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ABSTRACT

Proprioception, the sense of body position, movement, and associated forces, remains poorly
understood, despite its critical role in movement. Most studies of area 2, a proprioceptive area of
somatosensory cortex, have simply compared neurons’ activities to the movement of the hand
through space. By using motion tracking, we sought to elaborate this relationship by
characterizing how area 2 activity relates to whole arm movements. We found that a whole-arm
model, unlike classic models, successfully predicted how features of neural activity changed as
monkeys reached to targets in two workspaces. However, when we then evaluated this whole-
arm model across active and passive movements, we found that many neurons did not
consistently represent the whole arm over both conditions. These results suggest that 1) neural
activity in area 2 includes representation of the whole arm during reaching and 2) many of these
neurons represented limb state differently during active and passive movements.

1 INTRODUCTION

Moving in an uncontrolled environment is a remarkably complex feat. In addition to the
necessary computations on the efferent side to generate movement, an important aspect of
sensorimotor control is processing the afferent information we receive from our limbs, essential
both for movement planning and for the feedback it provides during movement. Of the relevant
sensory modalities, proprioception, or the sense of body position, movement and associated
forces, is arguably the most critical for making coordinated movements (Ghez and Sainburg
1995; Gordon et al. 1995; Sainburg et al. 1995; Sainburg et al. 1993; Sanes et al. 1984).
However, despite its importance, few studies have explicitly addressed how proprioception is
represented in the brain during natural movement; touch, vision, and the motor areas of the brain
have received far more attention.
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One brain area likely important for mediating reach-related proprioception is the proximal arm
representation within area 2 of primary somatosensory cortex (S1) (Jennings et al. 1983; Kaas et
al. 1979; London and Miller 2013). Though this area receives a combination of muscle and
cutaneous inputs (Hyvidrinen and Poranen 1978; Padberg et al. 2018; Pons et al. 1985), the few
studies examining it during reaching have found that a model involving simply the translation of
the hand approximates neural activity quite well (London and Miller 2013; London et al. 2011;
Prud’homme and Kalaska 1994; Weber et al. 2011). Interestingly, this finding fits with
psychophysical data showing that humans are better at estimating the location of the hand than
joint angles (Fuentes and Bastian 2010), as well as our conscious experience of reaching to
objects, which typically focuses on the hand. However, recent computational studies have shown
that while neural activity may appear to be tuned to the state of a limb’s endpoint, features of this
tuning might be a direct consequence of the biomechanics of the limb (Chowdhury et al. 2017;
Lillicrap and Scott 2013). Consistent with those results, we have recently observed, using
artificial neural networks, that that muscle lengths were better predictors of area 2 activity than
were hand kinematics (Lucas et al. 2019).

As in the classic reaching studies of M1 (Caminiti et al. 1991; Georgopoulos et al. 1982;
Georgopoulos et al. 1986), the appeal of the hand-based model of area 2 neural activity is its
reasonable accuracy despite its simplicity. However, the recent emphasis on studying less
constrained, more natural movements (Mazurek et al. 2018) is pushing the limits of such simple
models (Berger and Gail 2018; Hasson et al. 2012; Sharon and Nisky 2017). As in the motor
system, it is increasingly important to characterize proprioceptive regions’ responses to reaching
more fully. Here, we used two experiments that altered the relationship between hand and whole-
arm kinematics. In the first experiment, we found that neurons in area 2 have a consistent
relationship with whole-arm kinematics during active reaching within two disjoint workspaces.
Whole-arm kinematics predicted neural activity significantly better than the hand-only model,
and were able to effectively explain neural activity changes across workspaces. In the second
experiment, we compared area 2 responses to active reaching and passive perturbations of the
hand. While some neurons were predicted well with only kinematic inputs, others were not,
adding to the evidence that area 2 may receive efferent information from motor areas of the brain
(London and Miller 2013; Nelson 1987).

2 RESULTS

For the experiments detailed in this paper, we recorded neural signals from three Rhesus
macaques (Monkeys C, H, and L) using Utah multi-electrode arrays (Blackrock Microsystems)
implanted in the arm representation of Brodmann’s area 2 of S1 (Figure 1). After implantation,
we mapped sensory receptive fields of each neuron, to examine how the multi-unit activity on
each electrode responded to sensory stimulation, noting the modality (deep or cutaneous) and
location of each field. We classified an electrode as “cutaneous” if we could find a receptive
field on the arm or torso in which brushing the skin caused an increase in activity. “Deep”
electrodes were those that responded to joint movement or muscle palpation and did not appear
to have a cutaneous receptive field. With these criteria, it is likely that some of the electrodes we
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marked cutaneous actually responded to both deep and cutaneous stimuli. However, as we were
most interested in the distribution of receptive field types over the array, we did not test for such
mixed modality neurons.

Figure 1 shows the resulting sensory maps from the mapping session for each monkey in which
we were able to test the most electrodes. We found a mix of deep and cutaneous receptive fields
across each array, largely matching the description of area 2 from previous studies (Hyvérinen
and Poranen 1978; Pons et al. 1985; Seelke et al. 2011). Compared to the two bordering regions,
area 1 tends to have a higher fraction of cutaneous responses, and area 5 tends to have a higher
fraction of deep responses (Seelke et al. 2011), suggesting that our arrays were implanted largely
in area 2. For Monkeys C and H, we found a rough proximal to distal arm gradient, running from
anterior to posterior across the array (Figure 1, black arrows), consistent with the somatotopy
found by (Pons et al. 1985). There were too few well-mapped neurons from Monkey L to
determine a meaningful gradient.
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Figure 1: Array locations and receptive field maps from one mapping session for each monkey. A —
locations of Utah arrays implanted in area 2 of Monkeys C, H, and L. IPS, intraparietal sulcus, CS
central sulcus. B— map of the receptive field modality (deep, cutaneous, or mixed) for each electrode. C —
map of receptive field location (see legend on bottom right). Open circles indicate both untested
electrodes and tested electrodes with no receptive field found. Black arrows on maps in C show
significant gradient across array of proximal to distal receptive fields (see Methods).

We trained each of these monkeys to grasp a two-link planar manipulandum and make reaching
movements to targets presented on a screen in front of them (Figure 2). During these sessions,
we collected interface force from a six degree of freedom load cell attached to the manipulandum
handle. We also tracked the locations of markers on the monkey’s arm using a custom motion
tracking system based on a Microsoft Kinect. Our experiments included two components: one
comparing reaching movements in two different workspaces and one comparing active and
passive movements.
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101

102 Figure 2: Behavioral task. Monkey controls a cursor on screen (vellow) with a two link manipulandum to
103 reach to visually presented targets (red). We track the locations of markers (see Methods) on the
104  monkey’s arm (green) during the task, using a Microsoft Kinect.

105 2.1 SOMATOSENSORY AREA 2 REPRESENTS THE MOVEMENT OF THE WHOLE ARM DURING REACHING

106  Previous literature has characterized area 2 primarily in terms of the hand trajectory through
107  space (London and Miller 2013; Prud'homme and Kalaska 1994; Weber et al. 2011), likely in
108  part due to the difficulty of tracking the motion of the full arm, and the then recent finding that
109  motor cortex could be well explained simply by the direction of hand movement (Caminiti et al.
110 1991; Georgopoulos et al. 1982). Given advances in motion tracking capability and subsequent
111  observations of the dependence of M1 on arm posture (Morrow et al. 2007; Scott and Kalaska
112 1995), we set out to characterize more fully, how neural activity in area 2 corresponds to

113 reaching movements.

114  In particular, we aimed to characterize how much could be gained by using models incorporating
115  the movement of the whole arm, as opposed to just the hand. A challenge in comparing these

116  models is that for the typical, center-out reaching task in a small workspace, the behavioral

117  signals used in our models are highly correlated. Because a high correlation means that a linear
118  transform can accurately convert one set of signals into another, all models would make very
119  similar predictions of neural activity.

