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Abstract

Benchmarking the performance of complex analytical pipelines is an essential part of
developing Laboratory Developed Assays (LDT). Reference samples and benchmark calls
published by Genome in a Bottle (GIAB) Consortium have enabled the evaluation of
analytical methods. However, the performance of such methods is not uniform across the
different regions of the genome/exome and different variant types and lengths. Here we
present a scalable and reproducible, cloud-based benchmarking workflow that can be used by
clinical laboratories to rapidly access and validate the performance of LDT assays, across
their regions of interest and reportable range, using a broad set of benchmarking samples.

Keywords

Benchmarking, workflow, GIAB reference genomes, precision, recall, truth set, docker,
germline variants, laboratory developed assays

Background

Next Generation Sequencing (NGS) and analytical methods developed to detect various
forms disease-causing polymorphisms are now routinely being used by clinical laboratories
to determine the molecular etiology of complex diseases/disorders and in many cases to make
critical treatment course decisions. In the past two decades, many polymorphisms in the
human genome have been identified and validated that serve as predictive, diagnostic, and
prognostic markers for complex inherited diseases. These genomic disease markers can be of
different forms such as Single Nucleotide Variants (SNVs), small INsertions and DELetions
(INDELS), large deletions and duplications (del/dups), and Copy Number Variations (CNVSs)
and can vary in size from a single base change to several Mega Bases (MB) in length and
even whole chromosomal polysomy. Clinically relevant polymorphisms occur in different
regions of the genome, including exonic, splice-sites, and deep-intronic regions. These
polymorphisms also happen in various forms, including single base changes within high
entropic regions, copy number changes to homopolymer repeats and copy number changes to
Short Tandem Repeat (STR) regions. NGS platforms used to detect these polymorphisms;
owing to their different sequencing chemistry and signal processing methods; have very
different error modes and hence very different analytical performance across the different
regions of the genome. Consequently, analytical methods specific to various NGS platforms
such as Illumina, lon Torrent, Pacific Biosciences, and Oxford Nanopore have been
developed to both account for and correct the errors particular to these sequencing platforms.
This has resulted in a dizzying array of combinations of sequencing platforms and analytical
methods available to a clinical diagnostic laboratory to develop their LDT assay.

Benchmarking methods and pipelines are essential to accurately assess the performance of
sequencing platforms and analytical methods before they are incorporated into clinical
diagnostic assays. Genome In A Bottle (GIAB) consortium hosted by NIST has characterized
the pilot genome (NA12878/HG001) (1) and six samples from the Personal Genome Project
(PGP) (2). These benchmark calls for SNVs and small INDELSs (1-20bp) from reference
samples can be used for optimization, performance estimation, and analytical validation of
LDT assays using complex analytical pipelines with multiple methods to detect
polymorphisms in the genome. Global Alliance for Genomics and Health (GA4GH)
benchmarking team have developed standardized tools (3) to evaluate the performance
metrics of germline variant callers used primarily in research applications.
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Clinical Laboratory Improvement Amendments (CLIA) requires all laboratories using LDT
to establish the test's performance specifications such as analytical sensitivity, specificity,
reportable range, and reference range (4). College of American Pathologist (CAP) laboratory
standards for NGS based clinical diagnostic (5) not only require the laboratories to assess and
document the performance characteristics of all variants within the entire reportable range of
LDTs but also obtain the performance characteristics for every type and size of variants that
are reported by the assay. Laboratories are also required to assess the performance
characteristics for clinically relevant variants such as AF508 and IVS8-5T (6) mutations in a
CFTR assay. CAP guidelines also require laboratories to periodically (determined by the
laboratory) assess and document the analytical performance characteristics to ensure that the
LDT is continuing to perform as expected over time.

Benchmarking workflows/pipelines that are highly scalable, reproducible and capable of
reporting the performance characteristics using a large number of reference and clinical
samples within multiple highly stratified regions of interest are essential for clinical
laboratories to optimize and routinely assess the performance of their LDT assays.

Results

Our goal was to develop a benchmarking workflow that any clinical laboratory could use to
quickly evaluate and compare the performance characteristics of all suitable secondary
analysis pipelines. Benchmarking workflow should further help optimize the analytical
pipeline based on well-defined performance metrics and finally produce a thorough analytical
validation report to justify the use of the analytical pipeline in their diagnostic assay to
regulatory authorities such as CLIA and CAP.

