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Abstract  

Background. Single cell transcriptomics are rapidly advancing our understanding of the 

cellular composition of complex tissues and organisms. A major limitation in most analysis 

pipelines is the reliance on manual annotations to determine cell identities, which are time-

consuming and irreproducible. The exponential growth in the number of cells and samples 

has prompted the adaptation and development of supervised classification methods for 

automatic cell identification. 

Results. Here, we benchmarked 20 classification methods that  automatically assign cell 

identities including single cell-specific and general-purpose classifiers. The methods were 

evaluated using eight publicly available single cell RNA-sequencing datasets of different 

sizes, technologies, species, and complexity. The performance of the methods was 

evaluated based on their accuracy, percentage of unclassified cells, and computation time. 

We further evaluated their sensitivity to the input features, their performance across different 

annotation levels and datasets. We found that most classifiers performed well on a variety of 

datasets with decreased accuracy for complex datasets with overlapping classes or deep 

annotations. The general-purpose SVM classifier has overall the best performance across 

the different experiments. 

Conclusions. We present a comprehensive evaluation of automatic cell identification 

methods  for single cell RNA-sequencing data. All the code used for the evaluation is 

available on GitHub (https://github.com/tabdelaal/scRNAseq_Benchmark). Additionally, we 

provide a Snakemake workflow to facilitate the benchmarking and to support extension of  

new methods and  new datasets 

(https://github.com/tabdelaal/scRNAseq_Benchmark/tree/snakemake_and_docker).  
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Background 

Single-cell transcriptomics (scRNA-seq) provides unprecedented opportunities to identify and 

characterize the cellular composition of complex tissues. Rapid and continuous technological 

advances over the past decade has allowed scRNA-seq technologies to scale to thousands 

of cells per experiment [1]. A common analysis step in analyzing single cell data involves the 

identification of cell populations presented in a given dataset . This task is typically solved by 

unsupervised clustering of cells into groups based on the similarity of their gene expression 

profiles, followed by cell population annotation by assigning labels to each cluster. This 

approach proved very valuable in identifying novel cell populations and resulted in cellular 

maps of entire cell lineages, organs and even whole organisms [2–7]. However, the 

annotation step is cumbersome and time-consuming as it involves manual inspection of 

cluster-specific marker genes. Additionally, manual annotations, which are often not based 

on standardized ontologies of cell labels, are not reproducible across different experiments 

within and across research groups. These caveats become even more pronounced as the 

number of cells and samples increases, preventing fast and reproducible annotations.  

To overcome these challenges, a growing number of classification approaches are being 

adapted to automatically label cells in scRNA-seq experiments. scRNA-seq classification 

methods predict the identity of each cell by learning these identities from annotated training 

data (e.g. reference atlas). scRNA-seq classification methods are relatively new compared to 

the plethora of methods addressing different computational aspects of single cell analysis 

(e.g. normalization, clustering, and trajectory inference). However, the number of 

classification methods is rapidly growing to address the aforementioned challenges [8, 9]. 

While all scRNA-seq classification methods share a common goal, accurate annotation of  

cells, they differ in terms of their underlying algorithms and the incorporation of prior 

knowledge (e.g. cell type marker gene tables).    

In contrast to the extensive evaluations of clustering, differential expression, and trajectory 

inference methods [10–12], there is currently only a single attempt comparing methods to 

assign cell type labels to cell clusters [13]. The lack of a comprehensive comparison of 
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scRNA-seq classification methods leaves users without indications as to which classification 

method best fits their problem. More importantly, a proper assessment of existing 

approaches in comparison to baseline methods can greatly benefit new developments in the 

field and prevent unnecessary complexity. 

Here, we benchmarked 20 classification methods to automatically assign cell identities 

including single cell-specific and general-purpose classifiers. The methods were evaluated 

using eight publicly available single cell RNA-sequencing datasets of different sizes, 

technologies, species, and complexity. The performance of the methods was evaluated 

based on their accuracy, percentage of unclassified cells, and computation time. We further 

evaluated their sensitivity to the input features, their performance across different annotation 

levels and datasets. In general, all classifiers perform well across all datasets, including the 

general-purpose classifiers. In our experiments, incorporating prior knowledge in the form of 

marker genes does not improve the performance. We observed large differences in the 

performance between methods in response to changing the input features. Furthermore, the 

tested methods vary considerably in their computation time which also vary differently across 

methods based on the number of cells and features. Our results highlight the general-

purpose SVM classifier as the best performer overall. 

