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Abstract

The broad use of RNA-sequencing technologies held a promise of improved diagnostic
tools based on comprehensive transcript sets. However, mining human transcriptome
data for disease biomarkers in clinical specimens is restricted by the limited power of
conventional reference-based protocols relying on uniquely mapped reads and
transcript annotations. Here, we implemented a blind reference-free computational
protocol, DE-kupl, to directly infer RNA variations of any origin, including yet
unreferenced RNAs, from high coverage total stranded RNA-sequencing datasets of
tissue origin. As a bench test, this protocol was powered for detection of RNA
subsequences embedded into unannotated putative long noncoding (Inc)RNAs
expressed in prostate cancer tissues. Through filtering and visual inspection of 1,179
candidates, we defined 21 IncRNA probes that were further validated for robust tumor-
specific expression by NanoString single molecule-based RNA measurements in 144
tissue specimens. Predictive modeling yielded a restricted probe panel enabling over
90% of true positive detection of cancer in an independent dataset from The Cancer
Genome Atlas. Remarkably, this clinical signature made of only 9 unannotated IncRNAs
largely outperformed PCA3, the only RNA biomarker approved by the Food and Drug
Administration agency, specifically, in detection of high-risk prostate tumors. The
proposed reference-free computational workflow is modular, highly sensitive and

robust and can be applied to any pathology and any clinical application.
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INTRODUCTION

RNA sequencing (RNA-seq) has revolutionized our knowledge of human transcriptome
and has been implemented as a pivot technique in clinical applications for the discovery
of RNA-based biomarkers allowing disease diagnosis, prognosis and therapy follow-up.
However, most biomarker discovery pipelines are blind to uncharacterized RNA
molecules since they rely on the alignment of uniquely mapped reads to annotated
references of the human transcriptome which are far from complete (Uszczynska-
Ratajczak et al. 2018), (Deveson et al. 2018), (Morillon and Gautheret 2019). Indeed,
state-specific unspliced variants, rare mRNA isoforms, RNA hybrids originating from
trans-splicing or genome rearrangements, unannotated intergenic or antisense
noncoding RNAs, mobile elements or viral genome insertions would be systematically
missed. A recent approach to RNA-seq data analysis, DE-kupl, combines k-mer
(subsequences of fixed size) decomposition and differential expression analysis to
discover transcript variations yet unreferenced in the human transcriptome (Audoux et
al. 2017). Applied to poly(A)+ RNA-seq datasets of in vitro cell system, DE-kupl unveiled
a large number of RNA subsequences embedded into novel long noncoding RNAs. These
transcripts of more than 200 nucleotides in length transcribed by RNA polymerase II
from intergenic, intronic or antisense noncoding genomic locations constitute a
prevalent class of human genes. Some IncRNAs are now recognized as precisely
regulated stand-alone molecules participating in the control of fundamental cellular
processes (Jarroux et al. 2017), (Quinn and Chang 2015). They show aberrant and
specific expression in various cancers and other diseases promoting them as
biomarkers, therapeutic molecules and drug targets (Leucci 2018), (Van Grembergen et
al. 2016). Importantly, some IncRNAs can be robustly detected in biological fluids (blood
and urine) as circulating molecules or encapsulated into extracellular vesicles, hence,
raising an attractive possibility of IncRNA biomarkers usage in non-invasive clinical

tests (Silva et al. 2015), (Deng et al. 2017), (Wang et al. 2014), (Zhao et al. 2018a),
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(Wang et al. 2018). The only example of an RNA-based biomarker so far introduced in
clinical practice is the PCA3 IncRNA in prostate cancer (PCa) (de Kok et al. 2002). PCA3
is transcribed antisense to the tumor suppressor PRUNEZ gene and promotes its pre-
messenger RNA editing and degradation (Salameh et al. 2015). Being overexpressed in
95% of PCa cases, PCA3 is detected in urines and helps diagnosis providing, in addition
to other clinical tests, more accurate metrics regarding repeated biopsies (Groskopf et
al. 2006), (Galasso et al. 2010). However, it remains inaccurate in discrimination
between low- and high-risk tumors since its expression may dramatically decrease in
aggressive PCa cases tempering its systematic usage (Loeb and Partin 2011), (Alshalalfa
etal. 2017).

Since PCA3 discovery and the development of RNA-seq technologies, the PCa
transcriptome has been extensively explored by The Cancer Genome Atlas (TCGA)
consortium and others to identify numerous PCa-associated IncRNAs (PCAT family)
such as PCAT1, PCAT7 or PCAT114/SChLAP1 (Iyer et al. 2015), (Prensner et al. 2014).
However, none of them has been yet introduced into clinical practice because of the
variable expression incidence, as for SChLAP1 detected in 25% of PCa cases presenting
metastatic traits (Prensner et al. 2013), or low specificity, as PCAT1 or PCAT7, thus
infringing their clinical value. Additional efforts are required for more accurate and
exhaustive RNA identification, as well as more rigorous validations of clinical potency
through independent RNA measurement technologies and clinical cohorts. Regardless a
large number of transcriptomic studies and variety of clinical samples analyzed,
discovery of RNA-based molecular biomarkers from publicly available RNA-seq datasets
is still limited at two levels: (i) most experimental setups are based on poly(A) selected,
unstranded cDNA sequencing, and (ii) computational analyses are generally focused on
annotated genes and full-length RNA assemblies. This impedes the detection of low and
poorly polyadenylated RNAs but also partially degraded RNAs from formalin-fixed

paraffin-embedded (FFPE) tissues or other clinical samples (Zhao et al. 2018b), (Zhao et
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al. 2014). In addition, RNA-seq reads counting is less accurate at 5° RNA ends or even
impossible for co-expressed paired sense/antisense transcripts and for yet unannotated
RNAs among noncoding, fusion, repeat-derived transcripts (Audoux et al. 2017), (Davila
etal. 2016).

Here, we propose a conceptually novel exploratory framework combining the total
stranded RNA-seq of clinical samples and the reference-free DE-kupl algorithm for
discovery of novel tumor-specific transcript variations. As a proof-of-concept, we
focused on the least explored, noncoding portion of the genome devoid of annotated
protein-coding sequences to build an exhaustive catalog of PCa associated subsequences
(contigs) embedded into IncRNA genes. The catalog was further refined through
minimal filtering to isolate the most potent subset of contigs and validate 21 of them by
an alternative NanoString assay in the extended cohort of 144 prostate specimens. From
this, a predictive modeling derived a panel of 9 yet unannotated IncRNAs validated for
robust expression in an independent TCGA cohort. Importantly, its clinical performance
surpassed the PCA3 IncRNA specifically in discrimination of high-risk tumors. The
proposed probe-set can be further used for development of a PCa diagnostic test.
Moving beyond this point, the proposed computational and experimental platform may
serve as a tool for biomarkers discovery for any disease and any clinical task aiming at
improved medical care and development of precision medicine approaches.