To test the abilities of our benchmarking workflow, we used it to compare two analytical
pipelines commonly used for germline variant calling 1. Pipeline based on Broad Institute’s
best practices guidelines using GATK HaplotypeCaller v3.7 and 2. SpeedSeq pipeline (7)
based on FreeBayes v0.9.10 (8) as the primary variant calling engine. GATK
HaplotypeCaller based pipeline was chosen over the FreeBayes pipeline as it out-performed
in the detection of small-INDELSs (1 — 20 base pairs).

The performance characteristics of the analytical pipeline using GATK v3.7 was further
optimized using benchmarking metrics generated using the five GIAB reference samples and
four GeT-RM samples (see Methods) with known pathogenic variants. Also, it is critical for
the clinical laboratories developing NGS based LDT assays to accurately determine the
reportable range to avoid misdiagnosis leading to wrong treatment decisions. To this effect,
we evaluated the performance metrics using the benchmarking workflow in three distinct
genomic regions of interest (see Methods for details).

Although we have the benchmarking results for the region, including coding exons in all the
RefSeq genes, we have omitted those findings in this section and focus on the clinically
relevant regions.

Table 1: Benchmarking metrics for SNPs within coding exons of clinically relevant ~7000
genes (as specified in Methods).


https://doi.org/10.1101/643163
http://creativecommons.org/licenses/by-nc-nd/4.0/

98

99
100

101

102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125

bioRxiv preprint doi: https://doi.org/10.1101/643163; this version posted May 20, 2019. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

GIAB Number Truth
genome / | of bases total TP FP| FN | TN NPA | Precision | Recall
NIST ID

NA12878 | 13728555 | 7803 | 7781 | 4 | 22 | 13720748 100 99.95 99.72
NA24143 | 12549224 | 7470 | 7460 | 14 | 10 | 12541740 100 99.81 99.87
NA24149 | 12538042 | 7495 | 748519 |9 12530529 100 99.75 99.88
NA24385 | 12626866 | 7452 | 7436 | 0 | 16 | 12619414 100 100 99.79
NA24631 | 12808688 | 7591 | 7581 | 6 | 10 | 12801091 100 99.92 99.87

Table 2: Benchmarking metrics for SNPs in whole exome regions, including non-coding
exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

GIAB Number Truth

genome/ | of bases total TP FP | FN | TN NPA Precision | Recall
NIST ID

NA12878 | 71152019 | 57822 | 57024 | 491 | 776 | 71093728 100 99.15 98.66
NA24143 | 65657646 | 55975 | 55340 | 669 | 611 | 65601026 100 98.81 98.91
NA24149 | 65597266 | 55518 | 54827 | 669 | 669 | 65541101 100 98.79 98.79
NA24385 | 65948744 | 56068 | 55329 | 389 | 705 | 65892321 100 99.30 98.74
NA24631 | 66988987 | 56948 | 56303 | 394 | 643 | 66931647 100 99.31 98.87

Tables 1 and 2 show the benchmarking metrics for SNPs in all five GIAB samples within the
clinically relevant genes and whole exome regions, respectively. The precision, recall, and
NPA metrics for SNPs are uniform across all the reference samples, and there is no sample
bias in the results for some of the better-characterized samples such as NA24385 and
NA12878. Performance metrics for SNPs within the clinically relevant gene region is
significantly better than those within the whole exome region. Recall metrics, in particular,
are a percentage point better in the clinically pertinent gene region, across all reference
samples. This is attributable to the fact that many genes have isoforms, resulting in higher
alignment errors, and some genes have either very high or very low GC content, resulting in
higher than average sequencing errors within these regions of the genome. The finding is of
great clinical significance, since the reportable region of most inherited disease/disorder,
LDT assay is limited to the clinically relevant genes and thereby the overall performance
characteristics of the assay is better than that estimated over either the whole genome or
whole exome regions.

Table 3: Benchmarking metrics for indels of different size ranges in NA24385 (truth set
NIST v3.3.2, total bases = 12,626,866) for the regions within ~7000 clinically relevant genes
(as specified in Methods).