 

Results 

Benchmark of automatic cell identification methods 

We benchmarked the performance and computation time of all 20 classifiers (Table 1) across 

all eight datasets (Table 2), whenever it is possible to apply. Classifiers can be divided into 

two categories: 1) supervised methods which require a training dataset labeled with the 

corresponding cell populations in order to train the classifier, or 2) prior-knowledge-

supervised methods, for which either a marker genes file is required as an input, describing 

the signature genes to be expressed for each cell population, or a pre-trained classifier for 

specific cell populations is provided.  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/644435doi: bioRxiv preprint 

https://doi.org/10.1101/644435
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

The datasets used in this study vary in the number of cells, genes and cell populations 

(annotation level), in order to represent different levels of challenges in the classification task 

and to evaluate how each classifier performs in each case (Table 2). Starting from relatively 

typical sized scRNA-seq datasets (~1,500 - ~8,500 cells), such as the five pancreatic 

datasets (Baron Mouse and Human, Muraro, Segerstolpe and Xin), which include both 

mouse and human pancreatic cells and vary in the sequencing protocol used. The Allen 

Mouse Brain (AMB) dataset is used to evaluate how the classification performance changes 

when dealing with different levels of cell population annotation since the AMB dataset 

contains three levels of annotations for each cell (3, 20 or 108 cell populations), denoted as 

AMB3, AMB20, and AMB108. The Tabula Muris (TM) and Zheng datasets represent 

relatively large scRNA-seq datasets (>50,000 cells), to assess how well the classifiers scale 

with large datasets. Additionally, by including the Zheng dataset, we are able to benchmark 

four prior-knowledge-supervised classifiers, since the marker genes files or pre-trained 

classifier are available for the four classifiers for peripheral blood mononuclear cells 

(PBMCs). 

Due to either CPU time constraint or memory requirement of some classifiers, it was not 

possible to apply them on the large datasets, e.g., TM and Zheng. Cell-BLAST requires a lot 

of memory (> 100 GB) and long run time (in order of days) to obtain predictions for ~10,000 

cells, and SingleR has long computation time similar to Cell-BLAST. Therefore, we did not 

evaluate Cell-BLAST on the TM and Zheng datasets, and SingleR was not evaluated on the 

Zheng dataset. Moreover, scPred failed while being tested on the Zheng dataset. 

 

Overall performance evaluation across datasets and methods 

Generally, all classifiers perform well across all datasets, including the general-purpose 

classifiers (Figure 1), except Cell-BLAST which had remarkably lower performance 

compared to all other classifiers across all datasets. Further, scVI has low performance on 

the deeply annotated datasets TM (55 cell populations) and AMB108 (108 cell populations), 

and kNN produces low performance for the Xin and AMB108 datasets. 
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For the pancreatic datasets, the best-performing classifiers are SVM, scPred, scmapcell, 

scmapcluster, scVI, ACTINN, singleCellNet, LDA and NMC. SVM is the only classifier to be 

in the top five list for all five pancreatic datasets, while NMC, for example, appears only in the 

top five list for the Xin dataset. The Xin dataset contains only four major pancreatic cell types 

(alpha, beta, delta and gamma) making the classification task relatively easy for all 

classifiers, including NMC. Considering only the median F1-score can be misleading since 

some classifiers incorporate a rejection option (e.g. scmapcell, scPred), by which a cell is 

assigned as ‘unlabeled’ if the classifier is not confident enough. Figure 1B summarizes the 

percentage of unlabeled cells for each classifier. In the Baron Human dataset, for example, 

the median F1-score for scmapcell, scPred and SVM is 0.984, 0.981, and 0.980, 

respectively. However, scmapcell and scPred assigned 4.2% and 10.8% of the cells, 

respectively, as unlabeled while SVM classified 100% of the cells. This shows an overall 

better performance for SVM. 

For the TM dataset, the top five performing classifiers are SVM, scmapcell, scPred, ACTINN 

and LDA with a median F1-score > 0.95, showing that these classifiers can perform well and 

scale to large scRNA-seq datasets with a deep level of annotation. Furthermore, scmapcell 

and scPred assigned 9.5% and 17.7% of the cells as unlabeled, which shows a superior 

performance for SVM with high F1-score and no unlabeled cells. 

 

Incorporating marker-genes does not improve performance on PBMC data 

For the Zheng dataset, Garnett, Moana, DigitalCellSorter and SCINA could be evaluated and 

benchmarked with the rest of the classifiers. Although the best performing classifier is SCINA 

with a median F1-score of 0.968, this performance is based only on 3, out of 11, cell 

populations (Monocytes, B cells and NK cells) for which marker-genes are provided. 

