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23 Abstract

24 Background: Triatomine kissing bugs are responsible for the vectorial transmission 

25 of the parasite Trypanosoma cruzi, etiological agent of Chagas disease, a zoonosis affecting 

26 10 million people and with 25 million at risk of infection. Triatomines are associated with 

27 particular habitats that offer shelter and food. Several triatomine species of the Rhodnius 

28 genus have close association with palm crowns, where bugs can obtain blood from the 

29 associated fauna. The Rhodnius - palm interaction has been reported in several places of 

30 Central and South America. However, the association in the distributions of Rhodnius species 

31 and palms has not been quantitatively determined.

32 Methodology/Principal Findings: Broad distributions of eight Rhodnius species and 

33 16 palm species with Rhodnius-infestation reports were estimated using Ecological Niche 

34 Models. Rhodnius species distributions in their total range were compared to their 

35 distributions in areas with palms. Rhodnius species presence was found to be higher in areas 

36 with palms. However, that tendency notoriously depended on palm species. Rhodnius species 

37 presence increased several times in areas with particular palm species. Moreover, a possible 

38 relationship was found between Rhodnius and palm species richness, indicating the Amazon 

39 region as the convergent region where several Rhodnius and palm species intersected. 

40 Finally, palm distribution was evaluated as predictor of Rhodnius species distributions, but 

41 their inclusion in the distributions models did not improve their performance. 

42 Conclusions/Significance:   The distributions of some Rhodnius and palm species 

43 showed a high spatial association, which can be based on species interaction or niche 

44 similarity. Based on distribution convergence, the Amazon region appear to be the origin of 

45 the Rhodnius-palm association. The direct relationship between palms and Rhodnius species 
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46 richness could be based on the habitat heterogeneity offered by different palm species. 

47 Despite spatial association, palm presence would not be a relevant predictor of Rhodnius 

48 species distributions in comparison to other environmental variables. Inclusion of other input 

49 data as hosts’ distribution could help to increase model predictability.  

50

51 Author summary

52 The infestation of palms with Rhodnius genus kissing bugs (Chagas disease vectors) 

53 is important from the public health perspective, since insects living in palms can infest nearby 

54 houses. The migration of these bugs to households could threaten vector control programs 

55 since reinfestation of treated dwellings can occur. Association between Rhodnius and palms 

56 species distributions has been previously suggested but never quantitatively determined. The 

57 strong association between one palm species and one Rhodnius species can be used as a factor 

58 to predict the presence of Rhodnius bugs in definite areas. In this study, we estimated by 

59 models the distributions of eight Rhodnius species and 18 Rhodnius-infested palm species. 

60 Rhodnius distributions models showed a biased presence toward areas with certain palm 

61 species. That specific association was very strong in some cases; however, the presence of 

62 associated palm species was used in Rhodnius distributions models, but that did not improve 

63 the predictability of the models. Palm presence appear to be not essential for the Rhodnius 

64 current distribution because they could inhabit other habitats; but that association could be 

65 relevant to the Rhodnius evolutionary and biogeographic history.  

66

67 Introduction
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68 Triatomine kissing bugs are responsible for the vectorial transmission of the parasite 

69 Trypanosoma cruzi, etiological agent of Chagas disease, a zoonosis affecting 10 million 

70 people and with 25 million at risk of infection [1]. Triatomines show associations with 

71 particular habitats that offer shelter and food [2]; this association can be specific to one type 

72 of habitat as occurs with Psammolestes triatomines living in bird nests, or to several types as 

73 Triatoma sordida which can be found in rock piles, hollow trees, and human dwellings [3]. 

74 Several species belonging to the genus Rhodnius, for instance, have been found in close 

75 association with palms in its sylvatic cycle [4]. Palm crowns have been suggested as suitable 

76 places for an associated-fauna where Rhodnius can obtain blood, and Rhodnius neglectus and 

77 Rhodnius nasutus, for example, have been reported to feed from birds [5,6] using palms as 

78 nesting sites. Furthermore Didelphis marsupialis one of the most competent hosts for T. cruzi 

79 eats palm-tree fruits and rests in the clefts between palm stipe and fronds [7]. 

80 The fact that palms are infested with Chagas disease vectors is important from the 

81 public health perspective, since insects living in palms can infest nearby houses [8,9]. 

82 Triatomines are also capable of colonizing non-native palm species, as the ones in plantations 

83 or used for garden decoration, increasing the risk of domiciliation of the disease [10,11]. In 

84 addition, the use of palms in households (e.g. dry leaves for roof thatching) could have a 

85 major role in the domiciliation of the disease [4,12]. The migration of kissing bugs to 

86 households could threaten vector control programs conducted as a complement during 

87 Chagas disease control initiatives, since reinfestation of treated dwellings can occur [13].

88 Rhodnius species are distributed from Central America to northern Argentina, being 

89 the Amazon region the zone with the highest number of species [14].  They are primarily 

90 associated with palms, but also occur in bird nests, mammal burrows, peridomestic and 

91 domestic habitats [15]. Even one species, Rhodnius domesticus, has been reported in 
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92 bromeliads and hollow trees, but not in palms [4]. Rhodnius species distribution shows a 

93 segregated pattern across America: Rhodnius prolixus, Rhodnius pallescens and Rhodnius 

94 neivai are found in Central America and northern South America; Rhodnius pictipes, 

95 Rhodnius robustus and Rhodnius brethesi in the Amazon region; Rhodnius nasutus and 

96 Rhodnius neglectus in northeastern and central Brazil; Rhodnius ecuadoriensis in Ecuador 

97 and northern Perú; and Rhodnius stali in Bolivia [14,16,17]. 

98 Palms are mainly distributed in the tropics, but a few species reach subtropical zones 

99 both in the northern and southern hemisphere [18]. The highest palm concentration is found 

100 in the intertropical zone, being Asian and American tropics the richest areas in terms of 

101 species number. In America, palms are distributed from southern United States to northern 

102 Argentina and central Chile [18]. From 550 palm species naturally occurring in America [19], 

103 22 have been reported infested by Rhodnius triatomines [20], and the genus Attalea, itself 

104 has five species reported as infested: At. butyracea, At. maripa, At. oleifera, At. phalerata 

105 and At. speciosa. Attalea butyracea, is a species extensively studied as an ecotope for 

106 Rhodnius triatomines and for Chagas disease transmission [13,21–23]. 

107 The association Rhodnius - palm has been observed and reported in several places of 

108 Central and South America [20]. This has led to the conclusion, as in Gaunt & Miles in 2000 

109 [2], that sylvatic Rhodnius distribution should broadly coincide with palms distribution. 

