

Benchmarking workflows to assess performance and suitability of germline variant calling pipelines in clinical diagnostic assays.

Vandhana Krishnan^{1,2}, [†]Sowmi Utiramerur³, Zena Ng³, Somalee Datta², Michael P. Snyder^{1,2}, Euan A. Ashley^{1,4,5}

¹Department of Genetics, School of Medicine, Stanford University, Stanford, CA

²Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA

³Clinical Genomics Program, Stanford Health Care, Stanford, CA

⁴Department of Cardiovascular Medicine

⁵Department of Biomedical Data Science

Current address of Somalee Datta: School of Medicine, Information Resources and Technology (IRT) – Research IT, Stanford University, Palo Alto, CA

Email address of Vandhana Krishnan: vandhana.krishnan@stanford.edu

Email address of Zena Ng: zng@stanfordhealthcare.org

Email address of Somalee Datta: somalee@stanford.edu

Email address of Michael P. Snyder: mpsnyder@stanford.edu

Email address of Euan A. Ashley: euan@stanford.edu

[†]Corresponding author: Sowmi Utiramerur: Email: sutiramerur@stanfordhealthcare.org

1 Abstract

2
3 Benchmarking the performance of complex analytical pipelines is an essential part of
4 developing Laboratory Developed Assays (LDT). Reference samples and benchmark calls
5 published by Genome in a Bottle (GIAB) Consortium have enabled the evaluation of
6 analytical methods. However, the performance of such methods is not uniform across the
7 different regions of the genome/exome and different variant types and lengths. Here we
8 present a scalable and reproducible, cloud-based benchmarking workflow that can be used by
9 clinical laboratories to rapidly access and validate the performance of LDT assays, across
10 their regions of interest and reportable range, using a broad set of benchmarking samples.

12 Keywords

13 Benchmarking, workflow, GIAB reference genomes, precision, recall, truth set, docker,
14 germline variants, laboratory developed assays

16 Background

17 Next Generation Sequencing (NGS) and analytical methods developed to detect various
18 forms disease-causing polymorphisms are now routinely being used by clinical laboratories
19 to determine the molecular etiology of complex diseases/disorders and in many cases to make
20 critical treatment course decisions. In the past two decades, many polymorphisms in the
21 human genome have been identified and validated that serve as predictive, diagnostic, and
22 prognostic markers for complex inherited diseases. These genomic disease markers can be of
23 different forms such as Single Nucleotide Variants (SNVs), small INsertions and DEletions
24 (INDELs), large deletions and duplications (del/dups), and Copy Number Variations (CNVs)
25 and can vary in size from a single base change to several Mega Bases (MB) in length and
26 even whole chromosomal polysomy. Clinically relevant polymorphisms occur in different
27 regions of the genome, including exonic, splice-sites, and deep-intronic regions. These
28 polymorphisms also happen in various forms, including single base changes within high
29 entropic regions, copy number changes to homopolymer repeats and copy number changes to
30 Short Tandem Repeat (STR) regions. NGS platforms used to detect these polymorphisms;
31 owing to their different sequencing chemistry and signal processing methods; have very
32 different error modes and hence very different analytical performance across the different
33 regions of the genome. Consequently, analytical methods specific to various NGS platforms
34 such as Illumina, Ion Torrent, Pacific Biosciences, and Oxford Nanopore have been
35 developed to both account for and correct the errors particular to these sequencing platforms.
36 This has resulted in a dizzying array of combinations of sequencing platforms and analytical
37 methods available to a clinical diagnostic laboratory to develop their LDT assay.

38
39 Benchmarking methods and pipelines are essential to accurately assess the performance of
40 sequencing platforms and analytical methods before they are incorporated into clinical
41 diagnostic assays. Genome In A Bottle (GIAB) consortium hosted by NIST has characterized
42 the pilot genome (NA12878/HG001) (1) and six samples from the Personal Genome Project
43 (PGP) (2). These benchmark calls for SNVs and small INDELs (1-20bp) from reference
44 samples can be used for optimization, performance estimation, and analytical validation of
45 LDT assays using complex analytical pipelines with multiple methods to detect
46 polymorphisms in the genome. Global Alliance for Genomics and Health (GA4GH)
47 benchmarking team have developed standardized tools (3) to evaluate the performance
48 metrics of germline variant callers used primarily in research applications.

49

50 Clinical Laboratory Improvement Amendments (CLIA) requires all laboratories using LDT
51 to establish the test's performance specifications such as analytical sensitivity, specificity,
52 reportable range, and reference range (4). College of American Pathologist (CAP) laboratory
53 standards for NGS based clinical diagnostic (5) not only require the laboratories to assess and
54 document the performance characteristics of all variants within the entire reportable range of
55 LDTs but also obtain the performance characteristics for every type and size of variants that
56 are reported by the assay. Laboratories are also required to assess the performance
57 characteristics for clinically relevant variants such as $\Delta F508$ and IVS8-5T (6) mutations in a
58 CFTR assay. CAP guidelines also require laboratories to periodically (determined by the
59 laboratory) assess and document the analytical performance characteristics to ensure that the
60 LDT is continuing to perform as expected over time.

61

62 Benchmarking workflows/pipelines that are highly scalable, reproducible and capable of
63 reporting the performance characteristics using a large number of reference and clinical
64 samples within multiple highly stratified regions of interest are essential for clinical
65 laboratories to optimize and routinely assess the performance of their LDT assays.