Supplementary Table 1 summarizes which cell populations from the Zheng dataset can be 

classified by the prior-knowledge-supervised methods. Interestingly, none of the prior-

knowledge-supervised methods showed superior performance compared to other classifiers. 

Beside SCINA, the top classifiers are CaSTLe, ACTINN, singleCellNet and SVM. Generally, 
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all classifiers show relatively lower performance on the Zheng dataset compared to other 

datasets, as the Zheng dataset contains 11 immune cell populations which are harder to 

differentiate, particularly the T cell compartment (6 out of 11 cell populations). This difficulty 

of separating these populations was previously noted in the original study [14]. Also, the 

confusion matrices for CaSTLe, ACTINN, singleCellNet and SVM clearly indicate that some 

populations are similar to each other where all classifiers are making wrong predictions, such 

as 1) monocytes with dendritic cells, 2) two CD8+ T populations, and 3) four CD4+ T 

populations (Supplementary Figure 1).  

 

Performance evaluation across different annotation levels  

We used the AMB dataset with its three different levels of annotations, to evaluate the 

classifiers’ performance behavior with a larger number of smaller cell populations within the 

same dataset. For AMB3, the classification task is relatively easy, differentiating between 

three major brain cell types (GABAergic, Glutamatergic and Non-Neuronal). All classifiers 

perform almost perfectly with a median F1-score > 0.99, except Cell-BLAST (median F1-

score = 0.619) (Figure 1). For AMB20, the classification task becomes slightly more 

challenging and the performance of some classifiers drops, especially kNN. The low 

performance of kNN in this case is due to the setting of k = 50, a parameter we did not 

optimize, which is larger than the size of three out of 20 classes leading to misclassifications 

by kNN. The top five classifiers are scmapcell, scPred, SVM, ACTINN and LDA, where 

scmapcell and scPred assigned 4.9% and 8.4% of the cells as unlabeled. For the deeply 

annotated AMB108 dataset, the performance of all classifiers drops further, except for kNN 

and scVI, where the median F1-score is zero. The top five classifiers are scmapcell, SVM, 

LDA, scmapcluster and singleCellNet, with scmapcell assigning 41.9% of the cell as 

unlabeled. These results show an overall superior performance for general-purpose 

classifiers (SVM and LDA) compared to other scRNA-seq specific classifiers across different 

levels of cell population annotation. 
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Instead of only looking at the median F1-score, we also evaluated the F1-score per cell 

population for each classifier (Figure 2). We confirmed previous conclusions, Cell-BLAST 

exhibits low performance in general (Figure 2A-C), kNN performance drops with deep 

annotation having smaller cell populations (Figure 2B-C), scVI poorly performs on the deeply 

annotated AMB108 dataset. Additionally, we could observe that some cell populations are 

much harder to classify compared to other populations, for example Serpinf1 cells in the 

AMB20 dataset. 

 

Performance evaluation across datasets 

While evaluating the classification performance within a dataset is important, it is more 

challenging to predict cell identities across datasets. To test the classifiers’ ability to predict 

cell identities in a dataset that was not used for training, we used the four human pancreatic 

datasets: Baron Human, Muraro, Segerstople and Xin. In this case, the classification 

performance can be affected by batch differences between datasets. We evaluated the 

performance of the classifiers when trained using the raw data as well as aligned data using 

the mutual nearest neighbor (MNN) method [15]. Supplementary Figure 2 shows UMAPs [16] 

of the combined dataset before and after alignment, demonstrating better grouping of 

pancreatic cell types after alignment.  

For the raw (unaligned) data, the best performing classifiers across all four datasets are 

SVM, scVI, scmapcell, ACTINN and singleCellNet (Figure 3A,C). For the aligned data, the 

best performing classifiers are SVM, singleCellNet, kNN and NMC (Figure 3B,D). Some 

classifiers benefit from aligning the datasets such as kNN, NMC and singleCellNet, 

producing higher median F1-scores (Figure 3A,B). On the other hand, some other classifiers 

failed the classification task completely, such as scmapcell which labels all cells as 

unlabeled. Some other classifiers failed to run over the aligned datasets, such as ACTINN, 

scVI, Cell-BLAST, scID, scmapcluster and scPred. These classifiers work only with positive 

gene expression data, while the aligned datasets contains positive and negative gene 

expression values. 
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Performance sensitivity to the input features 

