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Abstract	

The	broad	use	of	RNA-sequencing	 technologies	held	a	promise	of	 improved	diagnostic	

tools	 based	 on	 comprehensive	 transcript	 sets.	However,	mining	 human	 transcriptome	

data	 for	disease	biomarkers	 in	clinical	 specimens	 is	 restricted	by	 the	 limited	power	of	

conventional	 reference-based	 protocols	 relying	 on	 uniquely	 mapped	 reads	 and	

transcript	 annotations.	 Here,	 we	 implemented	 a	 blind	 reference-free	 computational	

protocol,	 DE-kupl,	 to	 directly	 infer	 RNA	 variations	 of	 any	 origin,	 including	 yet	

unreferenced	 RNAs,	 from	 high	 coverage	 total	 stranded	 RNA-sequencing	 datasets	 of	

tissue	 origin.	 As	 a	 bench	 test,	 this	 protocol	 was	 powered	 for	 detection	 of	 RNA	

subsequences	 embedded	 into	 unannotated	 putative	 long	 noncoding	 (lnc)RNAs	

expressed	 in	 prostate	 cancer	 tissues.	 Through	 filtering	 and	 visual	 inspection	 of	 1,179	

candidates,	we	defined	21	lncRNA	probes	that	were	further	validated	for	robust	tumor-

specific	 expression	 by	 NanoString	 single	 molecule-based	 RNA	 measurements	 in	 144	

tissue	 specimens.	 	 Predictive	modeling	 yielded	 a	 restricted	probe	panel	 enabling	 over	

90%	 of	 true	 positive	 detection	 of	 cancer	 in	 an	 independent	 dataset	 from	 The	 Cancer	

Genome	Atlas.	Remarkably,	this	clinical	signature	made	of	only	9	unannotated	lncRNAs	

largely	 outperformed	PCA3,	 the	 only	RNA	biomarker	 approved	 by	 the	 Food	 and	Drug	

Administration	 agency,	 specifically,	 in	 detection	 of	 high-risk	 prostate	 tumors.	 The	

proposed	 reference-free	 computational	 workflow	 is	 modular,	 highly	 sensitive	 and	

robust	and	can	be	applied	to	any	pathology	and	any	clinical	application.	
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INTRODUCTION	

RNA	sequencing	(RNA-seq)	has	revolutionized	our	knowledge	of	human	transcriptome	

and	has	been	implemented	as	a	pivot	technique	in	clinical	applications	for	the	discovery	

of	RNA-based	biomarkers	allowing	disease	diagnosis,	prognosis	and	therapy	follow-up.	

However,	 most	 biomarker	 discovery	 pipelines	 are	 blind	 to	 uncharacterized	 RNA	

molecules	 since	 they	 rely	 on	 the	 alignment	 of	 uniquely	 mapped	 reads	 to	 annotated	

references	 of	 the	 human	 transcriptome	 which	 are	 far	 from	 complete	 (Uszczynska-

Ratajczak	 et	 al.	 2018),	 (Deveson	 et	 al.	 2018),	 (Morillon	 and	 Gautheret	 2019).	 Indeed,	

state-specific	 unspliced	 variants,	 rare	 mRNA	 isoforms,	 RNA	 hybrids	 originating	 from	

trans-splicing	 or	 genome	 rearrangements,	 unannotated	 intergenic	 or	 antisense	

noncoding	RNAs,	mobile	 elements	 or	 viral	 genome	 insertions	would	be	 systematically	

missed.	 A	 recent	 approach	 to	 RNA-seq	 data	 analysis,	 DE-kupl,	 combines	 k-mer	

(subsequences	 of	 fixed	 size)	 decomposition	 and	 differential	 expression	 analysis	 to	

discover	transcript	variations	yet	unreferenced	in	the	human	transcriptome	(Audoux	et	

al.	2017).	Applied	to	poly(A)+	RNA-seq	datasets	of	in	vitro	cell	system,	DE-kupl	unveiled	

a	large	number	of	RNA	subsequences	embedded	into	novel	long	noncoding	RNAs.	These	

transcripts	 of	more	 than	 200	 nucleotides	 in	 length	 transcribed	 by	 RNA	 polymerase	 II	

from	 intergenic,	 intronic	 or	 antisense	 noncoding	 genomic	 locations	 constitute	 a	

prevalent	 class	 of	 human	 genes.	 Some	 lncRNAs	 are	 now	 recognized	 as	 precisely	

regulated	 stand-alone	 molecules	 participating	 in	 the	 control	 of	 fundamental	 cellular	

processes	 (Jarroux	 et	 al.	 2017),	 (Quinn	 and	 Chang	 2015).	 They	 show	 aberrant	 and	

specific	 expression	 in	 various	 cancers	 and	 other	 diseases	 promoting	 them	 as	

biomarkers,	therapeutic	molecules	and	drug	targets	(Leucci	2018),	(Van	Grembergen	et	

al.	2016).	Importantly,	some	lncRNAs	can	be	robustly	detected	in	biological	fluids	(blood	

and	 urine)	 as	 circulating	molecules	 or	 encapsulated	 into	 extracellular	 vesicles,	 hence,	

raising	 an	 attractive	 possibility	 of	 lncRNA	 biomarkers	 usage	 in	 non-invasive	 clinical	

tests	 (Silva	 et	 al.	 2015),	 (Deng	 et	 al.	 2017),	 (Wang	 et	 al.	 2014),	 (Zhao	 et	 al.	 2018a),	
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(Wang	et	al.	2018).	The	only	example	of	an	RNA-based	biomarker	so	 far	 introduced	in	

clinical	practice	is	the	PCA3	lncRNA	in	prostate	cancer	(PCa)	(de	Kok	et	al.	2002).	PCA3	

is	 transcribed	 antisense	 to	 the	 tumor	 suppressor	PRUNE2	 gene	 and	promotes	 its	 pre-

messenger	RNA	editing	and	degradation	(Salameh	et	al.	2015).	Being	overexpressed	in	

95%	of	PCa	cases,	PCA3	is	detected	in	urines	and	helps	diagnosis	providing,	in	addition	

to	other	clinical	 tests,	more	accurate	metrics	regarding	repeated	biopsies	 (Groskopf	et	

al.	 2006),	 (Galasso	 et	 al.	 2010).	 However,	 it	 remains	 inaccurate	 in	 discrimination	

between	 low-	 and	 high-risk	 tumors	 since	 its	 expression	may	 dramatically	 decrease	 in	

aggressive	PCa	cases	tempering	its	systematic	usage	(Loeb	and	Partin	2011),	(Alshalalfa	

et	al.	2017).		

Since	 PCA3	 discovery	 and	 the	 development	 of	 RNA-seq	 technologies,	 the	 PCa	

transcriptome	 has	 been	 extensively	 explored	 by	 The	 Cancer	 Genome	 Atlas	 (TCGA)	

consortium	 and	 others	 to	 identify	 numerous	 PCa-associated	 lncRNAs	 (PCAT	 family)	

such	as	PCAT1,	PCAT7	or	PCAT114/SChLAP1	(Iyer	et	al.	2015),	(Prensner	et	al.	2014).	

However,	 none	 of	 them	 has	 been	 yet	 introduced	 into	 clinical	 practice	 because	 of	 the	

variable	expression	incidence,	as	for	SChLAP1	detected	in	25%	of	PCa	cases	presenting	

metastatic	 traits	 (Prensner	 et	 al.	 2013),	 or	 low	 specificity,	 as	 PCAT1	 or	 PCAT7,	 thus	

infringing	 their	 clinical	 value.	 Additional	 efforts	 are	 required	 for	 more	 accurate	 and	

exhaustive	RNA	 identification,	 as	well	 as	more	 rigorous	 validations	of	 clinical	 potency	

through	independent	RNA	measurement	technologies	and	clinical	cohorts.	Regardless	a	

large	 number	 of	 transcriptomic	 studies	 and	 variety	 of	 clinical	 samples	 analyzed,	

discovery	of	RNA-based	molecular	biomarkers	from	publicly	available	RNA-seq	datasets	

is	still	limited	at	two	levels:	(i)	most	experimental	setups	are	based	on	poly(A)	selected,	

unstranded	cDNA	sequencing,	and	(ii)	computational	analyses	are	generally	focused	on	

annotated	genes	and	full-length	RNA	assemblies.	This	impedes	the	detection	of	low	and	

poorly	 polyadenylated	 RNAs	 but	 also	 partially	 degraded	 RNAs	 from	 formalin-fixed	

paraffin-embedded	(FFPE)	tissues	or	other	clinical	samples	(Zhao	et	al.	2018b),	(Zhao	et	
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al.	2014).	 In	addition,	RNA-seq	 reads	counting	 is	 less	accurate	at	5’	RNA	ends	or	even	

impossible	for	co-expressed	paired	sense/antisense	transcripts	and	for	yet	unannotated	

RNAs	among	noncoding,	fusion,	repeat-derived	transcripts	(Audoux	et	al.	2017),	(Davila	

et	al.	2016).		