66

67 Results

68

69 Our goal was to develop a benchmarking workflow that any clinical laboratory could use to
70 quickly evaluate and compare the performance characteristics of all suitable secondary
71 analysis pipelines. Benchmarking workflow should further help optimize the analytical
72 pipeline based on well-defined performance metrics and finally produce a thorough analytical
73 validation report to justify the use of the analytical pipeline in their diagnostic assay to
74 regulatory authorities such as CLIA and CAP.

75

76 To test the abilities of our benchmarking workflow, we used it to compare two analytical
77 pipelines commonly used for germline variant calling 1. Pipeline based on Broad Institute's
78 best practices guidelines using GATK HaplotypeCaller v3.7 and 2. SpeedSeq pipeline (7)
79 based on FreeBayes v0.9.10 (8) as the primary variant calling engine. GATK
80 HaplotypeCaller based pipeline was chosen over the FreeBayes pipeline as it out-performed
81 in the detection of small-INDELS (1 – 20 base pairs).

82

83 The performance characteristics of the analytical pipeline using GATK v3.7 was further
84 optimized using benchmarking metrics generated using the five GIAB reference samples and
85 four GeT-RM samples (see Methods) with known pathogenic variants. Also, it is critical for
86 the clinical laboratories developing NGS based LDT assays to accurately determine the
87 reportable range to avoid misdiagnosis leading to wrong treatment decisions. To this effect,
88 we evaluated the performance metrics using the benchmarking workflow in three distinct
89 genomic regions of interest (see Methods for details).

90

91 Although we have the benchmarking results for the region, including coding exons in all the
92 RefSeq genes, we have omitted those findings in this section and focus on the clinically
93 relevant regions.

94

95 Table 1: Benchmarking metrics for SNPs within coding exons of clinically relevant ~7000
96 genes (as specified in Methods).

97

GIAB genome / NIST ID	Number of bases	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
NA12878	13728555	7803	7781	4	22	13720748	100	99.95	99.72
NA24143	12549224	7470	7460	14	10	12541740	100	99.81	99.87
NA24149	12538042	7495	7485	19	9	12530529	100	99.75	99.88
NA24385	12626866	7452	7436	0	16	12619414	100	100	99.79
NA24631	12808688	7591	7581	6	10	12801091	100	99.92	99.87

98

99 Table 2: Benchmarking metrics for SNPs in whole exome regions, including non-coding
100 exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

101

GIAB genome / NIST ID	Number of bases	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
NA12878	71152019	57822	57024	491	776	71093728	100	99.15	98.66
NA24143	65657646	55975	55340	669	611	65601026	100	98.81	98.91
NA24149	65597266	55518	54827	669	669	65541101	100	98.79	98.79
NA24385	65948744	56068	55329	389	705	65892321	100	99.30	98.74
NA24631	66988987	56948	56303	394	643	66931647	100	99.31	98.87

102

103 Tables 1 and 2 show the benchmarking metrics for SNPs in all five GIAB samples within the
104 clinically relevant genes and whole exome regions, respectively. The precision, recall, and
105 NPA metrics for SNPs are uniform across all the reference samples, and there is no sample
106 bias in the results for some of the better-characterized samples such as NA24385 and
107 NA12878. Performance metrics for SNPs within the clinically relevant gene region is
108 significantly better than those within the whole exome region. Recall metrics, in particular,
109 are a percentage point better in the clinically pertinent gene region, across all reference
110 samples. This is attributable to the fact that many genes have isoforms, resulting in higher
111 alignment errors, and some genes have either very high or very low GC content, resulting in
112 higher than average sequencing errors within these regions of the genome. The finding is of
113 great clinical significance, since the reportable region of most inherited disease/disorder,
114 LDT assay is limited to the clinically relevant genes and thereby the overall performance
115 characteristics of the assay is better than that estimated over either the whole genome or
116 whole exome regions.

117

118 Table 3: Benchmarking metrics for indels of different size ranges in NA24385 (truth set
119 NIST v3.3.2, total bases = 12,626,866) for the regions within ~7000 clinically relevant genes
120 (as specified in Methods).

121

Size of indels in NA24385	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	145	136	12	9	12626709	100	91.89	93.79
11-20	9	9	0	0	12626857	100	100	100
21-50	3	3	0	0	12626863	100	100	100
All Indels	157	148	12	9	12626697	100	92.50	94.27

122

123 Table 4: Benchmarking metrics on the number of indels of different size ranges in NA24385
124 (truth set NIST v3.3, total bases = 65,948,744) for the whole exome regions including non-
125 coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

Size of indels in NA24385	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	5169	4727	872	442	65942703	100	84.43	91.45
11-20	203	188	10	15	65948531	100	94.95	92.61
21-50	67	56	3	11	65948674	100	94.92	83.58
All Indels	5362	4920	885	468	65942471	100	84.75	91.27

126
127 Tables 3 and 4 provide the indel benchmarking metrics for sample NA24385 in the clinically
128 relevant and whole exome regions, respectively. As expected, the benchmarking workflow
129 reveals that the performance metrics for INDELs are lower than those for SNPs. However,
130 the stratification by INDEL size, helped us determine the reference range for INDELs (1- 20
131 base-pairs). The recall metric for INDELs larger than 20 base-pairs is significantly lower than
132 the recall for INDELs 1 – 20 base-pairs. As in the case of SNPs, performance metrics for
133 INDEL detection within the clinically relevant genes of interest is better than the whole
134 exome region.