RESULTS

Identification of PCa-specific RNA variants in the Discovery Set by DE-kupl

The biomarker discovery workflow included three major phases: discovery, selection
and validation (Fig. 1). First, for discovery, we performed a deep total stranded RNA-seq
of ribosomal RNA-depleted RNA samples isolated from prostate tissues after radical
prostatectomy (Discovery Set, PAIR cohort, Supplemental Table S1). This Discovery set
was processed by DE-kupl to identify tumor-specific transcripts. DE-kupl directly

queries FASTQ files for subsequences (k-mers) with differential counts/expression (DE)
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between two conditions (Fig. 2A) (Audoux et al. 2017). Overlapping k-mers are then
assembled into contigs and, in a final step, mapped to the human genome for annotation.
In the aim to focus exclusively on novel, yet unannotated RNA elements, k-mers exactly
matching GENCODE annotated transcripts were masked. We eventually retained contigs
longer than 200 nucleotides and showing adjusted p-values below 0.01 to capture the
most significant expression changes linked either to new transcriptional or processing

events within known or putative IncRNA loci.
PAIR TCGA
e | M

135 individuals 505 individuals

Clinical samples
(prostate tissues)

Best biomarker set

1. RNA-seq V/ ‘ - Diagnosis
( Discove ) ( Validatiol ) - Prognosis
- Treatment monitoring
Total RNA Poly(A)+ RNA

8 normal specimens 52 normal specimens

16 tumor specimens 505 tumor specimens
2. DE-kupl V A 6. Predictive performance analysis (ROC)

Contig catalog Set of RNA biomarker candidates
3. Manual filtering V 4. NanoString RNA measurements

5. Predictive modeling (LASSO)

Total RNA

9 normal specimens
135 tumor specimens

Figure 1. Experimental and computational workflow for discovery and validation of RNA-based
clinical biomarkers. Raw total stranded RNA-seq data of a small clinical cohort is processed by
DE-kupl to allow comparison of 8 normal against 16 tumor specimens (in this case formaldehyde
fixed paraffin embedded tissues from radical prostatectomy) and cataloguing of all differentially
expressed RNA variations (contigs). The whole set is filtered according to desired criteria and the
top ranked contigs are selected for an independent experimental validation by NanoString in the
extended clinical cohort. Finally, predictive modeling infers the best panel of candidate RNAs for

validation of its clinical potency in an independent cohort (in this case TCGA).

With these criteria, we identified 1,179 tumor up-regulated contigs assigned to four
main categories according to their mapping features: contiguous (uniquely mapped)
contigs (N=935), splice variants (N=54), repeats (N=167) and unmapped contigs (N=23)
(Fig. 2B, Fig. S1). Among them, 33.93% and 6.36% were embedded into already
referenced GENCODE or MiTranscriptome IncRNA genes, respectively, but represented

new sequence variations or RNA processing events, as PCAT7 (ctg_111348, P16) or


https://doi.org/10.1101/644104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/644104; this version posted May 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CTBP1-AS (ctg_25348, P10). The rest mapped to intergenic noncoding locations or
antisense to referenced protein-coding or noncoding genes (Fig. 2C). An unsupervised
clustering of prostate specimens based on contigs expression counts allowed proper

discrimination of tumor from normal tissues of the Discovery Set (Fig. 2D).

In conclusion, DE-kupl identified thousands of PCa-associated RNA variants for the
majority embedded into yet unreferenced transcripts which may represent putative

novel IncRNAs. This depository was further explored for clinical relevance.
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Figure 2. K-mer decomposition protocol for detection of differentially expressed RNA variants in
PCa. (A) DE-kupl workflow with principle steps of contigs counting, DE-test and filtering,
assembly and annotation. (B) Catalog of DE-kupl contigs of different subgroups: contiguous -
contigs mapped as unique fragments; spliced - contigs mapped as spliced fragments; repeat -
multiply mapped contigs; Inter - contigs mapping into intergenic regions, OL - overlapping
GENCODE IncRNA annotations, AS - antisense to a protein-coding or a noncoding gene. Contigs of
each subgroup showing 50% sequence overlap with GENCODE (GC) and MiTranscriptome (MiT)
annotated genes are counted. (C) Pie chart of contigs distribution across GENCODE annotated
features. (D) Unsupervised hierarchical cluster heatmap of Log10(normalized counts) of 1,179
contigs assessed in 8 normal and 16 tumor specimens by total stranded RNA-seq of the Discovery

Set.
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Figure S1. DE-kupl contigs assignment to contiguous, spliced, repeat and unmapped categories
according to their genomic location outside or within annotated transcription units (blue). Each

black arrow represents a contig.

Naive assembly of Transcription Units identifies novel prostate cancer associated

IncRNAs

To complement the reference-free protocol, we applied a reference-based protocol to
build a catalog of IncRNAs from the same Discovery Set. Total RNA-seq produces much
more intronic and exon-exon junction reads than poly(A)-selected RNA-seq, which is
deleterious for splice graph-based assemblers such as Cufflinks (Kukurba and
Montgomery 2015), (Hayer et al. 2015a). To bypass this difficulty, we developed a more
straightforward IncRNA annotation pipeline, HoLdUp, which identifies transcription
units (TU) based on coverage analysis (Fig. 3A). In this workflow, uniquely mapped
reads were assembled into TUs and mapped to the GENCODE annotation to extract
intergenic and antisense IncRNAs (see Methods for details). They were further ranked
according to their expression level, presence of splice junctions and existence of
matched expressed sequence tags (EST). In total, we retained 168,163 TUs with above-
threshold expression of 0.2 quartile of mRNA expression (Class 2) and, within this
group, the most robust 2,972 TUs with at least one splice junction and one EST (Class 1)
(Fig. 3B). Globally, newly detected transcripts were as much expressed as GENCODE

