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Abstract

Background. Single cell transcriptomics are rapidly advancing our understanding of the
cellular composition of complex tissues and organisms. A major limitation in most analysis
pipelines is the reliance on manual annotations to determine cell identities, which are time-
consuming and irreproducible. The exponential growth in the number of cells and samples
has prompted the adaptation and development of supervised classification methods for
automatic cell identification.

Results. Here, we benchmarked 20 classification methods that automatically assign cell
identities including single cell-specific and general-purpose classifiers. The methods were
evaluated using eight publicly available single cell RNA-sequencing datasets of different
sizes, technologies, species, and complexity. The performance of the methods was
evaluated based on their accuracy, percentage of unclassified cells, and computation time.
We further evaluated their sensitivity to the input features, their performance across different
annotation levels and datasets. We found that most classifiers performed well on a variety of
datasets with decreased accuracy for complex datasets with overlapping classes or deep
annotations. The general-purpose SVM classifier has overall the best performance across
the different experiments.

Conclusions. We present a comprehensive evaluation of automatic cell identification

methods for single cell RNA-sequencing data. All the code used for the evaluation is

available on GitHub (https://github.com/tabdelaal/scRNAseq Benchmark). Additionally, we
provide a Snakemake workflow to facilitate the benchmarking and to support extension of
new methods and new datasets

(https://github.com/tabdelaal/scRNAseq Benchmark/tree/snakemake and docker).
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Background

Single-cell transcriptomics (ScCRNA-seq) provides unprecedented opportunities to identify and
characterize the cellular composition of complex tissues. Rapid and continuous technological
advances over the past decade has allowed scRNA-seq technologies to scale to thousands
of cells per experiment [1]. A common analysis step in analyzing single cell data involves the
identification of cell populations presented in a given dataset . This task is typically solved by
unsupervised clustering of cells into groups based on the similarity of their gene expression
profiles, followed by cell population annotation by assigning labels to each cluster. This
approach proved very valuable in identifying novel cell populations and resulted in cellular
maps of entire cell lineages, organs and even whole organisms [2—7]. However, the
annotation step is cumbersome and time-consuming as it involves manual inspection of
cluster-specific marker genes. Additionally, manual annotations, which are often not based
on standardized ontologies of cell labels, are not reproducible across different experiments
within and across research groups. These caveats become even more pronounced as the
number of cells and samples increases, preventing fast and reproducible annotations.

To overcome these challenges, a growing number of classification approaches are being
adapted to automatically label cells in scRNA-seq experiments. scRNA-seq classification
methods predict the identity of each cell by learning these identities from annotated training
data (e.g. reference atlas). scRNA-seq classification methods are relatively new compared to
the plethora of methods addressing different computational aspects of single cell analysis
(e.g. normalization, clustering, and trajectory inference). However, the number of
classification methods is rapidly growing to address the aforementioned challenges [8, 9].
While all scRNA-seq classification methods share a common goal, accurate annotation of
cells, they differ in terms of their underlying algorithms and the incorporation of prior
knowledge (e.g. cell type marker gene tables).

In contrast to the extensive evaluations of clustering, differential expression, and trajectory
inference methods [10-12], there is currently only a single attempt comparing methods to
assign cell type labels to cell clusters [13]. The lack of a comprehensive comparison of
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scRNA-seq classification methods leaves users without indications as to which classification
method best fits their problem. More importantly, a proper assessment of existing
approaches in comparison to baseline methods can greatly benefit new developments in the
field and prevent unnecessary complexity.

Here, we benchmarked 20 classification methods to automatically assign cell identities
including single cell-specific and general-purpose classifiers. The methods were evaluated
using eight publicly available single cell RNA-sequencing datasets of different sizes,
technologies, species, and complexity. The performance of the methods was evaluated
based on their accuracy, percentage of unclassified cells, and computation time. We further
evaluated their sensitivity to the input features, their performance across different annotation
levels and datasets. In general, all classifiers perform well across all datasets, including the
general-purpose classifiers. In our experiments, incorporating prior knowledge in the form of
marker genes does not improve the performance. We observed large differences in the
performance between methods in response to changing the input features. Furthermore, the
tested methods vary considerably in their computation time which also vary differently across
methods based on the number of cells and features. Our results highlight the general-

purpose SVM classifier as the best performer overall.