135
136 The benchmarking results of the other GIAB reference samples in the clinically relevant and
137 whole exome regions can be obtained in the Supplementary Materials Table S1-S4 and Table
138 S5-S8, respectively. The histogram for the indel size distribution in the NA24385 reference
139 sample for the whole exome region is in Supplementary Material as Fig S1. The histograms
140 of indel size distributions for GIAB samples in both the whole exome and clinically relevant
141 regions are available in our github repository - vandhana/stanford-benchmarking-workflows.
142

143 Table 5: Validation of the presence of the truth variants in the GeT-RM samples (as specified
144 in Methods) using our variant calling pipeline.

GeT-RM Sample ID	Chromosome:Position	Truth Variant	Truth Variant Detected
NA04408	15:91310152	TATC -> T	Yes
	15:91310156	T -> TA	Yes
	15:91310158	A -> ATTC	Yes
NA14090	17:41276044	ACT -> A	Yes
NA14170	13:32914437	GT -> G	Yes
NA16658	10:43609103	G -> T	Yes

146
147 Finally, our benchmarking workflow was able to confirm that our variant calling pipeline can
148 detect all the clinical variants in GeT-RM samples listed in Table 5.

149
150 To get all the metrics produced by hap.py and other output files including plots from our
151 benchmarking workflow for each reference sample, please refer to the Supplementary Data
152 files.

153 Discussion

154
155
156 GIAB consortium has helped developed standards for genomic data to evaluate the
157 performance of NGS sequencing platforms and analytical methods used for alignment and
158 variant calling. The precisionFDA platform has enabled the genomics community to develop
159 and deploy benchmarking tools that can evaluate the performance of analytical methods
160 against the gold standard datasets. These benchmarking tools, along with accuracy
161 challenges, has led to the development of highly accurate variant calling methods. However,
162 the requirements of a clinical diagnostic laboratory go beyond the simple evaluation of

163 performance characteristics of an analytical pipeline against one or more reference samples.
164 Our purpose was to build a benchmarking workflow to meet the assay optimization and
165 validation needs of a clinical laboratory. The primary benefit of our benchmarking workflow
166 is that it allows for the assay performance to be evaluated using a broad set of both reference
167 samples with a large number of gold-standard variant calls and clinical samples with a small
168 number of clinical variants, that are specific to the diagnostic assay being evaluated. The
169 benchmarking workflows enable the clinical laboratories to establish the reporting range of
170 the diagnostic assay by estimating the performance within multiple regions of interest.
171
172 Unlike web-based benchmarking apps, such as those provided by the precision FDA platform
173 or GA4GH, our benchmarking framework can be seamlessly integrated with any variant
174 calling pipeline in the user's software environment. Thus, our benchmarking workflows
175 enable ease of use and avoid the transfer of sensitive data to different locations, which could
176 be non-Protected Health Information (PHI) compliant.
177
178 Our benchmarking modules if integrated with deployment tools, such as Jenkins (9) and
179 CircleCI (10), that work on the principle of continuous integration and continuous
180 delivery/deployment (CI/CD), it provides a foolproof way of examining consistency in
181 results. In this era where workflows generating reproducible results are gaining attention,
182 easy incorporation of workflows with CI/CD tools is a nice feature to have.
183
184 The benchmarking workflow is distributed using human-readable YAML (11) format, and it
185 might limit direct porting to existing WDL based workflows such as those published by the
186 Broad Institute (12, 13). Similarly, conversion of the benchmarking YAML files to Common
187 Workflow Language (CWL) format is required to run workflows published by GA4GH (14-
188 16). However, since we have used docker images for the software tools used within the
189 benchmarking framework, portability to other runtime environments should not take a
190 significant effort for a bioinformatician.
191
192
193