110 However, this coincidence has not been explicitly evaluated. Rhodnius and palms 

111 distributions have not been compared yet by a quantitative evaluation to determine if the 

112 geographical presence of both organisms is the result of choice or chance. 

113 Both Rhodnius and palms spatial distributions have been depicted using outline maps 

114 to define the limits of the distributions [16,18,19,24], or by locality reports, summarizing the 

115 places where the species have been found [25–29]. Outline maps vary in accuracy based on 
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116 how well known the distribution is and how precisely the author incorporated the 

117 information. Locality reports are accurate, but they can only show a fraction of the area where 

118 the species live [30]. With both sources of information, it is difficult to make a quantitative 

119 comparison covering the complete area of distribution. One very used alternative is to 

120 estimate Rhodnius and palm distributions through modeling. Distribution models extrapolate 

121 information of species location records in space and time, usually based on statistical models 

122 [31]. One type of these models are the Ecological Niche Models (ENM); they allow to predict 

123 species presence in a region based on habitat suitability [31]. Locations with similar 

124 environmental conditions to those where the species was observed are considered as suitable 

125 habitats for the species presence. 

126 ENM have been previously used to estimate Rhodnius species distribution: R. 

127 neglectus, R. nasutus, R. pictipes and R. robustus in Brazil [32–35]; R. pallescens in 

128 Colombia, Panamá, Costa Rica, and Nicaragua [36,37], and Rhodnius prolixus in Colombia 

129 [37] and Guatemala [38]. Those studies did not considered biological interactions as 

130 predictors for Rhodnius distributions. Based on the available information and Rhodnius 

131 ecology, palm presence could increase the predictability of Rhodnius ENM adding 

132 information about possible ecotopes. Including biological interactions have been used in 

133 previous studies improving the ENM predictability [39,40], and showing, in some cases, a 

134 higher effect from the biotic predictors compared to the abiotic [41]. Species interactions can 

135 be included in models by limiting the predicted distribution of one species to the distribution 

136 of another [42] or by including the presence of one species as a predictor [41,43–45]. 

137 The aim of this study was to quantitatively assess the association between Rhodnius 

138 and palms distributions using ENM. First, to determine if Rhodnius species presence is biased 

139 toward areas with palms, its presence was compared in the entire modeled area and in zones 
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140 with palms. Second, to identify if Rhodnius-palm association is species-specific, prevalence 

141 comparisons were carried out discriminating by palm species. And third, to determine if palm 

142 presence could be considered as predictor of Rhodnius species distributions, Rhodnius ENM 

143 were run again with palm distributions as environmental predictors. The performance of 

144 ENMs with or without palm distributions were compared to identify any prediction 

145 improvement caused by the addition of biological interactions.  

146

147 Methods

148 Ecological niche models 

149 To estimate Rhodnius and palms potential distributions, ENM were carried out for 

150 eight Rhodnius species collected in palms, and the 16 palm species where those kissing bugs 

151 were found (Table 1). Four additional Rhodnius species (R. barretti, R. brethesi, R. neivai, 

152 and R. stali), and one palm species (Copernicia tectorum) were initially included in the study 

153 but due to the low number of occurrences (less than 19 occurrences), their spatial analyses 

154 were not performed.

155

156 Table 1. Rhodnius species found infesting palm trees.

Rhodnius species Palm tree species

R. colombiensis Attalea butyracea [46].

R. ecuadoriensis Phytelephas aequatorialis [47,48].

R. nasutus Acrocomia aculeata [5], Attalea speciosa [6,49], Copernicia prunifera 
[47,49], Mauritia flexuosa [5,6,50], Syagrus oleracea [5,6].

R. neglectus Acrocomia aculeata [6], Attalea speciosa [6], Attalea phalerata [6], 
Mauritia flexuosa [51], Syagrus oleracea [6].

R. pallescens Attalea butyracea [52–57], Cocos nucifera [54], Elaeis oleifera [54,58], 
Oenocarpus bataua [58], Copernicia tectorum* [54,59].

R. pictipes Acrocomia aculeata [60], Astrocaryum murumuru [60], Attalea maripa 
[60], Oenocarpus bataua [60].
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R. prolixus Acrocomia aculeata [61], Attalea butyracea [21,22,62], Attalea maripa 
[62], Cocos nucifera [63], Oenocarpus bataua [61], Sabal mauritiiformis 
[61], Syagrus orinocensis [61], Copernicia tectorum* [20].

R. robustus Acrocomia aculeata [64,65], Astrocaryum aculeatum [66], Astrocaryum 
murumuru [60], Attalea butyracea [67], Attalea maripa [60,66], Attalea 
speciosa [66], Attalea phalerata [66]. 

157 * Excluded from the analyses due to the low number of occurrences. 

158

159 Occurrences. Rhodnius occurrences (i.e. locations were the species were found) were 

160 obtained from “DataTri”, a database of American triatomine species occurrences [68]. Palm 

161 tree occurrences were obtained from the Global Biodiversity Information Facility (GBIF; 

162 downloaded in October 2018) using the “gbif” function of the “dismo” R package [69]. 

163 Occurrences with both geographical coordinates were selected, and all the duplicated records 

164 were removed. 

165 A depuration of the compiled database was performed, and Rhodnius and palm tree 

166 occurrences were checked to correspond with previous geographical distributions reported 

167 in the literature [18,19,72,73,25,27,28,33,36,46,70,71]. Occurrences in altitudes outside 

168 species limits were omitted (maximum altitude above sea level: R. ecuadoriensis 1500 m, R. 

169 nasutus 700 m, R. neglectus 800 m, R. pallescens 400 m, R. pictipes 1100 m, R. prolixus 

170 2000 m, R. robustus 1200 m [16], R. colombiensis, value not found. Palm species: Ac. 

171 aculeata 1300 m, As. murumuru 900 m, At. butyracea 1000 m, At. maripa 600 m, At. 

172 phalerata 1000 m, Cc. nucifera 1800 m, E. oleifera 300 m, M. flexuosa 900 m, O. bataua 

173 1000 m, P. aequatorialis 1500 m, Sa. mauritiiformis 1000 m, Sy. oleracea 800 m, and Sy. 