Size of indels Truth

in NA24385 total TP | FP | FN | TN NPA Precision | Recall
1-10 145 136 | 12 | 9 12626709 100 91.89 93.79
11-20 9 9 0 0 12626857 100 100 100
21-50 3 3 0 0 12626863 100 100 100
All Indels 157 148 | 12 | 9 12626697 100 92.50 94.27

Table 4: Benchmarking metrics on the number of indels of different size ranges in NA24385
(truth set NIST v3.3, total bases = 65,948,744) for the whole exome regions including non-
coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.
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?r:z,flglelg‘;%'s &;Ith T |FP |FN | TN NPA Precision | Recall
1-10 5169 4727 | 872 | 442 | 65942703 | 100 84.43 91.45
11-20 203 188 | 10 | 15 | 65948531 | 100 94.95 9261
21-50 67 56 |3 |11 | 65948674 | 100 94.92 83.58
All Indels 5362 4920 | 885 | 468 | 65942471 | 100 84.75 91.27

126

127  Tables 3 and 4 provide the indel benchmarking metrics for sample NA24385 in the clinically
128  relevant and whole exome regions, respectively. As expected, the benchmarking workflow
129  reveals that the performance metrics for INDELS are lower than those for SNPs. However,
130 the stratification by INDEL size, helped us determine the reference range for INDELs (1- 20
131  base-pairs). The recall metric for INDELSs larger than 20 base-pairs is significantly lower than
132  the recall for INDELs 1 — 20 base-pairs. As in the case of SNPs, performance metrics for

133 INDEL detection within the clinically relevant genes of interest is better than the whole

134  exome region.

135

136  The benchmarking results of the other GIAB reference samples in the clinically relevant and
137  whole exome regions can be obtained in the Supplementary Materials Table S1-S4 and Table
138  S5-S8, respectively. The histogram for the indel size distribution in the NA24385 reference
139  sample for the whole exome region is in Supplementary Material as Fig S1. The histograms
140  of indel size distributions for GIAB samples in both the whole exome and clinically relevant
141  regions are available in our github repository - vandhana/stanford-benchmarking-workflows.
142

143  Table 5: Validation of the presence of the truth variants in the GeT-RM samples (as specified
144  in Methods) using our variant calling pipeline.

145
S;;;I?eNIID Chromosome:Position | Truth Variant ;gg;?t;garlant
15:91310152 TATC>T Yes
NA04408 15:91310156 T->TA Yes
15:91310158 A->ATTC Yes
NA14090 17:41276044 ACT -> A Yes
NA14170 13:32914437 GT->G Yes
NA16658 10:43609103 G->T Yes
146

147  Finally, our benchmarking workflow was able to confirm that our variant calling pipeline can
148  detect all the clinical variants in GeT-RM samples listed in Table 5.

149

150 To get all the metrics produced by hap.py and other output files including plots from our

151  benchmarking workflow for each reference sample, please refer to the Supplementary Data
152 files.

153

154 Discussion

155

156  GIAB consortium has helped developed standards for genomic data to evaluate the

157  performance of NGS sequencing platforms and analytical methods used for alignment and
158  variant calling. The precisionFDA platform has enabled the genomics community to develop
159  and deploy benchmarking tools that can evaluate the performance of analytical methods

160 against the gold standard datasets. These benchmarking tools, along with accuracy

161  challenges, has led to the development of highly accurate variant calling methods. However,
162  the requirements of a clinical diagnostic laboratory go beyond the simple evaluation of
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163  performance characteristics of an analytical pipeline against one or more reference samples.
164  Our purpose was to build a benchmarking workflow to meet the assay optimization and

165  validation needs of a clinical laboratory. The primary benefit of our benchmarking workflow
166 s that it allows for the assay performance to be evaluated using a broad set of both reference
167  samples with a large number of gold-standard variant calls and clinical samples with a small
168  number of clinical variants, that are specific to the diagnostic assay being evaluated. The
169  benchmarking workflows enable the clinical laboratories to establish the reporting range of
170  the diagnostic assay by estimating the performance within multiple regions of interest.

171

172 Unlike web-based benchmarking apps, such as those provided by the precision FDA platform
173 or GA4GH, our benchmarking framework can be seamlessly integrated with any variant

174  calling pipeline in the user's software environment. Thus, our benchmarking workflows

175  enable ease of use and avoid the transfer of sensitive data to different locations, which could
176  be non-Protected Health Information (PHI) compliant.

177

178  Our benchmarking modules if integrated with deployment tools, such as Jenkins (9) and

179  CircleCl (10), that work on the principle of continuous integration and continuous

180  delivery/deployment (CI/CD), it provides a foolproof way of examining consistency in

181  results. In this era where workflows generating reproducible results are gaining attention,
182  easy incorporation of workflows with CI1/CD tools is a nice feature to have.

183

184  The benchmarking workflow is distributed using human-readable YAML (11) format, and it
185  might limit direct porting to existing WDL based workflows such as those published by the
186  Broad Institute (12, 13). Similarly, conversion of the benchmarking YAML files to Common
187  Workflow Language (CWL) format is required to run workflows published by GA4GH (14-
188  16). However, since we have used docker images for the software tools used within the

189  benchmarking framework, portability to other runtime environments should not take a

190  significant effort for a bioinformatician.

