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Abstract

Neural oscillations adjust their phase towards the predicted onset of rhythmic stimulation
to optimize the processing of upcoming relevant information. Whether such phase alignments
can be observed in non-rhythmic contexts, however, remains unclear. Here, we recorded the
magnetoencephalogram while healthy participants were engaged in a temporal prediction task
judging the visual or crossmodal (tactile) reappearance of a uniformly moving visual stimulus
after it disappeared behind an occluder. The temporal prediction conditions were contrasted
with a luminance matching control condition to dissociate phase adjustments of endogenous
neural oscillations from stimulus-driven activity. During temporal predictions, we observed
stronger delta band inter-trial phase consistency (ITPC) in a network of sensory, parietal and
frontal brain areas. Delta ITPC further correlated with individual prediction performance in
parts of the cerebellum and in visual cortex. Our results provide evidence that phase
alignments of low-frequency neural oscillations underlie temporal predictions in non-
rhythmic unimodal and crossmodal contexts.
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Introduction

Neural oscillations reflect alternating states of higher or lower neural excitability,
modulating the efficiency by which coupled neurons engage in mutual interactions . As a
result, neural communication and information processing has been shown to occur in a phase-
dependent manner 27, reflected for example by fluctuations in perception thresholds
correlating with the phase of ongoing oscillations #. Based on these assumptions, oscillations
were also linked to temporal predictions of upcoming relevant information 2>, Studies have
shown that animals can utilize predictive aspects of environmental stimuli in a way that
reaction times are reduced 7'° or stimulus processing is enhanced !'''2. By means of top-down
induced phase resets of neural oscillations, phases of high excitability might be adjusted
towards the expected onset of relevant upcoming stimulation in order to optimize behavior '3.

Due to the rhythmic and therefore temporally highly predictable nature of many auditory
stimuli such as speech or music, particularly in the auditory domain, many studies gathered
evidence that oscillations reset and thereby adjust their phase towards rhythmic stimuli of
various frequencies %!, Also in the visual domain, studies showed that neural oscillations
align to rhythmic visual input %1617 However, whether temporal predictions indeed involve
phase resets of endogenous neural oscillations remains a matter of debate '-2°, Despite their
ecological relevance, using rhythms for the investigation of an involvement of oscillations in
temporal predictions entails methodological and conceptual challenges. Rhythmic input leads
to a continuous stream of regularly bottom-up evoked potentials, which are — at least —
difficult to distinguish from top-down phase adjusted endogenous neural oscillations within
the same frequency 2'. Rather than phase resets of endogenous neural oscillations, temporal
predictions could therefore also be reflected by stimulus-induced potentials that appear to be
rhythmic during rhythmic stimulation '8. Conclusive evidence that temporal predictions
involve phase resets of endogenous neural oscillations rather than stimulus evoked potentials
is still lacking.

Moreover, using only rhythmic stimulation excludes the opportunity to link phase
adjustments to a more general neural mechanism that predicts the temporal structure of any
external input. If phase adjustments form the basis of tracking the temporal regularities of any
relevant information, neural oscillations should align also to predictable temporal regularities
that are inferred from input that does not itself comprise rhythmic components, such as, for
instance, monotonic motion. Nevertheless, the vast majority of studies investigating phase
adjustments in the context of temporal predictions presented participants with streams of
(quasi-)rhythmic stimulation. Disentangling phase alignments of neural oscillations from a
continuous stream of event-related potentials in a non-rhythmic predictive context therefore
constitute important aspects for examining the involvement of endogenous neural oscillations
in temporal prediction processes.

For this reason, we set out to investigate whether phase adjustments of neural oscillations
can be observed for non-rhythmic, but predictable visual motion stimuli. We measured
magnetoencephalography (MEG) while healthy participants watched a visual stimulus
continuously moving across the screen until it disappeared behind an occluder. We
manipulated the time for the stimulus to reappear on the other side of the occluder (on average
1.5 s). The task was to judge whether the stimulus reappeared too early or too late based on
the speed of the stimulus earlier to disappearance. Hence, participants were required to
temporally predict the correct time point of reappearance to be able to accomplish the task.
Participants further performed a control task, in which the task was to judge the luminance of
the reappearing stimulus instead of its timing. Importantly, physical appearance of both
conditions was exactly the same in all aspects of the stimulation. Any purely stimulus-related,
bottom-up activity should therefore level out between the two conditions.


https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/643957; this version posted August 15, 2019. The copyright holder for this preprint (which was

67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
&3
84
&5
86
87
88
&9

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Moreover, since it has been shown that sensory stimulation can lead to crossmodal phase
adjustments also in relevant but unstimulated other modalities %23, we further introduced a
third condition, in which a tactile instead of a visual stimulus was presented at reappearance.
By contrasting it to the luminance matching control condition, we sought to determine
whether phase adjustments can be observed in regions associated with tactile stimulus
processing, when sensory information was in fact only provided to the visual system.

In the two temporal prediction tasks, as compared to luminance matching, we observed
stronger delta band inter-trial phase consistency (ITPC) within time windows between
disappearance and expected reappearance in frontoparietal brain areas. Enhanced delta ITPC
specifically in these time windows reflected phase resets of ongoing oscillations at
disappearance of the stimulus, where temporal prediction might be initialized. By introducing
a novel design, in which physical stimulation was exactly the same between the visual
temporal prediction and the luminance matching task, we provide profound evidence that
purely bottom-up evoked processes could not explain observed differences in ITPC between
the condition. In the crossmodal setting, we show that temporal information provided to the
visual modality leads to phase adjustments also in the tactile modality. Moreover, participants
who showed a consistent judgment of reappearance timing, as represented by a steep
psychometric function, also showed stronger delta ITPC during temporal predictions. This
confirms that a consistent timing judgment across trials also involves a consistent phase
across trials. We further observed a phase clustering at £90° within the delta oscillation
showing the strongest ITPC in each participant at the individual subjective time points of
predicted reappearance. This strongly suggests that the phase of ongoing oscillations serves as
a subjective marker for the individual estimation of elapsed time.
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Results