annotated IncRNAs but lower than mRNAs (Fig. S2A). Only 0.33% of Class 1 IncRNAs
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were present with at least 50% nucleotide sequence overlap in the recent GENCODE v26
catalog and 43.37% of TUs in the MiTranscriptome IncRNA repertoire; the rest
represented putative novel IncRNA genes (Fig. 3B, Fig. S2B). Of 2,972 TUs, DE analysis
retrieved 127 of Class 1 TUs significantly up-regulated in tumor specimens (adjusted p-
value below 0.01, DESeq), including multiple intergenic transcripts and transcripts

antisense to protein-coding genes, such as HDAC9, TPO, FBXL?7.
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Figure 3. Reference-based IncRNA discovery from total stranded RNA-seq. (A) The HoLdUp
protocol for the ab initio assembly of TUs constituting putative IncRNA genes and their
classification into Class 2 and Class 1 TUs according to robustness of detection. (B) HoLdUp
catalog and TUs overlap with GENCODE v26 (GC) and MiTranscriptome (MiT) annotated
IncRNAs. DE stands for differentially expressed transcripts (DESeq adj. p-value < 0.01). (C) Pie
chart representation of non-exclusive distribution of DE-kupl contigs across different IncRNA
annotations: MiTranscriptome (violet), Class 1 (yellow), Class 2 (brown), GENCODE (red) and

novel (blue), number of contigs is marked in each section. Proportion of DE-kupl contigs
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embedded into up-regulated (UP) GENCODE (red bar) and Class 1 (yellow bar) IncRNAs is
expressed as a histogram. (D) Ving-generated RNA-seq profiling along plus (+) and minus (-)
strands of chr5:15,500,295-15,939,910 in tumor and normal prostate specimens: the GENCODE
annotated protein-coding gene FBXL7 (blue), antisense DE-kupl contig ctg 23999 (P22) and
antisense HoLdUp Class 1-TU (orange). Arrow-lines and rectangles represent introns and exons,
respectively. TU = transcription unit; DE = differentially expressed; RPKM = Reads per kilo base

per million mapped reads.
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Figure S2. Expression of GENCODE and HoLdUp annotated IncRNAs in the Discovery Set. (A) Box-
plot of Log10(RPKM) of mRNAs (N=21,330), IncRNAs (N=14,533) from the GENCODE annotation,
and Class 1 (N=2,967) and Class 2 (N=168,163) TUs assembled by HoLdUp. Expression is
measured in RPKM (Reads per kilo base per million mapped reads) by total stranded RNA-seq
across 8 normal (bleu) and 16 tumor specimens (red). (B) Catalog of DE IncRNAs identified by
DESeq within GENCODE IncRNAs and HoLdUp annotated TUs. (C) Intersection of DE-kupl contigs
with HoLdUp and GENCODE annotated IncRNAs including those embedded into up-regulated
transcripts (UP).

Intersection of DE-kupl contigs with HoLdUp TUs and the recent GENCODE IncRNA
annotation showed that 687 DE-kupl contigs out of 1,179 make part of the stand-alone
transcripts. Moreover, up to 85.5% and 96.8% DE-kupl contigs embedded into
GENCODE and HoLdUp Class 1 IncRNA genes, respectively, were also detected by DESeq
as significantly up-regulated transcripts in the same dataset, when the RNA-seq reads

were counted within the entire TU (Fig. 3C; Fig. S2C). One such example is the contig
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ctg_23999 (P22) embedded into a novel HoLdUp assembled Class 1 TU antisense to the
protein-coding FBXL7 gene (Fig. 3D).

In conclusion, the reference-based assembly protocol HoLdUp is complementary to DE-
kupl and allows attributing short RNA subsequences to whole transcription units.
Nevertheless, DE-kupl was more powerful illuminating much more transcriptomic
variations not only within the annotated loci but also within putative new noncoding
regions in highly complex and heterogeneous total RNA-seq datasets of clinical origin.
Selection of a restricted set of 23 PCa RNA contigs showing the highest differential
expression

We further leveraged the DE-kupl contig catalog to define a robust PCa signature among
putative new IncRNAs using several filters (Fig. S3A). First, contigs were sorted
according to their adjusted p-value and, second, were visually selected using the
Integrative Genomic Viewer (IGV) applying the following criteria: (i) when several
contigs were present within the same genomic region (5 kilobase window) the contig
with the lowest adjusted p-value was retained, (ii) contigs antisense to expressed exons,
bidirectional or positioned in close vicinity to other transcribed protein-coding genes
were filtered out. We also retained contigs assigned to already known PCa associated
IncRNAs, such as CTBP1-AS (ctg_25348, P10), PCAT7 (ctg_111158, P6) and PCAT1
(ctg_105149, P18), or IncRNAs referenced elsewhere as ctg_ 104447 (P11) mapped into
LOC283177, ctg_123090 (P5) into AC004066.3, and ctg_73782 (P8) into LINC01006; all
of which passed the aforementioned selection criteria. Notably, the RNA-seq
visualization of a new contig antisense to the protein-coding FBPZ gene (ctg_28650, P2)
revealed that it most likely makes part of the PCAT7 IncRNA as an extension of its last
exon (Fig. S3B). The contig ctg_28650 (P2) was retained in the restricted list as the
strongest candidate antisense to FBPZ, overcoming ctg 111158 (P6) assigned to the
PCAT7 gene. In total, 23 candidates belonging to contiguous (N=21), spliced (N=1) or

repeat (N=1) subgroups of contigs were selected for further validation, all being
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expressed at least 6 times more in tumor tissues comparing to normal prostate (Fig. S3C,
Supplemental Table S2). Among them, 12 candidates mapped antisense to annotated
protein-coding or IncRNA genes and 11 located to intergenic regions. To facilitate
further reading, contigs’ identity (ID) are replaced by probes’ ID from P1 to P23

according to increasing p-values of DE of the Discovery set (Supplemental Table S2).
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Figure S3. Selection of the most potent DE-kupl contigs. (A) Experimental rationale for contigs
selection and validation of diagnostic potency. (B) RNA-seq profiling by VING along plus (+) and
minus (-) strands of chr9: 97,300,000-97,360,000 in tumor and normal prostate specimens: the
DE-kupl contig P6 (ctg_111158) assigned to PCAT7 and P2 (ctg_28650) antisense to the FBP2
gene. Arrow-lines represent introns, rectangles - exons. (C) Heatmap representing the expression
level and unsupervised clustering of the selected 23 DE-kupl contigs across prostate cancer

specimens of the Discovery Set.

