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Abstract 1 

Neural oscillations adjust their phase towards the predicted onset of rhythmic stimulation 2 
to optimize the processing of upcoming relevant information. Whether such phase alignments 3 
can be observed in non-rhythmic contexts, however, remains unclear. Here, we recorded the 4 
magnetoencephalogram while healthy participants were engaged in a temporal prediction task 5 
judging the visual or crossmodal (tactile) reappearance of a uniformly moving visual stimulus 6 
after it disappeared behind an occluder. The temporal prediction conditions were contrasted 7 
with a luminance matching control condition to dissociate phase adjustments of endogenous 8 
neural oscillations from stimulus-driven activity. During temporal predictions, we observed 9 
stronger delta band inter-trial phase consistency (ITPC) in a network of sensory, parietal and 10 
frontal brain areas. Delta ITPC further correlated with individual prediction performance in 11 
parts of the cerebellum and in visual cortex. Our results provide evidence that phase 12 
alignments of low-frequency neural oscillations underlie temporal predictions in non-13 
rhythmic unimodal and crossmodal contexts. 14 
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Introduction 18 

Neural oscillations reflect alternating states of higher or lower neural excitability, 19 
modulating the efficiency by which coupled neurons engage in mutual interactions 1. As a 20 
result, neural communication and information processing has been shown to occur in a phase-21 
dependent manner 2,3, reflected for example by fluctuations in perception thresholds 22 
correlating with the phase of ongoing oscillations 4. Based on these assumptions, oscillations 23 
were also linked to temporal predictions of upcoming relevant information 2,5,6. Studies have 24 
shown that animals can utilize predictive aspects of environmental stimuli in a way that 25 
reaction times are reduced 7–10 or stimulus processing is enhanced 11,12. By means of top-down 26 
induced phase resets of neural oscillations, phases of high excitability might be adjusted 27 
towards the expected onset of relevant upcoming stimulation in order to optimize behavior 13.  28 

Due to the rhythmic and therefore temporally highly predictable nature of many auditory 29 
stimuli such as speech or music, particularly in the auditory domain, many studies gathered 30 
evidence that oscillations reset and thereby adjust their phase towards rhythmic stimuli of 31 
various frequencies 14,15. Also in the visual domain, studies showed that neural oscillations 32 
align to rhythmic visual input 8,11,16,17. However, whether temporal predictions indeed involve 33 
phase resets of endogenous neural oscillations remains a matter of debate 18–20. Despite their 34 
ecological relevance, using rhythms for the investigation of an involvement of oscillations in 35 
temporal predictions entails methodological and conceptual challenges. Rhythmic input leads 36 
to a continuous stream of regularly bottom-up evoked potentials, which are – at least – 37 
difficult to distinguish from top-down phase adjusted endogenous neural oscillations within 38 
the same frequency 21. Rather than phase resets of endogenous neural oscillations, temporal 39 
predictions could therefore also be reflected by stimulus-induced potentials that appear to be 40 
rhythmic during rhythmic stimulation 18. Conclusive evidence that temporal predictions 41 
involve phase resets of endogenous neural oscillations rather than stimulus evoked potentials 42 
is still lacking.  43 

 Moreover, using only rhythmic stimulation excludes the opportunity to link phase 44 
adjustments to a more general neural mechanism that predicts the temporal structure of any 45 
external input. If phase adjustments form the basis of tracking the temporal regularities of any 46 
relevant information, neural oscillations should align also to predictable temporal regularities 47 
that are inferred from input that does not itself comprise rhythmic components, such as, for 48 
instance, monotonic motion. Nevertheless, the vast majority of studies investigating phase 49 
adjustments in the context of temporal predictions presented participants with streams of 50 
(quasi-)rhythmic stimulation. Disentangling phase alignments of neural oscillations from a 51 
continuous stream of event-related potentials in a non-rhythmic predictive context therefore 52 
constitute important aspects for examining the involvement of endogenous neural oscillations 53 
in temporal prediction processes. 54 

For this reason, we set out to investigate whether phase adjustments of neural oscillations 55 
can be observed for non-rhythmic, but predictable visual motion stimuli. We measured 56 
magnetoencephalography (MEG) while healthy participants watched a visual stimulus 57 
continuously moving across the screen until it disappeared behind an occluder. We 58 
manipulated the time for the stimulus to reappear on the other side of the occluder (on average 59 
1.5 s). The task was to judge whether the stimulus reappeared too early or too late based on 60 
the speed of the stimulus earlier to disappearance. Hence, participants were required to 61 
temporally predict the correct time point of reappearance to be able to accomplish the task. 62 
Participants further performed a control task, in which the task was to judge the luminance of 63 
the reappearing stimulus instead of its timing. Importantly, physical appearance of both 64 
conditions was exactly the same in all aspects of the stimulation. Any purely stimulus-related, 65 
bottom-up activity should therefore level out between the two conditions.  66 
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Moreover, since it has been shown that sensory stimulation can lead to crossmodal phase 67 
adjustments also in relevant but unstimulated other modalities 22,23, we further introduced a 68 
third condition, in which a tactile instead of a visual stimulus was presented at reappearance. 69 
By contrasting it to the luminance matching control condition, we sought to determine 70 
whether phase adjustments can be observed in regions associated with tactile stimulus 71 
processing, when sensory information was in fact only provided to the visual system.  72 

In the two temporal prediction tasks, as compared to luminance matching, we observed 73 
stronger delta band inter-trial phase consistency (ITPC) within time windows between 74 
disappearance and expected reappearance in frontoparietal brain areas. Enhanced delta ITPC 75 
specifically in these time windows reflected phase resets of ongoing oscillations at 76 
disappearance of the stimulus, where temporal prediction might be initialized. By introducing 77 
a novel design, in which physical stimulation was exactly the same between the visual 78 
temporal prediction and the luminance matching task, we provide profound evidence that 79 
purely bottom-up evoked processes could not explain observed differences in ITPC between 80 
the condition. In the crossmodal setting, we show that temporal information provided to the 81 
visual modality leads to phase adjustments also in the tactile modality. Moreover, participants 82 
who showed a consistent judgment of reappearance timing, as represented by a steep 83 
psychometric function, also showed stronger delta ITPC during temporal predictions. This 84 
confirms that a consistent timing judgment across trials also involves a consistent phase 85 
across trials. We further observed a phase clustering at ±90° within the delta oscillation 86 
showing the strongest ITPC in each participant at the individual subjective time points of 87 
predicted reappearance. This strongly suggests that the phase of ongoing oscillations serves as 88 
a subjective marker for the individual estimation of elapsed time.  89 
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Results 90 

