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Abstract

Recent advancements in next-generation sequencing have rapidly improved our ability to study
genomic material at an unprecedented scale. Despite substantial improvements in sequencing
technologies, errors present in the data still risk confounding downstream analysis and limiting
the applicability of sequencing technologies in clinical tools. Computational error-correction
promises to eliminate sequencing errors, but the relative accuracy of error correction algorithms
remains unknown. In this paper, we evaluate the ability of error-correction algorithms to fix
errors across different types of datasets that contain various levels of heterogeneity. We highlight
the advantages and limitations of computational error correction techniques across different
domains of biology, including immunogenomics and virology. To demonstrate the efficacy of
our technique, we applied the UMI-based high-fidelity sequencing protocol to eliminate

sequencing errors from both simulated data and the raw reads. We then performed a realistic
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evaluation of error correction methods. In terms of accuracy, we found that method performance
varies substantially across different types of datasets with no single method performing best on
all types of examined data. Finally, we also identified the techniques that offer a good balance

between precision and sensitivity.

Introduction

Rapid advancements in next-generation sequencing have improved our ability to study the
genomic material of a biological sample at an unprecedented scale and promise to revolutionize
our understanding of living systems!. Sequencing technologies are now the technique of choice
for many research applications in human genetics, immunology, and virology'-2. Modern
sequencing technologies dissect the input genomic DNA (or reverse transcribed RNA) into
millions of nucleotide sequences, which are known as reads. Despite constant improvements in
sequencing technologies, the data produced by these techniques remain biased by the
introduction of random and systematic errors. Sequencing errors typically occur in
approximately 0.1-1% of bases sequenced; such errors are more common in reads with poor-
quality bases where sequencers misinterpret the signal or when the wrong nucleotide is
incorporated. Errors are introduced at the sequencing step via incorporation of faults and even
occur in reads with few poor-quality bases per read®. Additional errors, such as polymerase bias
and incorporation errors, may be introduced during sample preparation, amplification, or library
preparation stages*. Data containing sequencing errors limit the applicability of sequencing

technologies in clinical settings. Further, the error rates vary across platforms®; the most popular
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Illumina-based protocols can produce approximately one error in every one thousand

nucleotides’.

In order to better understand the nature of and potential solutions for sequencing errors, we
conducted a comprehensive benchmarking study of currently available error correction methods.
We identified numerous effects that various sequencing settings, and the different parameters of
error correction methods, can have on the accuracy of output from error correction methods. We
also investigated the advantages and limitations of computational error correction techniques

across different domains of biology, including immunogenomics and virology.

Computational error-correction techniques promise to eliminate sequencing errors and improve
the results of downstream analyses (Figure 1a)®. Many computational error correction methods
have been developed to meet growing demand for accurate sequencing data in the biomedical
community *-'!. Despite the availability of many error correction tools, thoroughly and
accurately eliminating errors from sequencing data remains a challenge. First, currently available
molecular-based techniques for correcting errors in sequencing data (e.g. ECC-Seq'?) usually
carry an increased computational cost which limits scalability across a large number of samples.
Second, our lack of a systematic comparison of error correction methods impedes the optimal

integration of these tools into standardized next-generation sequencing data analysis pipelines.

Previous benchmarking studies!>!'# lacked a comprehensive experimental gold standard'®;
instead, these early benchmarking efforts relied on simulated data and real reads which were

uniquely aligned to the reference genome. In addition, error correction algorithms have


https://doi.org/10.1101/642843
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642843; this version posted December 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

undergone significant development since the earlier benchmarking studies, and the performance
of the newest methods has not yet been evaluated. Other studies!® provide a detailed description
of available error correction tools yet lack the benchmarking results. The efficiency of today’s
error correction algorithms, when applied to the extremely heterogeneous populations composed
of highly similar yet distinct genomic variants, is presently unknown. The human immune
repertoire, a collection of diverse B and T cell receptor clonotypes, is an excellent example of a
heterogeneous population with need for reliable error correction. The increased heterogeneity of
such datasets and the presence of low-frequency variants further challenges the ability of error-

correction methods to fix sequencing errors in the data.