Following the manual filtering we aimed to validate the expression of selected 23

contigs in the extended PAIR cohort of 9 normal and 135 tumor specimens (Selection
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Set) (Supplemental Table S3). For this purpose, an alternative RNA quantification
procedure based on the NanoString nCounter™ platform for direct enzyme-free
multiplex digital RNA measurements was carried out (Fig. 4A). In addition to DE-kupl
contigs, a probe for PCA3 was used as a benchmark IncRNA. We also measured the
expression of six housekeeping genes and selected three lowly expressed mRNAs
(GPATCH3, ZNF2, ZNF346) as custom internal controls for relative quantifications
(Supplemental Table S4, Fig. S4).

The NanoString assay revealed that all DE-kupl contigs were expressed at a lower level
than PCA3, but still 21 out of 23 contigs were significantly overexpressed (Wilcoxon p-
value < 0.01) in tumor specimens (Fig. 4A, Supplemental Table S5). Two contigs,
intergenic P22 (ctg_119680) and repeat P17 (ctg_36195) did not show significant
difference in expression between normal and tumor specimens. Ranking according to p-
values revealed 12 contigs better than PCA3. Among the top DE contigs were those
embedded into PCAT1 (ctg 105149, P18), CTBP1-AS (ctg_25348, P10) and PCAT7
(ctg 111158, P6) genes, and the rest were assigned to novel IncRNAs. Notably, apart
from P17 (ctg_36195) and P22 (ctg_119680), expression measurements were consistent
between the two technologies, total stranded RNA-seq and NanoString, though the p-
values ordering was different (Fig. S5, Supplemental Table S6).

Thus, 21 out of 23 contigs were validated in the extended set of RNA specimens using

the independent single-molecule measurement technology.
Selection Set, PAIR NanoString

i *+ M Normal (N=9)
-‘-'+ B Tumor (N=135)

N

o

Log10(expression)

\ 1 5 10
o e ¥ v G?QGY\“\?%&

Figure S4. Box-plot of Log10(counts) of housekeeping protein-coding genes in 9 normal and 135

tumor specimens of the PAIR cohort (Selection Set) by the NanoString nCounter assay.
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Figure 4. Expression of DE-kupl contigs in PAIR and TCGA-PRAD cohorts. (A) Box-plot of
Log10(counts) of PCA3 and 23 DE-kupl contigs in 144 PAIR specimens of the Selection set by
NanoString. (B) Box-plot of Log10(counts) of PCA3 and 23 DE-kupl contigs in 557 TCGA-PRAD
specimens of the Validation Set by poly(A)+ unstranded RNA-seq. Normal tissues - in blue, tumor

tissues - in red.

Discovery Set, PAIR Total stranded RNA-seq

I Normal (N=8) Il Tumor (N=16)

wm**w CMIGINAT

Log10(counts)

probe (P#) 2 34 5 6 7 8 9 10 11 1213 1415 16 17 18 19 20 21 22 23
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Figure S5. Box plot of PCA3 and DE-kupl contigs expression in the Discovery Set measured by the

total stranded RNA-seq. Contigs are ordered by increasing adjusted p-values.

Validation of contig-based RNA candidates in an independent clinical cohort
Independent validation of DE-kupl contigs was done using the biggest PCa clinical
resource of 557 poly(A)+ RNA-seq datasets, including 52 normal and 505 tumor tissues
from radical prostatectomy (TCGA-PRAD cohort, Validation Set) (Fig. 1, Supplemental
Table S7).

The occurrence of sequences representing 23 DE-kupl contigs was measured and
compared to PCA3. In total, 16 out of 23 DE-kupl contigs had significant support for

overexpression in tumor specimens in the TCGA-PRAD cohort (Wilcoxon p-value < 0.01,
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FC > 2) (Fig. 4B, Supplemental Table S8). Among the best scored candidates, the two
novel DE-kupl contigs, P16 (ctg_ 111348) antisense to DLX1 and intergenic P1
(ctg_17297), surpassed PCA3 ranked third. However, important discrepancies were
observed between expression counts in poly(A)+ RNA-seq TCGA datasets and
NanoString or total RNA-seq PAIR datasets. First, P22 (ctg_119680) was detected as DE
in TCGA-PRAD, but failed the DE test when measured by NanoString (Fig. 4, Fig. S5).
Second, the expression of nine DE-kupl contigs were near the base line in the TCGA
dataset, including those showing relatively high expression and low p-values in the PAIR
cohort, such as P14 (ctg_ 61528) antisense to TPO or the intergenic P9 (ctg 9446).
Detection of these contigs in TCGA-PRAD was compromised independently of their
genomic location (intergenic or antisense) or of the expression level of a sense-paired
gene. We hypothesized that it is most likely due to a relatively low RNA-seq coverage
and/or to a loss of poorly or non-polyadenylated transcripts during cDNA library
preparation in the TCGA experimental setup. Finally, ranking of contigs according to
increasing p-values was very different between the Validation, Discovery and Selection
Sets highlighting remarkable discrepancies either between technologies or clinical
origins.

Regardless all experimental biases, 16 out of 23 DE-kupl contigs were validated in the
independent clinical cohort as significantly overexpressed in tumors. This cohort was
further used for validation of clinical potency of contigs.

Expression of DE-kupl contigs is independent on tumor risk and recurrence
metrics

Several clinical studies have revealed high heterogeneity of expression and low
efficiency of the PCA3 biomarker in detection of high-risk tumors, questioning its
robustness and reliability in PCa diagnostics (Alshalalfa et al. 2017), (Fenstermaker et al.
2017). We assessed contig expression in tumors of different clinical metrics. For risk

prognosis, the most common metric is a three-group risk stratification system
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established by D’Amico in 1998 (D’Amico et al. 1998), which takes into account
preoperative PSA level, biopsy Gleason score and clinical TNM stage. As mentioned
above, this scheme is highly debated due to disagreements over the PSA score in relation
to PCa over-diagnosis (Loeb et al. 2014), (Carlsson et al. 2012). To define a molecular
signature independent of PSA, we excluded this criterion and categorized tumor
specimens into low-, intermediate- and high-risk groups uniquely on the basis of
Gleason and TNM features, below referred to as naive indexing (Fig. S6). In addition to
risk assessment, we also separated specimens in two subgroups depending on the
tumor recurrence status (Fig. S6B). Then, expression of PCA3 and the 23 DE-kupl

contigs were compared for each subgroup of the Selection Set.