Behavioral results 91 

Participants did not receive feedback about the correctness of their response. This 92 
ensured that participants relied on their individual and subjective “right on time” (ROT) 93 
impression in the temporal prediction conditions and “point of subjective equivalence” (PSE) 94 
in the luminance matching condition. Across participants, there was no statistically significant 95 
bias towards “too early/darker” or “too late/brighter” responses in the visual temporal 96 
prediction (Dt (ROTV) = 13.15 ± 155.20 ms; t(22) = .41; p = .69) or in the luminance 97 
matching task (DRGB (PSE) = -1.29 ± 4.54 RGB; t(22) = -1.36; p = .19), respectively (Fig. 98 
1B). In the tactile temporal prediction task, participants showed a significant bias towards 99 
“too early” responses (Dt (ROTT) = 99.80 ± 150.00 ms; t(22) = 3.19; p = .004). 100 

Participants responded significantly faster in each of the temporal prediction tasks as 101 
compared to the luminance matching task (visual prediction: t(22) = -2.55; p = .02; temporal 102 
prediction: t(22) = -4.29; p < .001). To assess whether reaction times were dependent on the 103 
timing of the reappearing stimulus (Fig. 1C), we averaged across all luminance differences 104 
and fitted a linear model to reaction time data in each condition. Reaction times were 105 
significantly predicted by timing difference in all, the visual prediction (first-order 106 
coefficient: -7.77 x 10-4  ± 5.27 x 10-4, t(22) = -7.08, p < .001; second-order coefficient: -1.42 107 
x 10-6  ± 1.20 x 10-6, t(22) = -5.68, p < .001), the tactile prediction (first-order coefficient: -108 
2.88 x 10-4  ± 4.43 x 10-4, t(22) = -3.12, p = .005; second-order coefficient: -1.26 x 10-6  ± 1.10 109 
x 10-6, t(22) = -5.50, p < .001) as well as in the luminance matching task (first-order 110 
coefficient: -1.60 x 10-4  ± 1.44 x 10-4, t(22) = -5.31, p < .001; second-order coefficient: 2.75 x 111 
10-7 ± 3.51 x 10-7, t(22) = 3.76, p = .001). Hence, although the timing of the stimulus was not 112 
relevant in the luminance matching task, reaction times in that condition were (in part) also 113 
dependent on the timing of the reappearing stimulus and faster the later the stimulus 114 
reappeared. 115 
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Figure 1. Experimental design and behavioral results. (A) A stimulus moved towards the center of the screen 116 
until it disappeared behind an occluder. The task was to judge whether the stimulus reappeared too early or too 117 
late. In the luminance matching condition, task was to judge whether the luminance became brighter or darker. 118 
Importantly, physical stimulation was exactly the same as in the visual prediction task. In the tactile temporal 119 
prediction task, at reappearance a tactile stimulus was presented contralateral to the disappearance of the visual 120 
stimulus. (B) Psychometric functions and individual ROT/PSE estimates. A timing difference of 0 refers to the 121 
objectively correct reappearance of the stimulus after 1,500 ms. Analogously, a luminance difference of 0 refers 122 
to equal luminance after reappearance provided in RGB values (see Methods). Colored areas depict standard errors 123 
of the mean (SEM). (C) Log-transformed and standardized reaction times for all timing differences (mean ± SEM). 124 
P = proportion; LM = luminance matching; t = time; l = luminance; RGB = red-green-blue. 125 
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Temporal prediction was associated with reduced beta power in sensory regions 126 

Analyzing the neural data, we were first interested in investigating which frequency 127 
bands showed modulated spectral power during windows of temporal predictions, and tested 128 
an average of spectral power across all sensors and conditions against a pre-stimulus baseline 129 
window. As a first step, we obtained a general overview of power modulations at each event 130 
in the experimental paradigm. Due to the jittered stimulation built into the design (see 131 
Materials and Methods), we computed cluster-based permutations statistics in three separate 132 
time windows centered on: (a) the onset of the moving stimulus (“Movement”), (b) 133 
disappearance of the stimulus behind the occluder (“Disappearance”), and (c) reappearance of 134 
the stimulus (“Reappearance”; Fig. 2A). 135 

In time bins around movement onset as well as reappearance (but not disappearance) of 136 
the stimulus, clusters of frequencies in the theta and delta range showed a statistically 137 
significant increase of spectral power as compared to the baseline window. All time windows 138 
further depicted a significant decrease of spectral power in frequencies within the beta and 139 
gamma range (all cluster p-values < .008). Importantly, even with using a liberal cluster alpha 140 
level of .05 (one-sided), we did not find a statistically significant modulation of delta power 141 
during the disappearance window. This was also not the case when reducing the test to 142 
sensors from occipital regions only (see Fig. S1).  143 

Since we were most interested in examining power modulations associated with temporal 144 
predictions, i.e., during the disappearance window, we further compared spectral power 145 
estimates between the temporal prediction tasks and the luminance matching task in all 146 
sensors within the disappearance window while ignoring the other windows. We restricted 147 
our analysis to the classical beta band ranging from 13 to 30 Hz, showing the strongest 148 
modulation as compared to baseline during the disappearance window. Cluster-based 149 
permutation statistics revealed reduced beta power during visual temporal prediction in 150 
occipital sensors during all time-bins of the disappearance window (cluster-p = .01). Source 151 
level statistics revealed a statistically significant decrease of beta power in a cluster of 152 
bilateral occipital voxels (cluster-p = .01). Beta power was further reduced during tactile 153 
prediction in a cluster of occipital as well as left lateralized frontocentral sensors (cluster-p = 154 
.002). At source level, a significant power reduction in the beta band was most strongly 155 
apparent in parts of bilateral visual as well as left-lateralized somatosensory cortex (cluster-p 156 
= .01).  157 
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Figure 2. Power modulations during temporal prediction. (A) Spectral power averaged across sensors, 158 
conditions, and participants. Each window was centered on the different events within the paradigm and 159 
normalized with pre-stimulus baseline. Time 0 refers to the onset of each event. Cluster-based permutation 160 
statistics revealed significant power modulations as compared to baseline (unmasked colors). See also Fig. S1. 161 
(B,C) Difference between the two temporal prediction and the luminance matching task, respectively, within the 162 
beta band (13 – 30 Hz) in time bins around stimulus disappearance. At source level, cluster-based permutation 163 
statistics revealed cluster of voxels showing significant differences between the conditions (colored voxels). See 164 
also Fig. S2. LM = luminance matching. 165 
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Inter-trial phase consistency between conditions 166 