In this paper, we evaluate the ability of error-correction algorithms to fix errors across different
types of datasets with various levels of heterogeneity. In doing so, we produce a gold standard
that provides an accurate baseline for performing a realistic evaluation of error correction
methods. We highlight the advantages and limitations of computational error correction
techniques across different domains of biology, including immunogenomics and virology. For
example, we challenged the error correction methods with data derived from diverse populations
of T and B cell receptor clonotypes and intra-host viral populations. To define a gold standard
for error correcting methods, we applied a Unique Molecular Identifier (UMI)-based high-
fidelity sequencing protocol (also known as safe-SeqS)!”-!® and eliminated sequencing errors

from raw reads.

Results


https://doi.org/10.1101/642843
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642843; this version posted December 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Gold standard datasets

We used both simulated and experimental gold standard datasets derived from human genomic
DNA, human T cell receptor repertoires, and intra-host viral populations. The datasets we used
correspond to different levels of heterogeneity. The difficulty of error correction increases as the
dataset becomes more heterogeneous. The least heterogeneous datasets were derived from
human genomic DNA (D1 dataset) (Table 1). The most heterogeneous datasets were derived
from the T cell receptor repertoire and from a complex community of closely related viral mutant

variants (known as quasispecies).

To generate error-free reads for the D2 and D4 datasets, we used a UMI-based high-fidelity
sequencing protocol (also known as safe-SeqS)!”-!®, which is capable of eliminating sequencing
errors from the data (Figure 1b). A high-fidelity sequencing protocol attaches the UMI to the
fragment prior to amplification of DNA fragments. After sequencing, the reads that originated
from the same biological segment are grouped into clusters based on their UMI tags. Next, we
applied an error-correction procedure inside each cluster of biological segments. In cases where
at least one nucleotide inside the UMI cluster lacks the support of 80% of reads, we were not
able to generate consensus error-free read; in other words, if 80% have the reads have the same
nucleotide, we consider that nucleotide a correct one. When the nucleotide lacks support of 80%
of reads, all reads from these UMI clusters were disregarded (Figure 1c¢). We used UMI-based

clustering to produce error-free reads for the D2 and D4 datasets. Both the D1 and D4 datasets
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were produced by computational simulations using a customized version of the tool WgSim!

(Figure S1).

We applied a haplotype-based error correction protocol to eliminate sequencing errors from the
D5 dataset, composed of five HIV-1 subtype B haplotypes that were mixed in-vitro®’ . First, we
determined the haplotype of origin for each read by aligning reads on the set of known
haplotypes obtained from the mixture. Sequencing errors were corrected by replacing bases from
reads, with the bases from the haplotype of origin. We varied the number of haplotypes and the
similarity of haplotypes present in the HIV-1 mixture. In addition, we varied the rate of

sequencing errors in the data.

Availability of both error-free reads and the original raw reads carrying errors provide an
accurate, robust baseline for performing a realistic evaluation of error correction methods. For
our benchmarking study, we examined both experimental data and simulated data. Simulated
data contain reads with various lengths and coverage rates to estimate the effect of such
sequencing parameters on the accuracy of error correction. A detailed description of the dataset
used and the corresponding protocol to prepare gold standard dataset is provided in the

Supplementary Materials.
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Table 1. Overview of the gold standard datasets.