Risk group Naive (Gleason, TNM) d’Amico (PSA, Gleason, TNM)
. T1-T2a and PSA <10 ng/ml
Low-risk (LR) Gleason 6/7 (3+4) and pT2 and Gleason < 6
o Gleason 7 (4+3) and pT2, T2b or PSAin between 10 - 20 ng/ml
Intermediate-risk (IR) Gleason < 8 and pT3 or Gleason = 7
- T2c — T3 or PSA> 20 ng/ml or
High-risk (HR) Gleason 8/9 or pT3b/4 Gleason > 8
Risk classification Recurrence
s T f dat Total Normal | Tumor
ource ype ot data ol yesue | tissue | HR| IR | LR | NA | NO | YES
PAIR total stranded RNA-seq | 24 8 16 9 4 3 0 10 6
NanoString 144 9 135 49 51 35 0 80 55
TCGA-PRAD | POY(A)+ unstranded | 557 52 505 [240 | 128 | 132 | 3 | 369 | 108
RNA-seq

Figure S6. Risk classification of prostate tumors according to their clinico-pathological features.
(A) Risk prognosis classification criteria according to D’Amico and the PSA independent naive
indexing. (B) Risk classification and recurrence status of prostate specimens from TCGA-PRAD
and PAIR cohorts used in this study. PSA=prostate specific antigen; TNM=tumor, node,

metastasis; HR=high-risk, IR=intermediate-risk, LR=low-risk tumors.

To evaluate the robustness of contig expression, we ranked probes by decreasing FC for
high-risk (HR) against low-risk (LR) tumors and positive versus negative recurrence

status (Fig. 5).
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Figure 5. Box-plot of Log10(counts) of PCA3 and DE-kupl contigs in prostate specimens of the
PAIR cohort (Selection Set) depending on tumor risk. (A) and recurrence status (B) assessed by
NanoString. PCA3 is marked in orange, and the contigs showing insignificant expression change
between normal and tumor specimens are in blue. Contigs are ordered by the decreasing FC of
mean expression in HR vs. LR specimens in the A panel and in Yes vs. NO recurrence specimens in

the B panel.

The majority of contigs showed robust expression independently of the tumor
classification. In contrast, the PCA3 level was more disperse with the lower median and
mean expression and higher p-values in high-risk and recurrence positive specimens
(Supplemental Table S9). While considering only 21 significantly overexpressed contigs,
17 of them outperformed PCA3 in both contrasts (Supplemental Table S9). Notably,
contigs P6 (ctg_111158) and P2 (ctg_28650) both antisense to FBPZ, P10 (ctg_25348)
embedded into CTBP1-AS, but also the novel P16 contig (ctg_111348) antisense to DLX1
and the intergenic P1 (ctg_17297) performed best.

In conclusion, the majority of DE-kupl contigs showed robust expression independent of
tumor metrics. Hence, even if used alone, they may offer a better clinical potency for PCa
diagnosis than PCA3.

Inferring a multiplex RNA-probe panel and evaluation of its performance in PCa

diagnosis
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To extract parsimonious probe subsets predicting the tumor status, we applied LASSO
(Least Absolute Shrinkage and Selection Operator) logistic regression on the Selection
Set of 144 PAIR specimens (Ghosh and Chinnaiyan 2005). First, the initial 21 DE-kupl
contigs and PCA3 validated for expression by NanoString were submitted to LASSO to
define the best mixed signature comprised of already known and yet unannotated
IncRNA probes for discrimination of tumor from normal tissues (Fig. S7A). Then, LASSO
was performed with the probe subset composed uniquely of contigs assigned to putative
novel IncRNAs (N=15) to infer the best new-Inc RNA signature. It resulted in two panels
of 9 mixed and 9 new-Inc RNA candidates (Fig. 6A, Fig. S7B). Retrieved signatures were
then used to predict a tumor status in the Validation Set of the TCGA-PRAD cohort using
a leave-one-out cross-validated boosted logistic regression. To assess the sensitivity of
DE-kupl contigs in PCa diagnosis, a predictive accuracy index, Area Under Curve (AUC)
of the receiver-operating characteristic (ROC), was calculated for each signature and
PCA3 alone in the PAIR (Selection Set) and TCGA-PRAD (Validation Set) datasets (Fig. 6B;
Fig. S7B). Remarkably, all signatures still hold their predictive capacity in the
independent TCGA-PRAD cohort in spite of the important differences in experimental
setups between the two studies. Both markedly outperformed PCA3 for tumor detection
with AUC of 0.92 for mixed and of 0.91 for new-Inc signatures against AUC of 0.73 for
PCA3 (Fig. 6B and 6C). In addition, these signatures were much better in predicting
high-risk tumors where PCA3 is particularly inaccurate (Fig. 6C). Remarkably, the new-
Inc RNA signature of 9 contigs composed uniquely of yet unannotated IncRNAs
predicted the tumor status with the same performance as the mixed signature. Logistic
regression did not retain PCA3 within the mixed signature set, instead contigs
embedded into the well characterized PCAT1 IncRNA and into two already annotated

but yet functionally uncharacterized IncRNAs LOC283177 and LINC0O1006 were present.
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P4 ctg_63866 | ctg_63866 P2 P2
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P6 ctg_111158 P7 P7
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P10 | ctg_25348 P14
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P12 | ctg_2815 | ctg_2815

P13 | ctg_37852 | ctg_37852 E20 B20
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P15 | ctg 512 ctg 512 ROC analysis, Selection Set (PAIR)

P16 | ctg_111348| ctg_111348 Mean AUC, N vs. T 0.99 0.99 0.88

P18 | ctg_105149 SD,Nvs. T 0.02 0.02 0.10

P19 | ctg_61472 | ctg_61472 Mean AUC, N vs. HR 0.99 0.99 0.81

P20 | ctg 44030 | ctg 44030 SD, N vs. HR 0.03| 002] o011

P21 | ctg_23999 | ctg 23899 Mean AUC,Nvs.IR | 096 | 098] 0.88

P23 | ctg 29077 | ctg 29077 SD, N vs. IR 0.06 | 003]| 012
Mean AUC, N vs. LR 0.97 0.96 0.92
SD, N vs. LR 0.05 | 0.09 0.11

ROC analysis, Validation Set (TCGA-PRAD)

Mean AUC, N vs. T 0.92 0.91 0.73
SD,Nvs. T 0.03 | 0.03 0.05
Mean AUC, N vs. HR 091 | 0.91 0.69
SD, N vs. HR 0.03 | 0.03 0.05
Mean AUC, N vs. IR 0.90 | 0.90 0.78
SD, Nvs. IR 0.05 0.04 0.05
Mean AUC, N vs. LR 0.92 0.91 0.78
SD, Nvs. LR 0.04 0.03 0.05

Figure S7. Predictive modeling and clinical performance analysis of DE-kupl contigs. (A) LASSO
processed list of probes. (B) PCA3, mixed and new-Inc RNA signatures and their performance
(mean and standard deviation of AUCs) in the PAIR (Selection Set) and the TCGA-PRAD
(Validation Set) datasets. N = normal tissue, T = tumor tissue, HR = high-risk, IR = intermediate-

risk, LR = low-risk tumors; AUC = area under the curve; SD = standard deviation.

