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Abstract 1 

 2 

Benchmarking the performance of complex analytical pipelines is an essential part of 3 

developing Laboratory Developed Assays (LDT). Reference samples and benchmark calls 4 

published by Genome in a Bottle (GIAB) Consortium have enabled the evaluation of 5 

analytical methods. However, the performance of such methods is not uniform across the 6 

different regions of the genome/exome and different variant types and lengths. Here we 7 

present a scalable and reproducible, cloud-based benchmarking workflow that can be used by 8 

clinical laboratories to rapidly access and validate the performance of LDT assays, across 9 

their regions of interest and reportable range, using a broad set of benchmarking samples.  10 

 11 

Keywords 12 

Benchmarking, workflow, GIAB reference genomes, precision, recall, truth set, docker, 13 

germline variants, laboratory developed assays 14 

 15 

Background 16 

Next Generation Sequencing (NGS) and analytical methods developed to detect various 17 

forms disease-causing polymorphisms are now routinely being used by clinical laboratories 18 

to determine the molecular etiology of complex diseases/disorders and in many cases to make 19 

critical treatment course decisions.  In the past two decades, many polymorphisms in the 20 

human genome have been identified and validated that serve as predictive, diagnostic, and 21 

prognostic markers for complex inherited diseases. These genomic disease markers can be of 22 

different forms such as Single Nucleotide Variants (SNVs), small INsertions and DELetions 23 

(INDELs), large deletions and duplications (del/dups), and Copy Number Variations (CNVs) 24 

and can vary in size from a single base change to several Mega Bases (MB) in length and 25 

even whole chromosomal polysomy. Clinically relevant polymorphisms occur in different 26 

regions of the genome, including exonic, splice-sites, and deep-intronic regions. These 27 

polymorphisms also happen in various forms, including single base changes within high 28 

entropic regions, copy number changes to homopolymer repeats and copy number changes to 29 

Short Tandem Repeat (STR) regions. NGS platforms used to detect these polymorphisms; 30 

owing to their different sequencing chemistry and signal processing methods; have very 31 

different error modes and hence very different analytical performance across the different 32 

regions of the genome. Consequently, analytical methods specific to various NGS platforms 33 

such as Illumina, Ion Torrent, Pacific Biosciences, and Oxford Nanopore have been 34 

developed to both account for and correct the errors particular to these sequencing platforms. 35 

This has resulted in a dizzying array of combinations of sequencing platforms and analytical 36 

methods available to a clinical diagnostic laboratory to develop their LDT assay. 37 

 38 

Benchmarking methods and pipelines are essential to accurately assess the performance of 39 

sequencing platforms and analytical methods before they are incorporated into clinical 40 

diagnostic assays. Genome In A Bottle (GIAB) consortium hosted by NIST has characterized 41 

the pilot genome (NA12878/HG001) (1) and six samples from the Personal Genome Project 42 

(PGP) (2). These benchmark calls for SNVs and small INDELs (1-20bp) from reference 43 

samples can be used for optimization, performance estimation, and analytical validation of 44 

LDT assays using complex analytical pipelines with multiple methods to detect 45 

polymorphisms in the genome. Global Alliance for Genomics and Health (GA4GH) 46 

benchmarking team have developed standardized tools (3)  to evaluate the performance 47 

metrics of germline variant callers used primarily in research applications.  48 
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 49 

Clinical Laboratory Improvement Amendments (CLIA) requires all laboratories using LDT 50 

to establish the test's performance specifications such as analytical sensitivity, specificity, 51 

reportable range, and reference range (4). College of American Pathologist (CAP) laboratory 52 

standards for NGS based clinical diagnostic (5) not only require the laboratories to assess and 53 

document the performance characteristics of all variants within the entire reportable range of 54 

LDTs but also obtain the performance characteristics for every type and size of variants that 55 

are reported by the assay. Laboratories are also required to assess the performance 56 

characteristics for clinically relevant variants such as Δ𝐹508 and IVS8-5T (6) mutations in a 57 

CFTR assay. CAP guidelines also require laboratories to periodically (determined by the 58 

laboratory) assess and document the analytical performance characteristics to ensure that the 59 