Behavioral results

Participants did not receive feedback about the correctness of their response. This
ensured that participants relied on their individual and subjective “right on time” (ROT)
impression in the temporal prediction conditions and “point of subjective equivalence” (PSE)
in the luminance matching condition. Across participants, there was no statistically significant
bias towards “too early/darker” or “too late/brighter” responses in the visual temporal
prediction (At (ROTy) = 13.15 + 155.20 ms; #(22) = .41; p = .69) or in the luminance
matching task (ARGB (PSE) =-1.29 + 4.54 RGB; #22) =-1.36; p = .19), respectively (Fig.
1B). In the tactile temporal prediction task, participants showed a significant bias towards
“too early” responses (At (ROTt) =99.80 + 150.00 ms; #(22) = 3.19; p = .004).

Participants responded significantly faster in each of the temporal prediction tasks as
compared to the luminance matching task (visual prediction: #22) = -2.55; p = .02; temporal
prediction: #(22) = -4.29; p <.001). To assess whether reaction times were dependent on the
timing of the reappearing stimulus (Fig. 1C), we averaged across all luminance differences
and fitted a linear model to reaction time data in each condition. Reaction times were
significantly predicted by timing difference in all, the visual prediction (first-order
coefficient: -7.77 x 10 £ 5.27 x 104, #22) = -7.08, p < .001; second-order coefficient: -1.42
x 106 £1.20 x 106, #(22) =-5.68, p < .001), the tactile prediction (first-order coefficient: -
2.88x 10* £4.43 x 104, #22) = -3.12, p = .005; second-order coefficient: -1.26 x 106 = 1.10
x 10, #(22) = -5.50, p < .001) as well as in the luminance matching task (first-order
coefficient: -1.60 x 10 £ 1.44 x 104, #(22) = -5.31, p < .001; second-order coefficient: 2.75 x
107+3.51 x 107, #(22) = 3.76, p = .001). Hence, although the timing of the stimulus was not
relevant in the luminance matching task, reaction times in that condition were (in part) also
dependent on the timing of the reappearing stimulus and faster the later the stimulus
reappeared.
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116  Figure 1. Experimental design and behavioral results. (A) A stimulus moved towards the center of the screen
117 until it disappeared behind an occluder. The task was to judge whether the stimulus reappeared too early or too
118 late. In the luminance matching condition, task was to judge whether the luminance became brighter or darker.
119  Importantly, physical stimulation was exactly the same as in the visual prediction task. In the tactile temporal
120  prediction task, at reappearance a tactile stimulus was presented contralateral to the disappearance of the visual
121 stimulus. (B) Psychometric functions and individual ROT/PSE estimates. A timing difference of 0 refers to the
122 objectively correct reappearance of the stimulus after 1,500 ms. Analogously, a luminance difference of 0 refers
123 to equal luminance after reappearance provided in RGB values (see Methods). Colored areas depict standard errors
124 of the mean (SEM). (C) Log-transformed and standardized reaction times for all timing differences (mean + SEM).
125 P = proportion; LM = luminance matching; t = time; 1 = luminance; RGB = red-green-blue.
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Temporal prediction was associated with reduced beta power in sensory regions

Analyzing the neural data, we were first interested in investigating which frequency
bands showed modulated spectral power during windows of temporal predictions, and tested
an average of spectral power across all sensors and conditions against a pre-stimulus baseline
window. As a first step, we obtained a general overview of power modulations at each event
in the experimental paradigm. Due to the jittered stimulation built into the design (see
Materials and Methods), we computed cluster-based permutations statistics in three separate
time windows centered on: (a) the onset of the moving stimulus (“Movement”), (b)
disappearance of the stimulus behind the occluder (“Disappearance”), and (c) reappearance of
the stimulus (“Reappearance”; Fig. 2A).

In time bins around movement onset as well as reappearance (but not disappearance) of
the stimulus, clusters of frequencies in the theta and delta range showed a statistically
significant increase of spectral power as compared to the baseline window. All time windows
further depicted a significant decrease of spectral power in frequencies within the beta and
gamma range (all cluster p-values < .008). Importantly, even with using a liberal cluster alpha
level of .05 (one-sided), we did not find a statistically significant modulation of delta power
during the disappearance window. This was also not the case when reducing the test to
sensors from occipital regions only (see Fig. S1).

Since we were most interested in examining power modulations associated with temporal
predictions, i.e., during the disappearance window, we further compared spectral power
estimates between the temporal prediction tasks and the luminance matching task in all
sensors within the disappearance window while ignoring the other windows. We restricted
our analysis to the classical beta band ranging from 13 to 30 Hz, showing the strongest
modulation as compared to baseline during the disappearance window. Cluster-based
permutation statistics revealed reduced beta power during visual temporal prediction in
occipital sensors during all time-bins of the disappearance window (cluster-p =.01). Source
level statistics revealed a statistically significant decrease of beta power in a cluster of
bilateral occipital voxels (cluster-p =.01). Beta power was further reduced during tactile
prediction in a cluster of occipital as well as left lateralized frontocentral sensors (cluster-p =
.002). At source level, a significant power reduction in the beta band was most strongly
apparent in parts of bilateral visual as well as left-lateralized somatosensory cortex (cluster-p
=.01).
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158 Figure 2. Power modulations during temporal prediction. (A) Spectral power averaged across sensors,
159  conditions, and participants. Each window was centered on the different events within the paradigm and
160  normalized with pre-stimulus baseline. Time 0 refers to the onset of each event. Cluster-based permutation
161 statistics revealed significant power modulations as compared to baseline (unmasked colors). See also Fig. S1.
162 (B,C) Difference between the two temporal prediction and the luminance matching task, respectively, within the
163 beta band (13 — 30 Hz) in time bins around stimulus disappearance. At source level, cluster-based permutation
164 statistics revealed cluster of voxels showing significant differences between the conditions (colored voxels). See
165  also Fig. S2. LM = luminance matching.
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166  Inter-trial phase consistency between conditions