Results

Benchmark of automatic cell identification methods

We benchmarked the performance and computation time of all 20 classifiers (Table 1) across
all eight datasets (Table 2), whenever it is possible to apply. Classifiers can be divided into
two categories: 1) supervised methods which require a training dataset labeled with the
corresponding cell populations in order to train the classifier, or 2) prior-knowledge-
supervised methods, for which either a marker genes file is required as an input, describing
the signature genes to be expressed for each cell population, or a pre-trained classifier for

specific cell populations is provided.
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The datasets used in this study vary in the number of cells, genes and cell populations
(annotation level), in order to represent different levels of challenges in the classification task
and to evaluate how each classifier performs in each case (Table 2). Starting from relatively
typical sized scRNA-seq datasets (~1,500 - ~8,500 cells), such as the five pancreatic
datasets (Baron Mouse and Human, Muraro, Segerstolpe and Xin), which include both
mouse and human pancreatic cells and vary in the sequencing protocol used. The Allen
Mouse Brain (AMB) dataset is used to evaluate how the classification performance changes
when dealing with different levels of cell population annotation since the AMB dataset
contains three levels of annotations for each cell (3, 20 or 108 cell populations), denoted as
AMB3, AMB20, and AMB108. The Tabula Muris (TM) and Zheng datasets represent
relatively large scRNA-seq datasets (>50,000 cells), to assess how well the classifiers scale
with large datasets. Additionally, by including the Zheng dataset, we are able to benchmark
four prior-knowledge-supervised classifiers, since the marker genes files or pre-trained
classifier are available for the four classifiers for peripheral blood mononuclear cells
(PBMCs).

Due to either CPU time constraint or memory requirement of some classifiers, it was not
possible to apply them on the large datasets, e.g., TM and Zheng. Cell-BLAST requires a lot
of memory (> 100 GB) and long run time (in order of days) to obtain predictions for ~10,000
cells, and SingleR has long computation time similar to Cell-BLAST. Therefore, we did not
evaluate Cell-BLAST on the TM and Zheng datasets, and SingleR was not evaluated on the

Zheng dataset. Moreover, scPred failed while being tested on the Zheng dataset.

Overall performance evaluation across datasets and methods

Generally, all classifiers perform well across all datasets, including the general-purpose
classifiers (Figure 1), except Cell-BLAST which had remarkably lower performance
compared to all other classifiers across all datasets. Further, scVI has low performance on
the deeply annotated datasets TM (55 cell populations) and AMB108 (108 cell populations),

and kNN produces low performance for the Xin and AMB108 datasets.
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For the pancreatic datasets, the best-performing classifiers are SVM, scPred, scmapcell,
scmapcluster, scVI, ACTINN, singleCellNet, LDA and NMC. SVM is the only classifier to be
in the top five list for all five pancreatic datasets, while NMC, for example, appears only in the
top five list for the Xin dataset. The Xin dataset contains only four major pancreatic cell types
(alpha, beta, delta and gamma) making the classification task relatively easy for all
classifiers, including NMC. Considering only the median F1l-score can be misleading since
some classifiers incorporate a rejection option (e.g. scmapcell, scPred), by which a cell is
assigned as ‘unlabeled’ if the classifier is not confident enough. Figure 1B summarizes the
percentage of unlabeled cells for each classifier. In the Baron Human dataset, for example,
the median Fl1-score for scmapcell, scPred and SVM is 0.984, 0.981, and 0.980,
respectively. However, scmapcell and scPred assigned 4.2% and 10.8% of the cells,
respectively, as unlabeled while SVM classified 100% of the cells. This shows an overall
better performance for SVM.

For the TM dataset, the top five performing classifiers are SVM, scmapcell, scPred, ACTINN
and LDA with a median F1-score > 0.95, showing that these classifiers can perform well and
scale to large scRNA-seq datasets with a deep level of annotation. Furthermore, scmapcell
and scPred assigned 9.5% and 17.7% of the cells as unlabeled, which shows a superior

performance for SVM with high F1-score and no unlabeled cells.