For the analysis of ITPC, we followed a similar approach. First, we tested ITPC 167 
differences to baseline in the three time windows for an average across all sensors and 168 
conditions. ITPC was significantly increased across a range of different frequencies in time 169 
bins around movement onset, disappearance and reappearance of the stimulus (all cluster-p < 170 
.001; Fig. 3A). For time windows centered on movement onset as well as reappearance 171 
significant ITPC increases were strongest in the delta to alpha range. At disappearance of the 172 
stimulus, significant ITPC increases were observed up to the low beta range with strongest 173 
increases in the delta band.  174 

Hence, the delta band showed no increase in power but the strongest increase in ITPC as 175 
compared to baseline during the disappearance window for an average across all conditions 176 
(see Fig. 2A, 3A, and S1). For further statistical comparisons between conditions, we 177 
therefore restricted our analyses to an average of frequencies between 0.5 to 3 Hz. For a better 178 
estimation of when differences in ITPC between the conditions became apparent, we enlarged 179 
the analysis of ITPC to time bins ranging from -1,900 ms to 1,900 ms centered on the 180 
disappearance of the stimulus. Note that in this enlarged analysis window the timing of the 181 
movement onset as well as the reappearance of the stimulus strongly jittered across trials. The 182 
effect of these events on ITPC estimates were thus strongly reduced (see Fig. S3; for 183 
condition-specific ITPC differences during disappearance to baseline, see Fig. S4). 184 

We found two clusters that showed significantly stronger ITPC during visual temporal 185 
predictions as compared to luminance matching (Fig. 3B). One cluster included sensors from 186 
right temporal, frontal and occipital regions in time bins from -400 to 1,900 ms (cluster p < 187 
.001). The second cluster included left frontotemporal sensors in time bins ranging from 0 to 188 
1,900 ms (cluster p = .01) Source level analysis revealed that for an average of the time 189 
window from -400 to 1,900 ms ITPC differences between the two conditions were strongest 190 
in right-lateralized central and inferior frontal voxels (cluster p < .001).  191 

ITPC was also significantly enhanced in bilateral temporal sensors during tactile 192 
temporal predictions, evolving around -400 ms in right temporal sensors and shifting towards 193 
left hemisphere with ongoing disappearance time (cluster p < .001; Fig. 3C). In this contrast, 194 
however, differences in ITPC were more strongly apparent also in frontal and central sensors. 195 
Besides strongest differences in ITPC again in right superior parietal and inferior frontal 196 
voxels, source level analysis also revealed strong differences in bilateral somatosensory 197 
voxels for the contrast of tactile prediction to luminance matching (cluster p < .001).  198 

To make sure that differences in eye movements do not explain the observed differences 199 
in ITPC between the conditions, we analyzed horizontal eye movements recorded by an eye 200 
tracker (ET) during the MEG measurement. Eye movements as well as ITPC computed from 201 
the ET data did not show any differences between the conditions (see Fig. S5A,B,C). 202 
Moreover, we did not observe significant correlations between ITPC values computed from 203 
the ET and the MEG signal in any of the conditions across participants (see Fig. S5D).  204 

Figure 3D depicts absolute ITPC estimates for all three conditions in the enlarged 205 
disappearance time window. ITPC was averaged across participants and all the sensors that 206 
exhibited the top 20% of t values in the ITPC contrast between visual temporal prediction and 207 
luminance matching between 0 and 1,500 ms (see Fig. 3B; similar results were obtained for 208 
sensors showing the top 10% or 5% of t values, see Fig. S3D). ITPC also increased in the 209 
luminance matching condition around disappearance of the stimulus, but dropped down to 210 
stimulus movement level shortly afterwards. ITPC in the visual as well as tactile temporal 211 
prediction tasks stayed elevated throughout the entire disappearance window.  212 
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Figure 3. ITPC during temporal prediction as compared to luminance matching. (A) ITPC estimates 213 
averaged across sensors, conditions, and participants. Masked colors refer to non-significant ITPC modulations as 214 
compared to baseline. (B,C) Difference in ITPC between the visual or tactile prediction and the luminance 215 
matching task, respectively, within the delta band. For clarity, only every second time bin was plotted. On source 216 
level, clusters of voxels showing significant differences between the conditions are colored. See also Fig. S3, S4, 217 
and S5. (D) Time course of absolute ITPC estimates within each condition for time bins centered around 218 
disappearance of the stimulus (time 0; mean ± SEM). ITPC estimates were averaged across channels that showed 219 
the top 20% of t-values for the comparison of the visual prediction with the luminance matching task (see 220 
topography). LM = luminance matching. 221 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 11 

Correlation of ITPC to behavioral performance 222 

If the phase of neural oscillations was indeed associated with temporal predictions, a 223 
participant who judged the reappearance of the stimulus within her individual subjectively 224 
correct ROT framework in a consistent manner should also exhibit stronger ITPC during 225 
temporal predictions, as a consistent timing judgement across trials should involve a similar 226 
phase across trials. The consistency of judgements can be inferred from the steepness of the 227 
psychometric function – the steeper the psychometric function, the more consistent the 228 
answers of the participant. We computed Pearson correlations of source level delta ITPC with 229 
the steepness of the psychometric function across participants and found statistically 230 
significant positive correlations in the visual (cluster p = .003) as well as in the tactile 231 
temporal prediction task (cluster p = .002; Fig. 4). Strongest correlations were found in the 232 
cerebellum and right lateralized early visual areas in both tasks. No clusters showing 233 
significant positive or negative correlations were observed in the luminance matching task (all 234 
cluster p > .1).  235 

 

 
 

 
 