167 For the analysis of ITPC, we followed a similar approach. First, we tested [TPC

168  differences to baseline in the three time windows for an average across all sensors and

169  conditions. ITPC was significantly increased across a range of different frequencies in time
170  bins around movement onset, disappearance and reappearance of the stimulus (all cluster-p <
171  .001; Fig. 3A). For time windows centered on movement onset as well as reappearance

172 significant ITPC increases were strongest in the delta to alpha range. At disappearance of the
173 stimulus, significant ITPC increases were observed up to the low beta range with strongest
174  increases in the delta band.

175 Hence, the delta band showed no increase in power but the strongest increase in ITPC as
176  compared to baseline during the disappearance window for an average across all conditions
177  (see Fig. 2A, 3A, and S1). For further statistical comparisons between conditions, we

178  therefore restricted our analyses to an average of frequencies between 0.5 to 3 Hz. For a better
179  estimation of when differences in ITPC between the conditions became apparent, we enlarged
180  the analysis of ITPC to time bins ranging from -1,900 ms to 1,900 ms centered on the

181  disappearance of the stimulus. Note that in this enlarged analysis window the timing of the
182  movement onset as well as the reappearance of the stimulus strongly jittered across trials. The
183  effect of these events on ITPC estimates were thus strongly reduced (see Fig. S3; for

184  condition-specific ITPC differences during disappearance to baseline, see Fig. S4).

185 We found two clusters that showed significantly stronger ITPC during visual temporal
186  predictions as compared to luminance matching (Fig. 3B). One cluster included sensors from
187  right temporal, frontal and occipital regions in time bins from -400 to 1,900 ms (cluster p <
188  .001). The second cluster included left frontotemporal sensors in time bins ranging from 0 to
189 1,900 ms (cluster p = .01) Source level analysis revealed that for an average of the time

190  window from -400 to 1,900 ms ITPC differences between the two conditions were strongest
191  in right-lateralized central and inferior frontal voxels (cluster p <.001).

192 ITPC was also significantly enhanced in bilateral temporal sensors during tactile

193  temporal predictions, evolving around -400 ms in right temporal sensors and shifting towards
194  left hemisphere with ongoing disappearance time (cluster p <.001; Fig. 3C). In this contrast,
195  however, differences in ITPC were more strongly apparent also in frontal and central sensors.
196  Besides strongest differences in ITPC again in right superior parietal and inferior frontal

197  voxels, source level analysis also revealed strong differences in bilateral somatosensory

198  voxels for the contrast of tactile prediction to luminance matching (cluster p < .001).

199 To make sure that differences in eye movements do not explain the observed differences
200  in ITPC between the conditions, we analyzed horizontal eye movements recorded by an eye
201  tracker (ET) during the MEG measurement. Eye movements as well as ITPC computed from
202  the ET data did not show any differences between the conditions (see Fig. S5A,B,C).

203  Moreover, we did not observe significant correlations between ITPC values computed from
204  the ET and the MEG signal in any of the conditions across participants (see Fig. S5D).

205 Figure 3D depicts absolute ITPC estimates for all three conditions in the enlarged

206  disappearance time window. ITPC was averaged across participants and all the sensors that
207  exhibited the top 20% of t values in the ITPC contrast between visual temporal prediction and
208  luminance matching between 0 and 1,500 ms (see Fig. 3B; similar results were obtained for
209  sensors showing the top 10% or 5% of t values, see Fig. S3D). ITPC also increased in the

210  luminance matching condition around disappearance of the stimulus, but dropped down to
211 stimulus movement level shortly afterwards. ITPC in the visual as well as tactile temporal
212 prediction tasks stayed elevated throughout the entire disappearance window.
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213 Figure 3. ITPC during temporal prediction as compared to luminance matching. (A) ITPC estimates
214 averaged across sensors, conditions, and participants. Masked colors refer to non-significant ITPC modulations as
215 compared to baseline. (B,C) Difference in ITPC between the visual or tactile prediction and the luminance

216 matching task, respectively, within the delta band. For clarity, only every second time bin was plotted. On source
217 level, clusters of voxels showing significant differences between the conditions are colored. See also Fig. S3, S4,
218 and S5. (D) Time course of absolute ITPC estimates within each condition for time bins centered around
219 disappearance of the stimulus (time 0; mean = SEM). ITPC estimates were averaged across channels that showed
220  the top 20% of t-values for the comparison of the visual prediction with the luminance matching task (see
221  topography). LM = luminance matching.
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Correlation of ITPC to behavioral performance

If the phase of neural oscillations was indeed associated with temporal predictions, a
participant who judged the reappearance of the stimulus within her individual subjectively
correct ROT framework in a consistent manner should also exhibit stronger ITPC during
temporal predictions, as a consistent timing judgement across trials should involve a similar
phase across trials. The consistency of judgements can be inferred from the steepness of the
psychometric function — the steeper the psychometric function, the more consistent the
answers of the participant. We computed Pearson correlations of source level delta ITPC with
the steepness of the psychometric function across participants and found statistically
significant positive correlations in the visual (cluster p = .003) as well as in the tactile
temporal prediction task (cluster p = .002; Fig. 4). Strongest correlations were found in the
cerebellum and right lateralized early visual areas in both tasks. No clusters showing
significant positive or negative correlations were observed in the luminance matching task (all
cluster p > .1).
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Figure 4. Correlation of ITPC to behavior. (A,B) Correlation of individual ITPC estimates with the individual
steepness of the psychometric function within all voxels, shown in (A) for the visual prediction, and in (B) for the
tactile prediction condition. ITPC estimates were averaged within the delta band and time windows of 0 to 1,000
ms centered on the disappearance of the stimulus. Only the clusters of voxels showing significant correlations are
colored. In the scatter plots, each dot represents one participant and ITPC estimates were averaged across all
voxels within the clusters of significant correlations. There was no significant correlation observed for the
luminance matching condition.
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Delta phase clustering at individually predicted reappearance time points