Incorporating marker-genes does not improve performance on PBMC data

For the Zheng dataset, Garnett, Moana, DigitalCellSorter and SCINA could be evaluated and
benchmarked with the rest of the classifiers. Although the best performing classifier is SCINA
with a median Fl-score of 0.968, this performance is based only on 3, out of 11, cell
populations (Monocytes, B cells and NK cells) for which marker-genes are provided.
Supplementary Table 1 summarizes which cell populations from the Zheng dataset can be
classified by the prior-knowledge-supervised methods. Interestingly, none of the prior-
knowledge-supervised methods showed superior performance compared to other classifiers.
Beside SCINA, the top classifiers are CaSTLe, ACTINN, singleCellNet and SVM. Generally,
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all classifiers show relatively lower performance on the Zheng dataset compared to other
datasets, as the Zheng dataset contains 11 immune cell populations which are harder to
differentiate, particularly the T cell compartment (6 out of 11 cell populations). This difficulty
of separating these populations was previously noted in the original study [14]. Also, the
confusion matrices for CaSTLe, ACTINN, singleCellNet and SVM clearly indicate that some
populations are similar to each other where all classifiers are making wrong predictions, such
as 1) monocytes with dendritic cells, 2) two CD8+ T populations, and 3) four CD4+ T

populations (Supplementary Figure 1).

Performance evaluation across different annotation levels

We used the AMB dataset with its three different levels of annotations, to evaluate the
classifiers’ performance behavior with a larger number of smaller cell populations within the
same dataset. For AMB3, the classification task is relatively easy, differentiating between
three major brain cell types (GABAergic, Glutamatergic and Non-Neuronal). All classifiers
perform almost perfectly with a median F1-score > 0.99, except Cell-BLAST (median F1-
score = 0.619) (Figure 1). For AMB20, the classification task becomes slightly more
challenging and the performance of some classifiers drops, especially kNN. The low
performance of kNN in this case is due to the setting of k = 50, a parameter we did not
optimize, which is larger than the size of three out of 20 classes leading to misclassifications
by KNN. The top five classifiers are scmapcell, scPred, SVM, ACTINN and LDA, where
scmapcell and scPred assigned 4.9% and 8.4% of the cells as unlabeled. For the deeply
annotated AMB108 dataset, the performance of all classifiers drops further, except for kNN
and scVI, where the median Fl-score is zero. The top five classifiers are scmapcell, SVM,
LDA, scmapcluster and singleCellNet, with scmapcell assigning 41.9% of the cell as
unlabeled. These results show an overall superior performance for general-purpose
classifiers (SVM and LDA) compared to other scRNA-seq specific classifiers across different

levels of cell population annotation.
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Instead of only looking at the median F1-score, we also evaluated the F1-score per cell
population for each classifier (Figure 2). We confirmed previous conclusions, Cell-BLAST
exhibits low performance in general (Figure 2A-C), kNN performance drops with deep
annotation having smaller cell populations (Figure 2B-C), scVI poorly performs on the deeply
annotated AMB108 dataset. Additionally, we could observe that some cell populations are
much harder to classify compared to other populations, for example Serpinfl cells in the

AMB20 dataset.

Performance evaluation across datasets

While evaluating the classification performance within a dataset is important, it is more
challenging to predict cell identities across datasets. To test the classifiers’ ability to predict
cell identities in a dataset that was not used for training, we used the four human pancreatic
datasets: Baron Human, Muraro, Segerstople and Xin. In this case, the classification
performance can be affected by batch differences between datasets. We evaluated the
performance of the classifiers when trained using the raw data as well as aligned data using
the mutual nearest neighbor (MNN) method [15]. Supplementary Figure 2 shows UMAPSs [16]
of the combined dataset before and after alignment, demonstrating better grouping of
pancreatic cell types after alignment.

For the raw (unaligned) data, the best performing classifiers across all four datasets are
SVM, scVI, scmapcell, ACTINN and singleCellNet (Figure 3A,C). For the aligned data, the
best performing classifiers are SVM, singleCellNet, kKNN and NMC (Figure 3B,D). Some
classifiers benefit from aligning the datasets such as kNN, NMC and singleCellNet,
producing higher median F1-scores (Figure 3A,B). On the other hand, some other classifiers
failed the classification task completely, such as scmapcell which labels all cells as
unlabeled. Some other classifiers failed to run over the aligned datasets, such as ACTINN,
scVI, Cell-BLAST, scID, scmapcluster and scPred. These classifiers work only with positive
gene expression data, while the aligned datasets contains positive and negative gene

expression values.
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Performance sensitivity to the input features