194 Conclusions

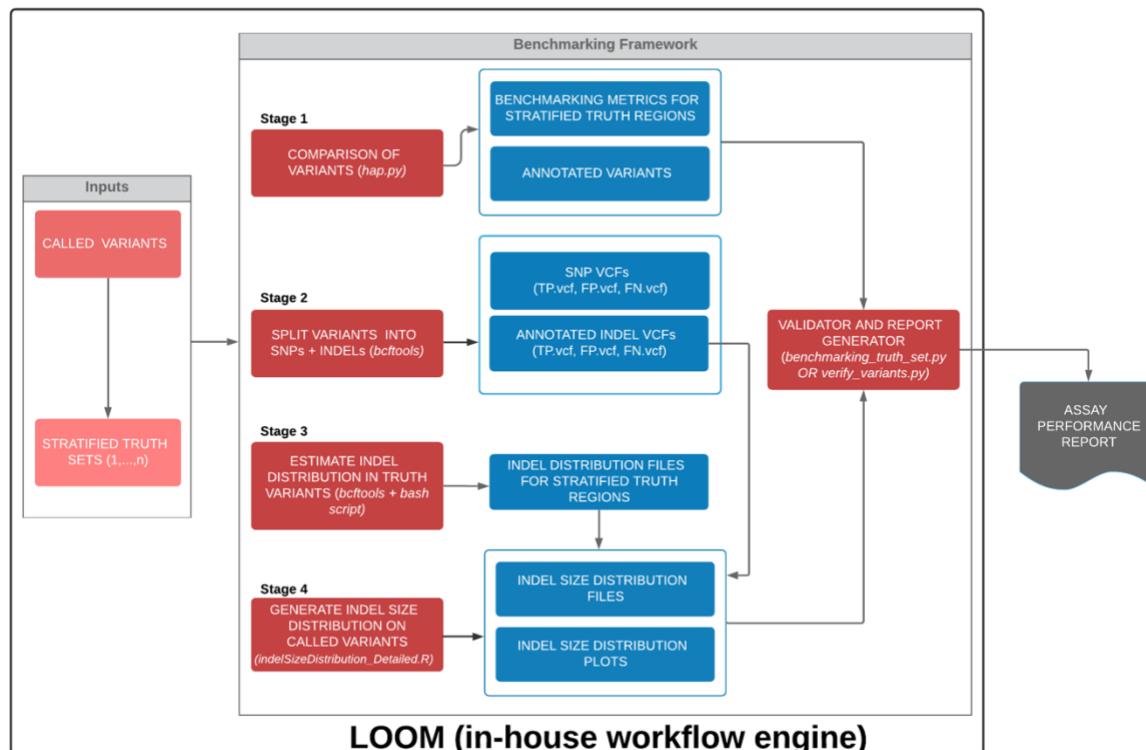
195
196 Benchmarking variants is a critical part of implementing variant calling pipelines for research
197 or clinical purposes. Here, we have successfully implemented benchmarking workflows that
198 generate metrics such as specificity, precision, sensitivity for germline SNPs, and indels in
199 whole exome sequencing data. Also, indel size distributions even in the form of histograms
200 are provided. Combining these benchmarking results with validation using known variants of
201 clinical significance in publicly available cell lines, we were able to establish our variant
202 calling pipelines in a clinical setting. Our benchmarking workflow can serve as a plug-in to
203 any existing variant calling pipeline to work as an integrated unit or be used as a separate
204 module as well.
205

206 Methods

207
208 **Benchmarking workflow**

209 The benchmarking workflow, as illustrated in Figure 1, is a sequence of steps required to
210 perform a rapid and comprehensive analytical validation of a clinical diagnostic assay based
211 on germline variants. The benchmarking workflow can be easily integrated with any
212 secondary-analysis pipeline used in a diagnostic assay to call germline variants, and our
213 workflow accepts germline variants (SNVs and small INDELs) in Variant Call Format VCF
214 v4.1(17) or higher. The workflow takes one or more stratification files specifying the regions
215 of interest in BED (18) format and generates a comprehensive analytical validation report
216 detailing the performance characteristics of the assay within each of the specified regions of
217 interest. Benchmark variant calls that are considered as ground truths for each of the
218 reference sample used to evaluate the analytical performance can be also be specified in VCF
219 format.

220
221
222 **Figure 1. Schematic diagram of the benchmarking framework used in this study**
223



224
225 Figure 1 legend: All the stages in the benchmarking workflow have been dockerized. The
226 docker images are available in DockerHub as specified in the Methods section.
227
228

229 The first step in the benchmarking process involves the comparison of input variants
230 generated by the analytical pipeline with the benchmark variant calls within each region of
231 interest. The variant calls are compared using *hap.py* (19, 20), which is capable of haplotype
232 construction from individual genotype calls and is recommended by GIAB consortium and
233 GA4GH. The variant comparison step is performed for each of the stratification or region of
234 interest file specified as input, and *hap.py* generates a single output VCF file classifying the
235 variant calls defined in the input and truth VCF files as either True Positive (TP), False
236 Positive (FP) or False Negative (FN).
237

238 Step two in the benchmarking workflow splits the variant calls annotated using hap.py by
239 variant type (SNPs and small INDELs) and by variant classification (TP/FP/FN). This step is
240 executed within the workflow for each of the stratification or region of interest file specified.
241 The VCF files are split by variant type using bcftools (21), and a bash script is used to further
242 split the variant calls by the variant classification. This allows the workflow to generate the
243 performance metrics for each of the variant types reported by the diagnostic assay.
244

245 Steps two and three of the benchmarking workflow (see Figure 1.) were used to generate a
246 histogram of small INDELs by size. The bins used for INDEL size histograms were a. 1
247 base-pair, b. 2-5 base-pairs, c. 6-10 base-pairs, d. 11 – 20 base-pairs, e. 21 – 50 base-pairs,
248 and f. Greater than 50 base-pairs. The R script - indelSizeDistribution_Detailed.R (code in
249 Additional File 1) then calculates the performance metrics of the assay for each of the INDEL
250 size bins. The Python script – benchmarking_truth_set.py (Additional File 2) consolidates the
251 benchmarking metrics previously obtained, calculates the NPA related metrics combining
252 some of the bin size ranges (user preferred) for all reference samples provided.
253

254 In addition to benchmarking call sets for well-characterized reference samples published by
255 the GIAB consortium, the benchmarking workflow allows for clinical laboratories to specify
256 addition samples with clinically relevant variants as ground truths to estimate the analytical
257 performance of the assay for specific variant types such as ΔF508 and IVS8-5T in CFTR
258 panels. Python script – verify_variants.py (Additional File 3) accepts the ground-truth variant
259 call sets to confirm the presence/absence of these variants in the VCF files generated by the
260 variant calling pipeline. The details on the usage of the above scripts and associated
261 README file are available in our public repository (also see Supplementary Materials).
262

263 Finally, the benchmarking workflow generates a comprehensive analytical validation report
264 using all the provided benchmarking ground-truth call sets.
265
266