174 orinocensis 400 m [18,19,73],  for As. aculeatum, At. speciosa, and Cp. prunifera, the value 

175 was not found). Rhodnius prolixus occurrences in Central America were excluded from the 

176 study since the species was only related to domestic transmission; they are no longer found 
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177 in previous reported areas as a possible consequence of vector control initiatives [74], and 

178 the species presence has not been associated with palm trees [14,17,75].

179 To reduce the effect of sampling bias in the occurrence data set, spatial thinning was 

180 performed with the “spThin” R package  [76] using a minimum nearest neighbor distance 

181 greater than or equal to 10 km.

182 Environmental variables. The set of environmental variables was composed by the 

183 19 bioclimatic variables from WorldClim [77], three topographic variables (slope, aspect, 

184 and topographic position index (TPI); calculated from the GTOPO30 DEM [78]), and 42 

185 variables with remote sensing information of  land surface temperature (LST), normalized 

186 difference vegetation index (NDVI), and middle infrared radiation (MIR). The remote 

187 sensing variables were calculated from AVHRR (Advanced Very High-Resolution 

188 Radiometer) images and processed by the TALA group (Oxford University, UK) using the 

189 temporal decomposition of Fourier [79]. Pearson correlation coefficient was calculated 

190 among variables to avoid collinearity, and from a group of variables showing high correlation 

191 (i.e. r absolute value bigger than 0.7), only one variable was selected. This selection was 

192 based on which variable grouped more temporal information (e. g. yearly over monthly). The 

193 12 selected environmental variables included six bioclimatic variables (1, 2, 12, 15, 18), three 

194 topographic variables (slope, aspect, TPI), and five remote sensing variables (Mean LST, 

195 LST annual phase, mean NDVI, and NDVI variance). Correlation was double-checked by 

196 the Variable Inflation Factor (VIF), obtaining values lower than three for every variable. The 

197 spatial resolution of all the layers was 2.5° (approximately 5Km2).

198 Modeling and evaluation. Pseudo-absences for the Rhodnius models were obtained 

199 from the occurrences of all the triatomines species but the modeled one. Those 

200 pseudoabsences give a higher discriminative ability than background data because the 
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201 records are concentrated into the accessible area for triatomines. The geographical extent 

202 used for each Rhodnius model was the species range reported in the literature 

203 [25,27,28,33,36,46,70–72]. As modeling algorithms, five techniques were used: Generalized 

204 Linear Models (GLM), Generalized Boosting Models (GBM), Generalized Additive Models 

205 (GAM), Maximum Entropy (MaxEnt), and Random Forest (RF). Modeling was carried out 

206 with “Biomod2” R package [80]; this package allows to run and evaluate several algorithms 

207 in parallel. Default options were chosen for each algorithm except for MaxEnt. Variation in 

208 the regularization multiplier (β) and feature classes in MaxEnt have shown to affect 

209 significantly the model performance [81]. Several β values (0.02, 0.1, 0.46, 1, 2.2, and 4.6) 

210 and feature classes (linear, quadratic and product) were tested for each species with the 

211 “ENMeval” R package [82], and the options giving the lowest Akaike Information Criterion 

212 (AIC) were selected.

213 Considering palm tree species, all models were carried out in the same calibration 

214 area, from Nicaragua to northern Argentina. This area includes the distribution of all eight 

215 Rhodnius species evaluated. In contrast to Rhodnius models, background data was used 

216 (10,000 random points) eliminating the points coinciding with palm presence. 

217 For each modeled species, ENM were run ten times with different presence and 

218 pseudo-absence subsamples to test robustness [83]. Each time, 80% of the occurrences and 

219 pseudo-absences were randomly chosen for training the model and the left 20% of the 

220 occurrences used for testing. Model evaluation was based on two methods, partial area under 

221 the ROC curve (pAUC) [84] and omission rates. The first one was calculated with two 

222 omission levels, 0.10 and 0.50, later obtaining the ratio between both pAUCs. The process 

223 was repeated 100 times (using bootstrap subsampling) to estimate 95% confidence intervals. 

224 Ten-percentile and zero-percentile training omission rates (proportion of testing occurrences 
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225 omitted with each threshold) were calculated along with the presence prevalence (proportion 

226 of presence area compared to the entire modeled area). 

227 Final outputs used for comparing Rhodnius and palm distributions were obtained with 

228 100% of the occurrences (and pseudo-absences for Rhodnius models). The entire occurrence 

229 set gives all the available information to the model for being as accurate as possible. Binary 

230 maps were obtained from these outputs using the 10-percentile threshold. To assemble the 

231 predictions given by the five algorithms, binary maps were summed, and presence was 

232 defined as the resulting area where three or more algorithms coincided. This procedure could 

233 be conservative, letting some presence records out, but it allowed to work with predicted 

234 presences with high amount of support. 

235

236 Association between Rhodnius species and palm trees distributions. 

237 To determine if Rhodnius species presence is biased toward areas where palms are 

238 present, both estimated distributions were compared using prevalence. Species prevalence is 

239 the proportion of species presence in a definite area. Prevalence for each Rhodnius species 

240 was calculated in the total area and in the areas with predicted palm presence. Both 

241 prevalence values were compared using odds ratio and calculating 95% confidence intervals. 

242 Whether odds ratio was bigger than one, prevalence in areas with palms was higher than in 

243 the entire area. Higher the odd ratio values, higher the possible Rhodnius - palms association. 

244 Palm presence in the models was defined as the presence of at least one palm species, 

245 regardless of the species.  

246 Then, to identify whether Rhodnius-palm association depend on palm species, 

247 Rhodnius species prevalence was calculated in areas with palm presence discriminating by 

248 palm species. Obtained values were compared with the total prevalence again using the odds 
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249 ratio and calculating 95% confidence intervals. Since Rhodnius prevalence in palm areas can 

250 be affected by palm prevalence, palm species with prevalence values smaller than 0.10 were 

251 excluded of the analyses. To compare Rhodnius and palm distributions, they must be in the 

252 same spatial extension, so all the palm distributions were cropped to the extension of each 

253 Rhodnius species model using the function “crop” of the R package “raster” [85]. Using the 

254 Rhodnius species extension avoided to include overpredicted areas and limit the comparison 

255 to the geographical range reported in the literature. 