During the cross-validation experiment described earlier, we used all features (genes) as
input to the classifiers. However, some classifiers suffer from overtraining when too many
features are used. Therefore, we tested the effect of feature selection on the performance of
the classifiers. Different strategies for feature selection in scRNA-seq classification
experiments exist. Using genes as features that have a higher number of dropouts compared
to the expected number of dropouts has been shown to yield the best results [17, 18]. Here,
subsets of features were selected based on this criterion. The feature selection experiments
were all done on the TM dataset. For the number of features, we used the top: 100, 200,
500, 1000, 2000, 5000, and 19791 (all) genes. Some classifiers include a built-in feature
selection method which is used by default. To ensure that all tools use the same set of
features, the built-in feature selection was turned off during these experiments. Due to long
running times or excessive memory usage, not all feature sets could be tested for all tools.
As already discussed before, Cell-BLAST could not be tested on the TM dataset. During
feature selection, we ran Cell-Blast on all feature sets except the largest set with all features.
scVI also timed out when running on this feature set. Furthermore, scPred failed when tested
using 2000 features, and singleCellNet timed out when tested using 5000 features.

Figure 4 presents the performance of the classifiers using the different sets of features.
Some methods are clearly overtrained when the number of features increases. scmapcell, for
instance, shows the highest median-F1 score when using less features, but its performance
drops when the number of features increases. On the contrary, the performance of some
classifiers, such as SVM, keeps improving when the number of features increases. These
results indicate that the optimal number of features is different for each classifier.

Looking at the median-F1 score, there are several methods with a high performance.
ACTINN, LDA, RF, scmapcell, scPred, singleCellNet, and SVM all have a median F1-score
higher than 0.95 for one or more of the feature sets. Some of these well-performing tools,
however, leave many cells unlabeled. scmapcell, for instance, yields a median F1-score of
0.976 when using a subset of 500 genes, with 10% of the cells is still unlabeled. The same
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holds for scPred, overall, it has the highest median F1-score (0.982) when using 1000 genes,
with 15% of the cells remains unassigned. ACTINN, SVM, LDA, singleCellNet, and RF, on
the contrary label all the cells. Overall SVM shows the second highest performance with a

score of 0.979. It thus performs slightly worse than scPred, but it does label all the cells.

Running time evaluation

To compare the runtimes of the tools and see how they scale when the number of cells
increases, we compared the number of cells in each dataset with the computation time of the
tools (Figure 5A). Overall, big differences in the computation time can be observed when
comparing the different methods. For example, for the Zheng dataset the runtime varies
between 9.65 seconds for scmapcluster and 6.00 hours for LDA. singeCellNet showed the
longest computation time overall. Running singleCellNet on the TM dataset took more than
25 hours. In general, all tools show an increase in computation time when the number of
cells increase. However, when comparing the largest datasets, TM and Zheng, not all tools
show an increase in computation time. Despite the increase in the number of cells between
the datasets, CaSTLe, CHETAH, and SingleR, have a decreasing computation time. A
possible explanation could be that the runtime of these tools also depends on the number of
genes or the number of cell populations in the dataset. The Zheng dataset, for example,
contains less cell populations than the TM dataset (11 compared to 55). To evaluate this
properly, the runtime of the tools on the AMB3, AMB20, and AMB108 datasets were
compared (Figure 5B), and this shows an increase in run time when the number of cell
populations increases, while the number of cells and genes remains constant. For other
tools, such as ACTINN and scmapcell, the runtime does not increase.

Some of the tools even have a high runtime for the small datasets. On the smallest, Xin,
dataset all classifiers have a computation time < 5 minutes, with most classifiers finishing
within 60 seconds. Cell-BLAST, however, takes more than 75 minutes.

To assess the effect of the number of genes on the computation time, we compared the
computation time of the methods during the feature selection experiments (Figure 5C). Most
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methods scale linearly with the number of genes. However, LDA does not scale very well
when the number of genes increases. If the number of features is higher than the number of
cells, the complexity of LDA is O(g"3), where g is the number of genes [19]. The computation
time of the methods is thus dependent on the number of cells, number of genes, and, for
most tools, also the number of different cell populations in the dataset.

Five classifiers, scmapcell, scmapcluster, SVM, RF, and NMC, have a computation time
below six minutes on all the datasets. Here, it is especially noteworthy that most of these
tools, and SVM in particular, also have the highest median F1l-scores during all previous

experiments.