During the cross-validation experiment described earlier, we used all features (genes) as 

input to the classifiers. However, some classifiers suffer from overtraining when too many 

features are used. Therefore, we tested the effect of feature selection on the performance of 

the classifiers. Different strategies for feature selection in scRNA-seq classification 

experiments exist. Using genes as features that have a higher number of dropouts compared 

to the expected number of dropouts has been shown to yield the best results [17, 18]. Here, 

subsets of features were selected based on this criterion. The feature selection experiments 

were all done on the TM dataset. For the number of features, we used the top: 100, 200, 

500, 1000, 2000, 5000, and 19791 (all) genes. Some classifiers include a built-in feature 

selection method which is used by default. To ensure that all tools use the same set of 

features, the built-in feature selection was turned off during these experiments. Due to long 

running times or excessive memory usage, not all feature sets could be tested for all tools. 

As already discussed before, Cell-BLAST could not be tested on the TM dataset. During 

feature selection, we ran Cell-Blast on all feature sets except the largest set with all features. 

scVI also timed out when running on this feature set. Furthermore, scPred failed when tested 

using 2000 features, and singleCellNet timed out when tested using 5000 features. 

Figure 4 presents the performance of the classifiers using the different sets of features. 

Some methods are clearly overtrained when the number of features increases. scmapcell, for 

instance, shows the highest median-F1 score when using less features, but its performance 

drops when the number of features increases. On the contrary, the performance of some 

classifiers, such as SVM, keeps improving when the number of features increases. These 

results indicate that the optimal number of features is different for each classifier. 

Looking at the median-F1 score, there are several methods with a high performance. 

ACTINN, LDA, RF, scmapcell, scPred, singleCellNet, and SVM all have a median F1-score 

higher than 0.95 for one or more of the feature sets.  Some of these well-performing tools, 

however, leave many cells unlabeled. scmapcell, for instance, yields a median F1-score of 

0.976 when using a subset of 500 genes, with 10% of the cells is still unlabeled. The same 
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holds for scPred, overall, it has the highest median F1-score (0.982) when using 1000 genes, 

with 15% of the cells remains unassigned. ACTINN, SVM, LDA, singleCellNet, and RF, on 

the contrary label all the cells. Overall SVM shows the second highest performance with a 

score of 0.979. It thus performs slightly worse than scPred, but it does label all the cells.  

 

Running time evaluation  

To compare the runtimes of the tools and see how they scale when the number of cells 

increases, we compared the number of cells in each dataset with the computation time of the 

tools (Figure 5A).  Overall, big differences in the computation time can be observed when 

comparing the different methods. For example, for the Zheng dataset the runtime varies 

between 9.65 seconds for scmapcluster and 6.00 hours for LDA. singeCellNet showed the 

longest computation time overall. Running singleCellNet on the TM dataset took more than 

25 hours. In general, all tools show an increase in computation time when the number of 

cells increase. However, when comparing the largest datasets, TM and Zheng, not all tools 

show an increase in computation time. Despite the increase in the number of cells between 

the datasets, CaSTLe, CHETAH, and SingleR, have a decreasing computation time. A 

possible explanation could be that the runtime of these tools also depends on the number of 

genes or the number of cell populations in the dataset. The Zheng dataset, for example, 

contains less cell populations than the TM dataset (11 compared to 55). To evaluate this 

properly, the runtime of the tools on the AMB3, AMB20, and AMB108 datasets were 

compared (Figure 5B), and this shows an increase in run time when the number of cell 

populations increases, while the number of cells and genes remains constant. For other 

tools, such as ACTINN and scmapcell, the runtime does not increase.  

Some of the tools even have a high runtime for the small datasets. On the smallest, Xin, 

dataset all classifiers have a computation time < 5 minutes, with most classifiers finishing 

within 60 seconds. Cell-BLAST, however, takes more than 75 minutes.  

To assess the effect of the number of genes on the computation time, we compared the 

computation time of the methods during the feature selection experiments (Figure 5C). Most 
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methods scale linearly with the number of genes. However, LDA does not scale very well 

when the number of genes increases. If the number of features is higher than the number of 

cells, the complexity of LDA is O(g^3), where g is the number of genes [19]. The computation 

time of the methods is thus dependent on the number of cells, number of genes, and, for 

most tools, also the number of different cell populations in the dataset. 

Five classifiers, scmapcell, scmapcluster, SVM, RF, and NMC, have a computation time 

below six minutes on all the datasets. Here, it is especially noteworthy that most of these 

tools, and SVM in particular, also have the highest median F1-scores during all previous 

experiments. 