Here,	 we	 propose	 a	 conceptually	 novel	 exploratory	 framework	 combining	 the	 total	

stranded	 RNA-seq	 of	 clinical	 samples	 and	 the	 reference-free	 DE-kupl	 algorithm	 for	

discovery	 of	 novel	 tumor-specific	 transcript	 variations.	 As	 a	 proof-of-concept,	 we	

focused	 on	 the	 least	 explored,	 noncoding	 portion	 of	 the	 genome	 devoid	 of	 annotated	

protein-coding	sequences	to	build	an	exhaustive	catalog	of	PCa	associated	subsequences	

(contigs)	 embedded	 into	 lncRNA	 genes.	 The	 catalog	 was	 further	 refined	 through	

minimal	filtering	to	isolate	the	most	potent	subset	of	contigs	and	validate	21	of	them	by	

an	alternative	NanoString	assay	in	the	extended	cohort	of	144	prostate	specimens.	From	

this,	a	predictive	modeling	derived	a	panel	of	9	yet	unannotated	lncRNAs	validated	for	

robust	expression	in	an	independent	TCGA	cohort.	Importantly,	its	clinical	performance	

surpassed	 the	 PCA3	 lncRNA	 specifically	 in	 discrimination	 of	 high-risk	 tumors.	 The	

proposed	 probe-set	 can	 be	 further	 used	 for	 development	 of	 a	 PCa	 diagnostic	 test.	

Moving	beyond	this	point,	the	proposed	computational	and	experimental	platform	may	

serve	as	a	tool	for	biomarkers	discovery	for	any	disease	and	any	clinical	task	aiming	at	

improved	medical	care	and	development	of	precision	medicine	approaches.	

RESULTS	

Identification	of	PCa-specific	RNA	variants	in	the	Discovery	Set	by	DE-kupl	

The	 biomarker	 discovery	 workflow	 included	 three	major	 phases:	 discovery,	 selection	

and	validation	(Fig.	1).	First,	for	discovery,	we	performed	a	deep	total	stranded	RNA-seq	

of	 ribosomal	 RNA-depleted	 RNA	 samples	 isolated	 from	 prostate	 tissues	 after	 radical	

prostatectomy	 (Discovery	Set,	 PAIR	 cohort,	 Supplemental	 Table	 S1).	 This	Discovery	set	

was	 processed	 by	 DE-kupl	 to	 identify	 tumor-specific	 transcripts.	 DE-kupl	 directly	

queries	FASTQ	files	for	subsequences	(k-mers)	with	differential	counts/expression	(DE)	
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between	 two	 conditions	 (Fig.	 2A)	 (Audoux	 et	 al.	 2017).	 Overlapping	 k-mers	 are	 then	

assembled	into	contigs	and,	in	a	final	step,	mapped	to	the	human	genome	for	annotation.	

In	the	aim	to	focus	exclusively	on	novel,	yet	unannotated	RNA	elements,	k-mers	exactly	

matching	GENCODE	annotated	transcripts	were	masked.	We	eventually	retained	contigs	

longer	 than	200	nucleotides	and	showing	adjusted	p-values	below	0.01	 to	 capture	 the	

most	significant	expression	changes	 linked	either	 to	new	transcriptional	or	processing	

events	within	known	or	putative	lncRNA	loci.	

	

Figure	1.	Experimental	and	computational	workflow	for	discovery	and	validation	of	RNA-based	

clinical	biomarkers.	Raw	total	 stranded	RNA-seq	data	of	a	small	 clinical	 cohort	 is	processed	by	

DE-kupl	to	allow	comparison	of	8	normal	against	16	tumor	specimens	(in	this	case	formaldehyde	

fixed	paraffin	embedded	tissues	from	radical	prostatectomy)	and	cataloguing	of	all	differentially	

expressed	RNA	variations	(contigs).	The	whole	set	is	filtered	according	to	desired	criteria	and	the	

top	ranked	contigs	are	selected	for	an	independent	experimental	validation	by	NanoString	in	the	

extended	clinical	cohort.		Finally,	predictive	modeling	infers	the	best	panel	of	candidate	RNAs	for	

validation	of	its	clinical	potency	in	an	independent	cohort	(in	this	case	TCGA).	
	

With	 these	 criteria,	 we	 identified	 1,179	 tumor	 up-regulated	 contigs	 assigned	 to	 four	

main	 categories	 according	 to	 their	 mapping	 features:	 contiguous	 (uniquely	 mapped)	

contigs	(N=935),	splice	variants	(N=54),	repeats	(N=167)	and	unmapped	contigs	(N=23)	

(Fig.	 2B,	 Fig.	 S1).	 Among	 them,	 33.93%	 and	 6.36%	 were	 embedded	 into	 already	

referenced	GENCODE	or	MiTranscriptome	lncRNA	genes,	respectively,	but	represented	

new	 sequence	 variations	 or	 RNA	 processing	 events,	 as	 PCAT7	 (ctg_111348,	 P16)	 or	

PAIR TCGA
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CTBP1-AS	 (ctg_25348,	 P10).	 The	 rest	 mapped	 to	 intergenic	 noncoding	 locations	 or	

antisense	 to	 referenced	protein-coding	or	noncoding	genes	 (Fig.	2C).	An	unsupervised	

clustering	 of	 prostate	 specimens	 based	 on	 contigs	 expression	 counts	 allowed	 proper	

discrimination	of	tumor	from	normal	tissues	of	the	Discovery	Set	(Fig.	2D).	

In	 conclusion,	 DE-kupl	 identified	 thousands	 of	 PCa-associated	 RNA	 variants	 for	 the	

majority	 embedded	 into	 yet	 unreferenced	 transcripts	 which	 may	 represent	 putative	

novel	lncRNAs.	This	depository	was	further	explored	for	clinical	relevance.		

	

Figure	2.	K-mer	decomposition	protocol	for	detection	of	differentially	expressed	RNA	variants	in	

PCa.	 (A)	 DE-kupl	 workflow	 with	 principle	 steps	 of	 contigs	 counting,	 DE-test	 and	 filtering,	

assembly	 and	 annotation.	 (B)	 Catalog	 of	 DE-kupl	 contigs	 of	 different	 subgroups:	 contiguous	 -	

contigs	mapped	 as	 unique	 fragments;	 spliced	 -	 contigs	mapped	 as	 spliced	 fragments;	 repeat	 -	

multiply	 mapped	 contigs;	 Inter	 -	 contigs	 mapping	 into	 intergenic	 regions,	 OL	 -	 overlapping	

GENCODE	lncRNA	annotations,	AS	-	antisense	to	a	protein-coding	or	a	noncoding	gene.	Contigs	of	

each	subgroup	showing	50%	sequence	overlap	with	GENCODE	(GC)	and	MiTranscriptome	(MiT)	

annotated	 genes	 are	 counted.	 (C)	 Pie	 chart	 of	 contigs	 distribution	 across	 GENCODE	 annotated	

features.	 (D)	Unsupervised	hierarchical	 cluster	heatmap	of	Log10(normalized	 counts)	of	1,179	

contigs	assessed	in	8	normal	and	16	tumor	specimens	by	total	stranded	RNA-seq	of	the	Discovery	

Set.	
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Figure	S1.	DE-kupl	contigs	assignment	to	contiguous,	spliced,	repeat	and	unmapped	categories	

according	to	their	genomic	location	outside	or	within	annotated	transcription	units	(blue).	Each	

black	arrow	represents	a	contig.	