A _ B
Signature

Probe mixed new-Inc contig origin TCGA-PRAD, Normal vs. Tumor
P8 ctg_73782 LINC01006 100
P18 ctg_105149 PCAT1
P11 |ctg 104447 LOC283177 90
P1 ctg_17297 clg_17297 | intergenic 80
P2 ctg_28650 ctg_28650 AS to FBP2
P7 ctg_117356 ctg_117356 | AS to snoU13 70
P15 ctg_512 ctg_512 AS to PXDN ©
P20 ctg_44030 ctg 44030 | integenic o 60
P23 ctg_29077 ctg_29077 AS to AC011523.2 é‘
P3 ctg 57223 | intergenic 2 50
P12 ctg_2815 intergenic ‘@
P14 clg 61528 | Asto TPO § 40

30

c PCA3 mixed new-Inc 20 PCA3

Normal vs. Tumor | 0.73+0.05 | 0.92:0.03 | 0.91:0.03 mixed

10 new-Inc
Normal vs. HR 0.69+0.05 | 0.91+0.03 | 0.91+0.03 0
Normal vs. IR 0.78+0.05 | 0.90+0.05 | 0.90+0.04

100 90 80 70 60 50 40 30 20 10 O

Normal vs. LR | 0.78+0.11 | 0.92+0.04 | 0.91x0.03 specificity, %

Figure 6. Predictive performance of PCA3 and multiplex mixed and new-Inc RNA signatures
inferred from the LASSO penalized logistic regression. (A) Multiplex biomarker signatures
composed of either known and unannotated RNAs (mixed) or of only unannotated RNAs (new-
Inc). (B) ROC for the PCa prediction in the TCGA dataset (Validation Set) using two signatures and
PCA3 alone. (C) Mean and standard deviation of AUC computed over 100 samplings of the

Validation Set for PCA3 and two signatures to classify tumors according to their risk status. AS =
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antisense; AUC = area under the curve; HR = high-risk, IR = intermediate-risk, LR = low-risk

tumors.

This result highlights both the incompleteness of current cancer transcriptome datasets
and the biological value of transcript information that can be extracted through
adequate experimental (total stranded RNA-seq and NanoString quantification) and
computational (DE-kupl) tools. The resulting signature demonstrated a sensitivity and
robustness towards tumor risk surpassing the state of the art for discrimination of
prostate cancer. Furthermore, the nine-probe RNA signature performed independently
of tumor origin and clinico-pathological characteristics, but also independently of the
technology used for RNA measurements.

DISCUSSION

Molecular biomarker assays are invaluable tools in cancer diagnosis, prognosis and
treatment follow-up. Within this scope, sequencing technologies unveiled the
pervasiveness and diversity of the human transcriptome, promoting IncRNAs as
important cancer signatures (Schmitt and Chang 2016). These molecules are highly
dynamic and reflect cellular states in a sensitive and specific way due to their
involvement in genetic and regulatory flows of information. However, the variety of RNA
forms and high heterogeneity of expression present a challenge for their detection and
proper quantification in clinical samples. Predominant microarray and unstranded
poly(A)+ RNA-seq based approaches allowed identification of numerous IncRNAs with
tumorigenic function. However, their clinical performance as biomarkers stays rather
poor due to the aforementioned RNA features hindering RNA detection, quantification
and clinical validation under conventional experimental setups. Here, we presented an
innovative experimental and computational platform that permits discovery of RNA
biomarkers of high clinical potency from total stranded RNA-seq datasets of clinical

origin.
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As a proof-of-concept, we focused on PCa as the only type of cancer using, so far, an
RNA-based diagnostic test (Progensa™). The Discovery Set based on comparison of 8
normal with 16 tumor specimens from total RNA-seq datasets was processed by DE-
kupl to extract the most significant differentially expressed subsequences in the form of
k-mer contigs. Further filtering based on contig length, genomic position and expression
levels powered the pipeline towards the discovery of putative IncRNAs, for the majority,
yet unreferenced in the human transcriptome. Then, the catalog of contigs was manually
refined and tested for expression using the NanoString single-molecule RNA counting
technology in the extended cohort of 144 specimens. Contig expression was next
assessed in the independent, publicly available TCGA-PRAD dataset generated by the
poly(A)+ unstranded RNA-seq technology. The expression of contigs was systematically
compared to that of the benchmark biomarker IncRNA, PCA3. In total, 16 out of 23
contigs were validated in both setups but with important differences. Primarily, RNA
measurements were consistent between two different technologies: NanoString and
total stranded RNA-seq. In contrast, the TCGA poly(A)+ unstranded datasets revealed
weakness and high heterogeneity of contig counts over the selected regions, resulting in
unexpectedly low signals even for PCA3, considered as a highly expressed IncRNA. Our
results promote the total stranded RNA-seq as a first-choice strategy for discovery of
RNA biomarkers from clinical samples and when searching for transcripts others than
highly abundant mRNAs. It reflects far more precisely the transcriptomic landscape of
clinical samples and, hence, is more advantageous as a Discovery Set for development of
clinical tests. At the same time, full-length transcript assembly from short-read
sequencing is inaccurate, time and computer memory consuming, and this is aggravated
by the added complexity of total (ribo-depleted) RNA-seq libraries (Hayer et al. 2015b).
DE-kupl bypasses this issue by directly extracting from raw data RNA subsequences
significantly overexpressed in a defined condition. In PCa tissues, this allowed