256

257 Rhodnius models with palm trees distributions as predictors. 

258 To determine if palm presence could be considered as a predictor of Rhodnius species 

259 presence, Rhodnius models were run again including the palm tree predicted presence as a 

260 layer. Binary palm distributions used for each Rhodnius species were those of palm species 

261 showing a high association (odd ratio values higher than 2). The modeling process and 

262 evaluation methods were the same as described for the previous models. Evaluation statistics 

263 were compared between Rhodnius models with and without palm trees distributions as 

264 predictors.

265

266 Results

267 Ecological niche models.

268 In Rhodnius species, the number of occurrences varied from 19 in R. colombiensis to 

269 352 in R. prolixus (Table 2). Spatial distribution also showed great variation: Rhodnius 

270 robustus and R. pictipes occurrences encompassed the widest area including several countries 

271 (more than 6,500,000 km2); while R. ecuadoriensis and R. colombiensis presence occupied 
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272 much smaller areas (less than 50,000 km2) (Fig. 1). Considering model performance, all the 

273 Rhodnius models had pAUC ratios significantly higher than the null model line (i.e. omission 

274 0.50) showing a good ability to discriminate (Table 2). Omission rates had a contrasting 

275 performance: ten percentile omission rates were higher than the expected value in all the 

276 models, and in some species as R. nasutus, R. colombiensis and R. ecuadoriensis values were 

277 exceptionally high. Zero percent omission rates were different, being very close to the 

278 expected values in all the species except for R. colombiensis and R. ecuadoriensis. Three 

279 bioclimatic variables: annual mean temperature (Bio 1), annual precipitation (Bio 12), and 

280 precipitation seasonality (Bio15), and one remote sensing variable, NDVI variance, were the 

281 most influential variables in five of the eight Rhodnius species. In contrast, topographic 

282 variables as aspect, slope and TPI showed low influence in the models.

283

284 Table 2. Performance statistics in Rhodnius ENM.

285 A. With environmental variables 
Partial AUC ratio Omission rateSpecies Occurr

Median* 95%CI 10%1 Prev 10% 0%1 Prev 0%

R. robustus 96 1.366 1.148-1-530 0.1500 0.5048 0.0250 0.5862

R. prolixus 352 1.474 1.313-1.606 0.1831 0.5147 0.0070 0.9002

R. pictipes 117 1.563 1.351-1.733 0.1875 0.5345 0 0.7130

R. pallescens 67 1.668 1.296-1.859 0.1623 0.1623 0.0360 0.5124

R. neglectus 101 1.626 1.458-1.765 0.1667 0.2705 0 0.5979

R. nasutus 61 1.576 1.332-1.750 0.5000 0.1991 0 0.3673

R. ecuadoriensis 28 1.728 1.549-1.879 0.5000 0.1421 0.2500 0.2185

R. colombiensis 19 1.934 1.439-1.983 0.3750 0.0267 0.1250 0.0377

286

287 B. With environmental variables and palm distributions
Partial AUC ratio Omission rateSpecies

Median* 95%CI 10%1 Prev 
10%

0%1 Prev 0%

Importance

of palm 
distributions2
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R. robustus 1.358 1.210-1-506 0.2000 0.4640 0.0250 0.5939 13

R. prolixus 1.540 1.491-1.645 0.1796 0.4538 0.0100 0.8847 5

R. pictipes 1.282 1.007-1.494 0.2292 0.5641 0.0312 0.7054 6

R. pallescens 1.686 1.338-1.880 0.2679 0.1648 0.0536 0.5539 3

R. neglectus 1.504 0.9542-1.702 0.2857 0.2726 0.0357 0.6307 5

R. nasutus 1.638 1.363-1.794 0.4423 0.2355 0.0769 0.4174 13

R. ecuadoriensis 1.749 1.467-1.933 0.3750 0.1657 0.1667 0.2185 13

R. colombiensis 1.922 0.9954-1.999 0.3750 0.0222 0.3125 0.0258 3

288 1 Median value for the five used algorithms. With each algorithm, value was the median of 

289 the ten repetitions carried out with different training and testing data set.

290 2 Median value for the importance variable ranks with all the algorithms.

291

292 Fig 1. Rhodnius species predicted distribution. Brown: Predicted presence. Gray: 

293 Predicted absence. Black points: Species occurrences. Presences were predicted in at least 

294 three algorithms based on the 10% omission rate threshold. Horizontal axis: Longitude, 

295 Vertical axis: Latitude. Maps constructed with the raster R package [85].

296

297 Most of the Rhodnius models predicted an area of distribution adjusted to the 

298 occurrence points (Fig 1). However, R. prolixus, R. pallescens, and R. colombiensis, models 

299 showed over-prediction areas outside occurrences (Fig 1). For instance, R. prolixus model 

300 predicted presence into Venezuelan and Colombian Amazon, R. pallescens model in the 

301 eastern Nicaragua, and R. colombiensis model in several zones of the Cauca river valley, 

302 where the species have not been found [36,46,75].

303 In palm species, the number of occurrences varied from 24 in P. aequatorialis to 326 

304 in O. bataua (Table 3). Spatial distribution showed a high variation among species: C. 

305 nucifera and M. flexuosa had very wide distributions comprehending almost half of the entire 
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306 modeled area (presence in more than 6,500,000 km2); meanwhile, species as P. aequatorialis 

307 and Sa. mauritiiformis had narrow distributions covering only small definite areas (less than 

308 140.000 km2) (Fig. 2). 

309

310 Table 3. Performance statistics in palms ENM.

Partial AUC ratio Omission rateSpecies Occur.