Discussion

In this study, we evaluated the performance of 20 different methods for automatic cell
identification using eight scRNA-seq datasets. Several classifiers accurately performed on
almost all datasets, particularly: SVM, scPred, scmapcell/cluster, singleCellNet, scVI, LDA
and ACTINN. Considering all three evaluation metrics (median Fl-score, % of unlabeled
cells and computation time), SVM is overall the best performing classifier for the scRNA-seq
datasets used. Our results show that SVM scales well to large datasets as well as deep
annotation levels. In addition, SVM did not suffer from the large number of features (genes)
present in the data, producing the highest performance on the TM dataset using all genes,
due to the incorporated L2-regularization. The comparable or higher overall performance of a
general-purpose classier such as SVM warrants caution when designing scRNA-seq specific
classifiers that they do not introduce unnecessary complexity.

scPred, which is based on a SVM with radial kernel, performed well on most dataset, yet it
suffers from long computation time for large datasets, together with LDA, ACTINN and
singleCellNet, where the latter becomes even slower with large number of cell populations. In
addition, in some cases, scPred and scmapcell/cluster reject high proportions of cells as
unlabeled. In general, incorporating a rejection option with classification is a good practice,
as it allows to detect potentially new cell populations not included in the training data, and
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improve the performance for the classified cells with high confidence. However, for the
datasets used in this study, the performance of classifiers with rejection option did not show
substantial improvement compared to other classifiers. scVI works well for datasets with
relatively small number of cell populations, but failed to scale with deeply annotated datasets.
kNN classifier produces poor performance with most datasets, but this performance can
potentially be improved by optimizing the number of neighbors. Generally, we evaluated all
classifiers using their default settings. However, adjusting these settings for a specific
dataset might improve the performances but increases the risk of overtraining.

For the Zheng dataset, the prior-knowledge-supervised methods did not improve the
classification performance over supervised methods which do not incorporate such prior
knowledge. These results indicate that incorporating prior knowledge in the form of marker
genes is not beneficial. Besides, defining these marker genes is often challenging and
heavily depends on personal expertise. Furthermore, these marker genes can be implicitly
learned by supervised methods through the training process.

Based on our results, we recommend to use of the general-purpose SVM classifier (with a
linear kernel) since it had better or equal performance compared to the other classifiers
tested across all datasets, with a remarkably fast computation time. Other high performing
classifiers include: scPred, scmapcell/cluster, singleCellNet, LDA and ACTINN. While the
performance of almost all methods was relatively high on various datasets, some datasets

with overlapping populations (e.g. Zhang PBMC dataset) remain challenging.

Conclusions

We present a comprehensive evaluation of automatic cell identification methods for single
cell RNA-sequencing data. Generally, all classifiers perform well across all datasets,
including the general-purpose classifiers. In our experiments, incorporating prior knowledge
in the form of marker genes does not improve the performance (on PBMC data). We
observed large differences in the performance between methods in response to changing the
input features. Furthermore, the tested methods vary considerably in their computation time
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which also vary differently across methods based on the number of cells and features. Our
results highlight the general-purpose SVM classifier as the best performer overall. To support
future extension of this benchmarking work with new classifiers and datasets, we provide a
Snakemake workflow to automate the performed benchmarking analyses

(https://github.com/tabdelaal/scRNAseq Benchmark/tree/snakemake and docker).

Methods

Classification methods

We evaluated 20 scRNA-seq classifiers, publicly available as R or Python packages or
scripts (Table 1). This set included 15 methods developed specifically for sScRNA-seq data as
well as 5 general-purpose classifiers from the scikit-learn library in Python: linear discriminant
analysis (LDA), nearest mean classifier (NMC), k-nearest neighbor (kNN), support vector
machine (SVM), and random forest (RF). Methods were excluded from the evaluation if they
did not return the predicted labels for each cell. For example, we excluded LAMbDA [20]
because the tool only returns the posterior probabilities rather than predicted labels.
Similarly, we excluded MetaNeighbor [21] because the tool only returns the area under the
receiver operator characteristic curve (AUROC). For all tools the latest (May 2019) package
was installed or scripts were downloaded from their Github. For scPred it should be noted
that it is only compatible with an older version of Seurat (v2.0). For CHETAH it is important
that the R version 3.6 or newer is installed.