Furthermore, if the phase of oscillations indeed codes for the predicted time point of
reappearance, a clustering of a specific phase should be observed, when extracting the phase
at each individual ROT, i.e., the time point of each individual’s estimation for the correct
reappearance of the stimulus. Such a clustering at subjective ROT estimates would provide
strong evidence that the phase of ongoing oscillations codes for the subjective estimation of
elapsed time. That is, in case there was no relationship between delta phase and individual
ROTs, all phases extracted at ROT should be randomly distributed across the unit circle, since
individual ROTs strongly differed across participants as well (see Fig. 1B).

In order to test that, we extracted the mean phase of that delta frequency that showed the
strongest ITPC within each temporal prediction task as compared to the luminance matching
task at ROT in each participant. We again used the sensors that showed the strongest
statistical differences in ITPC for the contrasts of each prediction task to the luminance
matching (see Fig. 3B and C). Moreover, only trials in which the stimulus actually reappeared
later than each individuals ROT were considered, so that stimulus onset related brain activity
would not distort phase estimates at ROT. Mean phases extracted at ROT from each channel
and all participants were then combined and plotted into a histogram for each condition (Fig.
5, upper row; each plot shows participants x channel data). We quantified the distance of the
observed distribution to a uniform distribution by means of the modulation index M& 24,

To test whether the observed MI was significantly stronger than a random distribution
obtained from surrogate MIs, we repeated the analysis 10,000 times using a randomly chosen
frequency from the same delta band for each participant in each repetition. We found that for
both, the visual prediction (p = .03) as well as the tactile prediction task (p = 0), the observed
MI was significantly stronger than the surrogate MIs. Phases at ROT from both tasks
clustered roughly around £90°. In the luminance matching task, no significant clustering at a
specific phase was found (p =.96).

Our reaction time analysis revealed that also in the luminance matching task, participants
had a certain expectation about the temporal reappearance of the stimulus. Therefore, we
hypothesized that the phase of the frequency that showed the strongest ITPC during the visual
prediction task might also code for the timing of the reappearing stimulus in the luminance
matching task, since physical stimulation was identical in both tasks. We repeated the above
described analysis for the luminance matching condition, now using the same frequencies as
obtained from the visual prediction condition and again tested the observed MI against 10,000
repetitions with randomly chosen frequencies (Fig. 5, Panel 4: LM (VP)). With frequencies
obtained from the visual prediction task, the MI observed for the luminance matching task
was significantly stronger than Mls obtained from the random repetitions (p = .02).
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Figure 5. Delta band phase clustering at individual ROT. In each condition, the mean phase observed at
individual ROT for each participant was extracted from the top 20% of channels (see Fig. 2 and topographies) and

from the delta frequency showing the strongest differences in ITPC to luminance matching. All phases were plotted

into a histogram (upper panels) and the modulation index was computed from that distribution (colored line in

lower panels). Permutations (n = 10,000) were generated by extracting the phase from random frequencies within
the delta band (as opposed to the frequency with strongest ITPC) and computing the MI for each permutation

(distribution in lower panels). LM = luminance matching; LM (VP) = data from luminance matching condition
with frequencies determined in the visual prediction condition (see main text); MI = modulation index.
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Discussion

Our results support the idea that phase adjustments of ongoing neural oscillations could
form the neuronal basis of temporal predictions and suggest that this framework can be
extended to temporal predictions inferred from stimulation that does not itself comprise
rhythmic components. Our task design enabled us to disentangle the phase reset of ongoing
neural oscillations from evoked event related potentials and showed that phase adjustments
are stronger in the context of temporal predictions than in tasks where temporal structure is
less relevant. The strength of the observed phase adjustments correlated with the ability to
consistently judge the temporal reappearance of the stimulus across participants. Moreover,
the phase of individual delta oscillations clustered at around 90° at each participant’s
predicted time point of reappearance, possibly indicating an optimal phase of neural
oscillations in the context of temporal prediction.

Cross-modal temporal predictions are reflected by a beta power reduction in both
sensory systems

It has been suggested that temporal predictions of upcoming events might be mediated by
neuronal oscillations in the delta and beta frequency range °. The enhanced phase consistency
of delta oscillations as well as the power modulations in the beta band observed in the current
study are in line with this hypothesis. However, earlier reports on beta power modulations
during temporal predictions are inconsistent. On the one hand, studies found that beta power
was even increased shortly before the onset of the expected stimulus in auditory ?° and visual
rhythmic stimulation '®. On the other hand, van Ede et al. 2 found that predicting the onset of
a tactile stimulus was specifically associated with a reduction of beta power in contralateral
tactile areas and accompanied by faster reaction times. The authors suggest that a reduction in
beta power might signal preparatory processes in the sensory system that expects the
upcoming event.

The observed decrease in beta power in task-relevant sensory regions in the current study
largely match the results reported by van Ede et al. 2°. During visual temporal predictions,
beta band power was reduced in visual sensory regions as compared to the visual control
condition during the entire disappearance time. During crossmodal predictions, in which
temporal information was provided to the visual system, but reappearance was expected in the
tactile domain, beta band power was decreased in both, visual as well as tactile regions.

Since also in the luminance matching condition participants expected to perceive a visual
stimulus, preparatory processes alone cannot explain this reduction in beta power. This is
especially the case in the crossmodal condition, in which no visual stimulus was expected, but
stronger decreases in beta were also observed in visual areas. Moreover, since we observed
beta decreases also in tactile regions at the time of visual stimulus disappearance, the decrease
could not solely be an effect of external stimulation.