191
192
193

194 Conclusions

195

196  Benchmarking variants is a critical part of implementing variant calling pipelines for research
197  or clinical purposes. Here, we have successfully implemented benchmarking workflows that
198  generate metrics such as specificity, precision, sensitivity for germline SNPs, and indels in
199  whole exome sequencing data. Also, indel size distributions even in the form of histograms
200  are provided. Combining these benchmarking results with validation using known variants of
201  clinical significance in publicly available cell lines, we were able to establish our variant

202  calling pipelines in a clinical setting. Our benchmarking workflow can serve as a plug-in to
203  any existing variant calling pipeline to work as an integrated unit or be used as a separate

204  module as well.

205

206 Methods

207
208  Benchmarking workflow
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209  The benchmarking workflow, as illustrated in Figure 1, is a sequence of steps required to
210  perform a rapid and comprehensive analytical validation of a clinical diagnostic assay based
211  ongermline variants. The benchmarking workflow can be easily integrated with any

212  secondary-analysis pipeline used in a diagnostic assay to call germline variants, and our

213 workflow accepts germline variants (SNVs and small INDELS) in Variant Call Format VCF
214 v4.1(17) or higher. The workflow takes one or more stratification files specifying the regions
215  of interest in BED (18) format and generates a comprehensive analytical validation report
216  detailing the performance characteristics of the assay within each of the specified regions of
217  interest. Benchmark variant calls that are considered as ground truths for each of the

218  reference sample used to evaluate the analytical performance can be also be specified in VCF
219  format.

220

221

222  Figure 1. Schematic diagram of the benchmarking framework used in this study

223

‘ Benchmarking Framework

BENCHMARKING METRICS FOR
Stage 1 STRATIFIED TRUTH REGIONS
COMPARISON OF
VARIANTS (hap.py) ANNOTATED VARIANTS
Inputs

CALLED VARIANTS
SNP VCFs
Stage 2 (TP.vel, FP.vel, FN.vcf)
T T
M  SPLIT VARIANTS INTO ANNOTATED INDEL VCFs A s
SNPs + INDELS (bcftools) (TP.vef, FP.vef, FN.vcf) ™ (benchmarking frath_setpy
L

OR verify_variants.py)

ASSAY

Stage 3 PERFORMANCE
REPORT

ESTIMATE INDEL INDEL DISTRIBUTION FILES
DISTRIBUTION IN TRUTH FOR STRATIFIED TRUTH
VARIANTS (beftools + bash REGIONS

script)

Stage 4
GENERATE INDEL SIZE
DISTRIBUTION ON
CALLED VARIANTS
(indelSizeDistribution_Detailed.R)

INDEL SIZE DISTRIBUTION -
FILES

INDEL SIZE DISTRIBUTION
PLOTS

LOOM (in-house workflow engine)

224
225  Figure 1 legend: All the stages in the benchmarking workflow have been dockerized. The

226  docker images are available in DockerHub as specified in the Methods section.

227

228

229  The first step in the benchmarking process involves the comparison of input variants

230  generated by the analytical pipeline with the benchmark variant calls within each region of
231  interest. The variant calls are compared using hap.py (19, 20), which is capable of haplotype
232  construction from individual genotype calls and is recommended by GIAB consortium and
233  GAA4GH. The variant comparison step is performed for each of the stratification or region of
234 interest file specified as input, and hap.py generates a single output VVCF file classifying the
235 variant calls defined in the input and truth VVCF files as either True Positive (TP), False

236  Positive (FP) or False Negative (FN).

237
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238  Step two in the benchmarking workflow splits the variant calls annotated using hap.py by
239  variant type (SNPs and small INDELS) and by variant classification (TP/FP/FN). This step is
240  executed within the workflow for each of the stratification or region of interest file specified.
241  The VCF files are split by variant type using bcftools (21), and a bash script is used to further
242  split the variant calls by the variant classification. This allows the workflow to generate the
243  performance metrics for each of the variant types reported by the diagnostic assay.

244

245  Steps two and three of the benchmarking workflow (see Figure 1.) were used to generate a
246  histogram of small INDELSs by size. The bins used for INDEL size histograms were a. 1

247  base-pair, b. 2-5 base-pairs, c. 6-10 base-pairs, d. 11 — 20 base-pairs, e. 21 — 50 base-pairs,
248 and f. Greater than 50 base-pairs. The R script - indelSizeDistribution_Detailed.R (code in
249  Additional File 1) then calculates the performance metrics of the assay for each of the INDEL
250  size bins. The Python script — benchmarking_truth_set.py (Additional File 2) consolidates the
251  benchmarking metrics previously obtained, calculates the NPA related metrics combining
252  some of the bin size ranges (user preferred) for all reference samples provided.