During the benchmark, all tools were run using their default settings and if not available, we
used the settings provided in the accompanying examples and vignettes. As input, we
provided each method with the raw count data (after cell and gene filtering as described in
Data Preprocessing) according to the method documentation. The majority of the methods
have a built-in normalization step. For the general-purpose classifiers, we provided log-
transformed counts,log, (count + 1).

Some methods required a marker gene file as an input (e.g. Garnett, Moana, SCINA,
DigitalCellSorter). In this case, we use the marker gene files provided by the authors. We did
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not attempt to include additional marker gene files and hence the evaluation of those

methods is restricted to datasets where a marker gene file for cell populations is available.

Datasets
Eight scRNA-seq datasets were used to evaluate and benchmark all classification tools
(Table 2). Datasets vary across species (human and mouse), tissue (brain, pancreas, PBMC

and whole mouse), as well as the sequencing protocol used. The Allen Mouse Brain (AMB)

dataset was downloaded from http://celltypes.brain-map.org/rnaseq. All five pancreatic

datasets were obtained from: https://hemberg-lab.github.io/scRNA.seqg.datasets/. The Tabula

Muris (TM) dataset was downloaded from https://tabula-muris.ds.czbiohub.org/. For the

PBMC dataset, we downloaded the gene-cell count matrix for the ‘Fresh 68k PBMCs’ [14]

from: https://support.10xgenomics.com/single-cell-gene-expression/datasets. The cell

population annotation for all datasets was provided with the data, except the Zheng dataset,
for which we obtained the cell population annotation from

https://qithub.com/10XGenomics/single-cell-3prime-paper/tree/master/pbmc68k analysis.

These annotations were used as ‘ground truth’ during the evaluation of the cell population

prediction obtained from the classification tools.

Data Preprocessing

Based on the manual annotation provided in the datasets, we started by filtering out cells that
were labeled as doublets, debris or unlabeled cells. Next, we filtered genes with zero counts
across all cells. For cells, we calculated the median number of detected genes per cell, and
from that we obtained the median absolute deviations (MADs) across all cells in the log
scale. We filtered out cells when the total number of detected genes was below 3 MADs from
the median number of detected genes per cell. The number of cells and genes in Table 2

represent the size of each dataset after this stage of preprocessing.
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Moreover, before applying cross validation to evaluate each classifier, we excluded cell
populations with less than 10 cells across the entire dataset, Table 2 summarizes the

number of cell populations before and after this filtration step for each dataset.

Experimental setup

For the supervised classifiers, we evaluated the performance by applying a 5-fold cross
validation across each dataset after filtering genes, cells and small cell populations. The folds
were divided in a stratified manner in order to keep equal proportion of each cell population
in each fold. The training and test indices for each fold were defined and saved for each
dataset, these indices were provided while applying the classifiers on the datasets, to make
sure all folds are exactly the same for all classifiers.

The prior-knowledge-supervised classifiers, Garnett, Moana, DigitalCellSorter and SCINA,
were only evaluated on the Zheng dataset, for which the marker genes file or the pre-trained
classifier was available, after filtering genes and cells. Each classifier uses the dataset and
the marker genes file as inputs, and outputs the cell population label corresponding to each
cell. No cross validation is applied in this case, except for Garnett where we could either use
the pre-trained version provided from the original study, or train our own classifier using the
marker genes file along with the training data. In this case, we applied 5-fold cross validation
using the same train and test indices described previously. Supplementary Table 1 shows
the mapping of cell populations between the Zhang dataset and each of the prior-knowledge-
supervised classifiers. For Moana a pre-trained classifier was used, this classifier also
predicted cells to be Memory CD8+ T cells and CD16+ Monocytes, while these cell

populations were not in the Zheng dataset.

Across dataset prediction

We selected the major four endocrine pancreatic cell types (alpha, beta, delta and gamma)
across all four human pancreatic datasets: Baron Human, Muraro, Segerstolpe and Xin.
Supplementary table 2 summarizes the number of cells in each cell type across all datasets.
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To account for batch effects and technical variations between different protocols, datasets
were aligned using MNN [15] from the scran R package (version 1.1.2.0). Using both the raw
data (unaligned) and the aligned data, we applied leave-one-dataset-out cross validation

where we train on three datasets and test on the left out dataset.

Performance evaluation metrics

The performance of the tools on the datasets is evaluated using three different metrics: 1)
For each cell population in the dataset the F1-score is reported. The median of these F1-
scores is used as a measure for the performance on the dataset. 2) Some of the tools do not
label all the cells. These unassigned cells are not considered in the F1-score calculation. The
percentage of unlabeled cells is also used to evaluate the performance. 3) The computation

time of the tools is also measured.