Beta decreases observed during temporal predictions might therefore relate to more than
only to preparatory processes to an upcoming stimulus. Cross-modal decreases in beta band
activity in both the temporal information providing visual as well as the stimulation expecting
tactile system might reflect that both sensory modalities are continuously involved in
temporal prediction processes, not only in processes preparing for the upcoming stimulation.
We found no significant increases in beta power during temporal predictions, even if the time
window was centered on the time point of predicted reappearance (ROT) in each participant
in either of the two prediction conditions (see Fig. S2). Whether decreases in beta power are
associated with non-rhythmic temporal predictions while increases might reflect temporal
predictions during rhythmic stimulation, remains subject to future research.
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335  Neural oscillations at low frequencies adapt to the temporal structure of visual moving
336  stimuli

337 Studies found that neural oscillations entrain towards rhythmic sensory input to track the
338  low-frequency temporal regularities of the stimulation, especially in the auditory domain !4,
339  Such phase entrainment does not only occur in the delta band but can flexibly adapt to the
340  frequency of the external input also at higher frequencies such as the theta or the alpha band
341  during auditory stimulation !°. However, in the visual system, evidence for the tracking of
342 temporally predictive input by neural oscillations is not as clear. On the one hand, studies
343  showed that the phase of neural oscillations is involved in temporal predictions of low-

344  frequency visual input 1216 On the other hand, studies suggested that temporal predictions
345  in the visual system were specific to the alpha band, although sensory input was provided in
346  lower frequencies '%?7. Rohenkohl and Nobre ', for instance, used rhythmically presented
347  visual stimuli at 2.5 and 1.25 Hz moving across the screen until it disappeared behind an

348  occluder. Nevertheless, neural oscillations exclusively from the alpha band showed modulated
349  activity associated with temporal predictions during the disappearance time. They found no
350  phase locking of oscillations in lower frequencies.

351 In the current study, we provide further evidence that neural oscillations from the delta
352  band show enhanced phase alignment during visual temporal predictions across trials. In

353  order to adapt to the temporal regularity of the presented visual stimulus, delta frequencies in
354  awide network of parietal and frontal brain areas exerted more consistent phase resets at

355  around the time point of disappearance of a visual stimulus as compared to a luminance

356  matching control condition. The strength of this phase adjustment in each participant

357  correlated with the consistency in judging a reappearance of the visual stimulus as too early or
358  too late. This was the case only in the temporal prediction tasks, which underlines the

359  behavioral relevance of the observed phase adjustments for temporal predictions.

360 Moreover, within each participant’s neural oscillation that showed the strongest ITPC
361  during temporal predictions, we found a clustering of phases roughly around +90° at each
362  participant’s ROT. This was not the case when using the frequencies showing the strongest
363  ITPC in the luminance matching condition, where timing was not as important. The bimodal
364  distribution with peaks at 90° as well as -90° was most likely caused by analyzing the data
365  from all participants as well as sensors from both hemispheres together. Possibly differently
366  oriented generators in each participant as well as flips of the phase across hemispheres make
367 it difficult to differentiate between excitable and inhibitory phases of the oscillation using
368  whole-head scalp recordings. Nevertheless, the peaks at £90° provide strong support for the
369 notion that in the context of temporal predictions the phase of delta oscillations adjusts to the
370  temporal structure of the stimulation to code for the timing of the predicted reappearance. We
371  propose that within each individual’s subjective temporal framework, neural oscillations

372 adjusted their phase to the external stimulation such that a phase of high excitability

373  eventually coincided with each individual’s predicted time point of reappearance. Our results
374  are in line with results reported by Cravo et al. !', who showed that contrast sensitivity was a
375  function of the phase of entrained delta oscillations. In their study, the strongest contrast

376  sensitivity for visual stimuli was also observed at a delta phase around 90°. This phase range
377  might therefore indicate an optimal phase for processes related to temporal prediction.

378 Importantly, our study suggests that the mechanism of phase adjustments for temporal
379  predictions can be extended to external stimulation that does not as such involve rhythms. We
380  found that low-frequency oscillations can adjust their phase also to the temporal structure of
381  external stimulation that had to be inferred from motion. Many natural stimuli comprise

382  highly predictable regularities, but not all of them are intrinsically rhythmic. Our results
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therefore indicate that the framework of phase adjustments during temporal predictions might
be generalized to all forms of predictive stimulation.

Enhanced ITPC cannot be explained by stimulus-driven processes

In earlier investigations of phase adjustments to external stimulation participants were
mostly presented with streams of rhythmic input. However, rhythmic input also causes
evoked brain activity within the same frequency range, which makes it difficult to disentangle
streams of evoked activity from entrained endogenous neural oscillations 32!,

Our results provide evidence that phase resets of low-frequency oscillations observed
during temporal predictions cannot solely be explained by stimulus-evoked, bottom-up brain
activity se¢also.21.28 Tp the current study, we aimed at reducing such brain responses to a
minimum by presenting participants with a continuously moving stimulus instead of several
discrete stimuli. We were particularly interested in the time point at which the stimulus
transiently disappeared behind an occluder (as opposed to sharp onsets and offsets in
rhythms). At disappearance, we did not observe an increase in low-frequency power as
compared to pre-stimulus baseline in any of the conditions, which could have been associated
with evoked brain activity such as, for instance, the contingent negative variation NV 18,

Moreover, by introducing a novel experimental design, in which physical stimulation was
exactly the same as during temporal predictions as well as a control condition, we controlled
for brain responses that could be driven by bottom-up stimulus processing and are not specific
to temporal predictions. Importantly, delta ITPC but not power was stronger during temporal
predictions (see also Fig. S1). This provides strong evidence that ongoing, endogenous neural
oscillations underwent a phase reset around the time point of disappearance, which was more
consistent during temporal predictions than during the luminance matching task. These phase
resets can therefore not be solely related to brain responses evoked by the offset of the visual
movement, since we did not observe power differences at low frequencies.