identification of 1,179 IncRNA-hosted candidates. Further analysis isolated a restrained
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set of 9 contigs either within putative new IncRNAs or mixed annotated and novel
IncRNAs allowing PCa diagnosis independently of tumor risk classifications with higher
than the actual PCA3. Remarkably, the best performing mixed signature did not include
PCA3, consistent with the low potency of this biomarker in detection of aggressive
tumors. Instead, both mixed and new-Inc RNA signatures contained contigs embedded
into putative novel IncRNA genes whose function in PCa progression will be important
to explore. Among them, the P23 contig (ctg_29077) is antisense to AC011523.2, an
intergenic IncRNA, co-transcribed with P23 in PCa specimens. This region is part of a
super-enhancer, annotated in several PCa cell lines, located between KLK15 and the PSA
encoding KLK3 genes (Jiang et al. 2019). Moreover, it has also been described as an
enhancer bi-directionally transcribed into enhancer (e)RNAs and regulating expression
of the neighboring KLK3 and KLKZ genes through eRNA and Med1-dependent chromatin
looping in androgen-dependent LNCaP and VCaP, and androgen-independent LNCaP-abl
cells (Hsieh et al. 2014). Presence of the P23 contig within the mixed and new-lnc RNA
signatures supports, in addition to clinical potency, a possible regulatory function of the
k-mer containing RNA contigs inferred by DE-kupl. More globally, the majority of DE-
kupl contigs within co-transcribed sense-antisense pairs were annotated as super-
enhancers in prostate tissues and cell lines or other biosamples, e.g. P15 (ctg_512), P7
(ctg_117356), and P4 (ctg_63866) (Jiang et al. 2019). In most cases, their function in
gene expression regulation and chromatin configuration has not yet been investigated
and experimentally validated, but it is tempting to speculate that defined sense-
antisense transcripts may influence a super-enhancer activity and, consequently, may
fine-tune the expression of neighboring genes.

In this work, we propose DE-kupl as a tool for discovery of novel disease-associated
transcriptomic variations, which can be further explored for biological and clinical
relevance. As a pilot project, we oriented the pipeline towards the discovery of novel

IncRNAs, but using proper masking and filtering criteria defined by the investigator,
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other variant transcripts including single nucleotide variations (SNV), novel splice
events, gene fusion, circular RNAs or exogenous viral RNAs could be probed. The
workflow can be applied to any RNA-seq datasets of any clinical origin to generate a
probe panel that may be implemented as a multiplex platform for simultaneous
detection of RNAs in clinical samples. Moreover, different experimental contrasts
(normal vs. pathology, low- vs. high-risk grade, treatment resistant vs. sensitive, etc.) will
define the biomarker usage in diagnosis, prognosis or other clinical applications, hence,
providing clinicians and researchers with a simple and highly sensitive tool for genomic

and personalized medicine.
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METHODS

Tissue samples

Tumor and normal biopsy specimens were retrospectively collected from prostate
cancer patients who provided informed consent and were approved for distribution by
the H. Mondor institutional board (PAIR cohort). Tumors classification in low-,
intermediate- and high-risk prognosis was performed according to Gleason and TNM
scores and regardless PSA values (Supplemental Table S1, S3).

RNA extraction, quantification and cDNA library production

Total RNA was extracted using the TRizol reagent (ThermoFisher), according to
manufacturer’s procedure, quantified and quality controlled using a 2100 Bioanalyzer
(Agilent). RNA samples with RNA Integrity Number (RIN) above 6 were depleted for
ribosomal RNA and converted into cDNA library using a TruSeq Stranded Total Library
Preparation kit (Illumina). cDNA libraries were normalized using an Illumina Duplex-
specific Nuclease (DSN) protocol prior to a paired-end sequencing on HiSeq™ 2500
(Illumina). At least 20x coverage per sample was considered as minimum of unique
sequences for further data analysis.

RNA-sequencing data

Raw paired-end strand-specific RNA-seq data was generated by our laboratory from
ribo-depleted total RNA samples of prostate tissues (8 normal and 16 tumor specimens;
Supplemental Table S1) and can be retrieved from the gene omnibus portal (GEO),
accession number GSE115414.

TCGA prostate cancer poly(A)-selected RNA-seq and corresponding clinical data were
obtained from publicly available TCGA dataset (http://cancergenome.nih.gov), 557
inputs in total (52 normal and 505 tumors of high- (N=240), intermediate- (N=128) and
low-risk (N=132) groups. Among them, 369 patients showed no tumor recurrence, 108

presented a new tumor event (Supplemental Table S7).
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Computational workflow for k-mer contigs discovery from total stranded RNA-seq
dataset

DE-kupl run was performed from (June 2017) with parameters ctg_length 31,
min_recurrence 6, min_recurrence_abundance 5, pvalue_threshold 0.05, lib_type
stranded, diff method DESeq2. K-mer masking was performed against the GENCODE
v24 annotation. DE-kupl analysis of the 8 against 16 PAIR RNA-seq prostate libraries
yielded 124,809 DE contigs, in total. Contigs were annotated by alignment on the hg19
human genome assembly using the DE-kupl annotate procedure. We further selected
contigs of size above 200 nucleotides and classified them into four categories
(contiguous, repeat, spliced, unmapped) based on their location and mapping features.
Computational workflow for reference-based ab initio transcripts assembly from
total stranded RNA-seq dataset (HoLdUP)

The human genome version hgl9 and the GENCODE v14 annotation were used in this
study. First, we performed a quality control of all sequencing data by FastQC Babraham
Bioinformatics software. Reads were mapped using TopHat 2.0.4, allowing 3
mismatches and requesting uniquely mapped reads which were further assembled
using the BedTools suite. Overlapping contigs from all libraries were merged and only
contigs supported by at least 10 reads in either library were further assembled in
segments if mapped in the same strand and separated by less than 100 nucleotides. We
compared segments to the GENCODE v14 annotation to extract antisense and intergenic
TU longer than 200 nucleotides. To classify IncRNAs, we applied the following criteria:
(i) an expression level above 0.2 quartile of mRNA expression in at least one condition
per tissue (Class 2); (ii) within this class, all TUs containing at least one TopHat-
identified exon-exon junction and at least one spliced EST from UCSC mapped contigs
were assigned to Class 1. The whole catalog, the R code and Data Tables can be provided
upon request.

Overlap between GENCODE, MiTranscriptome, DE-kupl and HoLdUp catalogues
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Intersection between transcripts was counted only in case of 50% overlap of nucleotide
sequence between genomic coordinates of each fragment.

Differential expression analysis

Read counting was performed on the compiled annotation (GENCODE v26, HoLdUp
Class 1 and Class 2) for each sample, using featureCounts 1.6.0 with the following
parameters: -F "SAF" -p -s 2 -0 and the DESeq R package (Love et al. 2014). Only RNAs
with adjusted p-value below 0.01 were retained as differentially expressed to constitute
the prostate tumor signature.