LDT is continuing to perform as expected over time.  60 

 61 

Benchmarking workflows/pipelines that are highly scalable, reproducible and capable of 62 

reporting the performance characteristics using a large number of reference and clinical 63 

samples within multiple highly stratified regions of interest are essential for clinical 64 

laboratories to optimize and routinely assess the performance of their LDT assays. 65 

 66 

Results 67 

 68 

Our goal was to develop a benchmarking workflow that any clinical laboratory could use to 69 

quickly evaluate and compare the performance characteristics of all suitable secondary 70 

analysis pipelines. Benchmarking workflow should further help optimize the analytical 71 

pipeline based on well-defined performance metrics and finally produce a thorough analytical 72 

validation report to justify the use of the analytical pipeline in their diagnostic assay to 73 

regulatory authorities such as CLIA and CAP. 74 

 75 

To test the abilities of our benchmarking workflow, we used it to compare two analytical 76 

pipelines commonly used for germline variant calling 1. Pipeline based on Broad Institute’s 77 

best practices guidelines using GATK HaplotypeCaller v3.7 and 2. SpeedSeq pipeline (7) 78 

based on FreeBayes v0.9.10 (8) as the primary variant calling engine. GATK 79 

HaplotypeCaller based pipeline was chosen over the FreeBayes pipeline as it out-performed 80 

in the detection of small-INDELs (1 – 20 base pairs).  81 

 82 

The performance characteristics of the analytical pipeline using GATK v3.7 was further 83 

optimized using benchmarking metrics generated using the five GIAB reference samples and 84 

four GeT-RM samples (see Methods) with known pathogenic variants. Also, it is critical for 85 

the clinical laboratories developing NGS based LDT assays to accurately determine the 86 

reportable range to avoid misdiagnosis leading to wrong treatment decisions. To this effect, 87 

we evaluated the performance metrics using the benchmarking workflow in three distinct 88 

genomic regions of interest (see Methods for details). 89 

 90 

Although we have the benchmarking results for the region, including coding exons in all the 91 

RefSeq genes, we have omitted those findings in this section and focus on the clinically 92 

relevant regions. 93 

 94 

Table 1: Benchmarking metrics for SNPs within coding exons of clinically relevant ~7000 95 

genes (as specified in Methods).  96 

 97 
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GIAB 

genome / 

NIST ID 

Number 

of bases 

 

Truth 

total 
TP FP FN TN NPA Precision Recall 

NA12878 13728555 7803 7781 4 22 13720748 100 99.95 99.72 

NA24143 12549224 7470 7460 14 10 12541740 100 99.81 99.87 

NA24149 12538042 7495 7485 19 9 12530529 100 99.75 99.88 

NA24385 12626866 7452 7436 0 16 12619414 100 100 99.79 

NA24631 12808688 7591 7581 6 10 12801091 100 99.92 99.87 

 98 

Table 2: Benchmarking metrics for SNPs in whole exome regions, including non-coding 99 

exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions. 100 

 101 

GIAB 

genome / 

NIST ID 

Number 

of bases 

 

Truth 

total 
TP FP FN TN NPA Precision Recall 

NA12878 71152019 57822 57024 491 776 71093728 100 99.15 98.66 

NA24143 65657646 55975 55340 669 611 65601026 100 98.81 98.91 

NA24149 65597266 55518 54827 669 669 65541101 100 98.79 98.79 

NA24385 65948744 56068 55329 389 705 65892321 100 99.30 98.74 

NA24631 66988987 56948 56303 394 643 66931647 100 99.31 98.87 

 102 

Tables 1 and 2 show the benchmarking metrics for SNPs in all five GIAB samples within the 103 

clinically relevant genes and whole exome regions, respectively. The precision, recall, and 104 

NPA metrics for SNPs are uniform across all the reference samples, and there is no sample 105 

bias in the results for some of the better-characterized samples such as NA24385 and 106 

NA12878. Performance metrics for SNPs within the clinically relevant gene region is 107 

significantly better than those within the whole exome region. Recall metrics, in particular, 108 

are a percentage point better in the clinically pertinent gene region, across all reference 109 

samples. This is attributable to the fact that many genes have isoforms, resulting in higher 110 

alignment errors, and some genes have either very high or very low GC content, resulting in 111 

higher than average sequencing errors within these regions of the genome. The finding is of 112 

great clinical significance, since the reportable region of most inherited disease/disorder, 113 