D1 D2 D3 D4 D5
Technology Whole T cell T cell Viral Viral
genome receptor receptor sequencing | sequencing
sequencing sequencing sequencing
Heterogeneity | Low High High High High
Technique Simulated UMI-based Simulated UMI-based | Haplotype-
error-free error-free based error-
reads reads free reads
Number of 50 10 150 1 9
samples
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Choice of error correction methods

We chose the most commonly used error correction tools to assess the ability of current methods
to correct sequencing errors. The following algorithms were included in our benchmarking
study: Coral?!, Bless!’, Fiona!%??, Pollux'!, BFC?, Lighter?*, Musket’, Racer?’,
RECKONER?*%6, and SGA?’. We excluded HiTEC and replaced it with Racer, as was
recommended by the developers of HITEC. We also excluded tools solely designed for non-
Illumina based technologies?® and tools which are no longer supported. We summarized the
details of each tool, including the underlying algorithms and the data structure (Table 2). To
assess the simplicity of the installation process for each method, we describe the software
dependencies in Table 3. Commands required to install and run each of the tools are available in

the Supplementary Materials and at https://github.com/Mangul-Lab-

USC/benchmarking.error.correction
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Table 2: Summary of error correction methods parameters and publication details. Error correction methods are sorted by the year of
publication (indicated in column “Published Year”). We documented underlying algorithm (indicated in column “Underlying
algorithm”), version of the error correction tool used (indicated in column “Version”), and the name of the software tool (indicated in

column “Software tool”).

Underlying Programming

Software tool Version algorithm Published year language Default k-mer size
Coral 1.4.1 MSA* 2011 C N/A
SGA 0.10.15 FM-index search 2012 C++ 31
Musket 1.1 k-mer spectrum 2012 C++ N/A
Racer 1.0.1 k-mer spectrum 2013 C++ N/A
Bless 1.02 k -mer spectrum 2014 C++ N/A
Lighter 1.1.1 k -mer spectrum 2014 C++ N/A
Fiona 0.2.8 k -mer spectrum 2014 C++ N/A
BFC 1 k -mer spectrum 2015 C N/A
Pollux 1.0.2 k -mer spectrum 2015 C 31
RECKONER 0.2.1 k-mer spectrum 2017 C++ N/A
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Table 3. Summary of technical characteristics of the error correction methods assessed in this study.

Types of
reads In the publication,
Tool Data structure |accepted |Organism Journal compared to Tool webpage
SGA, QuorUM, Lighter,
BFC, DecGPU, ECHO,
Bloom filter and Human, E. coli, HiTEC, Musket, Quake, https://sourceforge.net/p/
Bless hash table SE/PE |S. aureus Bioinformatics |Reptile bless-ec/wiki/Home/
Human, https://github.com/seqan/
partial suffix Drosophila, E. Allpaths-LG,Coral, H- seqan/tree/master/apps/fio
Fiona array SE coli, C. elegans |Bioinformatics |Shrec, ECHO,HiTEC,Quake|na
Human, E. coli,
S. aureus,
mixed genome |BMC Quake, SGA, Bless, https://github.com/emarin
Pollux Hash table SE/PE  |data Bioinformatics  |Musket, Racer ier/pollux
Bloom filter and Human, C. Bless, Bloocoo, fermi2,
BFC hash table SE/PE |elegans Bioinformatics  |Lighter, Musket, and SGA |https://github.com/lh3/bfc
Human, E. coli, Quake, Musket, Bless, https://github.com/mouris
Lighter Bloom filter SE/PE |C. elegans Genome Biology |Soapec 1/Lighter
Bloom filter and Human, E. coli, http://musket.sourceforge.
Musket hash table SE/PE |C. elegans Bioinformatics |SGA, Quake net/homepage.htm
Human, E. coli,
C. elegans,
Drosophila, Coral, HITEC, Quake, http://www.csd.uwo.ca/~1
Racer Hash table SE/PE |other bacteria |Bioinformatics |Reptile, SHREC lie/RACER/
Human, E. coli, COMPASS 3.0, HHalign  |https://www.cs.helsinki.fi
Coral Hash table SE/PE |S. aureus Bioinformatics |1.5.1.1 and PSI-BLAST /u/lmsalmel/coral/
Human, S.
cerevisiae, C. Ace, BFC, Bless, Blue,
elegans, M. Karect, Lighter, Musket, https://github.com/refresh
RECKONER |[Hash table SE acuminata Bioinformatics |Pollux, Racer, Trowel -bio/RECKONER
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SGA