NanoString nCounter Expression Assay

100 ng of total RNA was used for direct digital detection of 29 target transcripts: 6
housekeeping genes (RPL11, GAPDH, NOL7, GPATCH3, ZNF2 and ZNF346), 23 contigs and
the one known PCa-associated IncRNA, PCA3. Each target gene of interest was detected
in RNA samples of 144 specimens (9 normal and 135 tumor) of the PAIR cohort
(Supplemental Table S3) on NanoString nCounter V2 using reporter and capture probes
of 35- to 50-nucleotide targeting sequences. Data was normalized through the use of
NanoString’s intrinsic positive controls and then contig expression was calculated
relative to the average signal of three housekeeping genes (GPATCH3, ZNF2 and
ZNF346). Raw and normalized data for each specimen, mean and fold change expression
in normal against tumor samples are presented in Supplemental Table S4 and S5.

Contig expression measurements in TCGA-PRAD datasets

DE-kupl provides representative k-mers for each differentially expressed contig. We
converted the TCGA-PRAD FASTQ files to k-mer counts using Jellyfish count and counted
representative k-mers in each Jellyfish count file using the jellyfish query command.
Counts were normalized by total number of reads in corresponding libraries. To
determine whether counts of DE-kupl derived representative k-mer were a reliable
proxy for evaluating contig expression, we compared representative k-mer counts to

average counts from k-mers sampled along each contig. All individual counts were
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obtained using Jellyfish Dump files produced for each TCGA-PRAD library. Sampling was
performed as follows: (i) we extracted all k-mers from the contig that were unique in the
Ensembl human v91 transcript reference, and (ii) from this list we sampled 10 regularly
spaced k-mers, starting from the first 10% and ending in the last 10% of the list. This
sampling procedure was repeated four times for each contig. For the whole TCGA library
and each contig, the 10 k-mer counts obtained by Jellyfish were averaged, yielding one
average count per sample per library. Correlations between sample counts and

representative k-mer counts are shown in Fig. S8 for two DE-kupl contigs.
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Figure S8. Contig expression measurements in TCGA-PRAD datasets. (A) Stability of k-mer
counts for contigs P1 (ctg_ 17297) and P16 (ctg_111348) across the TCGA-PRAD dataset. (B)
Pearson correlations between counts of representative k-mers and sampled k-mers from the
same contig: for each contig, in the TCGA-PRAD datasets (N=557) the number of occurrences of
(I) the representative DE-kupl k-mer and (II) of four sets of 10 k-mers sampled at regular
distance along the length of the contig. Each sample (noted SAMPLE1-4) was obtained by

changing the starting position of the first k-mer.

RNA-sequencing data visualization

28


https://doi.org/10.1101/644104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/644104; this version posted May 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RNA-seq reads profiling along a locus of interest was performed using our in-house R
script VING (Descrimes et al. 2015). The normal samples were assigned to the group
“controls” and the tumor specimens — to the group “cases”, with the assumption that the
“cases” should have higher values than “controls”.

Unsupervised clustering of prostate specimens

Specimens were ranked based on the LoglO(expression counts) levels of contigs
assessed by the NanoString nCounter assay using a ComplexHeatmap R-package (Gu et
al. 2016).

Variable selection using the LASSO penalized logistic regression and external
validation of signatures

Signature inference was performed in R using the normalized Selection Set (23 probes in
144 observations) as a variable selection dataset and contigs counts table of the
Validation Set (23 probes in 557 observations) as an external validation dataset (R Core
Team). First, we performed penalized logistic regression using the glmnet R package to
select probes predicting the tumor status on the Selection Set upsampled to correct the
imbalance class distribution (9 normal versus 135 tumor specimens) (Friedman et al.
2010). Selection was performed using all probes (signature_mixed including PCA3) or
using only new-Inc RNA contigs only (signature_new-Inc) (Fig. S7). Second, we built
predictors using the boosted logistic regression from the caTools and caret packages
(Tuszynski 2008), (Kuhn 2008). AUCs were computed using the precrec package on 100
training and testing datasets (Saito and Rehmsmeier 2017), sub-sampled from the initial
dataset (Normal vs. Tumor, Normal vs. HR, Normal vs. IR and Normal vs. LR) using the
sample.split function from the caTools package.

DATA ACCESS

TCGA prostate cancer poly(A)-selected RNA-seq and corresponding clinical data can be

obtained from TCGA portal (https://www.cancer.gov/tcga).
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SUPPLEMENTAL MATERIAL (Tables and Files)
Supplemental Table S1. Clinico-pathological characteristics and recurrence status of
the prostate specimens used for the total stranded RNA-sequencing (PAIR, Discovery

Set).
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Supplemental Table S2. DE-kupl contigs, PCA3 and housekeeping protein-coding genes
for RNA expression measurements by the NanoString nCounter assay.

Supplemental Table S3. Clinico-pathological characteristics, risk classification and
recurrence status of the prostate specimens used in NanoString (PAIR, Selection Set).
Supplemental Table S4. PCA3 and DE-kupl contigs expression measurements by the
NanoString nCounter assay in 144 specimens of the PAIR cohort (Selection Set).
Normalized expression of each probe was calculated as a ratio of the raw value to the
mean expression of three housekeeping genes (GPATCH3, ZNF2, ZNF346).
Supplemental Table S5. Mean and Fold Change of expression of PCA3 and DE-kupl
contigs in prostate normal and tumor specimens measured by NanoString across 144
prostate specimens of the Selection Set.

Supplemental Table S6. PCA3 and DE-kupl contigs expression quantification assessed
by the total stranded RNA-seq in 24 prostate specimens from the PAIR cohort (Discovery
Set).

Supplemental Table S7. Clinico-pathological characteristics and recurrence status of
the prostate specimens from TCGA-PRAD cohort (Validation Set).

Supplemental Table S8. PCA3 and DE-kupl contigs quantification of expression
assessed by the poly(A)+ unstranded RNA-seq in 557 prostate specimens from the
TCGA-PRAD cohort (Validation Set).

Supplemental Table S9. Mean and Fold Change expression of PCA3, DE-kupl contigs
and housekeeping genes in low-risk (LR) and high-risk (HR) tumors and recurrence

negative (NO) and positive (YES) specimens of the PAIR cohort (Selection Set).
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