120 To deal with this problem, we trained the monkeys to reach to randomly-generated targets

121  presented in two different workspaces (Figure 3). This had two important effects. First, the

122 random locations of the targets lessened the stereotopy of the movements, allowing for the

123 collection of more varied movement data than from a center-out paradigm. Second, the average
124 postures in the two workspaces were quite different, such that while the signals of different

125  models were still correlated within a given workspace, this correlation (and the mapping between
126  sets of behavioral signals) changed significantly between workspaces. This forced the models to
127  make different predictions of neural activity across the two workspaces. By comparing modeled
128  and observed changes in neural activity, we could more reliably discriminate between models.

129  This idea is exemplified in Figure 3D. When tested in the two workspaces, this example neuron
130 changed both its tuning curve and the direction in which it fired maximally (its preferred
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131  direction, or PD), as did many neurons we recorded. The corresponding predictions of the hand-
132 only and whole-arm models differed, which allowed us to compare the accuracy of the two

133 models. We recorded three of these two-workspace sessions with each of Monkeys C and H and
134 two sessions with Monkey L.
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136  Figure 3: Example neural activity for two-workspace task. A — Two-workspace behavior. On each trial,
137  monkey reaches with manipulandum (black) to randomly placed targets in one of two workspaces: one
138  close to the body and contralateral to the reaching hand (pink) and the other distant and ipsilateral

139 (green). Trials in the two workspaces were interleaved randomly. B — Example neural raster plot from
140  one session for two randomly drawn trials in each workspace. Dots in each row represent activity for one
141 of the simultaneously recorded neurons. Black dashed lines indicate starts and ends of trials, and colored
142 lines and boxes indicate times of target presentation, with color indicating the workspace for the trial. C
143 — Firing rate plot for an example neuron during four randomly drawn trials from the distal (green)

144 workspace. Black trace represents neural firing rate, smoothed with a 50 ms Gaussian kernel. Colored
145  traces represent unsmoothed firing rates predicted by hand-only (orange), and whole-arm (red) models.
146 D — Actual and predicted tuning curves and preferred directions (PDs) computed in the two workspaces
147  for an example neuron. Each trace represents the tuning curve or PD calculated for one cross-validation
148  fold (see Methods). Leftmost plot shows actual tuning curves and PDs, while other plots show curves and
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149  PDs for activity predicted by each of the models. Each panel shows mean movement-related firing rate
150  plotted against direction of hand movement for both workspaces. Darker vertical bars indicate preferred
151  directions.

152 2.1.1 Model overview

153 We tested several kinematic models of area 2 activity that could be divided into hand-only and
154  whole-arm models (see Methods for a full description of all the models). We’ve chosen to

155  represent the two sets with two of the models, which we termed, for simplicity, the “hand-only”
156  and “whole-arm” models. The hand-only model stems from classic, endpoint models of limb
157  movement-related neural activity (Bosco et al. 2000; Georgopoulos et al. 1982; Prud’homme and
158  Kalaska 1994). It assumes neurons relate only to the Cartesian coordinates of hand position and
159  velocity. The whole-arm model builds on the hand-only model by adding the Cartesian

160  kinematics (position and velocity) of the elbow, in order to account more fully for movement of
161  the whole arm. Surprisingly, the performance of this representation of the whole arm was similar
162  to, or even better than more complicated biomechanical models based on the 7 degree-of-

163  freedom joint kinematics or musculotendon lengths (see Supplementary Info). We aimed to test
164  how well the hand-only and whole-arm models predicted features of neural activity during

165  reaching, in order to determine the importance of whole-arm kinematics for explaining neural
166  activity.

167  For us to consider the whole-arm model to be an effective one for area 2, it should satisty three
168  main criteria. First and most direct, it should explain the variance of neural firing rates across the
169  two workspaces better than the hand-only model, as is the case in the example in Figure 3C.

170  Second, the mapping between neural activity and whole-arm kinematics should not change

171  between the individual workspaces, meaning that the accuracy of a model trained over both

172 workspaces be similar to that trained in a single workspace. Last, the model should be able to
173 capture features of neural activity that it was not explicitly trained on, for example, the changes
174  in directional tuning shown in Figure 3D.

175 2.1.2 Whole-arm model explains more variance of area 2 neural activity than hand-only model
176  To assess how well our models fit area 2 neural activity, we used repeated k-fold cross-validation
177  (see Methods for more details). Goodness-of-fit metrics like R? or variance-accounted-for (VAF)
178  are ill-suited to the Poisson-like statistics of neural activity; instead, we used the likelihood-based
179  pseudo-R? (Cameron and Windmeijer 1997; 1996; McFadden 1977). Like VAF, pseudo-R? has a
180  maximum value of 1, but it can be negative for models that fail even to predict the mean firing
181  rate during cross-validation. In general, the values corresponding to a good fit are lower for pR?
182  than for either R? or VAF, with a value of 0.2 usually considered a “good” fit (McFadden 1977).
183  We found that for this measure, the whole-arm model out-performed the hand-only model

184  (Figure 4). Of the 288 neurons recorded across the 8 sessions, 238 were significantly better

185  predicted by the whole-arm model than the hand-only model, and for the other 50, there was no
186  significant difference (using p < 0.05; see Methods for more details).
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Figure 4:Goodness-of-fit comparison analysis. Scatter plots compare the pseudo-R’ (pR’) of the whole-
arm model to that of the hand-only model for each monkey. Each point in the scatter plot represents the
PR’ values of one neuron, with whole-arm pR’ on the vertical axis and hand-only pR’ on the horizontal.
Different colors represent neurons recorded during different sessions. Filled circles represent neurons for
which one model’s pR’ was significantly higher than that of the other model. In this comparison, all filled
circles lie above the dashed unity line, indicating that the whole-arm model performed better than the
hand-only model for every neuron in which there was a significant difference.

2.1.3 Whole-arm model captures a consistent relationship between area 2 and arm kinematics
A reasonable benchmark of how well the whole-arm model fits the two-workspace data is its
ability to match the accuracy of models trained in the individual workspaces. It is possible to
imagine a scenario in which a model might achieve a good fit by capturing a global relation
across the two workspaces without capturing the information local to either workspace. This
situation is akin to fitting a line to data distributed along an exponential curve. In this analogy,
we would expect a piecewise linear fit to each half of the data to achieve significantly better
goodness-of-fit.

We tested this scenario by training whole-arm models on the individual workspaces, and
comparing the resulting pR? with that calculated from the model fit to data from both
workspaces. The symbols lying very close to the unity line in each panel of Figure 5 indicate that
the full model explained just as much neural variance as did the individual models. This suggests
that the whole-arm model describes a consistent, generalizable relationship between neural
activity and arm kinematics across the two workspaces.
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Figure 5: Dependence of whole-arm model accuracy on workspace location of training data. Each panel
compares a model trained and tested in the same workspace (either near or far) to a model trained on
data from both workspaces. Each dot corresponds to a single neuron, where color indicates the recording
session. Dashed line is the unity line.

2.1.4 Whole-arm model captures changes in area 2 directional tuning between workspaces
From previous studies of area 2, we know that at least within a single workspace, neural activity
is tuned approximately sinusoidally to the direction of hand movement (London and Miller 2013;
Prud’homme and Kalaska 1994; Weber et al. 2011). Figure 3D shows the directional tuning
curves for an example neuron, along with the tuning curves predicted by both models. Because
we trained each model on data from both workspaces, they needed to capture a single
relationship between movement and neural activity. As shown in the example in Figure 3D, the
hand-only model predicted essentially the same tuning curve for both workspaces, with the
exception of a baseline shift due to the position component. In contrast, the whole-arm model
predicted altered tuning curves, which matched the actual ones well.

To quantify this model accuracy over all neurons, we calculated the correlation between the
model-predicted and actual tuning curves in the two workspaces. With this measure, the whole-
arm model once again won most of the pairwise comparisons (Figure 6). Only two out of 288
neurons were significantly better predicted by the hand-only model (using p < 0.05), while 138
of 288 neurons were significantly better predicted by the whole-arm model.
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Figure 6: Tuning curve shape correlation analysis. Scatter plot compares tuning curve shape correlation
between whole-arm and hand-only models. Filled circles indicate neurons significantly above or below
the dashed unity line. As for pR’, most filled circles lie above the dashed line of unity, indicating that the
whole-arm model was better at predicting tuning curve shape than the hand-only model.