Phase resets occurred in a network of frontoparietal and sensory brain areas

We observed enhanced ITPC values in a network of mostly frontal and parietal brain
areas during visual as well as crossmodal temporal predictions. Similarly, Besle et al. %°
observed significant phase entrainment to audiovisual stimulation in a wide network of
distributed areas including parietal and inferior frontal areas. These observations support the
notion that brain areas involved in temporal predictions may constitute a frontoparietal timing
network 63,

Further, we found enhanced ITPC values also in early somatosensory areas contralateral
to the disappearance of the purely visual stimulus during crossmodal temporal predictions,
despite the fact that prediction-relevant information was provided only by a moving visual
stimulus. This supports evidence reported earlier showing that stimulation within one
modality can crossmodally reset the phase of ongoing low-frequency in other modalities,
which might be an important mechanism for multisensory integration processes 2223,

Moreover, strong correlations between ITPC and behavior were also observed in the
cerebellum, supporting earlier reports on a involvement of the cerebellum in temporal
prediction processes *!'. Roth and coworkers *2, for instance, found that cerebellar patients
were significantly impaired in recalibrating sensory temporal predictions of a reappearing
visual stimulus. This finding is of particular interest as we adapted the authors’ experimental
paradigm for the use in the current study. Theirs and our results therefore indicate that the
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cerebellum might be crucially involved in accurate and consistent judgments of temporal
regularities deployed in perceiving object motion.

Conclusions

We provide strong evidence that the phase of neural oscillations can adjust to the
temporal regularities of external stimulation and do not arise as a byproduct of bottom-up
stimulus processing. Such phase alignments could provide a key mechanism that predicts the
onset of upcoming events in order to optimize processing of relevant information and thereby
adapt behavior. We show that temporal information provided to one modality leads to phase
adjustments in another modality when crossmodal temporal predictions are necessary,
providing further evidence that such crossmodal phase resets could be the neuronal basis of
multisensory integration processes. Importantly, we observed that these phase adjustments
reflected each individual’s subjective temporal predictions time points. This supports the
notion that the phase of neural oscillation indeed codes for the subjective estimation of
elapsed time. Taken together, our results provide important insights into the neural
mechanisms that might be utilized by the brain to predict the temporal onsets of upcoming
events.
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443  Materials and Methods

444 An exhaustive description of the methods can be found in the SI.

445  Participants and experimental procedure

446 Twenty-three healthy volunteers took part in the study. The ethics committee of the
447  Medical Association Hamburg approved the study protocol and the experiment was carried
448  out in accordance with the approved guidelines and regulations.

449 The experimental paradigm used in the current study was adopted from an earlier report
450  investigating visual temporal predictions in cerebellar patients *2. Our experiment consisted of
451  three conditions: a visual temporal prediction task, a crossmodal (tactile) temporal prediction
452  task, and a luminance matching (control) task. The trials of all conditions started with the

453  presentation of a randomly generated, white noise occluder presented in the middle of the

454  screen. We instructed participants to fixate the central fixation dot throughout the entire trial.
455  After 1500 ms, an oval stimulus moved from the periphery towards the occluder with constant
456  speed. The luminance of the stimulus differed in all trials (6 steps). In each trial, the starting
457  point of the stimulus differed such that the stimulus took 1,000 to 1,500 ms to disappear

458  completely behind the occluder from starting point, randomly jittered with 100 ms

459  (counterbalanced). The size of the occluder and the speed of the stimulus were chosen so that
460  the stimulus would need exactly 1,500 ms to reappear on the other side of the occluder.

461  However, we manipulated the timing and the luminance of the reappearing stimulus. In each
462  trial, the reappearance of the stimulus differed between +17 to £467 ms from the correct

463  reappearance time of 1,500 ms. Hence, the stimulus was covered by the occluder for 1,033 to
464 1,967 ms and was reappearing at 20 different time points. In the visual prediction task as well
465  as in the luminance matching task, we also manipulated the luminance of the reappearing

466  stimulus relative the luminance the stimulus had before disappearance in each trial (also using
467 20 different values). After reappearance, the stimulus moved to the other side of the screen for
468 500 ms with the same speed until it set off the screen. The occluder was presented throughout
469  the entire trial.

470 The visual temporal prediction as well as the luminance matching task had the exact
471  equal physical appearance throughout all trials. They only differed in their cognitive set. In
472  the visual temporal prediction task, we asked participants to judge whether the stimulus was
473  reappearing foo early or too late. In the luminance matching task, participants were asked to
474  judge whether the luminance of the reappearing visual stimulus became brighter or darker.

475 The tactile temporal prediction task was equal to the visual temporal prediction task, with
476  the only difference that a tactile stimulus instead of a visual was presented at the time of

477  reappearance to the right or left index finger. The tactile stimulus was presented by means of
478  a Braille piezostimulator for 200 ms. Participants did not receive trial-wise feedback about the
479  correctness of their response. After a short delay of 200 ms, the white-noise occluder was

480  randomly re-shuffled to signal the start of a new trial.

481 All three conditions were presented block-wise. At the beginning of each block,

482  participants were informed about the current task. At the end of each block, they were

483  informed about the overall accuracy of their answers within the last block. Each block

484  consisted of 60 trials, resulting in a total number of 480 trials per condition or 1,440 trials in
485  total.

486 We used MATLAB R2014b (MathWorks, Natick, USA; RRID: SCR_001622) and
487  Psychtoolbox ** (RRID: SCR_002881). To mask the sound of the Braille stimulator during
488  tactile stimulation, we presented participants with auditory pink noise at sampling rate of 48
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kHz and volume of 85 dB using MEG-compatible in-ear headphones during all experimental
blocks.