 

Discussion 

In this study, we evaluated the performance of 20 different methods for automatic cell 

identification using eight scRNA-seq datasets. Several classifiers accurately performed on 

almost all datasets, particularly: SVM, scPred, scmapcell/cluster, singleCellNet, scVI, LDA 

and ACTINN. Considering all three evaluation metrics (median F1-score, % of unlabeled 

cells and computation time), SVM is overall the best performing classifier for the scRNA-seq 

datasets used. Our results show that SVM scales well to large datasets as well as deep 

annotation levels. In addition, SVM did not suffer from the large number of features (genes) 

present in the data, producing the highest performance on the TM dataset using all genes, 

due to the incorporated L2-regularization. The comparable or higher overall performance of a 

general-purpose classier such as SVM warrants caution when designing scRNA-seq specific 

classifiers that they do not introduce unnecessary complexity. 

scPred, which is based on a SVM with radial kernel, performed well on most dataset, yet it 

suffers from long computation time for large datasets, together with LDA, ACTINN and 

singleCellNet, where the latter becomes even slower with large number of cell populations. In 

addition, in some cases, scPred and scmapcell/cluster reject high proportions of cells as 

unlabeled. In general, incorporating a rejection option with classification is a good practice, 

as it allows to detect potentially new cell populations not included in the training data, and 
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improve the performance for the classified cells with high confidence. However, for the 

datasets used in this study, the performance of classifiers with rejection option did not show 

substantial improvement compared to other classifiers. scVI works well for datasets with 

relatively small number of cell populations, but failed to scale with deeply annotated datasets. 

kNN classifier produces poor performance with most datasets, but this performance can 

potentially be improved by optimizing the number of neighbors. Generally, we evaluated all 

classifiers using their default settings. However, adjusting these settings for a specific 

dataset might improve the performances but increases the risk of overtraining. 

For the Zheng dataset, the prior-knowledge-supervised methods did not improve the 

classification performance over supervised methods which do not incorporate such prior 

knowledge. These results indicate that incorporating prior knowledge in the form of marker 

genes is not beneficial. Besides, defining these marker genes is often challenging and 

heavily depends on personal expertise. Furthermore, these marker genes can be implicitly 

learned by supervised methods through the training process. 

Based on our results, we recommend to use of the general-purpose SVM classifier (with a 

linear kernel) since it had better or equal performance compared to the other classifiers 

tested across all datasets, with a remarkably fast computation time. Other high performing 

classifiers include: scPred, scmapcell/cluster, singleCellNet, LDA and ACTINN. While the 

performance of almost all methods was relatively high on various datasets, some datasets 

with overlapping populations (e.g. Zhang PBMC dataset) remain challenging.  

 

Conclusions 

We present a comprehensive evaluation of automatic cell identification methods  for single 

cell RNA-sequencing data. Generally, all classifiers perform well across all datasets, 

including the general-purpose classifiers. In our experiments, incorporating prior knowledge 

in the form of marker genes does not improve the performance (on PBMC data). We 

observed large differences in the performance between methods in response to changing the 

input features. Furthermore, the tested methods vary considerably in their computation time 
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which also vary differently across methods based on the number of cells and features. Our 

results highlight the general-purpose SVM classifier as the best performer overall. To support 

future extension of this benchmarking work with new classifiers and datasets, we provide a 

Snakemake workflow to automate the performed benchmarking analyses 

(https://github.com/tabdelaal/scRNAseq_Benchmark/tree/snakemake_and_docker). 

 

Methods 

Classification methods 

We evaluated 20 scRNA-seq classifiers, publicly available as R or Python packages or 

scripts (Table 1). This set included 15 methods developed specifically for scRNA-seq data as 

well as 5 general-purpose classifiers from the scikit-learn library in Python: linear discriminant 

analysis (LDA), nearest mean classifier (NMC), k-nearest neighbor (kNN), support vector 

machine (SVM), and random forest (RF). Methods were excluded from the evaluation if they 

did not return the predicted labels for each cell. For example, we excluded LAmbDA [20] 

because the tool only returns the posterior probabilities rather than predicted labels. 

Similarly, we excluded MetaNeighbor [21] because the tool only returns the area under the 

receiver operator characteristic curve (AUROC).  For all tools the latest (May 2019) package 

was installed or scripts were downloaded from their Github. For scPred it should be noted 

that it is only compatible with an older version of Seurat (v2.0). For CHETAH it is important 

that the R version 3.6 or newer is installed. 