267 ***Scalability and Reproducibility of Benchmarking workflow***

268

269 The benchmarking workflow is designed to be repeatable and reproducible by using Docker
270 containers for all software and bioinformatics components used within the workflow (see
271 Table 6.). The workflow is distributed in human-readable data serialization format YAML
272 v1.2, and the workflow can be readily executed using the workflow execution manager –
273 LOOM (22). The workflow definition file – Benchmarking.yaml (see Supplementary
274 Materials) can also be easily ported to Common Workflow Language (CWL) or Workflow
275 Definition Language (WDL) formats and can be executed using workflow execution
276 managers such as Toil (23, 24) and Cromwell (25).
277
278

279 Table 6. Docker containers and DockerHub repository location for each of the individual
280 software components used in the benchmarking workflow.
281

Software Component	Docker Container
hap.py v 0.2.10	sowmiu/happy:latest
bcftools	vandhanak/bcftools:1.3.1
indelSizeDistribution_Detailed.R	vandhanak/rbase:3.3.2

282

283

284 ***Golden/ground-truth callsets***

285

286 The golden/ground-truth sets for five reference and PGP genomes are currently available -
287 NA12878 (CEPH family's daughter), NA24143 (AJ mother), NA24149 (AJ father),
288 NA24385 (AJ son), and NA24631(Chinese son) and these reference call sets were used in
289 this benchmarking study. GIAB provides a high confidence regions file and a high
290 confidence VCF file, and as recommended by GIAB, only the high confidence calls were
291 used in the evaluation of the assay's performance characteristics. The NIST versions and their
292 corresponding FTP site locations used for the above samples in this study can be found in the
293 Supplementary Material.

294

295 In addition to the GIAB reference samples, samples with known pathogenic germline variants
296 (see Table 2.) for various inherited diseases/disorders were chosen from Genetic Testing
297 Reference Materials Coordination Program (GeT-RM) (26-30)

298

299 Table 7. GeT-RM sample ids and location of ground-truth variants in GRCh37 coordinates.

300

GeT-RM Sample ID	Chromosome:Position	Truth Variant
NA04408	15:91310152	TATC -> T
	15:91310156	T -> TA
	15:91310158	A -> ATTC
NA14090	17:41276044	ACT -> A
NA14170	13:32914437	GT -> G
NA16658	10:43609103	G -> T

301

302

303 ***Stratification or Regions of Interest (ROI) BED files.***

304

305 Three stratification files were used to evaluate the performance characteristics of an inherited
306 Whole Exome Sequencing (WES) assay.

307

- 308 1. Coding Exons for all known transcripts in RefSeq genes: RefSeq gene names,
309 transcripts, and coordinates of all coding exons were obtained from the UCSC
310 genome browser(31, 32).
- 311 2. Clinically relevant regions of the human genome: Clinically relevant regions were
312 determined by intersecting coordinates of all known pathogenic variants reported in
313 OMIM (33), ClinVar (34) and DECIPHER v9.28 (35) with the all exon regions
314 (Coding and Non-Coding) file for RefSeq genes obtained from UCSC genome
315 browser. The exonic coordinates were later extended by 20 base-pairs on either end to
316 include canonical and non-canonical splice sites. Deep-intronic regions with
317 pathogenic variants were added to the exonic regions to generate the final clinically
318 relevant regions (BED) file.
- 319 3. Whole Exome regions file for RefSeq genes was obtained from UCSC genome
320 browser. The exon regions were extended by 20 base-pairs on either end to include
321 splice sites.

322

323

324 ***Benchmarking metrics***

325 Precision and recall are benchmarking metrics provided as output by hap.py. The true
326 positives (TP), false positives (FP), and false negatives (FN) are counted as described by the

327 developers of hap.py (20). Again, as explained by the authors of hap.py, precision and recall
328 are calculated using the below formulae:

329

330 $Precision = \frac{True\ Positives}{True\ Positives + False\ Positives}$

331

332 $Recall = \frac{True\ Positives}{True\ Positives + False\ Negatives}$

333

334 Other metrics reported by hap.py such as variants outside the high confidence truth set
335 regions and transition or transversion SNP type can be found in the extended.csv files
336 included in the Supplementary Materials.

337

338 The total number of bases per sample in a particular region of interest as specified by the
339 corresponding bed file was computed using a bash command provided in the Supplementary
340 Materials.

341

342 True negatives (TN) and Total Negatives are computed using the following:

343

344 $TN = Total\ number\ of\ bases\ in\ the\ region\ of\ interest - (True\ Positives + False\ Positives +$
345 $False\ Negatives)$

346

347 $Total\ Negatives = True\ Negatives + False\ Positives$

348

349 The Negative Percentage Agreement (NPA) or specificity as recommended by the FDA (36)
350 is calculated using

351

352 $NPA = True\ Negatives / Total\ Negatives$

353

354

355

356 List of abbreviations

357

358 NIST – National Institute of Standards and Technology

359 GIAB – Genome in a bottle consortium

360 SNPs – Single nucleotide polymorphisms

361 Indels – insertions/deletions

362 WES – Whole Exome Sequencing

363 NPA – Negative Percent Agreement

364 TN – True Negative

365 TP – True Positive

366 FN – False Negative

367 FP – False Positive

368 OMIM – public database containing the human genes, their genetic phenotypes and
369 associations with genetic disorders (Online Mendelian Inheritance in Man)

370 DECIPHER – public database with genotypic and phenotypic data from ~30,000 individuals

371 ClinVar – public database with information on the relationship between medically important
372 variants and phenotypes.