253

254 In addition to benchmarking call sets for well-characterized reference samples published by
255  the GIAB consortium, the benchmarking workflow allows for clinical laboratories to specify
256  addition samples with clinically relevant variants as ground truths to estimate the analytical
257  performance of the assay for specific variant types such as AF508 and IVS8-5T in CFTR
258  panels. Python script — verify_variants.py (Additional File 3) accepts the ground-truth variant
259  call sets to confirm the presence/absence of these variants in the VCF files generated by the
260 variant calling pipeline. The details on the usage of the above scripts and associated

261 README file are available in our public repository (also see Supplementary Materials).

262

263  Finally, the benchmarking workflow generates a comprehensive analytical validation report
264  using all the provide benchmarking ground-truth call sets.

265

266

267  Scalability and Reproducibility of Benchmarking workflow

268

269  The benchmarking workflow is designed to be repeatable and reproducible by using Docker
270  containers for all software and bioinformatics components used within the workflow (see
271  Table 6.). The workflow is distributed in human-readable data serialization format Y AML
272  v1.2, and the workflow can be readily executed using the workflow execution manager —
273  LOOM (22). The workflow definition file — Benchmarking.yaml (see Supplementary

274  Materials) can also be easily ported to Common Workflow Language (CWL) or Workflow
275  Definition Language (WDL) formats and can be executed using workflow execution

276  managers such as Toil (23, 24) and Cromwell (25).

277

278

279  Table 6. Docker containers and DockerHub repository location for each of the individual
280  software components used in the benchmarking workflow.

281
Software Component Docker Container
hap.py v 0.2.10 sowmiu/happy:latest
bcftools vandhanak/bcftools:1.3.1
indelSizeDistribution_Detailed.R | vandhanak/rbase:3.3.2
282

283
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284  Golden/ground-truth callsets

285

286  The golden/ground-truth sets for five reference and PGP genomes are currently available -
287 NA12878 (CEPH family's daughter), NA24143 (AJ mother), NA24149 (AJ father),

288  NA24385 (AJ son), and NA24631(Chinese son) and these reference call sets were used in
289  this benchmarking study. GIAB provides a high confidence regions file and a high

290 confidence VCF file, and as recommended by GIAB, only the high confidence calls were
291  used in the evaluation of the assay's performance characteristics. The NIST versions and their
292  corresponding FTP site locations used for the above samples in this study can be found in the
293  Supplementary Material.

294

295  Inaddition to the GIAB reference samples, samples with known pathogenic germline variants
296  (see Table 2.) for various inherited diseases/disorders were chosen from Genetic Testing

297  Reference Materials Coordination Program (GeT-RM) (26-30)

298

299  Table 7. GeT-RM sample ids and location of ground-truth variants in GRCh37 coordinates.
300

GeT-RM Sample Chromosome:Position | o FUth
1D Variant
15:91310152 TATC > T
NA04408 15:91310156 T->TA
15:91310158 A -> ATTC
NA14090 17:41276044 ACT -> A
NA14170 13:32914437 GT->G
NA16658 10:43609103 G>T
301
302
303  Stratification or Regions of Interest (ROI) BED files.
304

305 Three stratification files were used to evaluate the performance characteristics of an inherited
306  Whole Exome Sequencing (WES) assay.

307

308 1. Coding Exons for all known transcripts in RefSeq genes: RefSeq gene names,

309 transcripts, and coordinates of all coding exons were obtained from the UCSC

310 genome browser(31, 32).

311 2. Clinically relevant regions of the human genome: Clinically relevant regions were
312 determined by intersecting coordinates of all known pathogenic variants reported in
313 OMIM (33), ClinVar (34) and DECIPHER v9.28 (35) with the all exon regions
314 (Coding and Non-Coding) file for RefSeq genes obtained from UCSC genome

315 browser. The exonic coordinates were later extended by 20 base-pairs on either end to
316 include canonical and non-canonical splice sites. Deep-intronic regions with

317 pathogenic variants were added to the exonic regions to generate the final clinically
318 relevant regions (BED) file.

319 3. Whole Exome regions file for RefSeq genes was obtained from UCSC genome

320 browser. The exon regions were extended by 20 base-pairs on either end to include
321 splice sites.