Feature selection

Genes are selected as features based on their dropout rate. The method used here, is based
on the method described in [17]. During feature selection, a sorted list of the genes is made.
Based on this list, the top n number of genes can be easily selected during the experiments.
First, the data is normalized using log,(count + 1). Next, for each gene the percentage of
dropouts, d, and the mean, m, of the normalized data are calculated. Genes that have a
mean or dropout rate of zero are not considered during the next steps. These genes will be
at the bottom of the sorted list. For all other genes, a linear model is fitted to the mean and
log2(d). Based on their residuals, the genes are sorted in descending order and added to the

top of the list.

Benchmarking pipeline

In order to ensure reproducibility and support future extension of this benchmarking work
with new classification methods and benchmarking datasets, a Snakemake [22] workflow for
automating the performed benchmarking analyses was developed with an MIT license
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(https://github.com/tabdelaal/scRNAseq Benchmark/tree/snakemake and docker). Each

tool (license permitting) is packaged in a Docker container

(https://hub.docker.com/u/scrnasegbenchmark) alongside the wrapper scripts and their
dependencies. These images will be used through snakemake’s singularity integration to
allow the workflow to be run without the requirement to install specific tools and to ensure
reproducibility. Documentation is also provided to execute and extend this benchmarking

workflow to help researchers to further evaluate interested methods.
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Table 1. Overview of the classification tools benchmarked during this study.

Type of Machine Prior Rejection
Name Version Language Learning knowledge option Reference
Generalized
Garnett 0.1.4 R linear model Yes Yes [23]
SVM with linear
Moana 0.1.1 python kernel Yes No [24]
Github
version: Voting based on
DigitalCellSorter e€369a34 python cell type markers Yes No [25]
Bimodal
distribution fitting
SCINA 1.1.0 R for marker genes Yes No [26]
scVI 0.3.0 python Neural Network  No No [27]
Cell-to-cell
Cell-Blast 0.1.2 python similarity No Yes [28]
GitHub
version:
ACTINN 563bccl python Neural Network  No No [29]
Nearest median
Scmapcluster 151 R classifier No Yes [17]
Scmapcell 151 R kNN No Yes [17]
SVM with radial
scPred 0.0.0.9000 R kernel No Yes [30]
Correlation to
CHETAH 0.99.5 R training set No Yes [31]
Github
version:
CaSTLe 258b278 R Random Forest No No [32]
Correlation to
SingleR 0.2.2 R training set No No [33]
sclD 0.0.0.9000 R LDA No Yes [34]
singleCellNet  0.1.0 R Random Forest No No [35]
LDA 0.19.2 python LDA No No
NMC 0.19.2 python NMC No No
RF 0.19.2 python RF (50 trees) No No
SVM (linear
SVM 0.19.2 python kernel) No No
kNN 0.19.2 python kNN (k = 50) No No
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Dataset No. of | No. of | No. of cell Description Protocol Reference
cells | genes | population
s
(>10 cells)
Primary
4/22/110 . SMART-Seq
AMB 12,832 | 42,625 (3/20/108) mouse visual v [36]
cortex
Baron 13 Mouse .
(Mouse) 1,886 | 14,861 ) Pancreas inDrop [37]
Baron 14 Human .
(Human) 8,569 | 17,499 (13) Pancreas inDrop [37]
Muraro | 2,122 | 18,915 9 Human CEL-Seq? [38]
' ' (8) Pancreas q
Segerstolpe | 2,133 | 22,757 13 Human | gyiaART-Seq2 | [39]
! ' (9) Pancreas
Xin 1,449 | 33,889 4 Human SMARTer [40]
4) Pancreas
™ 54,865 | 19,791 55 Whole Mus | o\ 1ART-Seq2 6]
(55) musculus
11 10X
Zheng | 65,943 | 20,387 (D) PBMC Chromium [14]
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Figure 1. Performance comparison of supervised classifiers for cell identification
using different scRNA-seq datasets. (A) Heatmap of the median F1-score across all cell
populations per classifier per dataset. (B) Percentage of unlabeled cells across all cell
populations per classifier per dataset. Light-grey boxes indicate that the corresponding