373

374 Declarations

375

376 Ethics approval and consent to participate

377 Not applicable

378

379 Consent for publication

380 The authors declare that they have no competing interests.

381

382 Availability of data and material

383 The datasets generated and/or analyzed during the current study are available in the GitHub
384 repository - [vandhanak/stanford-benchmarking-workflows](https://github.com/vandhanak/stanford-benchmarking-workflows).

385

386 Competing interests

387 Not applicable

388

389 Funding

390 This work was funded by Stanford HealthCare, Stanford Children's Health and Stanford
391 School of Medicine.

392

393 Authors' contributions

394 VK designed and implemented the benchmarking workflow. SU and VK wrote the
395 manuscript. ZN implemented the scripts to generate the performance assay report including
396 the clinical variant validation. SU, SD, MP and EA conceived, designed and supervised the
397 overall study. All authors read and approved the final manuscript.

398

399 Acknowledgements

400 We thank Amin Zia for providing useful information during the initial phase of the
401 benchmarking work. We thank Nathan Hammond and Issac Liao for the development of the
402 in-house workflow engine “Loom” which was used to run the variant calling pipelines and
403 the subsequent benchmarking workflows.

404 We are thankful to Chittaranjan Muthumalai for leading the automated benchmarking
405 pipeline testing efforts and Jason Merker for useful discussions in terms of clinical relevance
406 during the benchmarking process.

407

408 This study makes use of data generated by the DECIPHER community. A full list of centers
409 who contributed to the generation of the data is available from <http://decipher.sanger.ac.uk>
410 and via email from decipher@sanger.ac.uk. Funding for the project was provided by the
411 Wellcome Trust.

412

413

414 References

415

416 1. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating
417 human sequence data sets provides a resource of benchmark SNP and indel genotype calls.
418 Nat Biotechnol. 2014;32(3):246-51.

419 2. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive
420 sequencing of seven human genomes to characterize benchmark reference materials. Sci
421 Data. 2016;3:160025.

422 3. Krusche P, Trigg L, Boutros PC, Mason CE, De La Vega FM, Moore BL, et al. Best
423 practices for benchmarking germline small-variant calls in human genomes. *Nat Biotechnol.*
424 2019;37(5):555-60.

425 4. Jennings L, Van Deerlin VM, Gulley ML, Committee CoAPMPR. Recommended
426 principles and practices for validating clinical molecular pathology tests. *Arch Pathol Lab*
427 *Med.* 2009;133(5):743-55.

428 5. N A, Q Z, L B, DK D, B F, JS G, et al. College of American Pathologists laboratory
429 standards for next-generation sequencing clinical tests. *Arch Pathol Lab Med.*
430 2015;139(4):481-93.

431 6. MS W, GR C, RJ D, DA D, K K, M M, et al. Cystic fibrosis population carrier
432 screening: 2004 revision of the American College of Medical Genetics
433 mutation panel. *Genetics in Medicine.* 2004;6(5):387-91.

434 7. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al.
435 SpeedSeq: ultra-fast personal genome analysis and interpretation. *Nat Methods.*
436 2015;12(10):966-8.

437 8. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing.
438 *arXiv:1207.3907v2 [q-bio.GN]*; 20 Jul 2012.

439 9. Jenkins; Available from: <https://jenkins.io/doc/>.

440 10. CircleCI; Available from: <https://circleci.com/docs/>.

441 11. YAML; Available from: <https://yaml.org/Available> from:
<https://www.tutorialspoint.com/yaml/index.htm>.

442 12. OpenWDL: Broad Institute; [Available from: <https://software.broadinstitute.org/wdl/>].

443 13. GATK workflows: Broad Institute; [Available from: <https://github.com/gatk-workflows/>].

444 14. Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M, et al. Common
445 Workflow Language, v1.0. Specification, *Common Workflow Language working group*. In:
446 Peter Amstutz MRC, Nebojša Tijanić, editor. 2016.

447 15. Common Workflow Language (CWL). Software Freedom Conservancy, Inc.

448 16. O'Connor BD, Yuen D, Chung V, Duncan AG, Liu XK, Patricia J, et al. The
449 Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools
450 and workflows. *F1000Res.* 2017;6:52.

451 17. Variant Call Format; Available from:
<http://www.internationalgenome.org/wiki/Analysis/variant-call-format>.

452 18. BED format; Available from: <http://genome.ucsc.edu/FAQ/FAQformat#format1>.

453 19. Krusche P, Trigg L, Boutros PC, Mason CE, De La Vega FM, Moore BL, et al.
454 Author Correction: Best practices for benchmarking germline small-variant calls in human
455 genomes. *Nat Biotechnol.* 2019;37(5):567.

456 20. Krusche P. Haplotype VCF Comparison Tools; Available from:
<https://github.com/Illumina/hap.pyAvailable> from:
<https://github.com/Illumina/hap.py/blob/master/doc/happy.md>.

457 21. BCFtools; Available from: <http://samtools.github.io/bcftools/>.

458 22. Hammond N. Loom: platform-independent tool to create, execute, track, and share
459 workflows. 2017.

460 23. Vivian J. Toil; Available from: <https://toil.readthedocs.io/en/latest/>.

461 24. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables
462 reproducible, open source, big biomedical data analyses. *Nat Biotechnol.* 2017;35(4):314-6.