Median* 95%CI 10%* Prev 10% 0%* Prev 0%

Ac. aculeata 154 1.676 1.510-1.793 0.1613 0.2795 0 0.6601

As. aculeatum 119 1.641 1.467-1.774 0.2083 0.2931 0.0417 0.4230

As. murumuru 75 1.689 1.399-1.858 0.2333 0.2299 0.0667 0.3673

At. butyracea 153 1.765 1.644-1.869 0.1935 0.2145 0 0.4183

At. maripa 159 1.672 1.493-1.800 0.1875 0.3240 0 0.5232

At. phalerata 150 1.710 1.535-1.846 0.1833 0.2425 0 0.6741

At. speciosa 20 1.595 0.9517-1.999 0.4375 0.3189 0 0.4624

Cc. nucifera 74 1.499 1.145-1.783 0.1667 0.4830 0 0.7177

Cp. prunifera 45 1.922 1.759-1.981 0.1111 0.0696 0 0.1363

E. oleifera 93 1.868 1.704-1.951 0.2632 0.0647 0 0.2226

M. flexuosa 206 1.576 1.406-1.726 0.1667 0.4368 0 0.7357

O. bataua 323 1.781 1.699-1.851 0.1154 0.2272 0 0.5771

P. aequatorialis 24 1.994 1.497-1.999 0.8000 0.0011 0.4000 0.0014

Sa.  mauritiiformis 30 1.769 1.163-1.990 0.5833 0.0099 0.2500 0.0292

Sy. oleracea 38 1.762 1.451-1.929 0.2500 0.1090 0.1875 0.2082

Sy. orinocensis 48 1.966 1.829-1.984 0.2000 0.0248 0 0.0766

311 * Median value for the five used algorithms. With each algorithm, value was the median of 

312 the ten repetitions carried out with different training and testing data set.

313

314 Fig 2. Palm species predicted distribution. Green: Predicted presence. Gray: Predicted 

315 absence. Black points: Occurrences. Presence was predicted in at least three algorithms based 

316 on the 10% training omission threshold. Horizontal axis: Longitude, Vertical axis: Latitude. 

317 Maps constructed with the raster R package [85].
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318

319 Considering performance, all the palm models showed pAUC ratios significantly 

320 higher than the null model line except in A. speciosa (Table 3). Like Rhodnius models, 10 

321 percentile omission rates were higher than the expected value, but the zero percentile 

322 omission rate were very close to the expected one. Three species showed very high omission 

323 rates values with both thresholds: P. aequatorialis, Sa. mauritiiformis and Sy. oleracea. 

324 Attalea speciosa, showed a very high 10 percentile omission rate but low zero percentile. 

325 Every palm model predicted an area of distribution adjusted to the occurrence points (Fig 2), 

326 and no clear over-prediction was identified in any model. Considering predictors for palm 

327 species distributions, annual mean temperature (Bio 1) was an important variable in eleven 

328 palm species, and three variables, annual precipitation (Bio 12), precipitation seasonality 

329 (Bio 15), and precipitation of the warmest quarter (Bio 18), were important in eight palm 

330 species. In contrast, topographic variables showed low influence in the models.

331 As an alternative to decrease the ten-percentile omission rates, ENMs were repeated 

332 using as layers, the first 16 PCAs obtained from the original 42 variables (which covered 

333 90% of the environmental variation). However, omission rates did not improve (S1 Table) 

334 and the initial ENM were used for the further analysis. 

335
336 Association between Rhodnius species and palms distributions. 

337 Rhodnius species prevalence was higher in areas with palm presence compared to the 

338 entire area, except for two species, R. prolixus and R. colombiensis (Table 4). However, 

339 differences between prevalence values were small; all the odds ratios were close to 1. Palm 

340 prevalence (presence of at least one palm species) was very high in all the Rhodnius species 

341 distribution areas (Fig 3). In some cases, as in R. robustus and R. pallescens, presence of 
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342 palm trees covered almost the entire area (Table 4). In R. ecuadoriensis, with the smallest 

343 palm prevalence, palm presence was wide distributed comprehending more than a half of the 

344 total area.  

345

346 Table 4. Rhodnius species prevalence in the entire distribution area and in palm trees 

347 areas.

Rhodnius 
species

Species 
prevalence

Palm 
prevalence

Species prevalence 
in palm areas

Odds ratio

95% CI*

R. robustus 0.5076 0.8658 0.5701 1.277-1.296

R. prolixus 0.4772 0.9777 0.4726 0.9678-0.9955

R. pictipes 0.5306 0.8867 0.5875 1.250-1.270

R. pallescens 0.1467 0.9610 0.1524 1.017-1.077

R. neglectus 0.3099 0.8325 0.3431 1.151-1.174

R. nasutus 0.2346 0.8974 0.2569 1.103-1.154

R. ecuadoriensis 0.0855 0.6034 0.1061 1.187-1.358

R. colombiensis 0.0327 0.9293 0.0317 0.8547-1.101

348 * Odds ratio between Rhodnius prevalence inside palm area (third column) and in the total 

349 area (first column).

350

351 Fig 3. Rhodnius and palm trees distributions. Yellow: Presence of both the Rhodnius 

352 species and palms. Brown: Only the Rhodnius species. Green: Only palms. Gray: Both 

353 absences. Palms presence corresponded to the presence of at least one palm species.  All 

354 shown presences were predicted in at least three algorithms based on the 10% training 

355 omission threshold. Horizontal axis: Longitude, Vertical axis: Latitude. Maps constructed 

356 with the raster R package [85].

357
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358 Discriminating by palm species, Rhodnius species prevalence in areas with palms was 

359 much higher than in the entire area in some cases (Table 5). In R. robustus, prevalence 

360 increased more than eight times in areas with As. aculeatum, As. murumuru and O. bataua 

361 presence; in R. prolixus, it increased more than seven times in Ac. aculeata areas; in R. 

362 pictipes, more than six times in As. aculeatum and At. maripa areas; in R. pallescens, more 

363 than four times in E. oleifera areas; in R. neglectus, more than three times in Sy. oleracea 

364 areas; in R. nasutus, more than two times in Cp. prunifera areas; in R. ecuadoriensis, more 

365 than three times in P. aequatorialis areas; and in R. colombiensis, more than two times in As. 

366 aculeatum areas. In contrast, Rhodnius species prevalence was much lower in areas with 

367 certain palm species. For example, R. prolixus prevalence was very low in areas with As. 

368 murumuru and R. pictipes prevalence in areas with Ac. aculeata (Table 5). In this study, a 

369 Rhodnius-palm species pair was considered spatially associated if the odds ratio value was 

370 higher or equal to 2. 

371

372 Table 5. Rhodnius species prevalence in different palm species areas.

Species R. 
robustus

R. 
prolixus

R. 
pictipes

R. 
pallesc.

R. 
neglect.

R. 
nasutus

R. 
ecuador.

R. 
colomb.

Ac. 
aculeat.