	

Naïve	assembly	of	Transcription	Units	identifies	novel	prostate	cancer	associated	

lncRNAs	

To	 complement	 the	 reference-free	 protocol,	we	 applied	 a	 reference-based	 protocol	 to	

build	a	catalog	of	 lncRNAs	 from	the	same	Discovery	Set.	Total	RNA-seq	produces	much	

more	 intronic	 and	 exon-exon	 junction	 reads	 than	 poly(A)-selected	 RNA-seq,	 which	 is	

deleterious	 for	 splice	 graph-based	 assemblers	 such	 as	 Cufflinks	 (Kukurba	 and	

Montgomery	2015),	(Hayer	et	al.	2015a).	To	bypass	this	difficulty,	we	developed	a	more	

straightforward	 lncRNA	 annotation	 pipeline,	 HoLdUp,	 which	 identifies	 transcription	

units	 (TU)	 based	 on	 coverage	 analysis	 (Fig.	 3A).	 In	 this	 workflow,	 uniquely	 mapped	

reads	 were	 assembled	 into	 TUs	 and	 mapped	 to	 the	 GENCODE	 annotation	 to	 extract	

intergenic	and	antisense	 lncRNAs	(see	Methods	 for	details).	They	were	 further	ranked	

according	 to	 their	 expression	 level,	 presence	 of	 splice	 junctions	 and	 existence	 of	

matched	expressed	sequence	tags	(EST).	In	total,	we	retained	168,163	TUs	with	above-

threshold	 expression	 of	 0.2	 quartile	 of	 mRNA	 expression	 (Class	 2)	 and,	 within	 this	

group,	the	most	robust	2,972	TUs	with	at	least	one	splice	junction	and	one	EST	(Class	1)	

(Fig.	 3B).	 Globally,	 newly	 detected	 transcripts	 were	 as	 much	 expressed	 as	 GENCODE	

annotated	 lncRNAs	 but	 lower	 than	mRNAs	 (Fig.	 S2A).	 Only	 0.33%	of	 Class	 1	 lncRNAs	
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were	present	with	at	least	50%	nucleotide	sequence	overlap	in	the	recent	GENCODE	v26	

catalog	 and	 43.37%	 of	 TUs	 in	 the	 MiTranscriptome	 lncRNA	 repertoire;	 the	 rest	

represented	putative	novel	 lncRNA	genes	(Fig.	3B,	Fig.	S2B).	Of	2,972	TUs,	DE	analysis	

retrieved	127	of	Class	1	TUs	significantly	up-regulated	in	tumor	specimens	(adjusted	p-

value	 below	 0.01,	 DESeq),	 including	 multiple	 intergenic	 transcripts	 and	 transcripts	

antisense	to	protein-coding	genes,	such	as	HDAC9,	TPO,	FBXL7.	

	

Figure	 3.	 Reference-based	 lncRNA	 discovery	 from	 total	 stranded	 RNA-seq.	 (A)	 The	 HoLdUp	

protocol	 for	 the	 ab	 initio	 assembly	 of	 TUs	 constituting	 putative	 lncRNA	 genes	 and	 their	

classification	 into	 Class	 2	 and	 Class	 1	 TUs	 according	 to	 robustness	 of	 detection.	 (B)	 HoLdUp	

catalog	 and	 TUs	 overlap	 with	 GENCODE	 v26	 (GC)	 and	 MiTranscriptome	 (MiT)	 annotated	

lncRNAs.	DE	stands	 for	differentially	expressed	 transcripts	 (DESeq	adj.	p-value	<	0.01).	(C)	Pie	

chart	 representation	 of	 non-exclusive	 distribution	 of	 DE-kupl	 contigs	 across	 different	 lncRNA	

annotations:	MiTranscriptome	 (violet),	 Class	 1	 (yellow),	 Class	 2	 (brown),	 GENCODE	 (red)	 and	

novel	 (blue),	 number	 of	 contigs	 is	 marked	 in	 each	 section.	 Proportion	 of	 DE-kupl	 contigs	
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embedded	 into	 up-regulated	 (UP)	 GENCODE	 (red	 bar)	 and	 Class	 1	 (yellow	 bar)	 lncRNAs	 is	

expressed	 as	 a	 histogram.	 (D)	Ving-generated	RNA-seq	 profiling	 along	 plus	 (+)	 and	minus	 (-)	

strands	of	chr5:15,500,295-15,939,910	in	tumor	and	normal	prostate	specimens:	the	GENCODE	

annotated	 protein-coding	 gene	 FBXL7	 (blue),	 antisense	 DE-kupl	 contig	 ctg_23999	 (P22)	 and	

antisense	HoLdUp	Class	1-TU	(orange).	Arrow-lines	and	rectangles	represent	introns	and	exons,	

respectively.	TU	=	transcription	unit;	DE	=	differentially	expressed;	RPKM	=	Reads	per	kilo	base	

per	million	mapped	reads.	

	

Figure	S2.	Expression	of	GENCODE	and	HoLdUp	annotated	lncRNAs	in	the	Discovery	Set.	(A)	Box-

plot	of	Log10(RPKM)	of	mRNAs	(N=21,330),	lncRNAs	(N=14,533)	from	the	GENCODE	annotation,	

and	 Class	 1	 (N=2,967)	 and	 Class	 2	 (N=168,163)	 TUs	 assembled	 by	 HoLdUp.	 Expression	 is	

measured	 in	RPKM	(Reads	per	kilo	base	per	million	mapped	reads)	by	 total	 stranded	RNA-seq	

across	8	normal	(bleu)	and	16	tumor	specimens	(red).	(B)	Catalog	of	DE	 lncRNAs	 identified	by	

DESeq	within	GENCODE	lncRNAs	and	HoLdUp	annotated	TUs.	(C)	Intersection	of	DE-kupl	contigs	

with	 HoLdUp	 and	 GENCODE	 annotated	 lncRNAs	 including	 those	 embedded	 into	 up-regulated	

transcripts	(UP).	

	

Intersection	 of	 DE-kupl	 contigs	 with	 HoLdUp	 TUs	 and	 the	 recent	 GENCODE	 lncRNA	

annotation	showed	that	687	DE-kupl	contigs	out	of	1,179	make	part	of	the	stand-alone	

transcripts.	 Moreover,	 up	 to	 85.5%	 and	 96.8%	 DE-kupl	 contigs	 embedded	 into	

GENCODE	and	HoLdUp	Class	1	lncRNA	genes,	respectively,	were	also	detected	by	DESeq	

as	 significantly	up-regulated	 transcripts	 in	 the	 same	dataset,	when	 the	RNA-seq	 reads	

were	 counted	within	 the	 entire	TU	 (Fig.	 3C;	 Fig.	 S2C).	One	 such	 example	 is	 the	 contig	
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ctg_23999	(P22)	embedded	into	a	novel	HoLdUp	assembled	Class	1	TU	antisense	to	the	

protein-coding	FBXL7	gene	(Fig.	3D).		

In	conclusion,	the	reference-based	assembly	protocol	HoLdUp	is	complementary	to	DE-

kupl	 and	 allows	 attributing	 short	 RNA	 subsequences	 to	 whole	 transcription	 units.	

Nevertheless,	 DE-kupl	 was	 more	 powerful	 illuminating	 much	 more	 transcriptomic	

variations	 not	 only	within	 the	 annotated	 loci	 but	 also	within	 putative	 new	 noncoding	

regions	in	highly	complex	and	heterogeneous	total	RNA-seq	datasets	of	clinical	origin.	

Selection	of	a	restricted	set	of	23	PCa	RNA	contigs	showing	the	highest	differential	

expression	

We	further	leveraged	the	DE-kupl	contig	catalog	to	define	a	robust	PCa	signature	among	

putative	 new	 lncRNAs	 using	 several	 filters	 (Fig.	 S3A).	 First,	 contigs	 were	 sorted	

according	 to	 their	 adjusted	 p-value	 and,	 second,	 were	 visually	 selected	 using	 the	

Integrative	 Genomic	 Viewer	 (IGV)	 applying	 the	 following	 criteria:	 (i)	 when	 several	

contigs	were	present	within	 the	 same	genomic	 region	 (5	kilobase	window)	 the	 contig	

with	the	lowest	adjusted	p-value	was	retained,	(ii)	contigs	antisense	to	expressed	exons,	

bidirectional	 or	 positioned	 in	 close	 vicinity	 to	 other	 transcribed	 protein-coding	 genes	

were	 filtered	 out.	We	 also	 retained	 contigs	 assigned	 to	 already	 known	PCa	 associated	

lncRNAs,	 such	 as	 CTBP1-AS	 (ctg_25348,	 P10),	 PCAT7	 (ctg_111158,	 P6)	 and	 PCAT1	

(ctg_105149,	P18),	or	lncRNAs	referenced	elsewhere	as	ctg_104447	(P11)	mapped	into	