method could not be tested on the corresponding dataset.
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Figure 2. Classification performance across different annotation levels in the Allen
Mouse Brain dataset. Heatmaps show the F1l-scores of each method for each cell
population in the (A) AMB3, (B) AMB20, and (C) AMB108 datasets. The cell populations are
sorted from left-to-right in descending order according to their size (i.e. number of cells). The

size of each population is indicated between brackets.
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Figure 3. Classification performance across different pancreatic datasets. Heatmaps
showing (A-B) the median F1-score and (C-D) the percentage of unlabeled cells for each
classifier. (A,C) Show the results for the unaligned datasets. (B,D) Show the results for the
aligned datasets using MNN. The column labels indicates which of the four datasets was

used as a test set, in which case the other three sets were used to train the classifiers. Light-
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grey boxes indicate that the corresponding method could not be tested on the corresponding

dataset.
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Figure 4. Classification performance across different number of features. Line plots
show (A) the median F1-score and (B) percentage of unlabeled cells of each classifier
applied to the TM dataset with the top 100, 200, 500, 1000, 2000, 5000, and 19791 (all)
genes as input feature sets. Genes were ranked based on dropout-based feature selection.
The x-axis is log-scaled in all panels. Few points are not shown as the corresponding

classifier failed or timed out when tested.

27


https://doi.org/10.1101/644435
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/644435; this version posted May 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

A Cells B Annotation level c Features

10000

0000
0000

1000
100

1

o) (3 = =
2-8 «f o8 Pt ¥
F | By £ B .
L o -
2 T cl* & x
¥
» "] s i
. s s
o = o oo ol 3 20 108 100 200 500 1000 2000 5000 1arEn
4 &2 & B 23
== B & L E]
Number of Cells Number of Call Populations Number of Features
ACTINN LDA RF scVl CaSTLe sclD scmapcluster singleCellNet
— kNN — NMC SVM — Cel_ BLAST --- CHETAH --- scmapcell scPred --- BSingleR

Figure 5. Computation time Evaluation. The computation time of each tool is plotted
against (A) the number of cells, (B) the number of cell populations, and (C) the number of
features (genes). The x-axis is log-scaled in all panels. Few points are not shown as the

corresponding classifier failed or timed out when tested.
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Supplementary Table 1. Mapping of true cell population labels from the Zheng dataset to

cell population labels of the prior-knowledge-supervised classifiers.

True Labels

Garnett

DigitalCellSorter

Moana

SCINA

CD14+ Monocyte

CD14+ Monocyte

CD14+ Monocyte

CD14+ Monocyte

CD14+ Monocyte

Dendritic Dendritic Dendritic Dendritic
CD34+ CD34+
CD56+ NK CD56+ NK CD56+ NK CD56+ NK CD56+ NK
CD19+B CD19+B CD19+B CD19+B CD19+ B
CD4+ T Helper 2
CD4+/CD25 T
Reg
CD4+/CD45RA+/ Naive CD4+ T
CD25- Naive T cells
CD4+/CD45R0O+ Memory CD4+ T
Memory CD4+ T cell cells
CD8+ Cytotoxic T
CD8+/CD45RA+ Naive CD8+ T
Naive Cytotoxic |(CD8+ T cell T cell cells
Memory CD8+ T
cells
CD16+
Monocytes
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Supplementary Table 2. Cell type size for each pancreatic dataset used in the across

dataset performance evaluation.

Dataset alpha beta delta gamma Total
Baron 2326 2525 601 255 5707
(Human)

Muraro 812 448 193 101 1554
Segerstolpe 872 263 110 195 1440
Xin 855 466 46 82 1449
Total 4865 3702 950 633 10150
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Supplementary Figure 1. Confusion matrices for the Zheng dataset. Results of the best four
classifier (A) CaSTLe, (B) ACTINN, (C) singleCellNet, and (D) SVM are shown. Rows
indicate the true labels and columns indicate the predicted labels. Each cell in the heatmap is
colored according to the percentage of overlapping cells between the true and predicted cell
population. Black boxes highlight the four subpopulations of CD4 and the two subpopulations

of CD8 T-cells.
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Supplementary Figure 2. UMAP plots of the four pancreatic datasets used in the across
dataset prediction experiment. (A-B) UMAP plots before and (C-D) after alignment using

MNN. In (A, C) the cells are colored by dataset and in (B, D) the cells are colored by cell

type.
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