Of the 288 recorded neurons, 260 were significantly tuned to movement direction in both
workspaces. Thus, in addition to the tuning curve correlation analysis, we also examined the PD
in the two workspaces. For many neurons, the PD changed significantly between workspaces, as
in the leftmost panel of Figure 3D. Figure 7A shows the actual PD shifts for all neurons plotted
against the PD shifts predicted by each model. The large changes in PD, shown on the horizontal
axes of the scatter plots, are a clue that the hand-only model does not fully account for area 2
neural activity; if it had, the PD changes should have been insignificant (in principle, zero), as
shown by the generally small hand-only model-predicted changes (first row of Figure 7A).
Additionally, and perhaps counterintuitively, the actual changes included both clockwise and
counter-clockwise rotations. However, we found that the whole-arm model predicted both types
of PD changes quite well, indicated by a clustering of the scatter plot points in Figure 7A along
the dashed diagonal line. Based on the circular VAF (cVAF; see Methods for details) of the
predicted PD changes, Figure 7B shows that the whole-arm model once again out-performed the
hand-only model, with an average cVAF over all neurons of 0.75 compared to 0.57. We made
pairwise comparisons between models for each session. In every session but one, the whole-arm
model out-performed the hand-only model. In the remaining session, the difference between the
two models was not significant (p > 0.05). These results lead to the same conclusion as the pR?
and tuning curve correlation analyses: the kinematics of the whole-arm are important predictors
of area 2 activity, and can explain differences between activity in the two workspaces that classic
models cannot.
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Figure 7: Model predictions of PD shift. A — Scatter plots of model-predicted PD shifts plotted against
actual PD shifts. Each dot represents the actual and modeled PD shifts of a single neuron, where
different colors correspond to neurons recorded during different sessions. Dashed diagonal line shows
perfect prediction. Horizontal histograms indicate distributions of actual PD shifts for each monkey.
Vertical histograms indicate distributions of modeled shifts. Note that both horizontal and vertical axes
are circular, meaning that opposing edges of the plots (top/bottom, left/right) are the same. Horizontal
histograms show that the distribution of actual PD shifts included both clockwise and counter-clockwise
shifts. Clustering of scatter plot points on the diagonal line for the whole-arm model indicates that it was
more predictive of PD shift. B — plot showing circular VAF (cVAF) of scatter plots in A, an indicator of
how well clustered points are around the diagonal line (see Methods for details). Each point corresponds
to the average cVAF for a model in a given session (indicated by color), and the horizontal dashed lines
indicate the cVAF for perfect prediction. Error bars show 95% confidence intervals (derived from cross-
validation — see Methods). Pairwise comparisons between model cVAFs showed that the whole-arm
model out-performed the hand-only model in all but one session, in which the two models were not
significantly different.

2.2 AREA 2 REPRESENTS PASSIVE MOVEMENTS DIFFERENTLY FROM ACTIVE REACHES

Given our success at modeling neural activity across workspaces with the whole-arm model, we
set out to examine its effectiveness in a task that compared area 2 activity during active reaches
and passive limb perturbations.
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274  For this experiment, the monkey performed a center-out reaching task to four targets. On half of
275  these trials, the monkey’s hand was bumped by the manipulandum during the center-hold period
276  in one of the four target directions (Figure 8A; see Methods section for task details). This

277  experiment included two sessions with each of Monkeys C and H. As in the earlier study

278  performed by our group (London and Miller 2013), we analyzed behavior and neural activity
279  only during the 120 ms after movement onset for which the kinematics of the hand were similar
280  in active and passive trials (Figure 8B and C). This is also the time period in which we can

281  reasonably expect there not to be a voluntary reaction to the bumps in the passive trials.

282  Despite the similar hand kinematics in the active and passive movements, we found that whole-
283  arm kinematics were quite different between the two conditions. Averaged over the sessions, a
284  linear discriminant analysis (LDA) classifier could predict the movement type 89% of the time,
285  using only the whole-arm kinematics in the analysis window, meaning that these whole-arm
286  kinematics were highly separable based on movement condition. Considering our results from
287  the two-workspace experiment, we would thus expect that the activity of area 2 neurons would
288  also be highly separable.

289  Asreported earlier, area 2 neurons had a wide range of sensitivities to active and passive hand
290  movements (London and Miller 2013). Figure 8D shows this difference for the neurons recorded
291  during one session from Monkey C. As with our separability analysis for arm kinematics, we
292 used LDA to classify movement type based on individual neurons, calling this prediction rate the
293 neuron’s “separability index” (Figure 8E). We found that many neurons had an above chance
294  separability index, as we would expect from neurons representing whole-arm kinematics.
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296  Figure 8: Active vs. passive behavior. A — Schematic of task. On active trials (black), monkey reaches
297  from center target to a target presented in one of four directions, indicated by the black circles. On

298  passive trials, manipulandum bumps monkey’s hand in one of the four target directions (red circles). B —
299  Speed of hand during active (black) and passive (red) trials, plotted against time, for one session. Starting
300  around 120 ms after movement onset, a bimodal distribution in passive movement speed emerges. This
301 bimodality reflects differences in the impedance of the arm for different directions of movement.

302  Perturbations towards and away from the body tended to result in a shorter overall movement than those
303 o the left or right. However, average movement speed was similar between active and passive trials in
304  this 120 ms window, which we used for data analysis. C — Neural raster plots for example active and

305  passive trials for rightward movements. In each plot, rows indicate spikes recorded from different

306  neurons, plotted against time. Vertical dashed lines delimit the analysis window. D — Histograms of firing
307  rates during active (black) and passive (red) movements for 20 example neurons from one session with
308  Monkey H. E — Separability index for each neuron during the session, found by testing how well linear
309  discriminant analysis (LDA) could predict movement type from the neuron’s average firing rate on a

310  given trial. Black dashed line indicates chance level separability. Error bars indicate 95% confidence
311  interval of separability index.
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312 There is thus a clear analogy between this experiment and the two-workspace experiment—both
313 have two conditions which altered both the kinematics of the arm and the neural responses.

314  Continuing the analogy, we asked how well our two models could predict neural activity across
315 active / passive conditions. As with the two-workspace experiment, we fit both the hand-only
316  and whole-arm models to neural activity during both active and passive movements, and found
317  that the whole-arm model again tended to out-perform the hand-only model (Filled circles above
318  the dashed unity line in Figure 9). However, there were many more neurons (open circles) for
319  which the difference between models was insignificant compared to the two-workspace

320  experiment (Figure 4).

Monkey C Monkey H
06 7 I 7
Whole-arm \ p 4 &
v ’ v

7 Y-
|
2 !
’ 0.4 71 0.6 W

/ Hand-only P 7 p 7
pR* / /
321 s 04 /

322 Figure 9: Goodness-of-fit comparison analysis for active/passive experiment (same format as figure 4).
323 Each dot represents a single neuron, with color indicating the recording session. Filled circles indicate
324 neurons that are significantly far away from the dashed unity line.

325  As in the two-workspace experiment, we compared models trained within an individual (active
326  or passive) condition, to those trained in both conditions (Figure 10). A number of neurons had
327  consistent relationships with arm kinematics, indicated by the dots with positive pR? values lying
328  close to the unity line. Surprisingly however, unlike our results from the two-workspace

329  experiment (see Figure 5), many neurons in the active/passive task did not have this consistent
330 relationship, indicated by the many neurons with negative pR? values for the model trained over
331  both conditions.
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Figure 10.: Dependence of whole-arm model accuracy on active and passive training data (same format
as figure 5). Plots in the upper row contain colored arrows at the edges indicating neurons with pR’
value beyond the axis range, which we omitted for clarity.