Data acquisition and pre-processing

MEG was recorded at a sampling rate of 1,200 Hz using a 275-channel whole-head
system (CTF MEG International Services LP, Coquitlam, Canada). Online head localizations
34 were used to navigate participants back to their original head position prior to the onset of a
new experimental block if their movements exceeded five mm from their initial position.

We analyzed reaction time data using R 3> (RRID: SCR_001905) and RStudio (RStudio
Inc., Boston, USA; RRID: SCR _000432). Trials with reaction times longer than three
standard deviations were excluded from analysis. Due to the right-skewed nature of reaction
times, reaction time data were first log-transformed and then standardized across all trials
from each participant.

All other data were analyzed using MATLAB R2016b with FieldTrip 3¢ (RRID:
SCR _004849), the MEG and EEG Toolbox Hamburg (METH, Guido Nolte; RRID:
SCR _016104), or custom made scripts. Each trial was cut 1,250 ms earlier to stimulus
movement onset and 1,250 ms after offset of the reappeared stimulus. Trials containing strong
muscle artifacts or jumps were detected by semi-automatic procedures implemented in
FieldTrip and excluded from analysis. The remaining trials were filtered with a high-pass
filter at 0.5 Hz, a low-pass filter at 170 Hz, and three band-stop filters at 49.5-50.5 Hz, 99.5—
100.5 Hz and 149.5-150.5 Hz and subsequently down-sampled to 400 Hz.

We performed an independent component analysis (infomax algorithm) to remove
components containing eye-movements, muscle, and cardiac artefacts. As a final step, using
procedures described by Stolk et al. 3* we identified trials in which the head position of the
participant differed by 5 mm from the mean circumcenter of the head position from the whole
session and excluded them from further analysis.

Quantification and statistical analysis

In the current experiment, we introduced a control condition that was physically identical
to our temporal prediction tasks (until reappearance in the tactile condition) in order to
account for processes that are not directly related temporal predictions. Hence, for most of our
statistical analyses, we were interested in comparing the two temporal prediction tasks with
the luminance matching control task, respectively, and not in comparing the two temporal
prediction tasks with each other. Therefore, instead of computing an analysis of variance
across all three conditions, we directly computed two separate ¢-tests for the comparison of
the visual or the tactile temporal prediction with the luminance matching task, respectively,
and accounted for multiple comparisons by adjusting the alpha level.

Psychometric curve

We fitted a psychometric curve to the behavioral data of each participant from all trials in
each condition. First, for each timing difference or luminance difference, respectively, we
computed the proportion of “too late” or “brighter” answers for each participant. Then, we
fitted a binomial logistic regression (psychometric curve) using the glmfit.m and gmlval.m
functions provided in MATLAB. The fitted timing or luminance difference value at 50%
proportion “too late” or “brighter” answers was determined as ROT or PSE for each
participant, respectively. To test for a significant bias towards one of the answers, we tested
the ROT or PSE from all participants against zero using one-sample #-tests (o =.05/3 =
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.017). The steepness of the psychometric function was computed as the reciprocal of the
difference between fitted timing or luminance difference values at 75% and 25% proportion
“too late” or “brighter” answers, respectively.

Linear model

We averaged RT across all luminance differences within each timing difference bin in
each condition and then utilized a second-order (quadratic) polynomial regression model with
timing difference as predictor for reaction times and computed the first- and second-order
coefficients for each participant in each condition. The coefficients from all participants were
then tested against zero using one-sample #-tests in all conditions (o =.05 /3 =.017).

Spectral power

We decomposed the MEG recordings into time-frequency representations by convolving
the data with complex 40 Morlet’s wavelets 37, logarithmically spaced between 0.5 to 100 Hz
and with logarithmically increasing number of cycles from two to ten cycles. For all analyses
of the MEG data, we considered subjectively correct trials only, i.e., trials in which
participants answered correctly based on their individual ROT. To obtain an estimate of
spectral power modulations related to the different events in our experimental paradigm, we
cut each trial further into four separate, partly overlapping windows (see Fig. 2A): a
“Baseline” window from -550 to -50 ms earlier to movement onset; a “Movement” window
from -50 to 950 ms relative to the movement onset; a “Disappearance” window from -350 to
950 ms relative to complete disappearance of the stimulus behind the occluder; and a
“Reappearance” window from -350 to 450 ms relative to the (first frame) reappearance of the
stimulus. Spectral power estimates were then averaged across all trials belonging to the same
condition in each window and binned into time windows 100 ms (centered on each full deci-
second). All power estimates were normalized using the pre-stimulus baseline window from -
500 to -200 ms earlier to movement onset.

In order to obtain an overview of the spectral power modulations related to the different
events within the trials, we then averaged the power estimates across all channels and
conditions (grand average) and tested each time-frequency pair against the pre-stimulus
baseline using paired-sample z-tests. We controlled for multiple comparisons by employing
cluster-based permutation statistics as implemented in FieldTrip *%. For each window, a
separate cluster-permutation test was performed (a = .05; liberally chosen to observe all
ongoing power modulations; see Results section).

We subsequently compared the spectral power estimates averaged within the beta range
(13-30 Hz; see Results section) at each time point within the disappearance window and all
channels from the visual or tactile temporal prediction task with the luminance matching task.
We again employed cluster-permutation statistics, this time by clustering neighboring
channels and time points. We used a one-sided a = .025 / 2 = .0125, since negative and
positive clusters were tested separately, and to adjust for the two separate comparisons
between the conditions (used throughout the study unless stated differently).