0.13
0.14-0.15

0.87
7.4-7.9

0.16
0.16-0.17

0.21
1.5-1.6

0.49
2.1-2.2

0.22
0.91-0.97

0.002
0.02-0.12

As. 
aculeat.

0.96
22.2-23.2

0.59
1.57-1.64

0.91
8.8-9.1

0.19
1.3-1.4

0.12
0.31-0.32

0.06
0.20-0.23

0.08
2.2-2.9

As. 
murum.

0.95
18.1-19.1

0.091
0.10-0.11

0.83
4.4-4.5

0.15
0.9-1.1

At.
butyra.

0.82
4.3-4.4

0.33
0.54-0.56

0.76
2.8-2.9

0.18
1.2-1.3

0.002
0.01-0.03

0.05
1.3-1.8

At. 
maripa

0.93
12.1-12.5

0.35
0.58-0.60

0.88
6.4-6.5

0.18
1.3-1.4

0.13
0.33-0.34

0.15
0.56-0.62

0.002
0.01-0.03

0.02
0.64-0.91

At. 
phaler.

0.58
1.31-1.34

0.55
1.08-1.10

0.52
2.3-2.4

0.05
0.49-0.63

At. 
specio.

0.45
0.79-0.81

0.44
0.68-0.70

0.49
2.1-2.2

0.34
1.6-1.7

Cc. 
nucife.

0.54
1.11-1.13

0.54
1.26-1.30

0.54
1.02-1.04

0.15
1.0-1.1

0.27
0.8-0.9

0.32
1.5-1.6

0.14
1.7-1.9

0.03
0.86-1.11

Cp. 
prunif.

0.32
1.01-1.05

0.47
2.9-3.0

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644385doi: bioRxiv preprint 

https://doi.org/10.1101/644385
http://creativecommons.org/licenses/by/4.0/


19

E. 
oleifer.

0.43
0.81-0.85

0.43
4.3-4.6

0.04
0.99-1.61

M. 
flexuos.

0.71
2.3-2.4

0.37
0.64-0.66

0.70
1.94-1.98

0.18
1.3-1.4

0.44
1.7-1.8

0.09
0.29-0.32

0.02
0.21-0.28

0.02
0.52-0.74

O. 
Bataua

0.89
8.1-8.4

0.27
0.40-0.41

0.82
3.9-4.0

0.18
1.2-1.3

0.04
0.45-0.55

0.01
0.22-0.36

P. 
aequat.

0.26
3.2-4.5

Sy. 
olerac.

0.001
0.001-0.002

0.61
3.4-3.5

Sy. 
orinoce.

0.07
0.38-0.45

0.001
0.02-0.09

373 Each cell: First line: Rhodnius species prevalence inside palm area. Second line: 95% 

374 confidence interval of the odds ratio between Rhodnius prevalence inside the palm area and 

375 in the total area. Only palm species with prevalence higher than 0.10 were included in the 

376 analysis. Rhodnius-palm pairs showing association (odds ratio higher than 2) are showing in 

377 bold.  

378

379 To compare if Rhodnius-palm spatial association could be explained by niche similarity, 

380 niche overlap was compared between Rhodnius-palm pairs with and without spatial 

381 association (S2 Table). To this, n-dimensional hypervolumes overlapping was calculated by 

382 the function “dynRB_VPa” in the “dynRB” R package [86]. In all the Rhodnius species but 

383 R. colombiensis, mean niche overlap was higher in Rhodnius-palm pairs with spatial 

384 association than in pairs without the association.

385 Considering all Rhodnius and palm presence in the same extension (from Guatemala 

386 to northern Argentina), the highest Rhodnius richness (number of species) was concentrated 

387 in the Amazon region and the Guiana shield (Brazil, Colombia Venezuela and Guyana) (Fig 

388 4). More than 60% of the area predicted for Rhodnius (i.e. area with at least one Rhodnius 

389 species), was predicted to be occupied by two or more Rhodnius species (Fig 4 up). In the 

390 limits of this region, only one Rhodnius species is predicted as present. The Amazon region 
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391 was also the area with the highest predicted richness of palm species (species considered in 

392 this study), and 87% of the area predicted as present for palms (i.e. area with at least one 

393 palm species) is predicted to be occupied by two or more palm species. Almost all the 

394 considered area, from Guatemala to northern Argentina, had a continuous presence of palms 

395 (species with infestation reports).

396

397 Fig. 4. Rhodnius and palm tree species in the distribution area of the Rhodnius genus. 

398 Presence of each species were those predicted in at least three algorithms based on the 10% 

399 omission rate threshold. Horizontal axis: Longitude, Vertical axis: Latitude. Maps 

400 constructed with the raster R package [85].

401

402 Since both Rhodnius and palm predicted richness appear to be concentrated in the same 

403 region, the Amazon, spatial distribution was compared between Rhodnius and palms 

404 predicted richness. There is a likely relationship between Rhodnius and palms species 

405 richness (Fig. 5). Fifty percent of locations with four Rhodnius species had six to eight palm 

406 species. In contrast, fifty percent of locations with only one Rhodnius species had two to four 

407 palm species, and fifty percent of locations without Rhodnius species had no palm presence, 

408 or only one or two palm species.

409

410 Fig 5. Spatial relationship between the number of Rhodnius and palm species.

411

412 Rhodnius models with palm trees distributions as predictors. 

413 When Rhodnius models were run with palm distributions as predictors, performance 

414 behavior was similar to the previous models. Partial AUC ratios were significantly higher 
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415 than the null model line except for R. neglectus and R. colombiensis (Table 2B); 10 percentile 

416 omission rates were higher than expected (and sometimes much higher), but zero percentile 

417 omission rates were closer to the expected values (Table 2B). The three species with the 

418 lowest occurrence number (R. nasutus, R. colombiensis and R. ecuadoriensis) had both 

419 omission rates very far from the expected values. As predictor, palm distributions showed to 

420 be not very relevant for Rhodnius models (Table 2B). Palm importance was low in all 

421 Rhodnius species but R. pallescens and R. colombiensis. In those species, however, the 

422 models did not show any increase in performance using palm distributions. Spatial 

423 differences in the predictions of models with and without palm distributions were scarce and 

424 disperse, and they are mainly located in the edges of the presence areas (Fig. 6). 