LOC283177,	ctg_123090	(P5)	into	AC004066.3,	and	ctg_73782	(P8)	into	LINC01006;	all	

of	 which	 passed	 the	 aforementioned	 selection	 criteria.	 Notably,	 the	 RNA-seq	

visualization	of	a	new	contig	antisense	to	the	protein-coding	FBP2	gene	(ctg_28650,	P2)	

revealed	that	 it	most	 likely	makes	part	of	the	PCAT7	lncRNA	as	an	extension	of	 its	 last	

exon	 (Fig.	 S3B).	 The	 contig	 ctg_28650	 (P2)	 was	 retained	 in	 the	 restricted	 list	 as	 the	

strongest	 candidate	 antisense	 to	 FBP2,	 overcoming	 ctg_111158	 (P6)	 assigned	 to	 the	

PCAT7	 gene.	 	 In	 total,	23	 candidates	belonging	 to	 contiguous	 (N=21),	 spliced	 (N=1)	or	

repeat	 (N=1)	 subgroups	 of	 contigs	 were	 selected	 for	 further	 validation,	 all	 being	
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expressed	at	least	6	times	more	in	tumor	tissues	comparing	to	normal	prostate	(Fig.	S3C,	

Supplemental	 Table	 S2).	 Among	 them,	 12	 candidates	 mapped	 antisense	 to	 annotated	

protein-coding	 or	 lncRNA	 genes	 and	 11	 located	 to	 intergenic	 regions.	 To	 facilitate	

further	 reading,	 contigs’	 identity	 (ID)	 are	 replaced	 by	 probes’	 ID	 from	 P1	 to	 P23	

according	to	increasing	p-values	of	DE	of	the	Discovery	set	(Supplemental	Table	S2).	

	

Figure	S3.	Selection	of	 the	most	potent	DE-kupl	contigs.	(A)	Experimental	rationale	 for	contigs	

selection	and	validation	of	diagnostic	potency.	(B)	RNA-seq	profiling	by	VING	along	plus	(+)	and	

minus	(-)	strands	of	chr9:	97,300,000-97,360,000	in	tumor	and	normal	prostate	specimens:	the	

DE-kupl	 contig	 P6	 (ctg_111158)	 assigned	 to	 PCAT7	 and	 P2	 (ctg_28650)	 antisense	 to	 the	FBP2	

gene.	Arrow-lines	represent	introns,	rectangles	-	exons.	(C)	Heatmap	representing	the	expression	

level	 and	 unsupervised	 clustering	 of	 the	 selected	 23	 DE-kupl	 contigs	 across	 prostate	 cancer	

specimens	of	the	Discovery	Set.	

	

Following	 the	 manual	 filtering	 we	 aimed	 to	 validate	 the	 expression	 of	 selected	 23	
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Set)	 (Supplemental	 Table	 S3).	 For	 this	 purpose,	 an	 alternative	 RNA	 quantification	

procedure	 based	 on	 the	 NanoString	 nCounterTM	 platform	 for	 direct	 enzyme-free	

multiplex	digital	RNA	measurements	was	 carried	out	 (Fig.	 4A).	 In	 addition	 to	DE-kupl	

contigs,	 a	 probe	 for	 PCA3	 was	 used	 as	 a	 benchmark	 lncRNA.	 We	 also	 measured	 the	

expression	 of	 six	 housekeeping	 genes	 and	 selected	 three	 lowly	 expressed	 mRNAs	

(GPATCH3,	 ZNF2,	 ZNF346)	 as	 custom	 internal	 controls	 for	 relative	 quantifications	

(Supplemental	Table	S4,	Fig.	S4).	

The	NanoString	assay	revealed	that	all	DE-kupl	contigs	were	expressed	at	a	lower	level	

than	PCA3,	but	still	21	out	of	23	contigs	were	significantly	overexpressed	(Wilcoxon	p-

value	 <	 0.01)	 in	 tumor	 specimens	 (Fig.	 4A,	 Supplemental	 Table	 S5).	 Two	 contigs,	

intergenic	 P22	 (ctg_119680)	 and	 repeat	 P17	 (ctg_36195)	 did	 not	 show	 significant	

difference	in	expression	between	normal	and	tumor	specimens.	Ranking	according	to	p-

values	 revealed	 12	 contigs	 better	 than	 PCA3.	 Among	 the	 top	 DE	 contigs	 were	 those	

embedded	 into	 PCAT1	 (ctg_105149,	 P18),	 CTBP1-AS	 (ctg_25348,	 P10)	 and	 PCAT7	

(ctg_111158,	 P6)	 genes,	 and	 the	 rest	 were	 assigned	 to	 novel	 lncRNAs.	 Notably,	 apart	

from	P17	(ctg_36195)	and	P22	(ctg_119680),	expression	measurements	were	consistent	

between	 the	 two	 technologies,	 total	 stranded	 RNA-seq	 and	NanoString,	 though	 the	 p-

values	ordering	was	different	(Fig.	S5,	Supplemental	Table	S6).		

Thus,	21	out	of	23	contigs	were	validated	 in	 the	extended	set	of	RNA	specimens	using	

the	independent	single-molecule	measurement	technology.		

	

Figure	S4.	Box-plot	of	Log10(counts)	of	housekeeping	protein-coding	genes	in	9	normal	and	135	

tumor	specimens	of	the	PAIR	cohort	(Selection	Set)	by	the	NanoString	nCounter	assay.	
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Figure	 4.	 Expression	 of	 DE-kupl	 contigs	 in	 PAIR	 and	 TCGA-PRAD	 cohorts.	 (A)	 Box-plot	 of	

Log10(counts)	 of	 PCA3	 and	 23	 DE-kupl	 contigs	 in	 144	 PAIR	 specimens	 of	 the	 Selection	set	 by	

NanoString.	(B)	Box-plot	of	Log10(counts)	of	PCA3	and	23	DE-kupl	contigs	 in	557	TCGA-PRAD	

specimens	of	the	Validation	Set	by	poly(A)+	unstranded	RNA-seq.	Normal	tissues	-	in	blue,	tumor	

tissues	-	in	red.	

	

Figure	S5.	Box	plot	of	PCA3	and	DE-kupl	contigs	expression	in	the	Discovery	Set	measured	by	the	

total	stranded	RNA-seq.	Contigs	are	ordered	by	increasing	adjusted	p-values.	

	

Validation	of	contig-based	RNA	candidates	in	an	independent	clinical	cohort	

Independent	 validation	 of	 DE-kupl	 contigs	 was	 done	 using	 the	 biggest	 PCa	 clinical	

resource	of	557	poly(A)+	RNA-seq	datasets,	including	52	normal	and	505	tumor	tissues	

from	 radical	 prostatectomy	 (TCGA-PRAD	 cohort,	Validation	Set)	 (Fig.	 1,	 Supplemental	

Table	S7).		

The	 occurrence	 of	 sequences	 representing	 23	 DE-kupl	 contigs	 was	 measured	 and	

compared	 to	 PCA3.	 In	 total,	 16	 out	 of	 23	 DE-kupl	 contigs	 had	 significant	 support	 for	

overexpression	in	tumor	specimens	in	the	TCGA-PRAD	cohort	(Wilcoxon	p-value	<	0.01,	
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FC	 >	 2)	 (Fig.	 4B,	 Supplemental	 Table	 S8).	 Among	 the	 best	 scored	 candidates,	 the	 two	

novel	 DE-kupl	 contigs,	 P16	 (ctg_111348)	 antisense	 to	 DLX1	 and	 intergenic	 P1	

(ctg_17297),	 surpassed	 PCA3	 ranked	 third.	 However,	 important	 discrepancies	 were	

observed	 between	 expression	 counts	 in	 poly(A)+	 RNA-seq	 TCGA	 datasets	 and	

NanoString	or	total	RNA-seq	PAIR	datasets.	First,	P22	(ctg_119680)	was	detected	as	DE	

in	 TCGA-PRAD,	 but	 failed	 the	 DE	 test	when	measured	 by	 NanoString	 (Fig.	 4,	 Fig.	 S5).	

Second,	 the	 expression	 of	 nine	 DE-kupl	 contigs	 were	 near	 the	 base	 line	 in	 the	 TCGA	

dataset,	including	those	showing	relatively	high	expression	and	low	p-values	in	the	PAIR	

cohort,	 such	 as	 P14	 (ctg_61528)	 antisense	 to	 TPO	 or	 the	 intergenic	 P9	 (ctg_9446).	