322

323

324 Benchmarking metrics
325  Precision and recall are benchmarking metrics provided as output by hap.py. The true
326  positives (TP), false positives (FP), and false negatives (FN) are counted as described by the
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327  developers of hap.py (20). Again, as explained by the authors of hap.py, precision and recall
328  are calculated using the below formulae:

329

330  Precision = True Positives/(True Positives + False Positives)
331

332  Recall = True Positives/(True Positives + False Negatives)
333

334  Other metrics reported by hap.py such as variants outside the high confidence truth set

335  regions and transition or transversion SNP type can be found in the extended.csv files

336 included in the Supplementary Materials.

337

338  The total number of bases per sample in a particular region of interest as specified by the
339  corresponding bed file was computed using a bash command provided in the Supplementary
340  Materials.

341

342  True negatives (TN) and Total Negatives are computed using the following:

343

344 TN = Total number of bases in the region of interest — (True Positives + False Positives +
345  False Negatives)

346

347  Total Negatives = True Negatives + False Positives

348

349  The Negative Percentage Agreement (NPA) or specificity as recommended by the FDA (36)
350 s calculated using

351

352  NPA = True Negatives/Total Negatives

353

354
355

356 LIst of abbreviations

357

358  NIST — National Institute of Standards and Technology

359  GIAB — Genome in a bottle consortium

360  SNPs — Single nucleotide polymorphisms

361  Indels — insertions/deletions

362  WES — Whole Exome Sequencing

363  NPA — Negative Percent Agreement

364 TN — True Negative

365 TP — True Positive

366  FN — False Negative

367  FP — False Positive

368 OMIM — public database containing the human genes, their genetic phenotypes and

369  associations with genetic disorders (Online Mendelian Inheritance in Man)

370 DECIPHER - public database with genotypic and phenotypic data from ~30,000 individuals
371  ClinVar — public database with information on the relationship between medically important
372  variants and phenotypes.

373
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500

so1  Supplementary Materials
502

503 Preparation of truth sets for exome regions

504  The NIST version and the ftp site used to download the original data for each of the GIAB
505 samples (before preprocessing) used in this study are listed here.

506

507 NA12878

508 NIST v3.3:

509  fip://ftp-

510 trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HGOO01/NISTv3.3/NA12878 GIAB_highc
511 onf CG-IIFB-IIGATKHC-lon-Solid-10X_CHROM1-X v3.3_highconf.bed

512  ftp://ftp-

513  trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HGO001/NISTv3.3/NA12878 GIAB_highc
514 onf CG-HIFB-IIIGATKHC-Ion-Solid-10X_CHROM1-X v3.3 highconf.vcf.gz

515

516 NA24143

517  NIST v3.3:

518  ftp:/ftp-
519 trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004 NA24143 mother/NISTv3.



https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA04408&Product=DNA
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA04408&Product=DNA
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA14090&Product=DNA
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA14090&Product=DNA
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA14170&Product=DNA
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA14170&Product=DNA
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA16658&Product=DNA
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA16658&Product=DNA
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ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed
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520 3/HG004 GIAB highconf CG-IIFB-IIIGATKHC-1on-10X CHROM1-

521 22 v3.3_highconf.bed

522  ftp://ftp-

523  trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004 NA24143 mother/NISTv3.
524  3/HG004 GIAB highconf CG-IIIFB-IIIGATKHC-1on-10X CHROM1-

525 22 v3.3 highconf.vcf.gz

526

527 NA24149
528  NIST v3.3:
529  ftp:/ftp-

530 trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003 NA24149 father/NISTv3.3/
531 HGO003 GIAB highconf CG-IIIFB-IIIGATKHC-1on-10X CHROM1-22 v3.3 highconf.bed
532  ftp://ftp-

533  trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003 NA24149 father/NISTv3.3/
534 HGO003 GIAB highconf CG-IIIFB-IIIGATKHC-lon-10X CHROM1-

535 22 v3.3 highconf.vcf.gz

536

537 NA24385

538  NIST v3.3:

539  ftp://ftp-

540 trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002 NA24385 son/NISTv3.3/H
541 G002 GIAB highconf CG-IIIFB-IIIGATKHC-lon-Solid-10X_CHROM1-

542 22 v3.3 _highconf.bed

543  fitp://ftp-

544  trace.ncbi.nlm.nih.qgov/giab/ftp/release/AshkenazimTrio/HG002 NA24385 son/NISTv3.3/H
545 G002 GIAB highconf CG-IIIFB-IIIGATKHC-lon-Solid-10X_ CHROM1-