463 25. Cromwell: Broad Institute; Available from:
<https://cromwell.readthedocs.io/en/stable/>.

464 26. CDC. GeT-RM Home: Available from:
<https://www.cdc.gov/clia/Resources/GETRM/default.aspx>.

472 27. GeT-RM NA04408: Coriell Institute of Medical Research; Available from:
473 https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA04408&Product=DN
474 A.
475 28. GeT-RM NA14090: Coriell Institute of Medical Research; Available from:
476 https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA14090&Product=DN
477 A.
478 29. Get-RM NA14170: Coriell Institute of Medical Research; Available from:
479 https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA14170&Product=DN
480 A.
481 30. GeT-RM NA16658: Coriell Institute of Medical Research; Available from:
482 https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA16658&Product=DN
483 A.
484 31. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, et al. The
485 UCSC Genome Browser database: update 2011. Nucleic Acids Res. 2011;39(Database
486 issue):D876-82.
487 32. Karolchik D, Hinrichs AS, Kent WJ. The UCSC Genome Browser. Curr Protoc
488 Bioinformatics. 2009;Chapter 1:Unit1.4.
489 33. Online Mendelian Inheritance in Man, OMIM®. 2017 ed: McKusick-Nathans Institute
490 of Genetic Medicine, Johns Hopkins University (Baltimore, MD).
491 34. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar:
492 public archive of interpretations of clinically relevant variants. Nucleic Acids Res.
493 2016;44(D1):D862-8.
494 35. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. DECIPHER:
495 Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources.
496 Am J Hum Genet. 2009;84(4):524-33.
497 36. Administration USFaD. Guidance for industry and FDA staff: statistical
498 guidance on reporting results from studies evaluating diagnostic tests. .
499
500

501 Supplementary Materials

502

503 ***Preparation of truth sets for exome regions***

504 The NIST version and the ftp site used to download the original data for each of the GIAB
505 samples (before preprocessing) used in this study are listed here.

506
507 NA12878
508 NIST v3.3:
509 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3/NA12878_GIAB_highconf_CG-IIIFB-IIIGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.bed
510 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3/NA12878_GIAB_highconf_CG-IIIFB-IIIGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.vcf.gz
511
512
513
514
515
516 NA24143
517 NIST v3.3:
518 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.
519

520 [3/HG004 GIAB highconf CG-IIIIFB-IIIIGATKHC-Ion-10X_CHROM1-22 v3.3 highconf.bed](3/HG004_GIAB_highconf(CG-IIIIFB-IIIIGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed)
521 [ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004 GIAB highconf CG-IIIIFB-IIIIGATKHC-Ion-10X_CHROM1-22 v3.3 highconf.vcf.gz](ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3/HG004_GIAB_highconf(CG-IIIIFB-IIIIGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.vcf.gz)
522
523
524
525
526
527 NA24149
528 NIST v3.3:
529 [ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003 GIAB highconf CG-IIIIFB-IIIIGATKHC-Ion-10X_CHROM1-22 v3.3_highconf.bed](ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/HG003_GIAB_highconf(CG-IIIIFB-IIIIGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed)
530
531
532
533
534
535
536
537 NA24385
538 NIST v3.3:
539 [ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002 GIAB highconf CG-IIIIFB-IIIIGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.bed](ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/HG002_GIAB_highconf(CG-IIIIFB-IIIIGATKHC-Ion-Solid-10X_CHROM1-22_v3.3_highconf.bed)
540
541
542
543
544
545
546
547
548 NA24631
549 NIST v3.3.2:
550 [ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRC_h37/HG005_GRCh37_highconf\(CG-IIIIFB-IIIIGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf_noMetaSV.bed](ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRC_h37/HG005_GRCh37_highconf(CG-IIIIFB-IIIIGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf_noMetaSV.bed)
551
552
553
554
555
556
557
558
559 **Bash command to compute total number of bases in a region of interest**
560 `awk '{a=$3-$2;print a}' <Consolidated.bed> | paste -sd+ - | bc`
561
562 In the above command, <Consolidated.bed> refers to GIAB original high confidence bed file
563 for a sample intersected with the bed file of the region of interest such as coding exons,
564 whole exome or clinically relevant gene regions. The user can use this command to calculate
565 bases with their desired stratified region in the bed format which is required to compute
566 metrics such as true negatives.
567
568 **Output files generated by Benchmarking workflow**

569 Our benchmarking workflow generates the following output files:
570 1. <Output file common prefix>_<Sample ID>_CodingExons.vcf.gz
571 2. <Output file common prefix>_<Sample ID>_CodingExons.vcf.gz.tbi
572 3. <Output file common prefix>_<Sample ID>_CodingExons_counts.csv
573 4. <Output file common prefix>_<Sample ID>_CodingExons_counts.json
574 5. <Output file common prefix>_<Sample ID>_CodingExons_summary.csv
575 6. <Output file common prefix>_<Sample ID>_CodingExons_extended.csv
576 7. <Output file common prefix>_<Sample ID>_CodingExons_metrics.json
577 8. <Output file common prefix>_<Sample ID>_CodingExons_ConsoleOutput.txt
578 9. <Output file common prefix>_<Sample ID>_CodingExons_indelSizeDistribution.txt
579 10. <Output file common prefix>_<Sample ID>_CodingExons_indelSizeDistributionOnPlot.pdf
580
581
582

583 There is a final performance assay report generated in the form of a tab delimited file as
584 below:
585 Final_benchmarking_metrics_<current_date>.txt
586
587