Figure 4. Correlation of ITPC to behavior. (A,B) Correlation of individual ITPC estimates with the individual 236 
steepness of the psychometric function within all voxels, shown in (A) for the visual prediction, and in (B) for the 237 
tactile prediction condition. ITPC estimates were averaged within the delta band and time windows of 0 to 1,000 238 
ms centered on the disappearance of the stimulus. Only the clusters of voxels showing significant correlations are 239 
colored. In the scatter plots,  each dot represents one participant and ITPC estimates were averaged across all 240 
voxels within the clusters of significant correlations. There was no significant correlation observed for the 241 
luminance matching condition.  242 
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Delta phase clustering at individually predicted reappearance time points 243 

Furthermore, if the phase of oscillations indeed codes for the predicted time point of 244 
reappearance, a clustering of a specific phase should be observed, when extracting the phase 245 
at each individual ROT, i.e., the time point of each individual’s estimation for the correct 246 
reappearance of the stimulus. Such a clustering at subjective ROT estimates would provide 247 
strong evidence that the phase of ongoing oscillations codes for the subjective estimation of 248 
elapsed time. That is, in case there was no relationship between delta phase and individual 249 
ROTs, all phases extracted at ROT should be randomly distributed across the unit circle, since 250 
individual ROTs strongly differed across participants as well (see Fig. 1B).  251 

In order to test that, we extracted the mean phase of that delta frequency that showed the 252 
strongest ITPC within each temporal prediction task as compared to the luminance matching 253 
task at ROT in each participant. We again used the sensors that showed the strongest 254 
statistical differences in ITPC for the contrasts of each prediction task to the luminance 255 
matching (see Fig. 3B and C). Moreover, only trials in which the stimulus actually reappeared 256 
later than each individuals ROT were considered, so that stimulus onset related brain activity 257 
would not distort phase estimates at ROT. Mean phases extracted at ROT from each channel 258 
and all participants were then combined and plotted into a histogram for each condition (Fig. 259 
5, upper row; each plot shows participants x channel data). We quantified the distance of the 260 
observed distribution to a uniform distribution by means of the modulation index MI; 24.  261 

To test whether the observed MI was significantly stronger than a random distribution 262 
obtained from surrogate MIs, we repeated the analysis 10,000 times using a randomly chosen 263 
frequency from the same delta band for each participant in each repetition. We found that for 264 
both, the visual prediction (p = .03) as well as the tactile prediction task (p = 0), the observed 265 
MI was significantly stronger than the surrogate MIs. Phases at ROT from both tasks 266 
clustered roughly around ±90°. In the luminance matching task, no significant clustering at a 267 
specific phase was found (p = .96).  268 

Our reaction time analysis revealed that also in the luminance matching task, participants 269 
had a certain expectation about the temporal reappearance of the stimulus. Therefore, we 270 
hypothesized that the phase of the frequency that showed the strongest ITPC during the visual 271 
prediction task might also code for the timing of the reappearing stimulus in the luminance 272 
matching task, since physical stimulation was identical in both tasks. We repeated the above 273 
described analysis for the luminance matching condition, now using the same frequencies as 274 
obtained from the visual prediction condition and again tested the observed MI against 10,000 275 
repetitions with randomly chosen frequencies (Fig. 5, Panel 4: LM (VP)). With frequencies 276 
obtained from the visual prediction task, the MI observed for the luminance matching task 277 
was significantly stronger than MIs obtained from the random repetitions (p = .02).  278 
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Figure 5. Delta band phase clustering at individual ROT. In each condition, the mean phase observed at 279 
individual ROT for each participant was extracted from the top 20% of channels (see Fig. 2 and topographies) and 280 
from the delta frequency showing the strongest differences in ITPC to luminance matching. All phases were plotted 281 
into a histogram (upper panels) and the modulation index was computed from that distribution (colored line in 282 
lower panels). Permutations (n = 10,000) were generated by extracting the phase from random frequencies within 283 
the delta band (as opposed to the frequency with strongest ITPC) and computing the MI for each permutation 284 
(distribution in lower panels). LM = luminance matching; LM (VP) = data from luminance matching condition 285 
with frequencies determined in the visual prediction condition (see main text); MI = modulation index.  286 

 287 
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Discussion 288 

Our results support the idea that phase adjustments of ongoing neural oscillations could 289 
form the neuronal basis of temporal predictions and suggest that this framework can be 290 
extended to temporal predictions inferred from stimulation that does not itself comprise 291 
rhythmic components. Our task design enabled us to disentangle the phase reset of ongoing 292 
neural oscillations from evoked event related potentials and showed that phase adjustments 293 
are stronger in the context of temporal predictions than in tasks where temporal structure is 294 
less relevant. The strength of the observed phase adjustments correlated with the ability to 295 
consistently judge the temporal reappearance of the stimulus across participants. Moreover, 296 
the phase of individual delta oscillations clustered at around 90° at each participant’s 297 
predicted time point of reappearance, possibly indicating an optimal phase of neural 298 
oscillations in the context of temporal prediction.  299 

Cross-modal temporal predictions are reflected by a beta power reduction in both 300 
sensory systems 301 

It has been suggested that temporal predictions of upcoming events might be mediated by 302 
neuronal oscillations in the delta and beta frequency range 5. The enhanced phase consistency 303 
of delta oscillations as well as the power modulations in the beta band observed in the current 304 
study are in line with this hypothesis. However, earlier reports on beta power modulations 305 
during temporal predictions are inconsistent. On the one hand, studies found that beta power 306 
was even increased shortly before the onset of the expected stimulus in auditory 25 and visual 307 
rhythmic stimulation 16. On the other hand, van Ede et al. 26 found that predicting the onset of 308 
a tactile stimulus was specifically associated with a reduction of beta power in contralateral 309 
tactile areas and accompanied by faster reaction times. The authors suggest that a reduction in 310 
beta power might signal preparatory processes in the sensory system that expects the 311 
upcoming event. 312 

The observed decrease in beta power in task-relevant sensory regions in the current study 313 
largely match the results reported by van Ede et al. 26. During visual temporal predictions, 314 
beta band power was reduced in visual sensory regions as compared to the visual control 315 
condition during the entire disappearance time. During crossmodal predictions, in which 316 
temporal information was provided to the visual system, but reappearance was expected in the 317 
tactile domain, beta band power was decreased in both, visual as well as tactile regions.  318 