During the benchmark, all tools were run using their default settings and if not available, we 

used the settings provided in the accompanying examples and vignettes. As input, we 

provided each method with the raw count data (after cell and gene filtering as described in 

Data Preprocessing) according to the method documentation. The majority of the methods 

have a built-in normalization step. For the general-purpose classifiers, we provided log-

transformed counts,���������� 
  1�. 

Some methods required a marker gene file as an input (e.g. Garnett, Moana, SCINA, 

DigitalCellSorter). In this case, we use the marker gene files provided by the authors. We did 
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not attempt to include additional marker gene files and hence the evaluation of those 

methods is restricted to datasets where a marker gene file for cell populations is available.  

 

Datasets  

Eight scRNA-seq datasets were used to evaluate and benchmark all classification tools 

(Table 2). Datasets vary across species (human and mouse), tissue (brain, pancreas, PBMC 

and whole mouse), as well as the sequencing protocol used. The Allen Mouse Brain (AMB) 

dataset was downloaded from http://celltypes.brain-map.org/rnaseq. All five pancreatic 

datasets were obtained from: https://hemberg-lab.github.io/scRNA.seq.datasets/. The Tabula 

Muris (TM) dataset was downloaded from https://tabula-muris.ds.czbiohub.org/. For the 

PBMC dataset, we downloaded the gene-cell count matrix for the ‘Fresh 68k PBMCs’ [14] 

from:  https://support.10xgenomics.com/single-cell-gene-expression/datasets. The cell 

population annotation for all datasets was provided with the data, except the Zheng dataset, 

for which we obtained the cell population annotation from 

https://github.com/10XGenomics/single-cell-3prime-paper/tree/master/pbmc68k_analysis. 

These annotations were used as ‘ground truth’ during the evaluation of the cell population 

prediction obtained from the classification tools. 

 

Data Preprocessing  

Based on the manual annotation provided in the datasets, we started by filtering out cells that 

were labeled as doublets, debris or unlabeled cells. Next, we filtered genes with zero counts 

across all cells. For cells, we calculated the median number of detected genes per cell, and 

from that we obtained the median absolute deviations (MADs) across all cells in the log 

scale. We filtered out cells when the total number of detected genes was below 3 MADs from 

the median number of detected genes per cell. The number of cells and genes in Table 2 

represent the size of each dataset after this stage of preprocessing.  
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Moreover, before applying cross validation to evaluate each classifier, we excluded cell 

populations with less than 10 cells across the entire dataset, Table 2 summarizes the 

number of cell populations before and after this filtration step for each dataset. 

 

Experimental setup  

For the supervised classifiers, we evaluated the performance by applying a 5-fold cross 

validation across each dataset after filtering genes, cells and small cell populations. The folds 

were divided in a stratified manner in order to keep equal proportion of each cell population 

in each fold. The training and test indices for each fold were defined and saved for each 

dataset, these indices were provided while applying the classifiers on the datasets, to make 

sure all folds are exactly the same for all classifiers. 

The prior-knowledge-supervised classifiers, Garnett, Moana, DigitalCellSorter and SCINA, 

were only evaluated on the Zheng dataset, for which the marker genes file or the pre-trained 

classifier was available, after filtering genes and cells. Each classifier uses the dataset and 

the marker genes file as inputs, and outputs the cell population label corresponding to each 

cell. No cross validation is applied in this case, except for Garnett where we could either use 

the pre-trained version provided from the original study, or train our own classifier using the 

marker genes file along with the training data. In this case, we applied 5-fold cross validation 

using the same train and test indices described previously. Supplementary Table 1 shows 

the mapping of cell populations between the Zhang dataset and each of the prior-knowledge-

supervised classifiers. For Moana a pre-trained classifier was used, this classifier also 

predicted cells to be Memory CD8+ T cells and CD16+ Monocytes, while these cell 

populations were not in the Zheng dataset. 

 

Across dataset prediction 

We selected the major four endocrine pancreatic cell types (alpha, beta, delta and gamma) 

across all four human pancreatic datasets: Baron Human, Muraro, Segerstolpe and Xin. 

Supplementary table 2 summarizes the number of cells in each cell type across all datasets. 
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To account for batch effects and technical variations between different protocols, datasets 

were aligned using MNN [15] from the scran R package (version 1.1.2.0). Using both the raw 

data (unaligned) and the aligned data, we applied leave-one-dataset-out cross validation 

where we train on three datasets and test on the left out dataset. 