588 Another set of 10 files as seen above corresponding to the whole exome regions are
589 generated.
590

591 The benchmarking framework generates the following intermediate files:
592 1. <Output file common prefix>_<Sample ID>_CodingExons_SNPs_TPonly.vcf.gz
593 2. <Output file common prefix>_<Sample ID>_CodingExons_SNPs_FPonly.vcf.gz
594 3. <Output file common prefix>_<Sample ID>_CodingExons_SNPs_FNonly.vcf.gz
595 4. <Output file common prefix>_<Sample ID>_CodingExons_INDELS_TPonly.vcf.gz
596 5. <Output file common prefix>_<Sample ID>_CodingExons_INDELS_FPonly.vcf.gz
597 6. <Output file common prefix>_<Sample ID>_CodingExons_INDELS_FNonly.vcf.gz
598 7. <Output file common prefix>_<Sample ID>_CodingExons_indelDistribution.txt
599

600 Another set of seven files as seen above corresponding to the whole exome regions are
601 generated.
602

603 Supplemental Tables

604
605
606
607
608

Size of indels in NA12878	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	145	139	10	6	13728400	100	93.29	95.86
11-20	7	7	0	0	13728548	100	100	100
21-50	5	5	0	0	13728550	100	100	100
All Indels	156	150	10	6	13728389	100	93.75	96.15

609
610
611
612
613
614

611 Table S2. Benchmarking metrics for indels of different size ranges in NA24143 (truth set
612 NIST v3.3, total bases = 12549224) for the regions within ~7000 clinically relevant genes (as
613 specified in Methods).

Size of indels in NA24143	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	153	143	16	10	12549055	100	89.94	93.46

11-20	8	8	0	0	12549216	100	100	100
21-50	3	3	0	0	12549221	100	100	100
All Indels	163	153	16	10	12549045	100	90.53	93.87

615
616
617
618
619
620

Table S3. Benchmarking metrics for indels of different size ranges in NA24149 (truth set NIST v3.3, total bases = 12538042) for the regions within ~7000 clinically relevant genes (as specified in Methods).

Size of indels in NA24149	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	156	153	8	3	12537878	100	95.03	98.08
11-20	8	8	1	0	12538033	100	88.89	100
21-50	1	1	0	0	12538041	100	100	100
All Indels	163	161	9	3	12537869	100	94.71	98.16

621
622
623
624
625
626

Table S4. Benchmarking metrics for indels of different size ranges in NA24631 (truth set NIST v3.3, total bases = 12808688) for the regions within ~7000 clinically relevant genes (as specified in Methods).

Size of indels in NA24631	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	153	146	16	7	12808519	100	90.12	95.42
11-20	5	5	0	0	12808683	100	100	100
21-50	5	4	0	1	12808683	100	100	80
All Indels	162	154	16	8	12808510	100	90.59	95.06

627
628
629
630
631
632

Table S5. Benchmarking metrics on the number of indels of different size ranges in NA12878 (truth set NIST v3.3, total bases = 71152019) for the whole exome region s including non-coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

Size of indels in NA12878	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	5108	4704	781	404	71146130	100	85.76	92.09
11-20	209	194	13	15	71151797	100	93.72	92.82
21-50	52	47	5	5	71151962	100	90.38	90.38
All Indels	5318	4910	800	424	71145885	100	85.99	92.03

633
634
635
636
637
638

Table S6. Benchmarking metrics on the number of indels of different size ranges in NA24143 (truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.

Size of indels in NA24143	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	5168	4676	681	492	65651797	100	87.29	90.48
11-20	206	184	13	22	65657427	100	93.40	89.32
21-50	84	72	5	12	65657557	100	93.51	85.71
All Indels	5388	4878	700	526	65651542	100	87.45	90.24

639
640

641 Table S7. Benchmarking metrics on the number of indels of different size ranges in NA24149
642 (truth set NIST v3.3, total bases = 65597266) for the whole exome regions including non-
643 coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.
644

Size of indels in NA24149	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	5096	4578	628	518	65591542	100	87.94	89.84
11-20	188	167	17	21	65597061	100	90.76	88.83
21-50	68	62	5	6	65597193	100	92.54	91.18
All Indels	5290	4763	651	545	65591307	100	87.98	89.70

645
646 Table S8. Benchmarking metrics on the number of indels of different size ranges in NA24631
647 (truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-
648 coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions.
649

Size of indels in NA24631	Truth total	TP	FP	FN	TN	NPA	Precision	Recall
1-10	5555	5089	656	466	66982776	100	88.58	91.61
11-20	187	178	6	9	66988794	100	96.74	95.19
21-50	82	68	8	14	66988897	100	89.47	82.93
All Indels	5805	5316	671	489	66982511	100	88.79	91.58

650
651
652 **Supplemental Data files for:**
653 **Benchmarking workflows to assess performance and suitability of germline variant**
654 **calling pipelines in clinical diagnostic assays**
655

656 The benchmarking workflow file and relevant scripts (listed below as additional files) and all
657 output files for five GIAB samples per stage are available in our public repository:
658 [vandhanak/stanford-benchmarking-workflows](https://github.com/vandhanak/stanford-benchmarking-workflows)

659

660

661 **Supplemental Files**

662

- 663 1. indelSizeDistribution_Detailed.R
- 664 2. benchmarking_truth_set.py
- 665 3. verify_variants.py