LDT assay is limited to the clinically relevant genes and thereby the overall performance 114 

characteristics of the assay is better than that estimated over either the whole genome or 115 

whole exome regions. 116 

 117 

Table 3: Benchmarking metrics for indels of different size ranges in NA24385 (truth set 118 

NIST v3.3.2, total bases = 12,626,866) for the regions within ~7000 clinically relevant genes 119 

(as specified in Methods).  120 

 121 
Size of indels 

in NA24385 

 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 145 136 12 9 12626709 100 91.89 93.79 

11-20 9 9 0 0 12626857 100 100 100 

21-50 3 3 0 0 12626863 100 100 100 

All Indels 157 148 12 9 12626697 100 92.50 94.27 

 122 

Table 4: Benchmarking metrics on the number of indels of different size ranges in NA24385 123 

(truth set NIST v3.3, total bases = 65,948,744) for the whole exome regions including non-124 

coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions. 125 
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Size of indels 

in NA24385 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 5169 4727 872 442 65942703 100 84.43 91.45 

11-20 203 188 10 15 65948531 100 94.95 92.61 

21-50 67 56 3 11 65948674 100 94.92 83.58 

All Indels 5362 4920 885 468 65942471 100 84.75 91.27 

 126 

Tables 3 and 4 provide the indel benchmarking metrics for sample NA24385 in the clinically 127 

relevant and whole exome regions, respectively. As expected, the benchmarking workflow 128 

reveals that the performance metrics for INDELs are lower than those for SNPs. However, 129 

the stratification by INDEL size, helped us determine the reference range for INDELs (1- 20 130 

base-pairs). The recall metric for INDELs larger than 20 base-pairs is significantly lower than 131 

the recall for INDELs 1 – 20 base-pairs. As in the case of SNPs, performance metrics for 132 

INDEL detection within the clinically relevant genes of interest is better than the whole 133 

exome region. 134 

 135 

The benchmarking results of the other GIAB reference samples in the clinically relevant and 136 

whole exome regions can be obtained in the Supplementary Materials Table S1-S4 and Table 137 

S5-S8, respectively. The histogram for the indel size distribution in the NA24385 reference 138 

sample for the whole exome region is in Supplementary Material as Fig S1. The histograms 139 

of indel size distributions for GIAB samples in both the whole exome and clinically relevant 140 

regions are available in our github repository - vandhana/stanford-benchmarking-workflows.  141 

 142 

Table 5: Validation of the presence of the truth variants in the GeT-RM samples (as specified 143 

in Methods) using our variant calling pipeline. 144 

 145 
GeT-RM 

Sample ID  
Chromosome:Position Truth Variant 

Truth Variant 

Detected 

NA04408 

15:91310152 TATC -> T Yes 

15:91310156 T -> TA Yes 

15:91310158 A -> ATTC Yes 

NA14090 17:41276044 ACT -> A Yes 

NA14170 13:32914437 GT -> G Yes 

NA16658 10:43609103 G -> T Yes 

 146 

Finally, our benchmarking workflow was able to confirm that our variant calling pipeline can 147 

detect all the clinical variants in GeT-RM samples listed in Table 5. 148 

 149 

To get all the metrics produced by hap.py and other output files including plots from our 150 

benchmarking workflow for each reference sample, please refer to the Supplementary Data 151 

files. 152 

 153 

Discussion 154 

 155 

GIAB consortium has helped developed standards for genomic data to evaluate the 156 

performance of NGS sequencing platforms and analytical methods used for alignment and 157 

variant calling. The precisionFDA platform has enabled the genomics community to develop 158 

and deploy benchmarking tools that can evaluate the performance of analytical methods 159 

against the gold standard datasets. These benchmarking tools, along with accuracy 160 

challenges, has led to the development of highly accurate variant calling methods. However, 161 

the requirements of a clinical diagnostic laboratory go beyond the simple evaluation of 162 
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performance characteristics of an analytical pipeline against one or more reference samples. 163 