Since also in the luminance matching condition participants expected to perceive a visual 319 
stimulus, preparatory processes alone cannot explain this reduction in beta power. This is 320 
especially the case in the crossmodal condition, in which no visual stimulus was expected, but 321 
stronger decreases in beta were also observed in visual areas. Moreover, since we observed 322 
beta decreases also in tactile regions at the time of visual stimulus disappearance, the decrease 323 
could not solely be an effect of external stimulation.  324 

Beta decreases observed during temporal predictions might therefore relate to more than 325 
only to preparatory processes to an upcoming stimulus. Cross-modal decreases in beta band 326 
activity in both the temporal information providing visual as well as the stimulation expecting 327 
tactile system might reflect that both sensory modalities are continuously involved in 328 
temporal prediction processes, not only in processes preparing for the upcoming stimulation. 329 
We found no significant increases in beta power during temporal predictions, even if the time 330 
window was centered on the time point of predicted reappearance (ROT) in each participant 331 
in either of the two prediction conditions (see Fig. S2). Whether decreases in beta power are 332 
associated with non-rhythmic temporal predictions while increases might reflect temporal 333 
predictions during rhythmic stimulation, remains subject to future research. 334 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 15 

Neural oscillations at low frequencies adapt to the temporal structure of visual moving 335 
stimuli 336 

Studies found that neural oscillations entrain towards rhythmic sensory input to track the 337 
low-frequency temporal regularities of the stimulation, especially in the auditory domain 14. 338 
Such phase entrainment does not only occur in the delta band but can flexibly adapt to the 339 
frequency of the external input also at higher frequencies such as the theta or the alpha band 340 
during auditory stimulation 15. However, in the visual system, evidence for the tracking of 341 
temporally predictive input by neural oscillations is not as clear. On the one hand, studies 342 
showed that the phase of neural oscillations is involved in temporal predictions of low-343 
frequency visual input 11,12,16. On the other hand, studies suggested that temporal predictions 344 
in the visual system were specific to the alpha band, although sensory input was provided in 345 
lower frequencies 10,27. Rohenkohl and Nobre 10, for instance, used rhythmically presented 346 
visual stimuli at 2.5 and 1.25 Hz moving across the screen until it disappeared behind an 347 
occluder. Nevertheless, neural oscillations exclusively from the alpha band showed modulated 348 
activity associated with temporal predictions during the disappearance time. They found no 349 
phase locking of oscillations in lower frequencies.  350 

In the current study, we provide further evidence that neural oscillations from the delta 351 
band show enhanced phase alignment during visual temporal predictions across trials. In 352 
order to adapt to the temporal regularity of the presented visual stimulus, delta frequencies in 353 
a wide network of parietal and frontal brain areas exerted more consistent phase resets at 354 
around the time point of disappearance of a visual stimulus as compared to a luminance 355 
matching control condition. The strength of this phase adjustment in each participant 356 
correlated with the consistency in judging a reappearance of the visual stimulus as too early or 357 
too late. This was the case only in the temporal prediction tasks, which underlines the 358 
behavioral relevance of the observed phase adjustments for temporal predictions.  359 

Moreover, within each participant’s neural oscillation that showed the strongest ITPC 360 
during temporal predictions, we found a clustering of phases roughly around ±90° at each 361 
participant’s ROT. This was not the case when using the frequencies showing the strongest 362 
ITPC in the luminance matching condition, where timing was not as important. The bimodal 363 
distribution with peaks at 90° as well as -90° was most likely caused by analyzing the data 364 
from all participants as well as sensors from both hemispheres together. Possibly differently 365 
oriented generators in each participant as well as flips of the phase across hemispheres make 366 
it difficult to differentiate between excitable and inhibitory phases of the oscillation using 367 
whole-head scalp recordings. Nevertheless, the peaks at ±90° provide strong support for the 368 
notion that in the context of temporal predictions the phase of delta oscillations adjusts to the 369 
temporal structure of the stimulation to code for the timing of the predicted reappearance. We 370 
propose that within each individual’s subjective temporal framework, neural oscillations 371 
adjusted their phase to the external stimulation such that a phase of high excitability 372 
eventually coincided with each individual’s predicted time point of reappearance. Our results 373 
are in line with results reported by Cravo et al. 11, who showed that contrast sensitivity was a 374 
function of the phase of entrained delta oscillations. In their study, the strongest contrast 375 
sensitivity for visual stimuli was also observed at a delta phase around 90°. This phase range 376 
might therefore indicate an optimal phase for processes related to temporal prediction. 377 

Importantly, our study suggests that the mechanism of phase adjustments for temporal 378 
predictions can be extended to external stimulation that does not as such involve rhythms. We 379 
found that low-frequency oscillations can adjust their phase also to the temporal structure of 380 
external stimulation that had to be inferred from motion. Many natural stimuli comprise 381 
highly predictable regularities, but not all of them are intrinsically rhythmic. Our results 382 
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therefore indicate that the framework of phase adjustments during temporal predictions might 383 
be generalized to all forms of predictive stimulation.  384 

Enhanced ITPC cannot be explained by stimulus-driven processes 385 

In earlier investigations of phase adjustments to external stimulation participants were 386 
mostly presented with streams of rhythmic input. However, rhythmic input also causes 387 
evoked brain activity within the same frequency range, which makes it difficult to disentangle 388 
streams of evoked activity from entrained endogenous neural oscillations 18,21.  389 

Our results provide evidence that phase resets of low-frequency oscillations observed 390 
during temporal predictions cannot solely be explained by stimulus-evoked, bottom-up brain 391 
activity see also, 21,28. In the current study, we aimed at reducing such brain responses to a 392 
minimum by presenting participants with a continuously moving stimulus instead of several 393 
discrete stimuli. We were particularly interested in the time point at which the stimulus 394 
transiently disappeared behind an occluder (as opposed to sharp onsets and offsets in 395 
rhythms). At disappearance, we did not observe an increase in low-frequency power as 396 
compared to pre-stimulus baseline in any of the conditions, which could have been associated 397 
with evoked brain activity such as, for instance, the contingent negative variation CNV; 18.  398 

Moreover, by introducing a novel experimental design, in which physical stimulation was 399 
exactly the same as during temporal predictions as well as a control condition, we controlled 400 
for brain responses that could be driven by bottom-up stimulus processing and are not specific 401 
to temporal predictions. Importantly, delta ITPC but not power was stronger during temporal 402 
predictions (see also Fig. S1). This provides strong evidence that ongoing, endogenous neural 403 
oscillations underwent a phase reset around the time point of disappearance, which was more 404 
consistent during temporal predictions than during the luminance matching task. These phase 405 
resets can therefore not be solely related to brain responses evoked by the offset of the visual 406 
movement, since we did not observe power differences at low frequencies.  407 