425

426 Fig. 6. Comparison between Rhodnius models run with and without palm distributions 

427 as predictors. Red: Presences found only in models with palm distributions. Blue: Presences 

428 found only in models with environmental variables. Gray: Presences or absences predicted 

429 in both models. Presences were predicted at least three algorithms based on the 10% omission 

430 rate threshold. Horizontal axis: Longitude, Vertical axis: Latitude. Maps constructed with the 

431 raster R package [85].

432

433 Discussion

434 Considering the association between Rhodnius species and palms, the prevalence of 

435 Rhodnius species was not much higher in palm tree areas than in the total modeled areas. 

436 That could be a consequence of the palm presence area, which was very big and, in some 

437 cases, encompassed all the extension. If palm area and total modeled area are similar, 
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438 Rhodnius prevalence in both areas cannot be very different. That is demonstrated in the odd 

439 ratios values that were all very close to one. Therefore, based on Rhodnius prevalence 

440 comparison, the association between Rhodnius species and palm trees presence cannot be 

441 clearly determined.

442 In contrast, when palm species were considered, prevalence comparisons showed 

443 greater differences. Each Rhodnius species’ prevalence increased in specific palm areas 

444 compared to the entire area. Comparisons were several times higher in some cases (Table 5). 

445 That showed a clear spatial association between the presence of Rhodnius species and certain 

446 palm species. Rhodnius prevalence difference can be enormous between palm species. For 

447 instance, R. robustus presence was 150 times higher in As. aculeatum areas than in Ac. 

448 aculeata areas, and R. prolixus presence was 17 times higher in A. aculeata areas than in O. 

449 bataua areas. Hence, the palm species appears to be key for Rhodnius-palm association. 

450 Rhodnius-palm spatial association could be explained by different causes: the 

451 ecological interaction between both organisms and the similarity in environmental factors 

452 that determine the distributions. Considering ecological interaction, palm species has 

453 demonstrated to be an important factor influencing the presence and abundance of 

454 triatomines in palm crowns [5,6,20,54,62,66]. Palm species differ in palm architecture, 

455 microclimatic conditions and the associated vertebrate fauna, factors that have been related 

456 to triatomine presence in palms [6]. Considering similarity in environmental factors, 

457 environmental variables as annual temperature, precipitation, and precipitation seasonality 

458 were important environmental factors for several Rhodnius and palm species distributions. 

459 Triatomines and palms have shown a high sensitivity to climatic conditions. Temperature 

460 affects physiological and behavioral processes of triatomines as egg production, hatching and 

461 immature development [87,88]. Climatic conditions could affect palm trees due to their soft 
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462 and water-rich tissues, their inability to undergo dormancy and their general lack of 

463 mechanisms to avoid or tolerate frost [89]. Environmental similarity can be further to specific 

464 factors. Regarding the entire niche, overlap was higher in Rhodnius-palm pairs with spatial 

465 association than in those not associated. N-dimension volumes appeared to be more similar 

466 in certain Rhodnius and palm species, and that niche similarity can favor the co-occurrence. 

467 Both causes of Rhodnius and palm association, interaction and niche similarity, could be 

468 even complementary. Niche similarity between Rhodnius and palms could promote the 

469 presence of both organisms in the same location, and then, their ecological interaction would 

470 occur based on the advantages that palms offer to those hematophagous insects.  

471 Analyzing by Rhodnius species, R. robustus distribution showed a great association 

472 with six palm species: As. aculeatum, As. murumuru, At. butyracea, At. maripa, M. flexuosa 

473 and O. bataua. The first four species have previous infestation reports by R. robustus [60,64–

474 67] while M. flexuosa and O. bataua don’t; however the presence of R. robustus is likely in 

475 these two palm species because they have an extended distribution in the Amazon region and 

476 reported infestations by other Rhodnius species. Even though Ac. aculeata has been found 

477 infested with R. robustus [64,65], spatial association was not found (Table 5). Those reports 

478 come from Venezuela where the six palm species showing association are absent. In that 

479 location, R. robustus bugs would associate with the palm species present in the region (i.e. 

480 Ac. aculeata).

481 Rhodnius pictipes results were very similar to those of R. robustus, displaying spatial 

482 association with the same palm species. That is caused by the similarity in both Rhodnius 

483 species distributions (Fig 1). Three species, As. murumuru, At. maripa and O. bataua, have 

484 previous infestation reports by R. pictipes [60]. The other palms, As. aculeatum and At. 

485 butyracea, have no reports but R. pictipes infestation can be considered as very possible 
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486 based on the palm distributions and the reported infestation by other Rhodnius species 

487 [62,66,67]. 

488 Despite infesting several palm species (Table 1), R. prolixus only showed high spatial 

489 association with Ac. aculeata. No clear association was found with the other palms, and it 

490 could reflect the role of domiciliation in its distribution. In the R. prolixus occurrence set 

491 used in this study, several data could come from human dwellings, where bug populations 

492 can establish without the presence of close palms [90]. Rhodnius prolixus presence at high 

493 altitude locations (which have no palms) could be explained by the colonization of human 

494 dwellings [9].  Looking at R. prolixus predicted distribution its presence in highlands of 

495 Venezuela and Guiana could be considered as overprediction, since in that region, there are 

496 no occurrences nor predicted palm presence (Fig 1). However, those highlands are similar to 

497 the Andean zones where R. prolixus has been intensively reported. 

498 Like R. prolixus, R. pallescens was also reported in several palm species (Table 1) 

499 but it only showed high association with E. oleifera. This palm has a broad distribution very 

500 similar to that of R. pallescens [19,36]. No association was found with A. butyracea even 

501 though this palm has several reports of R. pallescens infestation [52–55,57]. Lack of 

502 association with A. butyracea and other palm species could be caused by the presence of R. 

503 pallescens in other habitats such as armadillo burrows or by its presence in human dwellings 

504 [14] and chicken coops [58].

505 Rhodnius nasutus was also reported in several palm species (Table 1), but spatial 

506 association was found only with Cp. prunifera and At. speciosa (the latter with low odd ratio 

507 but close to 2). Copernicia prunifera was the most distributed palm species inside R. nasutus 

508 area, and their association have been frequently reported [5,49,91–94]. Considering the other 
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509 palms with infestation reports, Ac. aculeata and M. flexuosa showed no association and Sy. 

510 oleracea prevalence was very small as to be considered in the analysis (lower than 0.10).  