Our purpose was to build a benchmarking workflow to meet the assay optimization and 164 

validation needs of a clinical laboratory. The primary benefit of our benchmarking workflow 165 

is that it allows for the assay performance to be evaluated using a broad set of both reference 166 

samples with a large number of gold-standard variant calls and clinical samples with a small 167 

number of clinical variants, that are specific to the diagnostic assay being evaluated. The 168 

benchmarking workflows enable the clinical laboratories to establish the reporting range of 169 

the diagnostic assay by estimating the performance within multiple regions of interest. 170 

 171 

Unlike web-based benchmarking apps, such as those provided by the precision FDA platform 172 

or GA4GH, our benchmarking framework can be seamlessly integrated with any variant 173 

calling pipeline in the user's software environment. Thus, our benchmarking workflows 174 

enable ease of use and avoid the transfer of sensitive data to different locations, which could 175 

be non-Protected Health Information (PHI) compliant. 176 

 177 

Our benchmarking modules if integrated with deployment tools, such as Jenkins (9) and 178 

CircleCI (10), that work on the principle of continuous integration and continuous 179 

delivery/deployment (CI/CD), it provides a foolproof way of examining consistency in 180 

results. In this era where workflows generating reproducible results are gaining attention, 181 

easy incorporation of workflows with CI/CD tools is a nice feature to have. 182 

 183 

The benchmarking workflow is distributed using human-readable YAML (11) format, and it 184 

might limit direct porting to existing WDL based workflows such as those published by the 185 

Broad Institute (12, 13). Similarly, conversion of the benchmarking YAML files to Common 186 

Workflow Language (CWL) format is required to run workflows published by GA4GH (14-187 

16). However, since we have used docker images for the software tools used within the 188 

benchmarking framework, portability to other runtime environments should not take a 189 

significant effort for a bioinformatician. 190 

 191 

 192 

 193 

Conclusions 194 

 195 

Benchmarking variants is a critical part of implementing variant calling pipelines for research 196 

or clinical purposes. Here, we have successfully implemented benchmarking workflows that 197 

generate metrics such as specificity, precision, sensitivity for germline SNPs, and indels in 198 

whole exome sequencing data. Also, indel size distributions even in the form of histograms 199 

are provided. Combining these benchmarking results with validation using known variants of 200 

clinical significance in publicly available cell lines, we were able to establish our variant 201 

calling pipelines in a clinical setting. Our benchmarking workflow can serve as a plug-in to 202 

any existing variant calling pipeline to work as an integrated unit or be used as a separate 203 

module as well. 204 

 205 

Methods 206 

 207 

Benchmarking workflow 208 
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The benchmarking workflow, as illustrated in Figure 1, is a sequence of steps required to 209 

perform a rapid and comprehensive analytical validation of a clinical diagnostic assay based 210 

on germline variants. The benchmarking workflow can be easily integrated with any 211 

secondary-analysis pipeline used in a diagnostic assay to call germline variants, and our 212 

workflow accepts germline variants (SNVs and small INDELs) in Variant Call Format VCF 213 

v4.1(17) or higher. The workflow takes one or more stratification files specifying the regions 214 

of interest in BED (18) format and generates a comprehensive analytical validation report 215 

detailing the performance characteristics of the assay within each of the specified regions of 216 

interest. Benchmark variant calls that are considered as ground truths for each of the 217 

reference sample used to evaluate the analytical performance can be also be specified in VCF 218 

format. 219 

 220 

 221 

Figure 1. Schematic diagram of the benchmarking framework used in this study 222 

 223 

 224 
Figure 1 legend: All the stages in the benchmarking workflow have been dockerized. The 225 

docker images are available in DockerHub as specified in the Methods section. 226 

 227 

 228 

The first step in the benchmarking process involves the comparison of input variants 229 

generated by the analytical pipeline with the benchmark variant calls within each region of 230 

interest. The variant calls are compared using hap.py (19, 20), which is capable of haplotype 231 

construction from individual genotype calls and is recommended by GIAB consortium and 232 

GA4GH. The variant comparison step is performed for each of the stratification or region of 233 

interest file specified as input, and hap.py generates a single output VCF file classifying the 234 

variant calls defined in the input and truth VCF files as either True Positive (TP), False 235 

Positive (FP) or False Negative (FN).   236 

 237 
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Step two in the benchmarking workflow splits the variant calls annotated using hap.py by 238 

variant type (SNPs and small INDELs) and by variant classification (TP/FP/FN). This step is 239 

executed within the workflow for each of the stratification or region of interest file specified. 240 