546 22 v3.3 highconf.vcf.gz

547

548 NA24631

549  NIST v3.3.2:

550  ftp:/ftp-

551 trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005 NA24631 son/NISTv3.3.2/GRC
552 h37/HGO005 GRCh37_highconf CG-IIIFB-1IIIGATKHC-Ion-SOLID CHROM1-

553 22 v.3.3.2 highconf noMetaSV.bed

554  ftp://ftp-

555 trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005 NA24631 son/NISTv3.3.2/GRC
556 h37/HGO005 GRCh37 highconf CG-IIIFB-1IIGATKHC-lon-SOLID CHROM1-

557 22 v.3.3.2 highconf.vcf.gz

558

559  Bash command to compute total number of bases in a region of interest

560  awk '{a=$3-$2;print a}' <Consolidated.bed> | paste -sd+ - | bc

561

562  Inthe above command, <Consolidated.bed> refers to GIAB original high confidence bed file
563  for a sample intersected with the bed file of the region of interest such as coding exons,

564  whole exome or clinically relevant gene regions. The user can use this command to calculate
565  bases with their desired stratified region in the bed format which is required to compute

566  metrics such as true negatives.
567

568  Output files generated by Benchmarking workflow



ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf_noMetaSV.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf_noMetaSV.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf_noMetaSV.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf_noMetaSV.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf.vcf.gz
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569  Our benchmarking workflow generates the following output files:

570 1. <Output file common prefix> <Sample ID> CodingExons.vcf.gz

571 2. <Output file common prefix> <Sample ID> CodingExons.vcf.gz.tbi

572 3. <Output file common prefix> <Sample ID> CodingExons counts.csv

573 4. <Output file common prefix> <Sample ID> CodingExons counts.json

574 5. <Output file common prefix> <Sample ID> CodingExons_ summary.csv

575 6. <Output file common prefix> <Sample ID> CodingExons_extended.csv

576 7. <Output file common prefix> <Sample ID> CodingExons metrics.json

9/7 8. <Output file common prefix> <Sample ID> CodingExons ConsoleOutput.txt

578 9. <Output file common prefix> <Sample

579 ID> CodingExons_indelSizeDistribution.txt

580 10. <Output file common prefix> <Sample

581 ID> CodingExons_indelSizeDistributionOnPlot.pdf

582

583  There is a final performance assay report generated in the form of a tab delimited file as

584  below:
585 Final benchmarking metrics <current date>.txt

586
587

588  Another set of 10 files as seen above corresponding to the whole exome regions are
589  generated.
590

591  The benchmarking framework generates the following intermediate files:
592 1. <Output file common prefix> <Sample ID> CodingExons SNPs TPonly.vcf.gz

593 2. <Output file common prefix> <Sample ID> CodingExons SNPs FPonly.vcf.gz
594 3. <Output file common prefix> <Sample ID> CodingExons SNPs FNonly.vcf.gz
595 4. <Output file common prefix> <Sample ID> CodingExons INDELs TPonly.vcf.gz
596 5. <Output file common prefix> <Sample ID> CodingExons INDELs FPonly.vcf.gz
597 6. <Output file common prefix> <Sample ID> CodingExons_ INDELs FNonly.vcf.gz
598 7. <Output file common prefix> <SampleID> CodingExons_ indelDistribution.txt
599

600  Another set of seven files as seen above corresponding to the whole exome regions are

601  generated.

602

603  Supplemental Tables

604

605 Table S1. Benchmarking metrics for indels of different size ranges in NA12878 (truth set
606  NIST v3.3, total bases = 13728555) for the regions within ~7000 clinically relevant genes (as
607  specified in Methods).

608
iSr:ZISIXf]_InggZIS tTO:;fh TP |FP | FN | TN NPA Precision | Recall
1-10 145 | 139 |10 | 6 | 13728400 | 100 93.29 95.86
11-20 7 7 |0 |0 |13728548 | 100 100 100
21-50 5 5 |0 |0 |13728550 | 100 100 100
All Indels 156 | 150 | 10 | 6 | 13728389 | 100 93.75 96.15

609

610

611 Table S2. Benchmarking metrics for indels of different size ranges in NA24143 (truth set
612  NIST v3.3, total bases = 12549224) for the regions within ~7000 clinically relevant genes (as
613  specified in Methods).