511 In contrast to the previous Rhodnius species, all the palm species associated with R. 

512 neglectus (Ac. aculeata, At. phalerata, At. speciosa, M. flexuosa and Sy. oleracea) were 

513 confirmed by previous infestation reports [6,51]. Mauritia flexuosa showed a lower odds 

514 ratio but closer to 2.

515 In R. ecuadoriensis, a high spatial association was seen with P. aequatorialis; this 

516 relationship has been deeply studied [47,48]. In the north of R. ecuadoriensis distribution, 

517 presence is related to palm trees presence (Fig. 3); while in the south, presence is related to 

518 domiciliation process with no palm trees [29,95]. In R. colombiensis, clear association was 

519 found with As. aculeatum and not with At. butyracea, the only species with infestation 

520 reports. Nevertheless, R. colombiensis distribution appears to be underestimated by the 

521 models, which produced very high omission rates (Table 2A). 

522 Analyzing Rhodnius and palm distributions regionally, the Amazon appears to be a 

523 convergent area where several species intersected [28]. Rhodnius-palm association could be 

524 originated in the Amazon, and then, Rhodnius populations began a migration toward further 

525 zones in the north or the south progressing through zones with palm presence. From Mexico 

526 to Argentina, palm presence is continuous allowing the connection among zones. Further 

527 areas like the Andes and Central America in the north and Central Brazil in the South would 

528 have been colonized by Rhodnius bugs with an ongoing speciation process [96]. This agrees 

529 with the observation that only one Rhodnius species occurs in the limits of the complete 

530 Rhodnius genus distribution (Fig 4), while several species occur in the Amazon region [14].

531 High Rhodnius species richness shown in the Amazon appears to be related with high 

532 palm richness. Palms are considered to be suitable habitats for Rhodnius since they offer food 
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533 and shelter. Habitat quality offered by palms could be heterogeneous among palm species 

534 [6], and ecological heterogeneity has been proposed as a driver of species richness for several 

535 reasons [97]: 1) Different habitat types could increase the available niche space and allow 

536 more species to coexist; 2) There would be more diversity in shelter and refuges from adverse 

537 environmental conditions and periods of climate change, promoting species persistence; 3) 

538 Speciation probability caused by isolation or adaptation to diverse environmental conditions 

539 should increase with greater ecological heterogeneity [97]. High diversity of palms, and 

540 therefore high diversity of habitats for Rhodnius, could favor the co-occurrence of several 

541 Rhodnius species in one specific region.

542 Palm distribution used as predictor did not increase model performance compared to 

543 the initial models. Palm presence information seems not to be relevant for Rhodnius models 

544 compared to environmental variables. In fact, the most important variables in models with 

545 and without palm distributions were usually similar. Species interactions are considered to 

546 affect species distribution mainly at local scales (e.g. landscape), and abiotic predictors, as 

547 temperature and precipitation, would affect species distributions in a bigger scale [98]. At 

548 the large spatial scale used in this study, palm distribution would not restrict Rhodnius 

549 distributions clearly; in a landscape scale however, results can be very different. The use of 

550 interacting species as predictors of Rhodnius distribution could need the inclusion of other 

551 participants like birds or mammal hosts. Those animals appear to be the crucial link between 

552 palms and Rhodnius triatomines [5]. Including a more complete scenario in the spatial 

553 modeling, mainly in the landscape scale, would increase the model complexity but could also 

554 increase predictability [98,99].

555 As distribution models, ENM are severely dependable on available information. The 

556 low occurrence number in some species and the biased distribution of information (e.g. some 
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557 areas intensively sampled in comparison to others) could limit the validity of the conclusions. 

558 The presence of Rhodnius triatomines in more palm species than those considered in this 

559 study cannot be excluded, and the conclusions here are limited to one small subgroup of palm 

560 species inside the huge diversity of palm trees found in the Rhodnius presence area [19].

561 Considering model performance, evaluation showed a good discriminate power 

562 (pAUC) in most of the Rhodnius and palm species; however, in some cases, omission rates 

563 were higher than expected. This could be a consequence of the low occurrence number. To 

564 test models, 20% of the occurrences were used. In R. colombiensis for example, the size of 

565 the testing set was of four or five occurrences. If one or two points were omitted in one 

566 repetition, omission rates reach very high levels. That situation is less probable if occurrence 

567 number is big. With 372 occurrences, as in R. prolixus, more than 72 points are used for 

568 testing and leaving out two or three points do not increase omission levels dramatically. 

569 High omission rates in the results have also shown to be related to a small species 

570 presence. Very small prevalence could be a consequence of model overfitting. Some 

571 algorithms, Random Forests for instance, gave models extremely fitted to the training data, 

572 with very high pAUC values but very low spatial transferability. On the contrary, MaxEnt 

573 models gave much lower omission rates, close to expected values, but suffer from high 

574 overprediction predicting presence in areas very different to the occurrences. Model 

575 averaging used in this study, which combined the outputs of five algorithms, could help to 

576 soften the performance limitations of each algorithm [83]. Comparing model performance, 

577 there was no algorithm being the best for all the species. For the same reason, agreement 

578 among algorithms was used in binary maps. The species presence was the coincidence of 

579 three or more algorithms instead of using only one algorithm.       
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580 To conclude, Rhodnius species showed to have a distributional association with 

581 certain palm species. Even though palms are widely distributed in every Rhodnius species 

582 range, the presence of a Rhodnius species is related to the presence of specific palm trees. 

583 Looking at a continental scale, this relationship could be linked to the Rhodnius origin, 

584 possibly in the Amazon region. Palm richness can be considered as an important factor 

585 allowing Rhodnius species co-occurrence. Despite the spatial association found, palm 

586 presence did not improve Rhodnius distribution models. The use of more interacting species 

587 as birds and mammal hosts could increase the complexity but also increase model 

588 performance and predictability.
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920 S1 Table. Performance statistics in Rhodnius ENM with the 16 first PCAs as 

921 environmental layers. 1Median value for the five used algorithms. With each algorithm, 

922 value was the median of the ten repetitions carried out with different training and testing data 

923 set.

924 S2 Table. Mean Rhodnius-palm niche overlap. 1Rhodnius-palm species pair considered 

925 spatially associated if the odds ratio in table 5 was higher or equal to 2. Niche overlap ranges 

926 between 0 (No overlap) to 1 (complete overlap).
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