The initial question of this experiment remains, however: does the neural separability index stem
simply from arm kinematics? If this were true, then neurons with high separability index should
have a consistent relationship to arm kinematics. To test this, we compared each neuron’s pR?
value when trained on both conditions (our proxy for model consistency) against its separability
index (Figure 11). Interestingly, we found the opposite result—model consistency actually
correlated negatively with the separability index. Essentially, this means that neurons responding
to active and passive movements differently are likely not drawing this distinction based on arm
kinematics, as those are the neurons for which we could not find a consistent whole-arm model.
Instead, this suggests that neurons in area 2 distinguish active and passive movements by some
other means, perhaps an efference copy signal from motor areas of the brain (Bell 1981; London
and Miller 2013; Nelson 1987).
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Figure 11: Neural separability index predicts whole-arm model inconsistency. A — Scatter plots
comparing the consistency of the whole-arm model against the separability index. Conventions are the
same as in figure 10. B — correlation between model consistency and separability index. Each dot
represents the correlation between model consistency and separability index for a given session, with
error bars representing the 95% confidence intervals.

3 DISCUSSION

3.1 SUMMARY

In this study, we explored, in two separate experiments, how somatosensory area 2 represents
arm movements. In the first experiment, a monkey reached to targets in two separate
workspaces. We found that a model incorporating whole-arm kinematics explained area 2 neural
activity well, especially when compared to the hand-only model typically used to explain these
neurons’ responses. Our results from the experiment thus suggest that area 2 represents the state
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360  of the whole arm during reaching. In the second experiment, we tested the whole-arm model’s
361  ability to explain area 2 neural activity both during reaching, and when the hand was

362  unexpectedly displaced passively. As in the first experiment, these two conditions differed both
363  kinematically and in the neural responses to movement. However, we found that while some
364 neurons maintained a consistent relationship with arm kinematics across the two conditions,
365 many others did not. Furthermore, those neurons most sensitive to movement type were also
366  those most poorly modeled across conditions. The results from this second experiment suggest
367  that for some neurons, area 2 relates to arm kinematics differently for active and passive

368  movements.

369 3.2 MODEL COMPLEXITY

370 A significant difference between the hand and whole-arm models is their number of parameters,
371  which make the whole-arm models more complex and expressible. There are two concerns with
372  testing models of differing complexity, the first dealing with model training and evaluation, and
373  the second with interpretation of the results.

374  In training and evaluating our models, we had to make sure that the complex models did not
375  overfit the data, resulting in artificially high performance on the training dataset but low

376  generalizability to new data. However, because we found through cross-validation that the more
377  complex models generalized to test data better than the simpler models, they were not

378  overfitting. Consequently, the hand-based models are clearly impoverished compared to the
379  whole-arm models.

380  The second concern is in interpreting what it means when the more complex models perform
381  Dbetter. One interpretation is that this is an obvious result; if the added degrees of freedom have
382  anything at all to do with area 2 neural activity, then the more complex models should perform
383  better. In fact, our main goal was primarily to improve our understanding of this area of S1 by
384  exploring how incorporating measurements of whole-arm kinematics could help explain its

385  function. As a result, we found that the whole-arm model not only out-performed the hand-only
386  model, but it also predicted changes in PD across the two workspaces well in its own right.

387  Furthermore, as demonstrated by the findings from our second experiment, the more complex
388  model does not necessarily lead to a satisfactory fit. Despite its increased complexity and its
389  success in the two-workspace task, the whole-arm model could not find a consistent fit for many
390 neurons over both active and passive movements. As such, the active/passive experiment serves
391  as auseful control for the two-workspace findings.

392 3.3 COORDINATE FRAME VS. INFORMATIONAL CONTENT

393  Because of their differing dimensionality, the signals from the hand-only model and those from
394  whole-arm model do not have a one-to-one relationship: there are many different arm

395  configurations that result in a given hand position. Thus, a comparison between the hand-only
396  and whole-arm models is mainly a question of information content (do area 2 neurons have

397  information about more than just the hand?). In contrast, signals predicted by the various whole-
398  arm models (see Supplementary Information) do have a one-to-one (albeit nonlinear)
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399  relationship to each other. Knowledge of the hand and elbow position should completely

400  determine estimated joint angles and musculotendon lengths, indicating that these models should
401  have the same informational content. As such, a comparison between these models (as in the
402  Supplementary Information) is purely one of coordinate frame. While the interpretation for a
403  comparison of information content is straightforward, interpreting the results of a comparison
404  between coordinate frames is not. One major issue is that these comparisons only make sense
405  when using linear models to relate neural activity to behavior. Once nonlinear models are

406  considered, as in our study with artificial neural networks (Lucas et al. 2019), coordinate frames
407  with one-to-one correspondence become nearly equivalent, and much more difficult to compare
408  meaningfully.

409  Clear parallels exist between this and earlier studies seeking to find a unique representation of
410  movement in motor areas. Over the last few decades, a controversy involving the exact nature of
411  the neural representation of movement has played itself out in the literature surrounding motor
412  cortex, with some advocating a hand-based representation of motor control (Georgopoulos et al.
413  1982; Georgopoulos et al. 1986; Moran and Schwartz 1999) and others a muscle-based

414  representation (Evarts 1968; Fetz et al. 1989; Morrow et al. 2007; Oby et al. 2012). Recently, the
415  motor control field started turning away from questions of coordinate frame and towards

416  questions of neural population dynamics and information processing (Churchland et al. 2010;
417  Elsayed et al. 2016; Gallego et al. 2017; Kaufman et al. 2014; Perich et al. 2018; Russo et al.
418  2018; Sussillo et al. 2015). Part of the motivation for this pivot in viewpoint is that it became
419  increasingly clear that a “pure” coordinate frame of movement representation is unlikely to exist
420  (Fetz 1992; Kakei et al. 1999). Further, studies tended to use correlation between neural activity
421  and behavioral variables as evidence that the neurons represent movements in a particular

422  coordinate frame. However, as noted above, these correlations could often be explained by

423  multiple coordinate frames, casting doubt on the conclusiveness of the exact coordinate frame of
424  representation (Mussa-Ivaldi 1988). Consequently, in our study, we put aside the question of the
425  coordinate frame of area 2, focusing instead on what we can gain by modeling area 2 in terms of
426  whole-arm kinematics.

427 A major question this study leaves open is that of how information about reaching is processed
428 by different areas of the proprioceptive neuraxis. While we might expect a muscle spindle-like
429  representation at the level of the dorsal root ganglia (DRG) or the cuneate nucleus, removed from
430 the receptors by one and two synapses, respectively, this representation likely changes as the

431  signals propagate through thalamus and into S1. Even different areas of S1 may have different
432  representations. Area 3a, which receives input mostly from muscle afferents (Heath et al. 1976;
433  Kaas et al. 1979; Phillips et al. 1971; Yamada et al. 2016), seems more likely to retain a muscle-
434  like representation than is area 2, which integrates muscle afferent input with that from

435  cutaneous receptors (Hyviarinen and Poranen 1978; Padberg et al. 2018; Pons et al. 1985).

436  Likewise, area 5 may have an even higher-level representation, as it receives input from both
437  somatosensory (Mountcastle et al. 1975) and motor cortices (Padberg et al. 2018), and appears to
438  depend on attention (Chapman et al. 1984; Omrani et al. 2016). As it becomes increasingly

439  feasible to record from several of these areas simultaneously (Richardson et al. 2016; Suresh et
440  al. 2017; Weber et al. 2006), future experiments could examine how these areas project
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441 information to each other, as has been explored in motor and premotor cortices (Churchland et
442 al. 2010; Elsayed et al. 2016; Kaufman et al. 2014; Perich et al. 2018), without modeling the
443  more complex cortical areas explicitly in terms of particular behavioral variables “encoded” by
444  single neurons.

445 3.4 POSSIBLE EVIDENCE OF EFFERENCE COPY IN AREA 2

446  Our inability to find a consistent model across conditions suggests a difference between neural
447  activity during active and passive movements that can’t be captured by our whole-arm model.
448  One possible explanation for this is that area 2 may represent arm kinematics nonlinearly.

449  Because we modeled area 2 activity with a generalized linear model (GLM; see methods), we
450  implicitly discounted this possibility. The fact that the whole-arm kinematics for the two

451  conditions are highly discriminable (89% separable on average) means that the different

452  conditions correspond to different zones of kinematic space. Following the analogy of fitting a
453 line to data distributed on an exponential curve, it is possible that the neurons with inconsistent
454  linear relationships to arm kinematics may simply reflect a single nonlinear relationship, with
455  different linear approximations in the two zones. Indeed, several of these neurons had high pR?
456  for models trained within condition (top left quadrants of Figure 10).