Detection	 of	 these	 contigs	 in	 TCGA-PRAD	 was	 compromised	 independently	 of	 their	

genomic	 location	 (intergenic	or	antisense)	or	of	 the	expression	 level	of	a	 sense-paired	

gene.	We	hypothesized	 that	 it	 is	most	 likely	due	 to	 a	 relatively	 low	RNA-seq	 coverage	

and/or	 to	 a	 loss	 of	 poorly	 or	 non-polyadenylated	 transcripts	 during	 cDNA	 library	

preparation	 in	 the	 TCGA	 experimental	 setup.	 Finally,	 ranking	 of	 contigs	 according	 to	

increasing	p-values	was	 very	different	 between	 the	Validation,	Discovery	 and	Selection	

Sets	 highlighting	 remarkable	 discrepancies	 either	 between	 technologies	 or	 clinical	

origins.		

Regardless	all	experimental	biases,	16	out	of	23	DE-kupl	contigs	were	validated	 in	 the	

independent	 clinical	 cohort	 as	 significantly	 overexpressed	 in	 tumors.	 This	 cohort	was	

further	used	for	validation	of	clinical	potency	of	contigs.	

Expression	 of	 DE-kupl	 contigs	 is	 independent	 on	 tumor	 risk	 and	 recurrence	

metrics	

Several	 clinical	 studies	 have	 revealed	 high	 heterogeneity	 of	 expression	 and	 low	

efficiency	 of	 the	 PCA3	 biomarker	 in	 detection	 of	 high-risk	 tumors,	 questioning	 its	

robustness	and	reliability	in	PCa	diagnostics	(Alshalalfa	et	al.	2017),	(Fenstermaker	et	al.	

2017).	We	 assessed	 contig	 expression	 in	 tumors	 of	 different	 clinical	metrics.	 For	 risk	

prognosis,	 the	 most	 common	 metric	 is	 a	 three-group	 risk	 stratification	 system	
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established	 by	 D’Amico	 in	 1998	 (D’Amico	 et	 al.	 1998),	 which	 takes	 into	 account	

preoperative	 PSA	 level,	 biopsy	 Gleason	 score	 and	 clinical	 TNM	 stage.	 As	 mentioned	

above,	this	scheme	is	highly	debated	due	to	disagreements	over	the	PSA	score	in	relation	

to	PCa	over-diagnosis	 (Loeb	et	 al.	2014),	 (Carlsson	et	 al.	2012).	To	define	a	molecular	

signature	 independent	 of	 PSA,	 we	 excluded	 this	 criterion	 and	 categorized	 tumor	

specimens	 into	 low-,	 intermediate-	 and	 high-risk	 groups	 uniquely	 on	 the	 basis	 of	

Gleason	and	TNM	features,	below	referred	to	as	naïve	indexing	(Fig.	S6).	In	addition	to	

risk	 assessment,	 we	 also	 separated	 specimens	 in	 two	 subgroups	 depending	 on	 the	

tumor	 recurrence	 status	 (Fig.	 S6B).	 Then,	 expression	 of	 PCA3	 and	 the	 23	 DE-kupl	

contigs	were	compared	for	each	subgroup	of	the	Selection	Set.	

	

Figure	S6.	Risk	classification	of	prostate	tumors	according	to	their	clinico-pathological	features.	

(A)	Risk	 prognosis	 classification	 criteria	 according	 to	D’Amico	 and	 the	 PSA	 independent	 naïve	

indexing.	 (B)	Risk	 classification	and	 recurrence	 status	of	prostate	 specimens	 from	TCGA-PRAD	

and	 PAIR	 cohorts	 used	 in	 this	 study.	 PSA=prostate	 specific	 antigen;	 TNM=tumor,	 node,	

metastasis;	HR=high-risk,	IR=intermediate-risk,	LR=low-risk	tumors.		
	

To	evaluate	the	robustness	of	contig	expression,	we	ranked	probes	by	decreasing	FC	for	

high-risk	 (HR)	 against	 low-risk	 (LR)	 tumors	 and	 positive	 versus	 negative	 recurrence	

status	(Fig.	5).		
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Figure	5.	Box-plot	of	Log10(counts)	of	PCA3	and	DE-kupl	contigs	 in	prostate	specimens	of	 the	

PAIR	cohort	(Selection	Set)	depending	on	tumor	risk.	(A)	and	recurrence	status	(B)	assessed	by	

NanoString.	PCA3	is	marked	in	orange,	and	the	contigs	showing	insignificant	expression	change	

between	normal	and	tumor	specimens	are	 in	blue.	Contigs	are	ordered	by	the	decreasing	FC	of	

mean	expression	in	HR	vs.	LR	specimens	in	the	A	panel	and	in	Yes	vs.	NO	recurrence	specimens	in	

the	B	panel.	
	

The	 majority	 of	 contigs	 showed	 robust	 expression	 independently	 of	 the	 tumor	

classification.	In	contrast,	the	PCA3	level	was	more	disperse	with	the	lower	median	and	

mean	 expression	 and	 higher	 p-values	 in	 high-risk	 and	 recurrence	 positive	 specimens	

(Supplemental	Table	S9).	While	considering	only	21	significantly	overexpressed	contigs,	

17	 of	 them	 outperformed	 PCA3	 in	 both	 contrasts	 (Supplemental	 Table	 S9).	 Notably,	

contigs	P6	 (ctg_111158)	 and	P2	 (ctg_28650)	both	 antisense	 to	FBP2,	 P10	 (ctg_25348)	

embedded	into	CTBP1-AS,	but	also	the	novel	P16	contig	(ctg_111348)	antisense	to	DLX1	

and	the	intergenic	P1	(ctg_17297)	performed	best.	

In	conclusion,	the	majority	of	DE-kupl	contigs	showed	robust	expression	independent	of	

tumor	metrics.	Hence,	even	if	used	alone,	they	may	offer	a	better	clinical	potency	for	PCa	

diagnosis	than	PCA3.	
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To	extract	parsimonious	probe	subsets	predicting	 the	 tumor	status,	we	applied	LASSO	

(Least	Absolute	 Shrinkage	 and	 Selection	Operator)	 logistic	 regression	 on	 the	Selection	

Set	 of	 144	PAIR	 specimens	 (Ghosh	and	Chinnaiyan	2005).	 First,	 the	 initial	 21	DE-kupl	

contigs	and	PCA3	validated	 for	expression	by	NanoString	were	submitted	 to	LASSO	 to	

define	 the	 best	 mixed	 signature	 comprised	 of	 already	 known	 and	 yet	 unannotated	

lncRNA	probes	for	discrimination	of	tumor	from	normal	tissues	(Fig.	S7A).	Then,	LASSO	

was	performed	with	the	probe	subset	composed	uniquely	of	contigs	assigned	to	putative	

novel	lncRNAs	(N=15)	to	infer	the	best	new-lnc	RNA	signature.	It	resulted	in	two	panels	

of	9	mixed	and	9	new-lnc	RNA	candidates	(Fig.	6A,	Fig.	S7B).	Retrieved	signatures	were	

then	used	to	predict	a	tumor	status	in	the	Validation	Set	of	the	TCGA-PRAD	cohort	using	

a	 leave-one-out	cross-validated	boosted	 logistic	regression.	To	assess	 the	sensitivity	of	

DE-kupl	contigs	in	PCa	diagnosis,	a	predictive	accuracy	index,	Area	Under	Curve	(AUC)	

of	 the	 receiver-operating	 characteristic	 (ROC),	 was	 calculated	 for	 each	 signature	 and	

PCA3	alone	in	the	PAIR	(Selection	Set)	and	TCGA-PRAD	(Validation	Set)	datasets	(Fig.	6B;	

Fig.	 S7B).	 Remarkably,	 all	 signatures	 still	 hold	 their	 predictive	 capacity	 in	 the	

independent	 TCGA-PRAD	 cohort	 in	 spite	 of	 the	 important	 differences	 in	 experimental	

setups	between	the	two	studies.	Both	markedly	outperformed	PCA3	for	tumor	detection	

with	AUC	of	0.92	 for	mixed	and	of	0.91	 for	new-lnc	signatures	against	AUC	of	0.73	 for	