 

Performance evaluation metrics 

The performance of the tools on the datasets is evaluated using three different metrics: 1) 

For each cell population in the dataset the F1-score is reported. The median of these F1-

scores is used as a measure for the performance on the dataset. 2) Some of the tools do not 

label all the cells. These unassigned cells are not considered in the F1-score calculation. The 

percentage of unlabeled cells is also used to evaluate the performance. 3) The computation 

time of the tools is also measured.  

 

Feature selection 

Genes are selected as features based on their dropout rate. The method used here, is based 

on the method described in [17]. During feature selection, a sorted list of the genes is made. 

Based on this list, the top n number of genes can be easily selected during the experiments. 

First, the data is normalized using ���������� 
  1�. Next, for each gene the percentage of 

dropouts, d,  and the mean, m, of the normalized data are calculated. Genes that have a 

mean or dropout rate of zero are not considered during the next steps. These genes will be 

at the bottom of the sorted list. For all other genes, a linear model is fitted to the mean and 

log2(d). Based on their residuals, the genes are sorted in descending order and added to the 

top of the list. 

 

Benchmarking pipeline 

In order to ensure reproducibility and support future extension of this benchmarking work 

with new classification methods and benchmarking datasets, a Snakemake [22] workflow for 

automating the performed benchmarking analyses was developed with an MIT license 
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(https://github.com/tabdelaal/scRNAseq_Benchmark/tree/snakemake_and_docker). Each 

tool (license permitting) is packaged in a Docker container 

(https://hub.docker.com/u/scrnaseqbenchmark) alongside the wrapper scripts and their 

dependencies. These images will be used through snakemake’s singularity integration to 

allow the workflow to be run without the requirement to install specific tools and to ensure 

reproducibility. Documentation is also provided to execute and extend this benchmarking 

workflow to help researchers to further evaluate interested methods.  
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Table 1. Overview of the classification tools benchmarked during this study. 
  

Name Version Language 
Type of Machine 
Learning 

Prior 
knowledge 

Rejection 
option Reference 

Garnett 0.1.4 R 
Generalized 
linear model Yes Yes [23] 

Moana 0.1.1 python 
SVM with linear 
kernel Yes No [24] 

DigitalCellSorter 

Github 
version: 
e369a34 python 

Voting based on 
cell type markers Yes No [25] 

SCINA 1.1.0 R 

Bimodal 
distribution fitting 
for marker genes Yes No [26] 

scVI 0.3.0 python Neural Network No No [27] 

Cell-Blast 0.1.2 python 
Cell-to-cell 
similarity No Yes [28] 

ACTINN 

GitHub 
version: 
563bcc1 python Neural Network No No [29] 

Scmapcluster 1.5.1 R 
Nearest median 
classifier No Yes [17] 

Scmapcell 1.5.1 R kNN No Yes [17] 

scPred 0.0.0.9000 R 
SVM with radial 
kernel No Yes [30] 

CHETAH 0.99.5 R 
Correlation to 
training set No Yes [31] 

CaSTLe 

Github 
version: 
258b278 R Random Forest No No [32] 

SingleR 0.2.2 R 
Correlation to 
training set No No [33] 

scID 0.0.0.9000 R LDA No Yes [34] 

singleCellNet 0.1.0 R Random Forest No No [35] 

LDA 0.19.2 python LDA No No  

NMC 0.19.2 python NMC No No  

RF 0.19.2 python RF (50 trees) No No  

SVM 0.19.2 python 
SVM (linear 
kernel) No No  

kNN 0.19.2 python kNN (k = 50) No No  
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Table 2. Overview of the datasets used during this study. 
 

Dataset No. of 
cells 

No. of 
genes 

No. of cell 
population

s 
(>10 cells) 

Description Protocol Reference 

AMB 12,832 42,625 4/22/110 
(3/20/108) 

Primary 
mouse visual 

cortex 

SMART-Seq 
v4 

[36] 

Baron 
(Mouse) 1,886 14,861 13 

(9) 
Mouse 

Pancreas inDrop [37] 

Baron 
(Human) 8,569 17,499 14 

(13) 
Human 

Pancreas inDrop [37] 

Muraro 2,122 18,915 
9 

(8) 
Human 

Pancreas CEL-Seq2 [38] 

Segerstolpe 2,133 22,757 13 
(9) 

Human 
Pancreas SMART-Seq2 [39] 

Xin 1,449 33,889 4 
(4) 

Human 
Pancreas SMARTer [40] 

TM 54,865 19,791 55 
(55) 

Whole Mus 
musculus SMART-Seq2 [6] 