The VCF files are split by variant type using bcftools (21), and a bash script is used to further 241 

split the variant calls by the variant classification. This allows the workflow to generate the 242 

performance metrics for each of the variant types reported by the diagnostic assay. 243 

 244 

Steps two and three of the benchmarking workflow (see Figure 1.) were used to generate a 245 

histogram of small INDELs by size. The bins used for INDEL size histograms were a. 1 246 

base-pair, b. 2-5 base-pairs, c. 6-10 base-pairs, d. 11 – 20 base-pairs, e. 21 – 50 base-pairs, 247 

and f. Greater than 50 base-pairs. The R script - indelSizeDistribution_Detailed.R (code in 248 

Additional File 1) then calculates the performance metrics of the assay for each of the INDEL 249 

size bins. The Python script – benchmarking_truth_set.py (Additional File 2) consolidates the 250 

benchmarking metrics previously obtained, calculates the NPA related metrics combining 251 

some of the bin size ranges (user preferred) for all reference samples provided.  252 

 253 

In addition to benchmarking call sets for well-characterized reference samples published by 254 

the GIAB consortium, the benchmarking workflow allows for clinical laboratories to specify 255 

addition samples with clinically relevant variants as ground truths to estimate the analytical 256 

performance of the assay for specific variant types such as Δ𝐹508 and IVS8-5T in CFTR 257 

panels. Python script – verify_variants.py (Additional File 3) accepts the ground-truth variant 258 

call sets to confirm the presence/absence of these variants in the VCF files generated by the 259 

variant calling pipeline. The details on the usage of the above scripts and associated 260 

README file are available in our public repository (also see Supplementary Materials). 261 

 262 

Finally, the benchmarking workflow generates a comprehensive analytical validation report 263 

using all the provide benchmarking ground-truth call sets.  264 

 265 

 266 

Scalability and Reproducibility of Benchmarking workflow 267 

 268 

The benchmarking workflow is designed to be repeatable and reproducible by using Docker 269 

containers for all software and bioinformatics components used within the workflow (see 270 

Table 6.). The workflow is distributed in human-readable data serialization format YAML 271 

v1.2, and the workflow can be readily executed using the workflow execution manager – 272 

LOOM (22). The workflow definition file – Benchmarking.yaml (see Supplementary 273 

Materials) can also be easily ported to Common Workflow Language (CWL) or Workflow 274 

Definition Language (WDL) formats and can be executed using workflow execution 275 

managers such as Toil (23, 24) and Cromwell (25). 276 

 277 

 278 

Table 6. Docker containers and DockerHub repository location for each of the individual 279 

software components used in the benchmarking workflow. 280 

 281 
Software Component  Docker Container 

hap.py v 0.2.10 sowmiu/happy:latest 

bcftools vandhanak/bcftools:1.3.1 

indelSizeDistribution_Detailed.R vandhanak/rbase:3.3.2 

 282 

 283 
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Golden/ground-truth callsets 284 

  285 

The golden/ground-truth sets for five reference and PGP genomes are currently available - 286 

NA12878 (CEPH family's daughter), NA24143 (AJ mother), NA24149 (AJ father), 287 

NA24385 (AJ son), and NA24631(Chinese son) and these reference call sets were used in 288 

this benchmarking study. GIAB provides a high confidence regions file and a high 289 

confidence VCF file, and as recommended by GIAB, only the high confidence calls were 290 

used in the evaluation of the assay's performance characteristics. The NIST versions and their 291 

corresponding FTP site locations used for the above samples in this study can be found in the 292 

Supplementary Material. 293 

 294 

In addition to the GIAB reference samples, samples with known pathogenic germline variants 295 

(see Table 2.) for various inherited diseases/disorders were chosen from Genetic Testing 296 

Reference Materials Coordination Program (GeT-RM) (26-30) 297 

 298 

Table 7. GeT-RM sample ids and location of ground-truth variants in GRCh37 coordinates. 299 