PCA3	 (Fig.	 6B	 and	 6C).	 In	 addition,	 these	 signatures	 were	 much	 better	 in	 predicting	

high-risk	tumors	where	PCA3	is	particularly	inaccurate	(Fig.	6C).	Remarkably,	the	new-

lnc	 RNA	 signature	 of	 9	 contigs	 composed	 uniquely	 of	 yet	 unannotated	 lncRNAs	

predicted	the	tumor	status	with	the	same	performance	as	the	mixed	signature.	Logistic	

regression	 did	 not	 retain	 PCA3	 within	 the	 mixed	 signature	 set,	 instead	 contigs	

embedded	 into	 the	well	 characterized	 PCAT1	 lncRNA	 and	 into	 two	 already	 annotated	

but	yet	functionally	uncharacterized	lncRNAs	LOC283177	and	LINC01006	were	present.			
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Figure	S7.	Predictive	modeling	and	clinical	performance	analysis	of	DE-kupl	contigs.	(A)			LASSO	

processed	 list	 of	 probes.	 (B)	 PCA3,	mixed	 and	 new-lnc	 RNA	 signatures	 and	 their	 performance	

(mean	 and	 standard	 deviation	 of	 AUCs)	 in	 the	 PAIR	 (Selection	 Set)	 and	 the	 TCGA-PRAD	

(Validation	Set)	datasets.	N	=	normal	tissue,	T	=	tumor	tissue,	HR	=	high-risk,	IR	=	intermediate-

risk,	LR	=	low-risk	tumors;	AUC	=	area	under	the	curve;	SD	=	standard	deviation.	

	

Figure	 6.	 Predictive	 performance	 of	 PCA3	 and	 multiplex	mixed	 and	 new-lnc	 RNA	 signatures	

inferred	 from	 the	 LASSO	 penalized	 logistic	 regression.	 (A)	 Multiplex	 biomarker	 signatures	

composed	of	either	known	and	unannotated	RNAs	(mixed)	or	of	only	unannotated	RNAs	(new-

lnc).	(B)	ROC	for	the	PCa	prediction	in	the	TCGA	dataset	(Validation	Set)	using	two	signatures	and	

PCA3	 alone.	 (C)	Mean	 and	 standard	 deviation	 of	 AUC	 computed	 over	 100	 samplings	 of	 the	

Validation	Set	for	PCA3	and	two	signatures	to	classify	tumors	according	to	their	risk	status.	AS	=	
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antisense;	 AUC	 =	 area	 under	 the	 curve;	 HR	 =	 high-risk,	 IR	 =	 intermediate-risk,	 LR	 =	 low-risk	

tumors.	

	

This	result	highlights	both	the	incompleteness	of	current	cancer	transcriptome	datasets	

and	 the	 biological	 value	 of	 transcript	 information	 that	 can	 be	 extracted	 through	

adequate	 experimental	 (total	 stranded	 RNA-seq	 and	 NanoString	 quantification)	 and	

computational	 (DE-kupl)	 tools.	The	 resulting	 signature	demonstrated	a	 sensitivity	and	

robustness	 towards	 tumor	 risk	 surpassing	 the	 state	 of	 the	 art	 for	 discrimination	 of	

prostate	cancer.	Furthermore,	 the	nine-probe	RNA	signature	performed	independently	

of	 tumor	 origin	 and	 clinico-pathological	 characteristics,	 but	 also	 independently	 of	 the	

technology	used	for	RNA	measurements.	

DISCUSSION	

Molecular	 biomarker	 assays	 are	 invaluable	 tools	 in	 cancer	 diagnosis,	 prognosis	 and	

treatment	 follow-up.	 Within	 this	 scope,	 sequencing	 technologies	 unveiled	 the	

pervasiveness	 and	 diversity	 of	 the	 human	 transcriptome,	 promoting	 lncRNAs	 as	

important	 cancer	 signatures	 (Schmitt	 and	 Chang	 2016).	 These	 molecules	 are	 highly	

dynamic	 and	 reflect	 cellular	 states	 in	 a	 sensitive	 and	 specific	 way	 due	 to	 their	

involvement	in	genetic	and	regulatory	flows	of	information.	However,	the	variety	of	RNA	

forms	and	high	heterogeneity	of	expression	present	a	challenge	for	their	detection	and	

proper	 quantification	 in	 clinical	 samples.	 Predominant	 microarray	 and	 unstranded	

poly(A)+	RNA-seq	based	approaches	allowed	 identification	of	numerous	 lncRNAs	with	

tumorigenic	 function.	 However,	 their	 clinical	 performance	 as	 biomarkers	 stays	 rather	

poor	due	 to	 the	aforementioned	RNA	 features	hindering	RNA	detection,	quantification	

and	clinical	validation	under	conventional	experimental	setups.	Here,	we	presented	an	

innovative	 experimental	 and	 computational	 platform	 that	 permits	 discovery	 of	 RNA	

biomarkers	 of	 high	 clinical	 potency	 from	 total	 stranded	 RNA-seq	 datasets	 of	 clinical	

origin.	
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As	 a	 proof-of-concept,	we	 focused	 on	 PCa	 as	 the	 only	 type	 of	 cancer	 using,	 so	 far,	 an	

RNA-based	 diagnostic	 test	 (ProgensaTM).	 The	Discovery	Set	 based	 on	 comparison	 of	 8	

normal	with	 16	 tumor	 specimens	 from	 total	 RNA-seq	 datasets	was	 processed	 by	 DE-

kupl	to	extract	the	most	significant	differentially	expressed	subsequences	in	the	form	of	

k-mer	contigs.	Further	filtering	based	on	contig	length,	genomic	position	and	expression	

levels	powered	the	pipeline	towards	the	discovery	of	putative	lncRNAs,	for	the	majority,	

yet	unreferenced	in	the	human	transcriptome.	Then,	the	catalog	of	contigs	was	manually	

refined	 and	 tested	 for	 expression	 using	 the	NanoString	 single-molecule	 RNA	 counting	

technology	 in	 the	 extended	 cohort	 of	 144	 specimens.	 Contig	 expression	 was	 next	

assessed	 in	 the	 independent,	 publicly	 available	 TCGA-PRAD	 dataset	 generated	 by	 the	

poly(A)+	unstranded	RNA-seq	technology.	The	expression	of	contigs	was	systematically	

compared	 to	 that	 of	 the	 benchmark	 biomarker	 lncRNA,	 PCA3.	 In	 total,	 16	 out	 of	 23	

contigs	were	 validated	 in	 both	 setups	 but	with	 important	 differences.	 Primarily,	 RNA	

measurements	 were	 consistent	 between	 two	 different	 technologies:	 NanoString	 and	

total	 stranded	 RNA-seq.	 In	 contrast,	 the	 TCGA	 poly(A)+	 unstranded	 datasets	 revealed	

weakness	and	high	heterogeneity	of	contig	counts	over	the	selected	regions,	resulting	in	

unexpectedly	low	signals	even	for	PCA3,	considered	as	a	highly	expressed	lncRNA.	Our	

results	 promote	 the	 total	 stranded	RNA-seq	 as	 a	 first-choice	 strategy	 for	 discovery	 of	

RNA	biomarkers	 from	clinical	 samples	and	when	searching	 for	 transcripts	others	 than	

highly	abundant	mRNAs.	 It	 reflects	 far	more	precisely	 the	 transcriptomic	 landscape	of	

clinical	samples	and,	hence,	is	more	advantageous	as	a	Discovery	Set	for	development	of	

clinical	 tests.	 At	 the	 same	 time,	 full-length	 transcript	 assembly	 from	 short-read	

sequencing	is	inaccurate,	time	and	computer	memory	consuming,	and	this	is	aggravated	

by	the	added	complexity	of	total	(ribo-depleted)	RNA-seq	libraries	(Hayer	et	al.	2015b).	