Zheng 65,943 20,387 11 
(11) PBMC 10X 

Chromium [14] 
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Figure 1. Performance comparison of supervised classifiers for cell identification 

using different scRNA-seq datasets. (A) Heatmap of the median F1-score across all cell 

populations per classifier per dataset. (B) Percentage of unlabeled cells across all cell 

populations per classifier per dataset. Light-grey boxes indicate that the corresponding 

method could not be tested on the corresponding dataset.  
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Figure 2. Classification performance across different annotation levels in the Allen 

Mouse Brain dataset. Heatmaps show the F1-scores of each method for each cell 

population in the (A) AMB3, (B) AMB20, and (C) AMB108 datasets. The cell populations are 

sorted from left-to-right in descending order according to their size (i.e. number of cells). The 

size of each population is indicated between brackets. 
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Figure 3. Classification performance across different pancreatic datasets. Heatmaps 

showing (A-B) the median F1-score and (C-D) the percentage of unlabeled cells for each 

classifier. (A,C) Show the results for the unaligned datasets. (B,D) Show the results for the 

aligned datasets using MNN. The column labels indicates which of the four datasets was 

used as a test set, in which case the other three sets were used to train the classifiers. Light-
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grey boxes indicate that the corresponding method could not be tested on the corresponding 

dataset.  
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Figure 4. Classification performance across different number of features. Line plots 

show (A) the median F1-score and (B) percentage of unlabeled cells of each classifier 

applied to the TM dataset with the top 100, 200, 500, 1000, 2000, 5000, and 19791 (all) 

genes as input feature sets. Genes were ranked based on dropout-based feature selection. 

The x-axis is log-scaled in all panels. Few points are not shown as the corresponding 

classifier failed or timed out when tested. 
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Figure 5. Computation time Evaluation. The computation time of each tool is plotted 

against (A) the number of cells, (B) the number of cell populations, and (C) the number of 

features (genes). The x-axis is log-scaled in all panels. Few points are not shown as the 

corresponding classifier failed or timed out when tested. 
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Supplementary Materials 

Supplementary Table 1. Mapping of true cell population labels from the Zheng dataset to 

cell population labels of the prior-knowledge-supervised classifiers.  

True Labels Garnett DigitalCellSorter Moana SCINA 

CD14+ Monocyte CD14+ Monocyte CD14+ Monocyte CD14+ Monocyte CD14+ Monocyte 

Dendritic Dendritic Dendritic Dendritic 

 CD34+ CD34+   

CD56+ NK CD56+ NK CD56+ NK CD56+ NK CD56+ NK 
CD19+ B CD19+ B CD19+ B CD19+ B CD19+ B 
CD4+ T Helper 2 

CD4+ T cell 

T cell 

 

 

CD4+/CD25 T 
Reg 

CD4+/CD45RA+/
CD25- Naïve T 

Naïve CD4+ T 
cells 

CD4+/CD45RO+ 
Memory 

Memory CD4+ T 
cells 

CD8+ Cytotoxic T 

CD8+ T cell 

 

CD8+/CD45RA+ 
Naïve Cytotoxic 

Naïve CD8+ T 
cells 

   

Memory CD8+ T 
cells 

CD16+ 
Monocytes 
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Supplementary Table 2. Cell type size for each pancreatic dataset used in the across 

dataset performance evaluation. 

Dataset alpha beta delta  gamma Total 

Baron 
(Human) 

2326 2525 601 255 5707 

Muraro 812 448 193 101 1554 

Segerstolpe 872 263 110 195 1440 

Xin 855 466 46 82 1449 

Total 4865 3702 950 633 10150 
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Supplementary Figure 1. Confusion matrices for the Zheng dataset. Results of the best four 

classifier (A) CaSTLe, (B) ACTINN, (C) singleCellNet, and (D) SVM are shown. Rows 

indicate the true labels and columns indicate the predicted labels. Each cell in the heatmap is 

colored according to the percentage of overlapping cells between the true and predicted cell 

population. Black boxes highlight the four subpopulations of CD4 and the two subpopulations 

of CD8 T-cells. 
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Supplementary Figure 2. UMAP plots of the four pancreatic datasets used in the across 

dataset prediction experiment. (A-B) UMAP plots before and (C-D) after alignment using 

MNN. In (A, C) the cells are colored by dataset and in (B, D) the cells are colored by cell 

type. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/644435doi: bioRxiv preprint 

https://doi.org/10.1101/644435
http://creativecommons.org/licenses/by-nc/4.0/

