

intervals of the ratio ?@(@A?B)(@A?@)?B (in log2 scale), where P1 is the posterior probability that the pathway 

harbors a mutation that clonally expands (i.e. its CCF shows a significant increase) in the transition 
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from CLL to RS. Similarly, P2 is the posterior probability that the pathway harbors a mutation that 

clonally contracts in the transition to RS. The percentages give the posterior probability that an 

expansion is more likely than a contraction, i.e. the probability that P1>P2. When this probability 

exceeds a threshold of 95%, which corresponds to FDR<5%, the pathway is considered highly 

likely to show clonal expansion rather than contraction. B) Alluvial plot summarizing clonal 

transitions (expansion, contraction or none) in the 14 genes of the MAPK pathway harboring SNVs 

or InDels. The part of the plot inside the dotted box directly illustrates the number of mutations 

expanding or contracting in the transformation from CLL to RS and their distribution across four 

different bands of CCF values. The remaining of the plot illustrates the distribution of 

expanding/contracting mutations across samples and genes.  
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Figure 5: Kataegis regions in functionally active non-coding sites (see Supplementary Methods) 

across chromosome 9. The density plot shows the mutation spike at the PAX5 enhancer seen in 

both the CLL and RS phases, plus a kataegis region found only in the RS phase and located in close 

proximity to the RORB gene.  
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Figure 6: Differential expression and enrichment analysis. A) Volcano plot indicating up- and 

down-regulated genes in RS when compared to the CLL phase. B) For each pathway, we give the 

mean and 95% credible intervals of the ratio ?@(@A?B)(@A?@)?B (in log2 scale), where P1 and P2 are the 

expected fractions of differentially expressed genes in the pathway and not in the pathway, 

respectively. Each percentage indicates the posterior probability that P1>P2. When this 

probability exceeds a threshold of 95%, which corresponds to an FDR<5%, we say that the 

pathway is enriched in differentially expressed genes. C) Absolute number of differentially 

expressed genes in each pathway.        

 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

 

Supplementary Figures 
 
 

 
Supplementary Figure 1: Number of mutations in the T-cell receptor-{C,V,J} gene locus in the CLL 

and RS phases across all samples before and after filtering. 
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Supplementary Figure 2: Overview of identified CNAs. A) Number of genes affected by CNAs in 

CLL and RS in each sample. B) Types of copy number events in each sample and phase.   
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Supplementary Figure 3: Genomic aberrations detected by whole genome sequencing in DDR 

genes. A) Distribution of SNVs, InDels and CNAs across samples and phases. B) Number of samples 

harboring a genomic aberration in each phase in each DDR gene. 21 genes were examined, but 

only 17 were found mutated. 
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Supplementary Figure 4: Genomic aberrations in the PI3K pathway. Only mutated genes (n=12) 

in the pathway are shown. 

 

  

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

CLL RS
01 03 05 07 08 09 11 16 17 18 19 21 22 24 30 32 42 01 03 05 07 08 09 11 16 17 18 19 21 22 24 30 32 42

LAMA5
CDK2

LAMC3
CCND3

COL27A1
IL7

KRAS
LAMA1

MAP2K2
RAF1
RELN
TP53

sample

m
ut

at
ed

 P
I3

K 
ge

ne
s

copy number 1 3 >3 SNV/InDel ●frameshift missense stop_gained

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644542doi: bioRxiv preprint 

https://doi.org/10.1101/644542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

 
Supplementary Figure 5: Transitions in the values of cancer cell fractions (CCF) of somatic 

mutations during transformation from CLL to RS in the 17 CHOP-OR cases. We observe clonal 

expansions (i.e. CCF values increase from CLL to RS), clonal contractions (i.e. CCF values decrease 
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from CLL to RS) or clonal stability (i.e. CCF values remain roughly the same between CLL and RS). 

In extreme cases (e.g. cases 03, 08 and 09), CCF values increase from 0 in CLL or decrease to 0 in 

RS, which explains the absence of connecting lines between the CLL and RS phases in these cases. 
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Supplementary Figure 6: Numbers of functionally active non-coding SNVs in the CLL and RS phase 

across all samples, in predicted active promotor/strong enhancer regions. Average mutation 

number is found to be significantly more mutated in the RS phase (P=0.007; one-sided Wilcoxon 

signed rank test with continuity correction). The combination of histone modification marks and 