 300 
GeT-RM Sample 

ID  
Chromosome:Position 

Truth 

Variant 

NA04408 

15:91310152 TATC -> T 

15:91310156 T -> TA 

15:91310158 A -> ATTC 

NA14090 17:41276044 ACT -> A 

NA14170 13:32914437 GT -> G 

NA16658 10:43609103 G -> T 

 301 

 302 

Stratification or Regions of Interest (ROI) BED files.  303 

 304 

Three stratification files were used to evaluate the performance characteristics of an inherited 305 

Whole Exome Sequencing (WES) assay. 306 

 307 

1. Coding Exons for all known transcripts in RefSeq genes: RefSeq gene names, 308 

transcripts, and coordinates of all coding exons were obtained from the UCSC 309 

genome browser(31, 32). 310 

2. Clinically relevant regions of the human genome: Clinically relevant regions were 311 

determined by intersecting coordinates of all known pathogenic variants reported in 312 

OMIM (33), ClinVar (34) and DECIPHER v9.28 (35) with the all exon regions 313 

(Coding and Non-Coding) file for RefSeq genes obtained from UCSC genome 314 

browser. The exonic coordinates were later extended by 20 base-pairs on either end to 315 

include canonical and non-canonical splice sites. Deep-intronic regions with 316 

pathogenic variants were added to the exonic regions to generate the final clinically 317 

relevant regions (BED) file. 318 

3. Whole Exome regions file for RefSeq genes was obtained from UCSC genome 319 

browser. The exon regions were extended by 20 base-pairs on either end to include 320 

splice sites. 321 

 322 

 323 

Benchmarking metrics 324 

Precision and recall are benchmarking metrics provided as output by hap.py. The true 325 

positives (TP), false positives (FP), and false negatives (FN) are counted as described by the 326 
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developers of hap.py (20). Again, as explained by the authors of hap.py, precision and recall 327 

are calculated using the below formulae: 328 

 329 

Precision = True Positives/(True Positives + False Positives) 330 

 331 

Recall = True Positives/(True Positives + False Negatives) 332 

 333 

Other metrics reported by hap.py such as variants outside the high confidence truth set 334 

regions and transition or transversion SNP type can be found in the extended.csv files 335 

included in the Supplementary Materials.  336 

 337 

The total number of bases per sample in a particular region of interest as specified by the 338 

corresponding bed file was computed using a bash command provided in the Supplementary 339 

Materials. 340 

 341 

True negatives (TN) and Total Negatives are computed using the following: 342 

 343 

TN = Total number of bases in the region of interest – (True Positives + False Positives + 344 

False Negatives) 345 

 346 

Total Negatives = True Negatives + False Positives  347 

 348 

The Negative Percentage Agreement (NPA) or specificity as recommended by the FDA (36) 349 

is calculated using  350 

 351 

NPA = True Negatives/Total Negatives 352 

 353 

 354 

 355 

List of abbreviations 356 

 357 

NIST – National Institute of Standards and Technology 358 

GIAB – Genome in a bottle consortium 359 

SNPs – Single nucleotide polymorphisms 360 

Indels – insertions/deletions 361 

WES – Whole Exome Sequencing 362 

NPA – Negative Percent Agreement 363 

TN – True Negative 364 

TP – True Positive 365 

FN – False Negative 366 

FP – False Positive 367 

OMIM – public database containing the human genes, their genetic phenotypes and 368 

associations with genetic disorders (Online Mendelian Inheritance in Man) 369 

DECIPHER – public database with genotypic and phenotypic data from ~30,000 individuals  370 

ClinVar – public database with information on the relationship between medically important  371 

variants and phenotypes. 372 

 373 
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Preparation of truth sets for exome regions 503 

The NIST version and the ftp site used to download the original data for each of the GIAB 504 

samples (before preprocessing) used in this study are listed here. 505 

 506 
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onf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-X_v3.3_highconf.vcf.gz 514 

 515 

NA24143 516 

NIST v3.3: 517 

ftp://ftp-518 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.519 
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3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-520 