614

Size of indels | Truth —
in NA24143 total TP |FP | FN | TN NPA Precision | Recall

1-10 153 143 | 16 | 10 | 12549055 100 89.94 93.46
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11-20 8 8 0 |0 12549216 100 100 100
21-50 3 3 0 |0 12549221 100 100 100
All Indels 163 153 | 16 | 10 | 12549045 100 90.53 93.87
615
616

617  Table S3. Benchmarking metrics for indels of different size ranges in NA24149 (truth set
618  NIST v3.3, total bases = 12538042) for the regions within ~7000 clinically relevant genes (as
619  specified in Methods).

620
?ﬁg‘;ﬂi‘;‘s ;:;fh TP | FP | FN | TN NPA Precision | Recall
1-10 156 | 153 | 8 |3 | 12537878 | 100 95.03 98.08
11-20 8 8 |1 |0 | 12538033 | 100 88.89 100
21-50 1 1 |0 |0 |12538041 | 100 100 100
All Indels 163 | 161 |9 |3 | 12537869 | 100 94.71 98.16

621

622

623  Table S4. Benchmarking metrics for indels of different size ranges in NA24631 (truth set
624  NIST v3.3, total bases = 12808688) for the regions within ~7000 clinically relevant genes (as
625  specified in Methods).

626
Size of indels | Truth .
in NA24631 | total TP |FP | FN | TN NPA Precision | Recall
1-10 153 146 |16 | 7 12808519 100 90.12 95.42
11-20 5 5 0 0 12808683 100 100 100
21-50 5 4 0 1 12808683 100 100 80
All Indels 162 154 | 16 | 8 12808510 100 90.59 95.06
627
628

629  Table S5. Benchmarking metrics on the number of indels of different size ranges in NA12878
630  (truth set NIST v3.3, total bases = 71152019) for the whole exome region s including non-
631  coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

632

?r:z,fbgfl'zg‘;eg's tT()::fh TP |FP |EN | TN NPA Precision | Recall
1-10 5108 | 4704 | 781 | 404 | 71146130 100 85.76 92.09
11-20 209 | 194 |13 |15 | 71151797 100 93.72 92.82
21-50 52 47 5 |5 | 71151962 100 90.38 90.38
All Indels 5318 | 4910 | 800 | 424 | 71145885 100 85.99 92.03
633
634

635 Table S6. Benchmarking metrics on the number of indels of different size ranges in NA24143
636  (truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-
637  coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

638

?Aﬁg;‘;ﬂi‘;’s tT()::fh TP |FP |FN | TN NPA Precision | Recall
110 5168 | 4676 | 681 | 492 | 65651797 100 87.29 90.48
11-20 206 184 | 13 | 22 | 65657427 100 93.40 89.32
21-50 84 72 |5 |12 | 65657557 100 9351 85.71
All Indels 5388 | 4878 | 700 | 526 | 65651542 100 87.45 90.24

639
640
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641  Table S7. Benchmarking metrics on the number of indels of different size ranges in NA24149
642  (truth set NIST v3.3, total bases = 65597266) for the whole exome regions including non-
643  coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

644

?AT.XEL’E‘S'S tTO:;fh TP |FP |EN | TN NPA Precision | Recall
1-10 5096 4578 | 628 | 518 | 65591542 | 100 87.94 89.84
11-20 188 167 | 17 |21 | 65597061 | 100 90.76 88.83
21-50 68 62 |5 6 | 65597193 | 100 92.54 91.18
All Indels 5290 4763 | 651 | 545 | 65591307 | 100 87.98 89.70

645

646  Table S8. Benchmarking metrics on the number of indels of different size ranges in NA24631
647  (truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-
648  coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

649

?ﬁg‘;ﬂ%‘i‘s ;:gfh TP |FP |EN | TN NPA | Precision | Recall
1-10 5555 | 5089 | 656 | 466 | 66982776 | 100 | 88.58 9161
11-20 187 | 178 |6 |9 | 66988794 | 100 |96.74 95.19
2150 82 68 |8 |14 | 66988897 | 100 | 89.47 82.93
All Indels 5805 | 5316 | 671 | 489 | 66982511 | 100 | 88.79 9158
650
651

652 Supplemental Data files for:

653  Benchmarking workflows to assess performance and suitability of germline variant

654  calling pipelines in clinical diagnostic assays

655

656  The benchmarking workflow file and relevant scripts (listed below as additional files) and all
657  output files for five GIAB samples per stage are available in our public repository:

658  vandhanak/stanford-benchmarking-workflows

659

660

661 Supplemental Files

662

663 1. indelSizeDistribution_Detailed.R
664 2. benchmarking_truth_set.py

665 3. verify_variants.py
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