DE-kupl	 bypasses	 this	 issue	 by	 directly	 extracting	 from	 raw	 data	 RNA	 subsequences	

significantly	 overexpressed	 in	 a	 defined	 condition.	 In	 PCa	 tissues,	 this	 allowed	

identification	of	1,179	lncRNA-hosted	candidates.	Further	analysis	isolated	a	restrained	
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set	 of	 9	 contigs	 either	 within	 putative	 new	 lncRNAs	 or	 mixed	 annotated	 and	 novel	

lncRNAs	allowing	PCa	diagnosis	independently	of	tumor	risk	classifications	with	higher	

than	the	actual	PCA3.	Remarkably,	the	best	performing	mixed	signature	did	not	include	

PCA3,	 consistent	 with	 the	 low	 potency	 of	 this	 biomarker	 in	 detection	 of	 aggressive	

tumors.	 Instead,	both	mixed	and	new-lnc	RNA	signatures	contained	contigs	embedded	

into	putative	novel	 lncRNA	genes	whose	function	in	PCa	progression	will	be	important	

to	 explore.	 	 Among	 them,	 the	 P23	 contig	 (ctg_29077)	 is	 antisense	 to	 AC011523.2,	 an	

intergenic	 lncRNA,	 co-transcribed	with	 P23	 in	 PCa	 specimens.	 This	 region	 is	 part	 of	 a	

super-enhancer,	annotated	in	several	PCa	cell	lines,	located	between	KLK15	and	the	PSA	

encoding	 KLK3	 genes	 (Jiang	 et	 al.	 2019).	 Moreover,	 it	 has	 also	 been	 described	 as	 an	

enhancer	bi-directionally	transcribed	into	enhancer	(e)RNAs	and	regulating	expression	

of	the	neighboring	KLK3	and	KLK2	genes	through	eRNA	and	Med1-dependent	chromatin	

looping	in	androgen-dependent	LNCaP	and	VCaP,	and	androgen-independent	LNCaP-abl	

cells	(Hsieh	et	al.	2014).	Presence	of	the	P23	contig	within	the	mixed	and	new-lnc	RNA	

signatures	supports,	in	addition	to	clinical	potency,	a	possible	regulatory	function	of	the	

k-mer	 containing	RNA	 contigs	 inferred	by	DE-kupl.	More	 globally,	 the	majority	 of	DE-

kupl	 contigs	 within	 co-transcribed	 sense-antisense	 pairs	 were	 annotated	 as	 super-

enhancers	 in	prostate	 tissues	and	cell	 lines	or	other	biosamples,	e.g.	P15	(ctg_512),	P7	

(ctg_117356),	 and	 P4	 (ctg_63866)	 (Jiang	 et	 al.	 2019).	 In	most	 cases,	 their	 function	 in	

gene	expression	 regulation	and	chromatin	 configuration	has	not	yet	been	 investigated	

and	 experimentally	 validated,	 but	 it	 is	 tempting	 to	 speculate	 that	 defined	 sense-

antisense	 transcripts	may	 influence	 a	 super-enhancer	 activity	 and,	 consequently,	may	

fine-tune	the	expression	of	neighboring	genes.	

In	 this	 work,	 we	 propose	 DE-kupl	 as	 a	 tool	 for	 discovery	 of	 novel	 disease-associated	

transcriptomic	 variations,	 which	 can	 be	 further	 explored	 for	 biological	 and	 clinical	

relevance.	 As	 a	 pilot	 project,	we	 oriented	 the	 pipeline	 towards	 the	 discovery	 of	 novel	

lncRNAs,	 but	 using	 proper	 masking	 and	 filtering	 criteria	 defined	 by	 the	 investigator,	
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other	 variant	 transcripts	 including	 single	 nucleotide	 variations	 (SNV),	 novel	 splice	

events,	 gene	 fusion,	 circular	 RNAs	 or	 exogenous	 viral	 RNAs	 could	 be	 probed.	 The	

workflow	 can	 be	 applied	 to	 any	 RNA-seq	 datasets	 of	 any	 clinical	 origin	 to	 generate	 a	

probe	 panel	 that	 may	 be	 implemented	 as	 a	 multiplex	 platform	 for	 simultaneous	

detection	 of	 RNAs	 in	 clinical	 samples.	 Moreover,	 different	 experimental	 contrasts	

(normal	vs.	pathology,	low-	vs.	high-risk	grade,	treatment	resistant	vs.	sensitive,	etc.)	will	

define	the	biomarker	usage	in	diagnosis,	prognosis	or	other	clinical	applications,	hence,	

providing	clinicians	and	researchers	with	a	simple	and	highly	sensitive	tool	for	genomic	

and	personalized	medicine.	
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METHODS	

Tissue	samples	

Tumor	 and	 normal	 biopsy	 specimens	 were	 retrospectively	 collected	 from	 prostate	

cancer	patients	who	provided	informed	consent	and	were	approved	for	distribution	by	

the	 H.	 Mondor	 institutional	 board	 (PAIR	 cohort).	 Tumors	 classification	 in	 low-,	

intermediate-	 and	 high-risk	 prognosis	 was	 performed	 according	 to	 Gleason	 and	 TNM	

scores	and	regardless	PSA	values	(Supplemental	Table	S1,	S3).	

RNA	extraction,	quantification	and	cDNA	library	production	

Total	 RNA	 was	 extracted	 using	 the	 TRizol	 reagent	 (ThermoFisher),	 according	 to	

manufacturer’s	 procedure,	 quantified	 and	quality	 controlled	using	 a	 2100	Bioanalyzer	

(Agilent).	 RNA	 samples	with	 RNA	 Integrity	 Number	 (RIN)	 above	 6	were	 depleted	 for	

ribosomal	RNA	and	converted	into	cDNA	library	using	a	TruSeq	Stranded	Total	Library	

Preparation	 kit	 (Illumina).	 cDNA	 libraries	were	 normalized	 using	 an	 Illumina	Duplex-

specific	 Nuclease	 (DSN)	 protocol	 prior	 to	 a	 paired-end	 sequencing	 on	 HiSeq™ 2500	

(Illumina).	 At	 least	 20x	 coverage	 per	 sample	 was	 considered	 as	 minimum	 of	 unique	

sequences	for	further	data	analysis.	

RNA-sequencing	data		

Raw	 paired-end	 strand-specific	 RNA-seq	 data	 was	 generated	 by	 our	 laboratory	 from	

ribo-depleted	total	RNA	samples	of	prostate	tissues	(8	normal	and	16	tumor	specimens;	

Supplemental	 Table	 S1)	 and	 can	 be	 retrieved	 from	 the	 gene	 omnibus	 portal	 (GEO),	

accession	number	GSE115414.	

TCGA	 prostate	 cancer	 poly(A)-selected	 RNA-seq	 and	 corresponding	 clinical	 data	were	

obtained	 from	 publicly	 available	 TCGA	 dataset	 (http://cancergenome.nih.gov),	 557	

inputs	in	total	(52	normal	and	505	tumors	of	high-	(N=240),	intermediate-	(N=128)	and	

low-risk	(N=132)	groups.	Among	them,	369	patients	showed	no	tumor	recurrence,	108	

presented	a	new	tumor	event	(Supplemental	Table	S7).	
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Computational	workflow	for	k-mer	contigs	discovery	from	total	stranded	RNA-seq	

dataset	

DE-kupl	 run	 was	 performed	 from	 (June	 2017)	 with	 parameters	 ctg_length	 31,	

min_recurrence	 6,	 min_recurrence_abundance	 5,	 pvalue_threshold	 0.05,	 lib_type	

stranded,	 diff_method	 DESeq2.	 K-mer	 masking	 was	 performed	 against	 the	 GENCODE	

v24	 annotation.	 DE-kupl	 analysis	 of	 the	 8	 against	 16	 PAIR	 RNA-seq	 prostate	 libraries	

yielded	124,809	DE	contigs,	 in	total.	Contigs	were	annotated	by	alignment	on	the	hg19	

human	 genome	 assembly	 using	 the	 DE-kupl	 annotate	 procedure.	We	 further	 selected	

contigs	 of	 size	 above	 200	 nucleotides	 and	 classified	 them	 into	 four	 categories	

(contiguous,	repeat,	spliced,	unmapped)	based	on	their	location	and	mapping	features.	

Computational	workflow	for	reference-based	ab	initio	 transcripts	assembly	from	

total	stranded	RNA-seq	dataset	(HoLdUP)	

The	human	genome	version	hg19	and	 the	GENCODE	v14	annotation	were	used	 in	 this	

study.	First,	we	performed	a	quality	control	of	all	sequencing	data	by	FastQC	Babraham	

Bioinformatics	 software.	 Reads	 were	 mapped	 using	 TopHat	 2.0.4,	 allowing	 3	

mismatches	 and	 requesting	 uniquely	 mapped	 reads	 which	 were	 further	 assembled	

using	 the	BedTools	suite.	Overlapping	contigs	 from	all	 libraries	were	merged	and	only	

contigs	 supported	 by	 at	 least	 10	 reads	 in	 either	 library	 were	 further	 assembled	 in	

segments	if	mapped	in	the	same	strand	and	separated	by	less	than	100	nucleotides.	We	

compared	segments	to	the	GENCODE	v14	annotation	to	extract	antisense	and	intergenic	

TU	longer	than	200	nucleotides.	To	classify	 lncRNAs,	we	applied	the	following	criteria:	

(i)	an	expression	level	above	0.2	quartile	of	mRNA	expression	in	at	least	one	condition	

per	 tissue	 (Class	 2);	 (ii)	 within	 this	 class,	 all	 TUs	 containing	 at	 least	 one	 TopHat-

identified	exon-exon	 junction	and	at	 least	one	 spliced	EST	 from	UCSC	mapped	 contigs	

were	assigned	to	Class	1.	The	whole	catalog,	the	R	code	and	Data	Tables	can	be	provided	

upon	request.		