ATAC-seq is expected to minimize the effects of AID-mediated SNVs (Beekman et al. 2018). 
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Supplementary Figure 7: A) A kataegis region on chromosome 11 (Chr11:35,163,868-35,163,917) 

found in the RS samples. The region is topographically linked to CD44, and it is expected to contain 

an enhancer. B) We also show the proportion of mutation signatures (Alexandrov et al., 2013) in 

all exonic SNVs (n=884) across all samples, and C) in all functionally active non-coding SNVs 

(n=6004) across all samples. Signatures are as follows: Signature 1: ageing, Signature 5: ageing, 

Signature 8: unknown, Signature 9: AID, Signature 12: unknown, Signature 16: unknown. 
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In this supplementary material, we provide details of the statistical analyses applied

in the main text. In all cases, posterior probabilities were estimated using self-adjusting

Hamiltonian Monte Carlo[1], as implemented in Stan[2]. The exception to this was the

estimation of cancer cell fraction (CCF) values in the section Clonal Analysis, where

automatic di↵erentiation variational inference (ADVI) was adopted for computational

e�ciency[3] (again using Stan).

1 Mutational burden analysis

We say that a pathway is mutated if there is at least one gene in the pathway carrying a

somatic SNV or InDel. With respect to a particular pathway, each patient can be classified

as CLL-/RS-, CLL-/RS+, CLL+/RS- or CLL+/RS+, depending on whether the patient

is mutated in that pathway in none, at least one, or both of the CLL and RS phases,

respectively. It follows that we can construct an N ⇥ 4 table X = {xij} indicating the

number of patients in each of the above groups in each among N pathways. We examined

a total of 45 pathways in this study, which (after merging pathways provided by both

KEGG and PanCancer) corresponds to N = 38. The total sum in each row of the table

is obviously 17, the number of patients entering the study. The above table can be

1
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generated using a Multinomial-Dirichlet mixture model, as shown below:

xi ⇠ Mult (17,✓i) ✓i ⇠ Dir (↵)

where xi = (xi1, xi2, xi3, xi4) are the numbers of CLL-/RS-, CLL-/RS+, CLL+/RS- and

CLL+/RS+ patients in pathway i, respectively, and ✓i = (✓i1, ✓i2, ✓i3, ✓i4) are the corre-

sponding probabilities of observing each of the above four patient groups in pathway i.

Given the posterior density of ✓i, we can estimate the posterior probabilities Pi1 and Pi2

that the RS and CLL phases harbour a SNV/InDel in pathway i, respectively, as well as

the posterior probability pi that RS is more likely than CLL to carry such an aberration,

i.e. the probability that Pi1 > Pi2.

A similar analysis can be independently performed for the CNV data by assuming

that a pathway harbours a copy number event, if there is at least one gene in the pathway

overlapping with such an event. As above, we can calculate the posterior probability qi

that the RS phase is more likely than the CLL phase to harbour a CN event in pathway

i. The overall probability that RS is more likely than CLL to carry both a SNV/InDel

and a CNV in pathway i is simply the product piqi.

It follows that ⇡i = 1 � piqi is the probability of a Type I error, if we decide to call

pathway i significantly more mutated in RS than in CLL. Subsequently, each pathway k

in the set {k : ⇡k  ⇡i} is also called significantly more mutated in RS than in CLL, and

the average Type I error rate (false discovery rate or FDR) over this set is equal to

FDRi =

P
k ⇡k[⇡k  ⇡i]

#[⇡k  ⇡i]

where [·] is the Iverson bracket. It is easy to see that the maximum possible value for

FDRi is ⇡i, which is attained if ⇡k = ⇡i for all k. In other words, this probability also

serves as an upper bound for the FDR, should we choose to label all pathways k satisfying

⇡k  ⇡i as significantly over-mutated in RS (see also [4, 5] for an application of the same

logic in di↵erential expression analysis). In practice, we only consider a pathway i as

significant, if ⇡i  5% (which corresponds to piqi � 95%), in order to ensure an FDR

2
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over all discoveries not higher that 5%.

A final detail in the above model is the treatment of the vector of concentration

parameters ↵. We have examined three di↵erent scenarios: (a) ↵ = (1, 1, 1, 1), which

corresponds to a flat Dirichlet distribution, (b) ↵ = (↵1,↵2,↵3,↵4), with log↵j ⇠ 1

for j 2 {1, 2, 3, 4}, i.e. the logarithm of each element of the vector follows a uniform

distribution in the interval (�1,+1), (c) a third option is to consider the mean and

variance of each element ↵j, E[↵j] = µj = ↵j

↵0
and V ar[↵j] = �2

j = ↵j(↵0�↵j)
↵2
0(↵0+1)

=
�2
max,j

↵0+1 ,

respectively, where ↵0 =
P

j ↵j and �2
max,j = µj(1 � µj). Instead of imposing a prior

on ↵j directly, we impose uniform priors on its mean and variance, µj ⇠ U(0, 1) and

�2
j ⇠ U(0, �2

max,j). Among these three alternatives, it turns out that (a) is the most

conservative, i.e. it identifies the smallest number of pathways as di↵erentially mutated,

and for this reason it is preferred.