To estimate spectral power in source space, we computed separate leadfields for each
recording session and participant based on each participant’s mean head position in each
session and individual magnetic resonance images. We used the single-shell volume
conductor model *° with a 5,003 voxel grid that was aligned to the MNI152 template brain
(Montreal Neurological Institute, MNI; http://www.mni.mcgill.ca) as implemented in the
METH toolbox. Cross-spectral density (CSD) matrices were computed from the complex
wavelet convolved data in steps of 100 ms in the same time windows as outlined above. To
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579  avoid biases in source projection, common adaptive linear spatial filters (DICS beamformer
580  49) pointing into the direction of maximal variance were computed from CSD matrices
581  averaged across all time bins and conditions for each frequency.

582 All time-frequency resolved CSD matrices were then multiplied with the spatial filters to
583  estimate spectral power in each of the 5,003 voxels and normalized with the pre-stimulus

584  baseline window. We then averaged across all time bins within the disappearance window and
585  utilized cluster-based permutation statistics to identify clusters of voxels that show statistical
586  difference in beta power between each of the temporal prediction tasks and the luminance

587  matching task.

588 Inter-trial phase consistency

589 We computed ITPC estimates from the complex time-frequency representations obtained
590  from the wavelet convolution as described in the Spectral power section above. In each time
591  sample and trial, the phase of the complex data was extracted (using the function angle.m in
592  MATLAB). ITPC was then computed across all subjectively correct and stratified trials

593  within each of the four time windows in all frequencies as

n
594 ITPC, = |n~t Z eikerr
r=1
595 where 7 is the number of trials and & the phase angle in trial » at time-frequency point #f

596  37. Similar to spectral power, we averaged ITPC estimates again in bins of 100 ms and plotted
597  all time windows averaged across all channels and conditions to obtain a general overview of
598  ITPC estimates at all events during the trial.

599 Since we were most interested in ITPC related to stimulus disappearance behind the

600  occluder, we subsequently computed ITPC in a longer time window from -1,900 ms to 1,900
601  ms centered around time of complete stimulus disappearance behind the occluder. For

602  statistical analysis, we first averaged ITPC estimates within a frequency band of 0.5 to 3 Hz
603  (see Results) and then computed cluster-based permutation statistics across all 100 ms time
604  bins and all sensors between each of the temporal prediction tasks and the luminance

605  matching task. ITPC on source level was computed using the same leadfields and common
606  beamformer filters as for spectral power (see above).

607 Correlations between condition-wise source level ITPC estimates and the steepness of
608  each individual’s psychometric function were computed using Pearson correlations in each of
609  the 5,003 voxels within the grid. For this analysis, we averaged ITPC estimates from time
610  bins of 0 to 1,500 ms with respect to the disappearance of the stimulus within the pre-defined
611  delta band of 0.5 to 3 Hz. Multiple comparisons were accounted for by using cluster-based
612  permutation statistics as implemented in FieldTrip (a = .025 /3 =.008)

613 Delta phase clustering at ROT

614 To determine whether each participant’s subjective ROT was associated with a specific
615  phase in the delta band, we extracted the phase at each individual’s ROT from sensors

616  showing the strongest ITPC effect and computed the distance from this distribution to a
617  uniform distribution over all possible phases.

618 For this analysis, we only considered trials in which the stimulus reappeared later than
619  each individual’s ROT and the participant answered subjectively correct. By this, we

620  prevented possible phase distortions by the external stimulation earlier to or at ROT.

621  Moreover, to make sure that we reduced also activity that was related to external stimulations
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after each individual’s ROT, we first aligned all trials from the same condition to the time
point of stimulus reappearance, computed the average across trials (event-related field, ERF)
and subtracted the ERF caused by the reappearance from all trials in that condition.
Subsequently, in each trial we centered a 2,500 ms long window on each participant’s ROT,
computed a complex wavelet convolution for all frequencies between 0.5 and 3 Hz (14
frequencies; same procedure and frequencies as above) in all channels, and computed the
mean phase angle at ROT, i.e., the center time bin, across all considered trials in each
condition. This procedure is similar to computing ITPC as described above, except for
extracting the angle of the mean phase vector instead of the length. Since for the luminance
matching task we did not have an estimate of each individual’s ROT, we applied the estimate
of ROT from the visual prediction task also to the luminance matching trials, since based on
their equal physical appearance temporal predictions should also be equal.

As a next step, from the result of the cluster-based permutation statistics on ITPC
estimates described above, we determined the sensors that showed the strongest ITPC effect
for the two contrasts between the temporal prediction tasks and the luminance matching task
for a time window between 0 and 1,500 ms after disappearance behind the occluder. For the
contrast between the visual prediction and the luminance matching task, we considered the
sensors showing the top 20% of z-values (37 channels). To keep the number of sensors
comparable, we also considered the top 37 sensors from the contrast of the tactile prediction
task against luminance matching.

Within these channels, for each individual participant we determined the frequency
within the 0.5 to 3 Hz delta band, which showed the strongest ITPC for the visual or the
tactile prediction as compared to the luminance matching task, respectively, in the same time
window of 0 to 1.500 ms. For the luminance matching condition, we extracted the frequencies
showing the strongest estimates of ITPC in the luminance matching as compared to the visual
temporal prediction task and used individual ROTs from the visual prediction task. For these
individual frequencies, we plotted the phase angle at ROT (as described above) from all the
considered channels and all participants in a histogram (in bins of 10°; see Fig. 5). We
computed the distance from the observed phase distribution to a uniform distribution using a
discrete and normalized version of the Kullback-Leibler distance, i.e., the modulation index
(MI) 4,

For statistical analysis, we repeated the same procedure as described above for 10,000
times and randomly picked any frequency from the 14 frequencies within the 0.5 to 3 Hz band
in each repetition. By that we obtained a distribution of surrogate MI estimates (but still based
on real data from all individual participants), from which we computed the percentile
determined by the MI that was observed using the individually strongest ITPC frequency. MI
estimates above the 95" percentile were considered significantly stronger as compared to the
randomly obtained surrogate MIs (p-value = 1 — percentile).
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