457  Another possible explanation for this finding is that voluntary movements may change the

458  afferent activity from the moving limb. This could be caused by altered descending gamma drive
459  to muscle spindles that changes their sensitivity (Loeb et al. 1985; Prochazka and Wand 1981;
460  Prochazka et al. 1976). Another possibility is that of an efference copy signal sent to the

461  brainstem or S1 from motor areas during active movements (Bell 1981; London and Miller 2013;
462  Nelson 1987). Many studies suggest that we use internal forward models of our bodies and

463  environment to coordinate our movements and predict their sensory consequences (Shadmehr
464  and Mussa-Ivaldi 1994; Wolpert et al. 1995). A key piece of this framework is comparing the
465  actual feedback received following movement with the feedback predicted by the internal model,
466  which generates a sensory prediction error. Recent studies suggest that S1 is important for

467  updating the internal model using a sensory prediction error (Mathis et al. 2017; Nasir et al.

468  2013). Thus, one potential avenue to study the effect of efference copy in S1 would be to

469  examine how motor areas communicate with area 2 during active and passive movements.

470 3.5 RELEVANCE FOR BCI

471  One motivation for this work is its potential to augment brain-computer interfaces (BCI) for

472  restoring movement to persons with spinal cord injury or limb amputation. As BCI for motor
473  control gets more advanced (Collinger et al. 2013; Ethier et al. 2012; Kao et al. 2015; Young et
474  al. 2018), it will become more necessary to develop a method to provide feedback about

475  movements to the brain, potentially using intracortical microstimulation (ICMS) to activate

476  somatosensory areas. While ICMS in S1 has seen some success in providing feedback about
477  touch (Flesher et al. 2016; Romo et al. 1998; Salas et al. 2018; Tabot et al. 2013), the path

478  towards providing proprioceptive feedback remains relatively unexplored. At least one study did
479  use electrical stimulation in S1 for feedback during movement, using the stimulation to specify
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480  target direction with respect to the evolving hand position (Dadarlat et al. 2015). In that study,
481  monkeys used the ICMS to reach to targets, even in the absence of visual feedback. However,
482  target-location information is very different from the information normally encoded by S1, and
483  the monkeys required several months to learn to use it. To our knowledge, no study has yet

484  shown a way to use ICMS to provide more biomimetic proprioceptive feedback during reaching.
485  Previously, our lab attempted to address this gap by stimulating a small number of electrodes in
486  area 2 based on neural activity recorded from them during normal reaching movements. In that
487  experiment, the monkey reported the direction of a mechanical bump to his arm that occurred
488  simultaneously with the ICMS. The ICMS biased one monkey’s reports of the mechanical bump
489  direction toward the PDs of the stimulated electrodes. Key to this finding was the fact that any
490  bias in reporting actually decreased the reward rate, suggesting that the ICMS was

491  indistinguishable from the perception of the bump itself (Tomlinson and Miller 2016).

492  Unfortunately, the result could not be replicated in other monkeys; while the ICMS often biased
493  their reports, the direction of the bias could not be explained by the PDs of the stimulated

494  electrodes. One potential reason may be that the stimulation paradigm in those experiments was
495  derived from the classic, hand-based model and the assumption that area 2 represents active and
496  passive movements similarly. As this paper has shown, both of these assumptions have important
497  caveats. It is possible that a stimulation paradigm based on a whole-arm model may be more
498  successful, due to its greater accuracy at predicting neural activity (Figure 7). It is also possible
499  that the stimulus model would need to include information about forces in addition to

500 kinematics. Regardless of the exact model, prospects for stimulating S1 to create natural

501  proprioceptive sensations would likely improve given a more accurate generative model of S1
502  activity.

503  In addition to developing better models for S1 activity, it will be important to consider the

504  implications of the difference between sensation for perception versus action. These two broad
505  purposes for sensation are thought to involve distinct pathways in both vision and touch

506  (Dijkerman and De Haan 2007; Mishkin and Ungerleider 1982; Sedda and Scarpina 2012). It is
507  quite plausible that this distinction exists for proprioception as well (Dijkerman and De Haan
508  2007). However, studies of the effects of ICMS in S1 tend to use perceptual reporting to test the
509  effect of stimulation (Salas et al. 2018; Tomlinson and Miller 2016; Zaaimi et al. 2013), thereby
510  not directly addressing how effectively ICMS can be used as feedback for action. Even in the
511  study conducted by Dadarlat et al., movements guided by ICMS were slower and contained more
512 submovements that those guided by even a noisy visual signal, suggesting that monkeys used the
513  ICMS as a learned sensory substitute, rather than as a biomimetic replacement for

514  proprioception. As such, that study was also likely a cognitive one, engaging the perceptual

515  stream rather than the action stream of proprioception (see (Deroy and Auvray 2012; Elli et al.
516  2014) for discussion of the limits of sensory substitution). As we better characterize how S1

517  represents movements, we hope to develop a stimulation paradigm in which we can engage both
518  streams, to enable users of a BCI both to perceive their limb, and to respond rapidly to

519  movement perturbations.
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520 4 CONCLUSION

521  Our goal in conducting this study was to improve our understanding of how area 2 neural activity
522 represents arm movements. We began by asking what we would learn about area 2 when we

523  tracked the movement of the whole arm, rather than just the hand. The results of our first

524  experiment showed that a model built on these whole-arm kinematics was highly predictive of
525 area 2 neural activity, suggesting that it indeed represents the kinematic state of the whole arm
526  during reaching. In our second experiment, we sought to extend these findings to similar

527  movements when the limb is passively displaced. There, we found that while some neurons

528  consistently represented arm kinematics, others did not, suggesting that the area may process

529  active and passive movements differently, possibly with the addition of efference copy inputs.
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Key Resources Table
Reagent
type Source or
(species) | Designation Identifiers Additional information
or reference
resource
All code developed for
software, |\, 71 AB MathWorks | RRID:SCR_001622 | UNiS paperavailable on
algorithm GitHub (See relevant
sections of Methods)

539  All surgical and experimental procedures were fully consistent with the guide for the care and
540  use of laboratory animals and approved by the institutional animal care and use committee of
541  Northwestern University under protocol #1S00000367.
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542 6.1 BEHAVIOR

543  We recorded data from a monkey while it used a manipulandum to reach for targets presented on
544  ascreen within a 20 cm x 20 cm workspace. After each successful reaching trial, the monkey
545  received a pulse of juice or water as a reward. We recorded the position of the handle using

546  encoders on the manipulandum joints. We also recorded the interaction forces between the

547  monkey’s hand and the handle using a six-axis load cell mounted underneath the handle.

548  For the two-workspace experiment, we partitioned the full workspace into four 10cm x 10cm
549  quadrants. Of these four quadrants, we chose the far ipsilateral one and the near contralateral one
550  in which to compare neural representations of movement. Before each trial, we chose one of the
551  two workspaces randomly, within which the monkey reached to a short sequence of targets

552  randomly positioned in the workspace. For this experiment, we only analyzed the portion of data
553  from the end of the center-hold period to the end of the trial.

554  For the active vs. passive experiment, we had the monkey perform a classic center-out (CO)

555  reaching task, as described in (London and Miller 2013). Briefly, the monkey held in a target at
556  the center of the full workspace for a random amount of time, after which one of four outer

557  targets was presented. The trial ended in success once the monkey reached to the outer target. On
558  50% of the trials (deemed “passive” trials), during the center hold period, we used motors on the
559  manipulandum to deliver a 2 N perturbation to the monkey’s hand in one of the four target

560 directions. After the bump, the monkey returned to the center target, after which the trial

561  proceeded like an active trial. From only the successful passive and active trials, we analyzed the
562  first 120 ms after movement onset. Movement onset was determined by looking for the peak in
563  handle acceleration either after the motor pulse (in the passive condition) or after 200 ms post-go
564  cue (in the active condition) and sweeping backwards in time until the acceleration was less than
565  10% of the peak.