2 Clonal analysis

We assume that each tumour sample (CLL or RS) is a mixture of normal (N) and cancer

(C) cells, where the purity ⇢ of the sample indicates the proportion of cancer cells in

the tumour. With respect to a particular somatic mutation i, there is a proportion �i of

cancer cells (V) harbouring the mutation, while the remaining proportion of cancer cells

(R) do not. The expected variant allele fraction or VAF, fi, for mutation i is given by

the following formula:

E[fi] =
mV

i ⇢�i

MV
i �i⇢+MR

i (1� �i)⇢+MN
i (1� ⇢)

where MN
i = 2 is the copy number of the normal cell population at the locus of mutation

i (here, assumed to be 2), and MV
i = MR

i are the copy numbers of the R and V cancer

cell populations at the same locus (here, assumed to be both the same). Finally, mV
i is

the number of chromosomes in the cancer cells harbouring mutation i. This is assumed

equal to 1, or equal to MV
i , if the mutation is located in a loss-of-heterozygosity (LOH)

region. Given ri reads supporting the mutation (among a total of Ri reads covering the
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locus), we have:

ri ⇠ Bin(Ri, E[fi]) �i ⇠
KX

k=1

wk��̃k
�̃k ⇠ U(0, 1)

w1 = v1 wk = vk

k�1Y

l=1

(1� vl) vk ⇠ Beta(1,↵) log↵ ⇠ 1

where ��̃k
is a point-mass distribution centred at �̃k. The above model assumes that the

cancer cell fraction (CCF) �i for mutation i follows a discrete mixture distribution over

{�̃1, . . . , �̃K}, where K is a large number. The mixture weights wk are generated from

a stick-breaking process with concentration parameter ↵. The above model implies that

all mutations in a particular sample share a small number of distinct CCF values, as

expected in a tumour composed of homogeneous cell populations (i.e. clones).

In the above model, we calculated the posterior distribution of each CCF value �i

in each sample using ADVI as implemented in Stan. Subsequently, we calculated the

di↵erence in the CCF values between each pair of CLL and RS samples for each somatic

mutation. A di↵erence between the matching boundaries of the 95% credible intervals

of the CCF values larger than 0.25 from CLL to RS indicates clonal expansion, a di↵er-

ence of the same magnitude in the opposite direction indicates clonal contraction, while

a di↵erence of smaller magnitude in any direction indicates neither expansion nor con-

traction. Given this classification of mutations, we constructed an N ⇥ 3 table, where

rows correspond to pathways and columns correspond to the above three mutation groups

(i.e. expansion, contraction, neither). The elements of the table indicate the number of

mutations in each group in each pathway. The sum across each row equals the total

number of mutations in the corresponding pathway across all samples. This table was

modelled using a Multinomial-Dirichlet mixture as in the previous section, and the pos-

terior probabilities of clonal expansion and contraction were calculated for each pathway.

Pathways for which clonal expansion was more likely than contraction with a probability

higher than 95% (which corresponds to an FDR less than 5%; see previous section) were

tagged as significant.
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3 Enrichment analysis

As mentioned in the Overview section, genes with FDR less than 1% were considered

di↵erentially expressed. With respect to a particular pathway, a gene can be classified

as di↵erentially expressed and in the pathway, di↵erentially expressed but not in the

pathway, not di↵erentially expressed and in the pathway, and not di↵erentially expressed

and not in the pathway. As in the two previous sections, we constructed an N ⇥ 4

table, where rows correspond to pathways and columns to the above gene categories.

Elements of the table indicate the number of genes in each pathway in each category,

and the total sum across each row is equal to the number of genes that entered the

di↵erential expression analysis. As in the previous sections, we employed a Multinomial-

Dirichlet mixture model, and we calculated posterior probabilities for each gene category

in each pathway. If the proportion of di↵erentially expressed genes in the pathway was

higher than the proportion of di↵erentially expressed genes not in the pathway with

probability higher than 95% (FDR less than 5%), then the pathway was tagged as enriched

in di↵erentially expressed genes.
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