Phase resets occurred in a network of frontoparietal and sensory brain areas 408 

We observed enhanced ITPC values in a network of mostly frontal and parietal brain 409 
areas during visual as well as crossmodal temporal predictions. Similarly, Besle et al. 29 410 
observed significant phase entrainment to audiovisual stimulation in a wide network of 411 
distributed areas including parietal and inferior frontal areas. These observations support the 412 
notion that brain areas involved in temporal predictions may constitute a frontoparietal timing 413 
network 6,30. 414 

Further, we found enhanced ITPC values also in early somatosensory areas contralateral 415 
to the disappearance of the purely visual stimulus during crossmodal temporal predictions, 416 
despite the fact that prediction-relevant information was provided only by a moving visual 417 
stimulus. This supports evidence reported earlier showing that stimulation within one 418 
modality can crossmodally reset the phase of ongoing low-frequency in other modalities, 419 
which might be an important mechanism for multisensory integration processes 22,23.  420 

Moreover, strong correlations between ITPC and behavior were also observed in the 421 
cerebellum, supporting earlier reports on a involvement of the cerebellum in temporal 422 
prediction processes 31. Roth and coworkers 32, for instance, found that cerebellar patients 423 
were significantly impaired in recalibrating sensory temporal predictions of a reappearing 424 
visual stimulus. This finding is of particular interest as we adapted the authors’ experimental 425 
paradigm for the use in the current study. Theirs and our results therefore indicate that the 426 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 17 

cerebellum might be crucially involved in accurate and consistent judgments of temporal 427 
regularities deployed in perceiving object motion. 428 

Conclusions 429 

We provide strong evidence that the phase of neural oscillations can adjust to the 430 
temporal regularities of external stimulation and do not arise as a byproduct of bottom-up 431 
stimulus processing. Such phase alignments could provide a key mechanism that predicts the 432 
onset of upcoming events in order to optimize processing of relevant information and thereby 433 
adapt behavior. We show that temporal information provided to one modality leads to phase 434 
adjustments in another modality when crossmodal temporal predictions are necessary, 435 
providing further evidence that such crossmodal phase resets could be the neuronal basis of 436 
multisensory integration processes. Importantly, we observed that these phase adjustments 437 
reflected each individual’s subjective temporal predictions time points. This supports the 438 
notion that the phase of neural oscillation indeed codes for the subjective estimation of 439 
elapsed time. Taken together, our results provide important insights into the neural 440 
mechanisms that might be utilized by the brain to predict the temporal onsets of upcoming 441 
events.   442 
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Materials and Methods 443 

An exhaustive description of the methods can be found in the SI.  444 

Participants and experimental procedure 445 

Twenty-three healthy volunteers took part in the study. The ethics committee of the 446 
Medical Association Hamburg approved the study protocol and the experiment was carried 447 
out in accordance with the approved guidelines and regulations. 448 

The experimental paradigm used in the current study was adopted from an earlier report 449 
investigating visual temporal predictions in cerebellar patients 32. Our experiment consisted of 450 
three conditions: a visual temporal prediction task, a crossmodal (tactile) temporal prediction 451 
task, and a luminance matching (control) task. The trials of all conditions started with the 452 
presentation of a randomly generated, white noise occluder presented in the middle of the 453 
screen. We instructed participants to fixate the central fixation dot throughout the entire trial. 454 
After 1500 ms, an oval stimulus moved from the periphery towards the occluder with constant 455 
speed. The luminance of the stimulus differed in all trials (6 steps). In each trial, the starting 456 
point of the stimulus differed such that the stimulus took 1,000 to 1,500 ms to disappear 457 
completely behind the occluder from starting point, randomly jittered with 100 ms 458 
(counterbalanced). The size of the occluder and the speed of the stimulus were chosen so that 459 
the stimulus would need exactly 1,500 ms to reappear on the other side of the occluder. 460 
However, we manipulated the timing and the luminance of the reappearing stimulus. In each 461 
trial, the reappearance of the stimulus differed between ±17 to ±467 ms from the correct 462 
reappearance time of 1,500 ms. Hence, the stimulus was covered by the occluder for 1,033 to 463 
1,967 ms and was reappearing at 20 different time points. In the visual prediction task as well 464 
as in the luminance matching task, we also manipulated the luminance of the reappearing 465 
stimulus relative the luminance the stimulus had before disappearance in each trial (also using 466 
20 different values). After reappearance, the stimulus moved to the other side of the screen for 467 
500 ms with the same speed until it set off the screen. The occluder was presented throughout 468 
the entire trial. 469 

The visual temporal prediction as well as the luminance matching task had the exact 470 
equal physical appearance throughout all trials. They only differed in their cognitive set. In 471 
the visual temporal prediction task, we asked participants to judge whether the stimulus was 472 
reappearing too early or too late. In the luminance matching task, participants were asked to 473 
judge whether the luminance of the reappearing visual stimulus became brighter or darker.  474 

The tactile temporal prediction task was equal to the visual temporal prediction task, with 475 
the only difference that a tactile stimulus instead of a visual was presented at the time of 476 
reappearance to the right or left index finger. The tactile stimulus was presented by means of 477 
a Braille piezostimulator for 200 ms. Participants did not receive trial-wise feedback about the 478 
correctness of their response. After a short delay of 200 ms, the white-noise occluder was 479 
randomly re-shuffled to signal the start of a new trial. 480 

All three conditions were presented block-wise. At the beginning of each block, 481 
participants were informed about the current task. At the end of each block, they were 482 
informed about the overall accuracy of their answers within the last block. Each block 483 
consisted of 60 trials, resulting in a total number of 480 trials per condition or 1,440 trials in 484 
total.  485 

We used MATLAB R2014b (MathWorks, Natick, USA; RRID: SCR_001622) and 486 
Psychtoolbox 33 (RRID: SCR_002881). To mask the sound of the Braille stimulator during 487 
tactile stimulation, we presented participants with auditory pink noise at sampling rate of 48 488 
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kHz and volume of 85 dB using MEG-compatible in-ear headphones during all experimental 489 
blocks.  490 