22_v3.3_highconf.bed 521 

ftp://ftp-522 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.523 

3/HG004_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-524 

22_v3.3_highconf.vcf.gz 525 

 526 

NA24149 527 

NIST v3.3: 528 

ftp://ftp-529 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/530 

HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v3.3_highconf.bed 531 

ftp://ftp-532 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3/533 

HG003_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-534 

22_v3.3_highconf.vcf.gz 535 

 536 

NA24385 537 

NIST v3.3: 538 

ftp://ftp-539 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/H540 

G002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-541 

22_v3.3_highconf.bed 542 

ftp://ftp-543 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3/H544 

G002_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid-10X_CHROM1-545 

22_v3.3_highconf.vcf.gz 546 

 547 

NA24631 548 

NIST v3.3.2: 549 

ftp://ftp-550 

trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRC551 

h37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-552 

22_v.3.3.2_highconf_noMetaSV.bed 553 

ftp://ftp-554 

trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRC555 

h37/HG005_GRCh37_highconf_CG-IllFB-IllGATKHC-Ion-SOLID_CHROM1-556 

22_v.3.3.2_highconf.vcf.gz 557 

 558 

Bash command to compute total number of bases in a region of interest 559 

awk '{a=$3-$2;print a}' <Consolidated.bed> | paste -sd+ - | bc 560 

 561 

In the above command, <Consolidated.bed> refers to GIAB original high confidence bed file 562 

for a sample intersected with the bed file of the region of interest such as coding exons, 563 

whole exome or clinically relevant gene regions. The user can use this command to calculate 564 

bases with their desired stratified region in the bed format which is required to compute 565 

metrics such as true negatives. 566 

 567 

Output files generated by Benchmarking workflow 568 
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Our benchmarking workflow generates the following output files: 569 
1. <Output file common prefix>_<Sample ID>_CodingExons.vcf.gz 570 
2. <Output file common prefix>_<Sample ID>_CodingExons.vcf.gz.tbi 571 
3. <Output file common prefix>_<Sample ID>_CodingExons_counts.csv 572 
4. <Output file common prefix>_<Sample ID>_CodingExons_counts.json 573 
5. <Output file common prefix>_<Sample ID>_CodingExons_summary.csv 574 
6. <Output file common prefix>_<Sample ID>_CodingExons_extended.csv 575 
7. <Output file common prefix>_<Sample ID>_CodingExons_metrics.json 576 
8. <Output file common prefix>_<Sample ID>_CodingExons_ConsoleOutput.txt 577 
9. <Output file common prefix>_<Sample 578 
ID>_CodingExons_indelSizeDistribution.txt 579 
10. <Output file common prefix>_<Sample 580 
ID>_CodingExons_indelSizeDistributionOnPlot.pdf 581 
 582 

There is a final performance assay report generated in the form of a tab delimited file as 583 

below: 584 
Final_benchmarking_metrics_<current_date>.txt 585 
 586 
 587 

Another set of 10 files as seen above corresponding to the whole exome regions are 588 

generated. 589 

 590 

The benchmarking framework generates the following intermediate files: 591 
1. <Output file common prefix>_<Sample ID>_CodingExons_SNPs_TPonly.vcf.gz 592 
2. <Output file common prefix>_<Sample ID>_CodingExons_SNPs_FPonly.vcf.gz 593 
3. <Output file common prefix>_<Sample ID>_CodingExons_SNPs_FNonly.vcf.gz 594 
4. <Output file common prefix>_<Sample ID>_CodingExons_INDELs_TPonly.vcf.gz 595 
5. <Output file common prefix>_<Sample ID>_CodingExons_INDELs_FPonly.vcf.gz 596 
6. <Output file common prefix>_<Sample ID>_CodingExons_INDELs_FNonly.vcf.gz 597 
7. <Output file common prefix>_<SampleID>_CodingExons_indelDistribution.txt 598 

 599 

Another set of seven files as seen above corresponding to the whole exome regions are 600 

generated. 601 

 602 

Supplemental Tables 603 

 604 

Table S1. Benchmarking metrics for indels of different size ranges in NA12878 (truth set 605 

NIST v3.3, total bases = 13728555) for the regions within ~7000 clinically relevant genes (as 606 

specified in Methods). 607 

 608 
Size of indels 

in NA12878 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 145 139 10 6 13728400 100 93.29 95.86 

11-20 7 7 0 0 13728548 100 100 100 

21-50 5 5 0 0 13728550 100 100 100 

All Indels 156 150 10 6 13728389 100 93.75 96.15 

 609 

 610 

Table S2. Benchmarking metrics for indels of different size ranges in NA24143 (truth set 611 