Overlap	between	GENCODE,	MiTranscriptome,	DE-kupl	and	HoLdUp	catalogues	
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Intersection	between	transcripts	was	counted	only	in	case	of	50%	overlap	of	nucleotide	

sequence	between	genomic	coordinates	of	each	fragment.	

Differential	expression	analysis	

Read	 counting	 was	 performed	 on	 the	 compiled	 annotation	 (GENCODE	 v26,	 HoLdUp	

Class	 1	 and	 Class	 2)	 for	 each	 sample,	 using	 featureCounts	 1.6.0	 with	 the	 following	

parameters:	-F	"SAF"	-p	-s	2	-O	and	the	DESeq	R	package	(Love	et	al.	2014).	Only	RNAs	

with	adjusted	p-value	below	0.01	were	retained	as	differentially	expressed	to	constitute	

the	prostate	tumor	signature.	

NanoString	nCounter	Expression	Assay	

100	 ng	 of	 total	 RNA	 was	 used	 for	 direct	 digital	 detection	 of	 29	 target	 transcripts:	 6	

housekeeping	genes	(RPL11,	GAPDH,	NOL7,	GPATCH3,	ZNF2	and	ZNF346),	23	contigs	and	

the	one	known	PCa-associated	lncRNA,	PCA3.	Each	target	gene	of	interest	was	detected	

in	 RNA	 samples	 of	 144	 specimens	 (9	 normal	 and	 135	 tumor)	 of	 the	 PAIR	 cohort	

(Supplemental	Table	S3)	on	NanoString	nCounter	V2	using	reporter	and	capture	probes	

of	 35-	 to	 50-nucleotide	 targeting	 sequences.	 Data	was	 normalized	 through	 the	 use	 of	

NanoString’s	 intrinsic	 positive	 controls	 and	 then	 contig	 expression	 was	 calculated	

relative	 to	 the	 average	 signal	 of	 three	 housekeeping	 genes	 (GPATCH3,	 ZNF2	 and	

ZNF346).	Raw	and	normalized	data	for	each	specimen,	mean	and	fold	change	expression	

in	normal	against	tumor	samples	are	presented	in	Supplemental	Table	S4	and	S5.	

Contig	expression	measurements	in	TCGA-PRAD	datasets	

DE-kupl	 provides	 representative	 k-mers	 for	 each	 differentially	 expressed	 contig.	 We	

converted	the	TCGA-PRAD	FASTQ	files	to	k-mer	counts	using	Jellyfish	count	and	counted	

representative	 k-mers	 in	 each	 Jellyfish	 count	 file	 using	 the	 Jellyfish	 query	 command.	

Counts	 were	 normalized	 by	 total	 number	 of	 reads	 in	 corresponding	 libraries.	 To	

determine	 whether	 counts	 of	 DE-kupl	 derived	 representative	 k-mer	 were	 a	 reliable	

proxy	 for	 evaluating	 contig	 expression,	 we	 compared	 representative	 k-mer	 counts	 to	

average	 counts	 from	 k-mers	 sampled	 along	 each	 contig.	 All	 individual	 counts	 were	
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obtained	using	Jellyfish	Dump	files	produced	for	each	TCGA-PRAD	library.	Sampling	was	

performed	as	follows:	(i)	we	extracted	all	k-mers	from	the	contig	that	were	unique	in	the	

Ensembl	human	v91	transcript	reference,	and	(ii)	from	this	list	we	sampled	10	regularly	

spaced	k-mers,	 starting	 from	the	 first	10%	and	ending	 in	 the	 last	10%	of	 the	 list.	This	

sampling	procedure	was	repeated	four	times	for	each	contig.	For	the	whole	TCGA	library	

and	each	contig,	the	10	k-mer	counts	obtained	by	Jellyfish	were	averaged,	yielding	one	

average	 count	 per	 sample	 per	 library.	 Correlations	 between	 sample	 counts	 and	

representative	k-mer	counts	are	shown	in	Fig.	S8	for	two	DE-kupl	contigs.	

	

Figure	 S8.	 	 Contig	 expression	 measurements	 in	 TCGA-PRAD	 datasets.	 (A)	 Stability	 of	 k-mer	

counts	 for	 contigs	 P1	 (ctg_17297)	 and	 P16	 (ctg_111348)	 across	 the	 TCGA-PRAD	 dataset.	 (B)	

Pearson	 correlations	 between	 counts	 of	 representative	 k-mers	 and	 sampled	 k-mers	 from	 the	

same	contig:	for	each	contig,	in	the	TCGA-PRAD	datasets	(N=557)	the	number	of	occurrences	of	

(I)	 the	 representative	 DE-kupl	 k-mer	 and	 (II)	 of	 four	 sets	 of	 10	 k-mers	 sampled	 at	 regular	

distance	 along	 the	 length	 of	 the	 contig.	 Each	 sample	 (noted	 SAMPLE1-4)	 was	 obtained	 by	

changing	the	starting	position	of	the	first	k-mer.		

	

RNA-sequencing	data	visualization	

ID contig

(I) representative 
k-mer vs. 4 

samples

(II) sample vs. 
sample

P1 ctg_17297
P16 ctg_111348

0.96 0.005 0.99 0.005
0.91 0.011 0.99 1.11e-16

mean STD mean STD

ctg_111348 (P16)

ctg_17297 (P1)

A B
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RNA-seq	 reads	profiling	along	a	 locus	of	 interest	was	performed	using	our	 in-house	R	

script	 VING	 (Descrimes	 et	 al.	 2015).	 The	 normal	 samples	were	 assigned	 to	 the	 group	

“controls”	and	the	tumor	specimens	–	to	the	group	“cases”,	with	the	assumption	that	the	

“cases”	should	have	higher	values	than	“controls”.		

Unsupervised	clustering	of	prostate	specimens	

Specimens	 were	 ranked	 based	 on	 the	 Log10(expression	 counts)	 levels	 of	 contigs	

assessed	by	the	NanoString	nCounter	assay	using	a	ComplexHeatmap	R-package	(Gu	et	

al.	2016).	

Variable	 selection	 using	 the	 LASSO	 penalized	 logistic	 regression	 and	 external	

validation	of	signatures	

Signature	inference	was	performed	in	R	using	the	normalized	Selection	Set	(23	probes	in	

144	 observations)	 as	 a	 variable	 selection	 dataset	 and	 contigs	 counts	 table	 of	 the	

Validation	Set	(23	probes	in	557	observations)	as	an	external	validation	dataset	(R	Core	

Team).	First,	we	performed	penalized	logistic	regression	using	the	glmnet	R	package	to	

select	probes	predicting	the	tumor	status	on	the	Selection	Set	upsampled	to	correct	the	

imbalance	 class	 distribution	 (9	normal	 versus	135	 tumor	 specimens)	 (Friedman	 et	 al.	

2010).	 Selection	was	performed	using	 all	 probes	 (signature_mixed	 including	PCA3)	or	

using	 only	 new-lnc	 RNA	 contigs	 only	 (signature_new-lnc)	 (Fig.	 S7).	 Second,	 we	 built	

predictors	 using	 the	 boosted	 logistic	 regression	 from	 the	 caTools	 and	 caret	 packages	

(Tuszynski	2008),	(Kuhn	2008).	AUCs	were	computed	using	the	precrec	package	on	100	

training	and	testing	datasets	(Saito	and	Rehmsmeier	2017),	sub-sampled	from	the	initial	

dataset	(Normal	vs.	Tumor,	 	Normal	vs.	HR,	Normal	vs.	 IR	and	Normal	vs.	LR)	using	the	

sample.split	function	from	the	caTools	package.	

DATA	ACCESS	

TCGA	prostate	cancer	poly(A)-selected	RNA-seq	and	corresponding	clinical	data	can	be	

obtained	from	TCGA	portal	(https://www.cancer.gov/tcga).	
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