Data acquisition and pre-processing 491 

MEG was recorded at a sampling rate of 1,200 Hz using a 275-channel whole-head 492 
system (CTF MEG International Services LP, Coquitlam, Canada). Online head localizations 493 
34 were used to navigate participants back to their original head position prior to the onset of a 494 
new experimental block if their movements exceeded five mm from their initial position.  495 

We analyzed reaction time data using R 35 (RRID: SCR_001905) and RStudio (RStudio 496 
Inc., Boston, USA; RRID: SCR_000432). Trials with reaction times longer than three 497 
standard deviations were excluded from analysis. Due to the right-skewed nature of reaction 498 
times, reaction time data were first log-transformed and then standardized across all trials 499 
from each participant.  500 

All other data were analyzed using MATLAB R2016b with FieldTrip 36 (RRID: 501 
SCR_004849), the MEG and EEG Toolbox Hamburg (METH, Guido Nolte; RRID: 502 
SCR_016104), or custom made scripts. Each trial was cut 1,250 ms earlier to stimulus 503 
movement onset and 1,250 ms after offset of the reappeared stimulus. Trials containing strong 504 
muscle artifacts or jumps were detected by semi-automatic procedures implemented in 505 
FieldTrip and excluded from analysis. The remaining trials were filtered with a high-pass 506 
filter at 0.5 Hz, a low-pass filter at 170 Hz, and three band-stop filters at 49.5–50.5 Hz, 99.5–507 
100.5 Hz and 149.5–150.5 Hz and subsequently down-sampled to 400 Hz.  508 

We performed an independent component analysis (infomax algorithm) to remove 509 
components containing eye-movements, muscle, and cardiac artefacts. As a final step, using 510 
procedures described by Stolk et al. 34 we identified trials in which the head position of the 511 
participant differed by 5 mm from the mean circumcenter of the head position from the whole 512 
session and excluded them from further analysis.  513 

Quantification and statistical analysis 514 

In the current experiment, we introduced a control condition that was physically identical 515 
to our temporal prediction tasks (until reappearance in the tactile condition) in order to 516 
account for processes that are not directly related temporal predictions. Hence, for most of our 517 
statistical analyses, we were interested in comparing the two temporal prediction tasks with 518 
the luminance matching control task, respectively, and not in comparing the two temporal 519 
prediction tasks with each other. Therefore, instead of computing an analysis of variance 520 
across all three conditions, we directly computed two separate t-tests for the comparison of 521 
the visual or the tactile temporal prediction with the luminance matching task, respectively, 522 
and accounted for multiple comparisons by adjusting the alpha level.  523 

Psychometric curve  524 
We fitted a psychometric curve to the behavioral data of each participant from all trials in 525 

each condition. First, for each timing difference or luminance difference, respectively, we 526 
computed the proportion of “too late” or “brighter” answers for each participant. Then, we 527 
fitted a binomial logistic regression (psychometric curve) using the glmfit.m and gmlval.m 528 
functions provided in MATLAB. The fitted timing or luminance difference value at 50% 529 
proportion “too late” or “brighter” answers was determined as ROT or PSE for each 530 
participant, respectively. To test for a significant bias towards one of the answers, we tested 531 
the ROT or PSE from all participants against zero using one-sample t-tests (α = .05 / 3 = 532 
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.017). The steepness of the psychometric function was computed as the reciprocal of the 533 
difference between fitted timing or luminance difference values at 75% and 25% proportion 534 
“too late” or “brighter” answers, respectively.  535 

Linear model  536 
We averaged RT across all luminance differences within each timing difference bin in 537 

each condition and then utilized a second-order (quadratic) polynomial regression model with 538 
timing difference as predictor for reaction times and computed the first- and second-order 539 
coefficients for each participant in each condition. The coefficients from all participants were 540 
then tested against zero using one-sample t-tests in all conditions (α = .05 / 3 = .017).   541 

Spectral power 542 
We decomposed the MEG recordings into time-frequency representations by convolving 543 

the data with complex 40 Morlet’s wavelets 37, logarithmically spaced between 0.5 to 100 Hz 544 
and with logarithmically increasing number of cycles from two to ten cycles. For all analyses 545 
of the MEG data, we considered subjectively correct trials only, i.e., trials in which 546 
participants answered correctly based on their individual ROT. To obtain an estimate of 547 
spectral power modulations related to the different events in our experimental paradigm, we 548 
cut each trial further into four separate, partly overlapping windows (see Fig. 2A): a 549 
“Baseline” window from -550 to -50 ms earlier to movement onset; a “Movement” window 550 
from -50 to 950 ms relative to the movement onset; a “Disappearance” window from -350 to 551 
950 ms relative to complete disappearance of the stimulus behind the occluder; and a 552 
“Reappearance” window from -350 to 450 ms relative to the (first frame) reappearance of the 553 
stimulus. Spectral power estimates were then averaged across all trials belonging to the same 554 
condition in each window and binned into time windows 100 ms (centered on each full deci-555 
second). All power estimates were normalized using the pre-stimulus baseline window from -556 
500 to -200 ms earlier to movement onset.  557 

In order to obtain an overview of the spectral power modulations related to the different 558 
events within the trials, we then averaged the power estimates across all channels and 559 
conditions (grand average) and tested each time-frequency pair against the pre-stimulus 560 
baseline using paired-sample t-tests. We controlled for multiple comparisons by employing 561 
cluster-based permutation statistics as implemented in FieldTrip 38. For each window, a 562 
separate cluster-permutation test was performed (α = .05; liberally chosen to observe all 563 
ongoing power modulations; see Results section). 564 

We subsequently compared the spectral power estimates averaged within the beta range 565 
(13–30 Hz; see Results section) at each time point within the disappearance window and all 566 
channels from the visual or tactile temporal prediction task with the luminance matching task. 567 
We again employed cluster-permutation statistics, this time by clustering neighboring 568 
channels and time points. We used a one-sided α = .025 / 2 = .0125, since negative and 569 
positive clusters were tested separately, and to adjust for the two separate comparisons 570 
between the conditions (used throughout the study unless stated differently).  571 