NIST v3.3, total bases = 12549224) for the regions within ~7000 clinically relevant genes (as 612 

specified in Methods). 613 

 614 
Size of indels 

in NA24143  

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 153 143 16 10 12549055 100 89.94 93.46 
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11-20 8 8 0 0 12549216 100 100 100 

21-50 3 3 0 0 12549221 100 100 100 

All Indels 163 153 16 10 12549045 100 90.53 93.87 

 615 

 616 

Table S3. Benchmarking metrics for indels of different size ranges in NA24149 (truth set 617 

NIST v3.3, total bases = 12538042) for the regions within ~7000 clinically relevant genes (as 618 

specified in Methods). 619 

 620 
Size of indels 

in NA24149 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 156 153 8 3 12537878 100 95.03 98.08 

11-20 8 8 1 0 12538033 100 88.89 100 

21-50 1 1 0 0 12538041 100 100 100 

All Indels 163 161 9 3 12537869 100 94.71 98.16 

 621 

 622 

Table S4. Benchmarking metrics for indels of different size ranges in NA24631 (truth set 623 

NIST v3.3, total bases = 12808688) for the regions within ~7000 clinically relevant genes (as 624 

specified in Methods). 625 

 626 
Size of indels 

in NA24631  

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 153 146 16 7 12808519 100 90.12 95.42 

11-20 5 5 0 0 12808683 100 100 100 

21-50 5 4 0 1 12808683 100 100 80 

All Indels 162 154 16 8 12808510 100 90.59 95.06 

 627 

 628 

Table S5. Benchmarking metrics on the number of indels of different size ranges in NA12878 629 

(truth set NIST v3.3, total bases = 71152019) for the whole exome region s including non-630 

coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions. 631 

 632 
Size of indels 

in NA12878 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 5108 4704 781 404 71146130 100 85.76 92.09 

11-20 209 194 13 15 71151797 100 93.72 92.82 

21-50 52 47 5 5 71151962 100 90.38 90.38 

All Indels 5318 4910 800 424 71145885 100 85.99 92.03 

 633 

 634 

Table S6. Benchmarking metrics on the number of indels of different size ranges in NA24143 635 

(truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-636 

coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions. 637 

 638 
Size of indels 

in NA24143 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 5168 4676 681 492 65651797 100 87.29 90.48 

11-20 206 184 13 22 65657427 100 93.40 89.32 

21-50 84 72 5 12 65657557 100 93.51 85.71 

All Indels 5388 4878 700 526 65651542 100 87.45 90.24 

 639 

 640 
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Table S7. Benchmarking metrics on the number of indels of different size ranges in NA24149 641 

(truth set NIST v3.3, total bases = 65597266) for the whole exome regions including non-642 

coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions. 643 

 644 
Size of indels 

in NA24149 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 5096 4578 628 518 65591542 100 87.94 89.84 

11-20 188 167 17 21 65597061 100 90.76 88.83 

21-50 68 62 5 6 65597193 100 92.54 91.18 

All Indels 5290 4763 651 545 65591307 100 87.98 89.70 

 645 

Table S8. Benchmarking metrics on the number of indels of different size ranges in NA24631 646 

(truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-647 

coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions. 648 

 649 
Size of indels 

in NA24631 

Truth 

total 
TP FP FN TN NPA Precision Recall 

1-10 5555 5089 656 466 66982776 100 88.58 91.61 

11-20 187 178 6 9 66988794 100 96.74 95.19 

21-50 82 68 8 14 66988897 100 89.47 82.93 

All Indels 5805 5316 671 489 66982511 100 88.79 91.58 

 650 

 651 

Supplemental Data files for:  652 

Benchmarking workflows to assess performance and suitability of germline variant 653 

calling pipelines in clinical diagnostic assays 654 

 655 

The benchmarking workflow file and relevant scripts (listed below as additional files) and all 656 

output files for five GIAB samples per stage are available in our public repository: 657 

vandhanak/stanford-benchmarking-workflows 658 

 659 

 660 

Supplemental Files 661 

 662 

1. indelSizeDistribution_Detailed.R 663 

2. benchmarking_truth_set.py 664 

3. verify_variants.py 665 
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