566 6.2 MOTION TRACKING

567  Before each reaching experiment, we painted 10 markers on the outside of the monkey’s arm,
568  marking bony landmarks and a few points in between, a la (Chan and Moran 2006). Using a
569  custom motion tracking system built from a Microsoft Kinect, we recorded the 3D locations of
570  these markers with respect to the camera, synced in time to the other behavioral recordings. We
571  then aligned the Kinect-measured marker locations to the lab frame by aligning location of the
572 Kinect hand marker to the location of the handle in the manipulandum coordinate frame. Code
573  for motion tracking can be found at /ips://github.com/limblab/KinectTracking.git.

574 6.3 NEURALRECORDINGS

575  We implanted 100-electrode arrays (Blackrock Microsystems) into the arm representation of area
576 2 of S1 in these monkeys. For more details on surgical techniques, see (Weber et al. 2011). In
577  surgery, we roughly mapped the postcentral gyrus by recording from the cortical surface while
578  manipulating the arm and hand to localize their representations. To record neural data for our
579  experiments, we used a Cerebus recording system (Blackrock). This recording system sampled
580  signals from each of the 96 electrodes at 30 kHz. To conserve data storage space, the system


https://doi.org/10.1101/643205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/643205; this version posted December 11, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

23

581  detected spikes online using a threshold set at -5x signal RMS, and only wrote to disk a time
582  stamp and the 1.6 ms snippet of signal surrounding the threshold crossing. After data collection,
583  we used Plexon Offline Sorter to manually sort these snippets into putative single units, using
584  features like waveform shape and inter-spike interval.

585 6.4 SENSORY MAPPINGS

586  In addition to recording sessions, we also occasionally performed sensory mapping sessions to
587  identify the neural receptive fields. For each electrode we tested, we routed the corresponding
588  recording channel to a speaker and listened to multi-unit neural activity while manipulating the
589  monkey’s arm. We noted both the modality (deep or cutaneous) and the location of the receptive
590 field (torso, shoulder, humerus, elbow, forearm, wrist, hand, or arm in general). We classified an
591 electrode as cutaneous if we found an area of the skin, which when brushed or stretched, resulted
592  in an increase in multi-unit activity. We classified an electrode as deep if we found activity to be
593  responsive to joint movements and/or muscle palpation but could not find a cutaneous field. As
594  neurons on the same electrode tend to have similar properties (Weber et al. 2011), we usually did
595  not separate neurons on individual electrodes during mapping. However, when we did, we

596  usually found them to have similar receptive field modality and location.

597  In Monkeys C and H, we found a gradient of receptive field location across the array,

598  corresponding to a somatotopy from proximal to distal. To quantify this gradient, we assigned
599  each receptive field location a score from 1 to 7 (with 1 being the torso and 7 being the hand),
600 and we fit a simple linear model relating this location on the limb to the x and y coordinates of
601  electrodes on the array. We show the calculated gradients for Monkeys C and H as black arrows
602  in Figure 1 (both significant linear fits with p < 0.05). Monkey L’s array had too few neurons to
603  calculate a significant linear model.

604 6.5 NEURALANALYSIS
605  Code for the following neural analyses can be found at /ips.://github.com/racedcho/s1-
606  kinematics.git.

607 6.5.1 Preferred directions

608  We used a simple bootstrapping procedure to calculate PDs for each neuron. On each bootstrap
609 iteration, we randomly drew timepoints from the reaching data, making sure that the distribution
610 of movement directions was uniform to mitigate the effects of any potential bias. Then, as in
611  (Georgopoulos et al. 1982), we fit a cosine tuning function to the neural activity with respect to
612  the movement direction, using equations la-b.

613 fi(¥) = by + by * sin(6,,(x)) + b, * cos(8,, (1)) (1a)
614 = by + 1; * cos(6,,(t) — PD;) (1b)
615 where

616 PD; = atan2(b,, b,) and 1; = sqrt(b? + b3)
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617  Here, f;(7) is the average firing rate of neuron i for a given time point 7, and 6,,(7) is the
618  corresponding movement direction, which for the active/passive task was the target or bump
619  direction, and for the two-workspace experiment was the average movement direction over a
620  time bin. We took the circular mean of PD; and mean of r; over all bootstrap iterations to
621  determine the preferred direction and the modulation depth respectively, for each neuron.

622  As the PD analysis is meaningless for neurons that don’t have a preferred direction of movement,
623  we only analyzed the PDs of neurons that were significantly tuned. We assessed tuning through a
624  separate bootstrapping procedure, described in (Dekleva et al. 2018). Briefly, we randomly

625  sampled the timepoints from reaching data, again ensuring a uniform distribution of movement
626  directions, but this time also randomly shuffled the corresponding neural activity. We calculated
627  the r; for this shuffled data on each bootstrap iteration, thereby creating a null distribution of

628  modulation depths. We considered a neuron to be tuned if the true r; was greater than the 95%
629  percentile of the null distribution.

630 6.5.2 Models of neural activity

631  For the two-workspace analyses, both behavioral variables and neural firing rate were averaged
632  over 50 ms bins. For the active/passive analyses, we averaged behavioral variables and neural
633  firing rates over the 120 ms period following movement onset in each trial. We modeled neural
634  activity with respect to the behavior using Poisson generalized linear models (outline in

635  (Truccolo et al. 2005)) shown in equation 2a, below.

636 f ~ Poisson(1),A = exp (XB) (2a)

637  In this equation, f is a T (number of time points) x N (number of neurons) matrix of average

638  firing rates, X is a T x P (number of behavioral covariates, explained below) matrix of behavioral
639  correlates, and £ is a P x N matrix of model parameters. We fit these GLMs by finding

640  maximum likelihood estimation of the parameters, 5. With these fitted models, we predicted

641  firing rates (f) on data not used for training, shown in equation 2b, below.

642 f=exp(XB) (2b)

643  We tested six firing rate encoding models, detailed below. Of these six models, the first two
644  (hand-only and whole-arm) were the ones shown in the main text, with results from the other
645  models detailed in Supplementary Information. Note that each model also includes an offset
646  term, increasing the number of parameters, P, by one.

647 +  Hand-only: behavioral covariates were position and velocity of the hand, estimated by using

648 the location of one of the hand markers, in three-dimensional Cartesian space, with origin at
649 the shoulder (P = 7).

650 +  Whole-arm: behavior covariates were position and velocity of both the hand and elbow

651 markers in three-dimensional Cartesian space, with origin at the shoulder. This is the

652 simplest extension of the extrinsic model that incorporates information about the

653 configuration of the whole arm (P = 13)
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654 +  Hand kinematics+force: behavioral covariates were position and velocity of the hand, as
655 well as forces and torques on the manipulandum handle, in three-dimensional Cartesian
656 space (P =13).
657 +  Egocentric: behavior covariates were position and velocity of the hand marker in spherical
658 coordinates (6, ¢, and p), with origin at the shoulder (P = 7).
659 +  Joint kinematics: behavioral covariates were the 7 joint angles (shoulder
660 flexion/abduction/rotation, elbow flexion, wrist flexion/deviation/pronation) and
661 corresponding joint angular velocities (P =15).
662 +  Muscle kinematics: behavioral covariates were derived from the length of the 39 modeled
663 muscles (Chan and Moran 2006) and their time derivatives. However, because this would
664 result in almost 78 (highly correlated) covariates, we used PCA to extract 5-dimensional
665 orthogonal basis sets for both the lengths and their derivatives. On average, five
666 components explained 99 and 96 percent of the total variance of lengths and length
667 derivatives, respectively. Behavioral covariates of this model were the projections of the
668 muscle variables into these spaces during behavior (P = 11).

669  We used repeated 5-fold cross-validation to evaluate our models of neural activity, given that the
670  models had different numbers of parameters, P. On each repeat, we randomly split trials into five
671  groups (folds) and trained the models on four of them. We used these trained models to predict
672  neural firing rates (f,) in the fifth fold. We then compared the predicted firing rates from each
673  model to the actual firing rates in that test fold, using analyses described in the following

674  sections. This process (including random splitting) was repeated 20 times, resulting in n=100
675  sample size for each analysis result. Thus, if a more expressive model with more parameters

676  performs better than a simpler model, it would suggest that the extra parameters do provide

677  relevant information about the neural activity not accounted for by the simpler models.