To estimate spectral power in source space, we computed separate leadfields for each 572 
recording session and participant based on each participant’s mean head position in each 573 
session and individual magnetic resonance images. We used the single-shell volume 574 
conductor model 39 with a 5,003 voxel grid that was aligned to the MNI152 template brain 575 
(Montreal Neurological Institute, MNI; http://www.mni.mcgill.ca) as implemented in the 576 
METH toolbox. Cross-spectral density (CSD) matrices were computed from the complex 577 
wavelet convolved data in steps of 100 ms in the same time windows as outlined above. To 578 
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avoid biases in source projection, common adaptive linear spatial filters (DICS beamformer 579 
40) pointing into the direction of maximal variance were computed from CSD matrices 580 
averaged across all time bins and conditions for each frequency.  581 

All time-frequency resolved CSD matrices were then multiplied with the spatial filters to 582 
estimate spectral power in each of the 5,003 voxels and normalized with the pre-stimulus 583 
baseline window. We then averaged across all time bins within the disappearance window and 584 
utilized cluster-based permutation statistics to identify clusters of voxels that show statistical 585 
difference in beta power between each of the temporal prediction tasks and the luminance 586 
matching task. 587 

Inter-trial phase consistency 588 
We computed ITPC estimates from the complex time-frequency representations obtained 589 

from the wavelet convolution as described in the Spectral power section above. In each time 590 
sample and trial, the phase of the complex data was extracted (using the function angle.m in 591 
MATLAB). ITPC was then computed across all subjectively correct and stratified trials 592 
within each of the four time windows in all frequencies as 593 

𝐼𝑇𝑃𝐶%& = 	 )𝑛+,-𝑒/0123
4

56,

) 594 

where n is the number of trials and k the phase angle in trial r at time-frequency point tf 595 
37. Similar to spectral power, we averaged ITPC estimates again in bins of 100 ms and plotted 596 
all time windows averaged across all channels and conditions to obtain a general overview of 597 
ITPC estimates at all events during the trial. 598 

Since we were most interested in ITPC related to stimulus disappearance behind the 599 
occluder, we subsequently computed ITPC in a longer time window from -1,900 ms to 1,900 600 
ms centered around time of complete stimulus disappearance behind the occluder. For 601 
statistical analysis, we first averaged ITPC estimates within a frequency band of 0.5 to 3 Hz 602 
(see Results) and then computed cluster-based permutation statistics across all 100 ms time 603 
bins and all sensors between each of the temporal prediction tasks and the luminance 604 
matching task. ITPC on source level was computed using the same leadfields and common 605 
beamformer filters as for spectral power (see above).  606 

Correlations between condition-wise source level ITPC estimates and the steepness of 607 
each individual’s psychometric function were computed using Pearson correlations in each of 608 
the 5,003 voxels within the grid. For this analysis, we averaged ITPC estimates from time 609 
bins of 0 to 1,500 ms with respect to the disappearance of the stimulus within the pre-defined 610 
delta band of 0.5 to 3 Hz. Multiple comparisons were accounted for by using cluster-based 611 
permutation statistics as implemented in FieldTrip (α = .025 / 3 = .008)  612 

Delta phase clustering at ROT 613 
To determine whether each participant’s subjective ROT was associated with a specific 614 

phase in the delta band, we extracted the phase at each individual’s ROT from sensors 615 
showing the strongest ITPC effect and computed the distance from this distribution to a 616 
uniform distribution over all possible phases.  617 

For this analysis, we only considered trials in which the stimulus reappeared later than 618 
each individual’s ROT and the participant answered subjectively correct. By this, we 619 
prevented possible phase distortions by the external stimulation earlier to or at ROT. 620 
Moreover, to make sure that we reduced also activity that was related to external stimulations 621 
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after each individual’s ROT, we first aligned all trials from the same condition to the time 622 
point of stimulus reappearance, computed the average across trials (event-related field, ERF) 623 
and subtracted the ERF caused by the reappearance from all trials in that condition. 624 
Subsequently, in each trial we centered a 2,500 ms long window on each participant’s ROT, 625 
computed a complex wavelet convolution for all frequencies between 0.5 and 3 Hz (14 626 
frequencies; same procedure and frequencies as above) in all channels, and computed the 627 
mean phase angle at ROT, i.e., the center time bin, across all considered trials in each 628 
condition. This procedure is similar to computing ITPC as described above, except for 629 
extracting the angle of the mean phase vector instead of the length. Since for the luminance 630 
matching task we did not have an estimate of each individual’s ROT, we applied the estimate 631 
of ROT from the visual prediction task also to the luminance matching trials, since based on 632 
their equal physical appearance temporal predictions should also be equal.   633 

As a next step, from the result of the cluster-based permutation statistics on ITPC 634 
estimates described above, we determined the sensors that showed the strongest ITPC effect 635 
for the two contrasts between the temporal prediction tasks and the luminance matching task 636 
for a time window between 0 and 1,500 ms after disappearance behind the occluder. For the 637 
contrast between the visual prediction and the luminance matching task, we considered the 638 
sensors showing the top 20% of t-values (37 channels). To keep the number of sensors 639 
comparable, we also considered the top 37 sensors from the contrast of the tactile prediction 640 
task against luminance matching.  641 

Within these channels, for each individual participant we determined the frequency 642 
within the 0.5 to 3 Hz delta band, which showed the strongest ITPC for the visual or the 643 
tactile prediction as compared to the luminance matching task, respectively, in the same time 644 
window of 0 to 1.500 ms. For the luminance matching condition, we extracted the frequencies 645 
showing the strongest estimates of ITPC in the luminance matching as compared to the visual 646 
temporal prediction task and used individual ROTs from the visual prediction task. For these 647 
individual frequencies, we plotted the phase angle at ROT (as described above) from all the 648 
considered channels and all participants in a histogram (in bins of 10°; see Fig. 5). We 649 
computed the distance from the observed phase distribution to a uniform distribution using a 650 
discrete and normalized version of the Kullback-Leibler distance, i.e., the modulation index 651 
(MI) 24.  652 

For statistical analysis, we repeated the same procedure as described above for 10,000 653 
times and randomly picked any frequency from the 14 frequencies within the 0.5 to 3 Hz band 654 
in each repetition. By that we obtained a distribution of surrogate MI estimates (but still based 655 
on real data from all individual participants), from which we computed the percentile 656 
determined by the MI that was observed using the individually strongest ITPC frequency. MI 657 
estimates above the 95th percentile were considered significantly stronger as compared to the 658 
randomly obtained surrogate MIs (p-value = 1 – percentile). 659 
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