678  6.5.3 Statistical tests and confidence intervals

679  To perform statistical tests on the output of repeated 5-fold cross-validation, we used a corrected
680  resampled t-test, outlined in (Ernst 2017) and (Nadeau and Bengio 2003). Here, sample mean
681 and variance are calculated as in a normal t-test, but a correction factor needs to be applied to the
682  standard error, depending on the nature of the cross-validation. Equation 3a-c shows a general
683  case of this correction for R repeats of K-fold cross-validation of some analysis result dj,..

K R
684 iy = Z Z (3a)
k=1r=1
K R
~2 _ 2
686 t Ha (3¢)

stat =
1 UK .,
\/(KXR+1—1/K)Ud
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687  We then compare the t-statistic here (tg:4;) to a t-distribution with K X R — 1 degrees of

688  freedom. Note that the correction applied is an extra term (i.e., 1i/1 I;K) under the square root,

689  compared to the typical standard error calculation. Note that we performed all statistical tests
690  within individual sessions or for individual neurons, never across sessions or monkeys.

691 6.5.4 Bonferroni corrections

692 At the beginning of this project, we set out to compare three of these six models: hand-only,
693  egocentric, and muscle kinematics. In making pairwise comparisons between these models, we
694  used @ = 0.05 and a Bonferroni correction of 3, for the three original comparisons. In this

695  analysis, we found that the muscle model performed best. As we developed this project,

696  however, we tried the three other models to see if they could outperform the muscle kinematics
697  model, eventually finding that the whole-arm model, built on Cartesian kinematics of the hand
698  and elbow outperformed it. As this appeared to be primarily due to modeling and measurement
699  error in the muscle model (see Supplementary Information), we decided to focus on the hand-
700  only and whole-arm model. Despite only making one pairwise comparison in the main text, we
701  chose to use a Bonferroni correction factor of 6: three for the original three pairwise comparisons
702 and one more for each additional model we tested, which were compared against the best model
703 at the time, and could have changed the end result of this project.

704  6.5.5 Goodness-of-fit (pseudo-R?)

705  We evaluated goodness-of-fit of these models for each neuron by using a pseudo-R? (pR?)

706  metric. We used a formulation of pseudo-R? based on a comparison between the deviance of the
707  full model and the deviance of a “null” model, i.e., a model that only predicts the overall mean
708  firing rate (Cameron and Windmeijer 1997; 1996; Heinzl and Mittlbock 2003; Perich et al.

709 2018).

D(f;; 1)
710 R?=1—-——"=L 4
p D(f:7) (4a)
- _logl() —loglt(®)

logL(f;) — logL(F;)

712 When computing the likelihood of a Poisson statistic, this is:

@ -
T fi (@ log( ; (T)) - (@ -7®)

713 =1-
m(ﬂlog(ﬁf) (@ -7)

(40)

714 This pR? metric ranges from —oo to 1, with a value of 1 corresponding to a perfectly fit model
715  and a value of 0 corresponding to a model that only fits as well as the “null” model. In contrast
716  with the general intuition for regular R?, a pR? of ~0.2 is considered a “good” fit (McFadden
717 1977).
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718  6.5.6 Tuning curves

719  We binned the trajectory into 16 bins, each 22.5 degrees wide, based on the mean direction

720  across 50 ms of hand motion. For each directional bin, we calculated the sample mean and 95%
721  confidence interval of the mean. In figures, we plotted this mean firing rate against the center-
722 point of the bin.

723 6.5.7 Preferred direction shift

724  We calculated PDs for each neuron in each workspace and found the predicted change in PD
725  from the contralateral workspace to the ipsilateral workspace, given each model. We compared
726  these changes to those observed for each neuron. The values of these PD shifts are shown in

727  Figure 7 for all neurons tuned to movements in both workspaces, averaged over all 100 test
728  folds.

729  We computed a variance-accounted-for (VAF) metric, here called the “circular VAF” (cVAF)
730  for each neuron (i) in each fold as:

731 cVAF; = cos(46pp; — A0pp ) (5)

732 Asthe cVAF metric is essentially the inner product of unit vectors with direction 46pp ; and
733 4B, p.i» it accounts for the circular domain of the PD shifts. Like regular VAF, the cVAF has a
734 maximum value of 1 when 465y, ; and A0, p,; are the same, and decreases in proportion to the
735  squared difference between A6y, ; and ABp pi- We took the average cVAF over all neurons as

736  the cVAF for the fold. In total, given the 20 repeats of 5-fold cross-validation, this gave us 100-
737  samples of the cVAF for each model in a given session.

738  6.5.8 Separability index

739  In the active/passive experiment, we calculated the separability index for each neuron by fitting a
740  linear discriminant analysis (LDA) classifier, predicting trial type (active or passive) from the
741  neuron’s average activity in the 120 ms after movement onset. As with the other neural analyses,
742 we fit and evaluated each LDA classifier using our repeated 5-fold cross-validation scheme,

743  calling the average test set classification percentage the neuron’s separability index.

744 Our procedure for calculating the separability of the whole-arm kinematics was similar, simply
745  substituting the whole-arm kinematics for the neural activity when training and testing the LDA
746  classifier.

747 7 SUPPLEMENTARY INFORMATION

748 7.1 WITHIN CLASS MODEL COMPARISONS

749  Over the course of this project, we analyzed several different models of area 2 activity. We

750  categorized these models into two classes based on whether they contained information about the
751  hand or the arm in different coordinate frames. Of these models, we picked the hand-only and
752 whole-arm models to represent the two model classes in the main paper, as we found that the
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753  other within-class models offered little additional insight into area 2 activity. For completeness,
754  however, this section expands on the comparisons between within-class models.

755 7.1.1 Hand model comparison

756  Two of our models used the kinematics of hand movement as behavioral covariates for area 2
757  neural activity: the hand-only model in the main paper and the egocentric model, which

758  represents hand kinematics in a spherical coordinate frame with origin at the shoulder. While the
759  egocentric model, or a model like it, has been proposed as a possible coordinate frame for

760  representation of the limb (Bosco et al. 1996; Caminiti et al. 1990), we found that it performed
761  rather poorly at explaining neural activity in area 2 from the two-workspace task. Figure 7 —

762  figure supplement 1A and B show comparisons between the hand-only model and the egocentric
763  model in terms of pR? and tuning curve correlation, as in the main paper. These comparisons
764  show that the hand-only model tended to out-perform the egocentric model. Further, the

765  egocentric model predicted large shifts in PD between the two workspaces (Figure 7 — figure
766  supplement 1C) that did not match up at all to the actual PD shifts.
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768  Figure 7 — figure supplement 1: Comparison between hand-only model and egocentric model. A — pR’
769  comparison, as in Figure 4. B — tuning curve correlation comparison, as in Figure 6. C — Modeled PD
770 shift compared to actual PD shift for egocentric model, as in Figure 7A.

771  7.1.2 Arm model comparison

772 In addition to the whole-arm model detailed in the main paper, we tested two models of area 2
773  activity based on biomechanics: one based on joint kinematics and the other based on

774  musculotendon lengths. To find these behavioral covariates, we registered these marker locations
775  to a monkey arm musculoskeletal model in OpenSim (SimTK), based on a model of the macaque
776  arm published by (Chan and Moran 2006), and which can be found at

777 htips://github.com/limblab/monkeyArmModel. git. After scaling the limb segments of the model to
778  match those of each monkey, we used the inverse kinematics analysis tool provided by OpenSim
779  to estimate the joint angles (and corresponding muscle lengths) required to match the model’s
780  virtual marker positions to the positions of the actual recorded markers. Previously, Chan and
781  Moran used this model to analyze the joint and muscle kinematics as a monkey performs a center
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782 out task (Chan and Moran 2006). Here, we use the musculoskeletal model to predict neural
783 activity.

784  Figure 7 — figure supplement 2A and B show comparisons of pR? and tuning curve correlation
785  between the whole-arm model detailed in the paper and these two biomechanical models. We
786  found that the three models provided similar predictions, but surprisingly, the whole-arm model
787  generally outperformed the biomechanical models. Figure 7 — figure supplement 2C shows the
788  predicted PD shifts from these models, as in Figure 7A. We found that neither biomechanical
789  model could predict PD shifts as well as the whole-arm model, though the muscle model in

790  particular appeared to perform well.

791  As a control for errors introduced into the muscle model by processing marker data with

792  OpenSim, we performed the cVAF analysis on a whole-arm model where hand and elbow

793  kinematics were derived from joint angles of the musculoskeletal model, rather than directly
794  from the marker locations captured by the motion tracking system. We re-ran the model

795  prediction analysis for only the muscle model, marker-derived whole-arm model, and OpenSim-
796  based whole-arm model. Unsurprisingly, we found average cVAFs similar to those from the
797  main analysis for the marker-derived whole-arm model (0.75). However, the cVAF for the

798  OpenSim-based whole-arm model (0.67) dropped to that for the muscle model (0.67). This
799  suggests that the difference in predictive capability between the muscle and whole-arm models
800  stems at least in part from errors introduced in OpenSim modeling, rather than from the whole-
801  arm model necessarily being the better model for area 2 neural activity.
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Figure 7 — figure supplement 2: Comparison between whole-arm model and biomechanical models (joint
kinematics and musculotendon length). Same arrangement as in Figure 7 — figure supplement 1.
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805 7.1.3 Discussion of arm model comparisons

806  As proprioceptive signals originate in the muscles, arising from muscle spindles and Golgi

807  tendon organs, we expected to find that the muscle model would outperform the other models.
808  However, there are several potential reasons why this was not so. The most important ones can
809  be divided into two categories loosely tied to 1) errors in estimating the musclulotendon lengths,
810  through motion tracking and musculoskeletal modeling, and 2) the fidelity of the muscle model
811  to the actual signals sent by the proprioceptors.

812  In the first category, the main issue is that of error propagation. The extra stages of analysis

813  required to compute musculotendon lengths (registering markers to a musculoskeletal model,
814  performing inverse kinematics to find joint angles, and using modeled moment arms to estimate
815  musculotendon lengths) introduce errors not present when simply using the positions of markers
816  on the arm. As a control, we ran the whole-arm model through two of these extra steps by

817  computing the hand and elbow positions from the joint angles of the scaled model, estimated
818  from inverse kinematics. The results of this analysis showed that the performance of the whole-
819  arm model with added noise dropped to that of the muscle model, indicating that there are, in
820  fact, errors introduced in even this portion of the processing chain.

821  The other potential source of error in this processing chain stems from the modeled moment

822  arms, which might not accurately reflect those of the actual muscles. In developing their

823  musculoskeletal model, Chan and Moran collected muscle origin and insertion point

824  measurements from both cadaveric studies and existing literature (Chan and Moran 2006).

825  However, due to the complexity of some joints, along with ambiguity of how the muscle wraps
826  around bones and other surfaces, determining moment arms purely by bone and muscle geometry
827  1is a difficult problem (An et al. 1984). Because moment arms are irrelevant for determining hand
828  and elbow kinematics, we could not subject the whole-arm model to the error introduced by this
829  step.

830  In addition to the questions of error propagation and musculoskeletal model accuracy is the

831  question of whether our muscle model was truly representative of the signals sensed by the

832  proprioceptors. The central complication is that spindles sense the state of the intrafusal fibers in
833  which they reside, and have a complex, nonlinear relation to the musculotendon length that we
834  used in our muscle model. Factors like load-dependent fiber pennation angle (Azizi et al. 2008),
835  or tendon elasticity (Rack and Westbury 1984) can decouple muscle fiber length from

836  musculotendon length. Additionally, intrafusal fibers receive motor drive from gamma motor
837  neurons, which continuously alters muscle spindle sensitivity (Loeb et al. 1985; Prochazka and
838  Wand 1981; Prochazka et al. 1976) and spindle activity also depends on the history of strain on
839 the fibers (Haftel et al. 2004; Proske and Stuart 1985). Altogether, this means that while the

840  musculotendon lengths we computed provide a reasonably good approximation of what the arm
841  1is doing, they may not be a good representation of the spindle responses themselves. Spindle
842  activity might be more accurately modeled when given enough information about the

843  musculotendon physiology. However, to model the effects of gamma drive, we would either
844  have to record directly from gamma motor neurons or make assumptions of how gamma drive
845  changes over the course of reaching. In developing models of neural activity, one must carefully
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846  consider the tradeoff between increased model complexity and the extra error introduced by
847  propagating through the additional requisite measurement and analysis steps. Given our data
848  obtained by measuring the kinematics of the arm with motion tracking, it seems that the

849  coordinate frame with which to best explain area 2 neural activity is simply the one with the
850  most information about the arm kinematics and the fewest steps in processing. However, this
851  does not rule out the idea that area 2 more nearly represents a different whole-arm model that
852  may be less abstracted from physiology, like musculotendon length or muscle spindle activity.

853  Still, this model comparison shows that even after proprioceptive signals reach area 2, neural
854  activity can still be predicted well by a convergence of muscle-like signals, even though the

855  signals have been processed by several sensory areas along the way. One potential explanation
856  for this is that at each stage of processing, neurons simply spatially integrate information from
857  many neurons of the previous stage, progressively creating more complex response properties.
858  This idea of hierarchical processing was first used to explain how features like edge detection
859  and orientation tuning might develop within the visual system from spatial integration of the
860  simpler photoreceptor responses (Felleman and Van Essen 1991; Hubel and Wiesel 1959; 1962).
861  This inspired the design of deep convolutional artificial neural networks, now the state of the art
862  in machine learning for image classification (Krizhevsky et al. 2012). Unlike previous image
863  recognition methods, these feedforward neural networks are not designed to extract specific,
864  human-defined features of images. Instead, intermediate layers learn to integrate spatially

865  patterned information from earlier layers to build a library of feature detectors. In the

866  proprioceptive system, such integration, without explicit transformation to some intermediate
867  movement representation, might allow neurons in area 2 to serve as a general-purpose library of
868  limb-state features, whose activity is read out in different ways for either perception or use in
869  motor control.

870  7.1.4 Hand kinematic-force model

871  Overall, our main results showed that the whole-arm model better captures firing rates and

872  features of the neural activity than does the hand-only model. One consideration in interpreting
873  these results is the fact that the whole-arm model is almost twice as expressive as the hand-only
874  model, due to its greater number of parameters. While we took care to make sure the models
875  were not overfitting (see Methods for details on cross-validation), a concern remains that any
876  signal related to the behavior may improve the fits, simply because it provides more information.
877  To address this concern, we would ideally compare these results with those from a model with
878  the same number of parameters, but with behavioral signals uncorrelated with elbow kinematics,
879  e.g., kinematics of the other hand. Unfortunately, due to experimental constraints, we only

880  collected tracking information from the reaching arm. As a substitute, we also tested a model we
881 titled “hand kinematic-force”, which builds on the hand-only kinematic model by adding the
882  forces and torques on the manipulandum handle. This model is similar to one proposed by

883  (Prud'homme and Kalaska 1994) and has the same number of parameters as the whole-arm

884  model. While the handle forces and torques are likely correlated with the elbow kinematics, this
885  model serves as a reasonable control to explore the particular importance of whole-arm

886  kinematics to area 2.
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887  Figure 7 — figure supplement 3 shows comparisons between the whole-arm model and the hand
888  kinematic-force model on the three metrics we used. We found that the pR? and the tuning curve
889  correlation values for both models were comparable, with some neurons better described by the
890  whole-arm model and others by the kinematic-force model. However, we also found that the
891  hand kinematic-force model often could not predict large changes in PD as well as the whole-
892  arm model could (Figure S3C and 7). In four out of eight sessions, the whole-arm model had a
893  significantly higher cVAF than the hand kinematic-force model. In the other sessions, there was
894  no significant difference. While the two models made similar activity predictions, the better PD
895  shift predictions suggest that the whole-arm model is a better model for area 2 neural activity.
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897  Figure 7 — figure supplement 3: Comparison between whole-arm model and hand kinematic-force model
898  (shortened as “Kin-Force”). Same format as Figure 7 — figure supplements 1 and 2.
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