FM-index

SE/PE

Human, C.
elegans, E. coli

Genome
Research

Velvet, ABySS,
SOAPdenovo, Quake,
HiTEC

https://github.com/jts/sga
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Evaluation of the accuracy and performance of error correction methods

We used an extensive set of evaluation metrics to assess the accuracy and performance of each
error correction method. We defined true positives (TP) as errors that were correctly fixed by the
error correction tool; false positives (FP) as correct bases that were erroneously changed by the
tool; false negatives (FN) as erroneous bases not fixed or incorrectly fixed by the tool, and true

negatives (TN) as correct bases which remain unaffected by the tool (Figure 1b) (Figure S2).

We used the gain metric!® to quantify the performance of each error correction tool. Positive gain
represents an overall positive effect of the error correction algorithm, whereas a negative gain
shows that the tool performed more incorrect actions then correct actions. A gain of 1.0 means
the error correction tool made all necessary corrections without any FP alterations (Table 3). We
defined precision as the proportion of proper corrections among the total number of corrections
performed by the error correction tool. Sensitivity evaluates the proportion of fixed errors among
all existing errors identified in the data; in other words, sensitivity indicates which algorithms are
correcting the highest majority of induced errors ?°. Finally, we checked if the error correction
methods remove the bases in the beginning or the end of corrected reads. Removing the bases
may correspond with an attempt to correct deletion (TP trimming) or may simply remove a

correct base (FP trimming) (Figure S3).
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Figure 1. Study design for benchmarking computational error correction methods. (a) Schematic
representation of the goal of error correction algorithms. Error correction aims to fix sequencing
errors while maintaining the data heterogeneity. (b) Error-free reads for gold standard were
generated using UMI-based clustering. Reads were grouped based on matching UMIs and
corrected by consensus, where an 80% majority was required to correct sequencing errors
without affecting naturally occurring Single Nucleotide Variations (SNVs). (¢) Framework for
evaluating the accuracy of error correction methods. Multiple sequence alignment between the
error-free, uncorrected (original) and corrected reads was performed to classify bases in the
corrected read. Bases fall into the category of Trimming, True Negative (TN), True Positive

(TP), False Negative (FN), and False Positive (FP).
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Table 3. Evaluation of the accuracy of error correction methods. (a) Trim efficiency is the
proportion of trimmed bases from the tool that were considered to be TP trimming. (b) Trim
percent is the proportion of nucleotides trimmed out of all nucleotides analyzed. (¢) Precision
evaluates the proportion of proper corrections among the total number of performed corrections.
(d) Gain represents whether an algorithm is producing an overall benefit (more TP then FP) or is
having a negative effect (more FP then TP). Values ranging from 1.0 to, but not including, 0.0
represent a benefit; 0.0 is neutral; and less than 0.0 is considered a negative effect. (e) Sensitivity

evaluates the proportion of fixed errors among all existing errors in the data.

Metric Name Metric Formula
a. | Trim Efficiency TP(TRIM)
TP(TRIM)+ FP(TRIM)
b. [ Trim Percent TP(TRIM)+ FP(TRIM)
Total Bases
¢. | Precision TP
(TP+ FP+ FP(INDFEL))
d. Gain TP— (FP+ FP(INDEL))
(TP + FN)
e. Sensitivity TP
(TP+ FN)



https://doi.org/10.1101/642843
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642843; this version posted December 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Correcting errors in the whole genome sequencing data

We evaluated the efficacy of currently available error correction methods in fixing errors
introduced to whole genome sequencing (WGS) reads using various coverage settings (D1
dataset). First, we explored the effect of kmer size on the accuracy of error correction methods.
An increase in kmer size typically offers increased accuracy of error correction. In some cases,
increased kmer size has no effect on the accuracy of error correction (Figure S4a-f). Thus, we
used the largest kmer size of 30bp for all the methods except BFC. The BFC method for WGS
data with 32x coverage performs best with kmer size of 23bp (Figure S4f). For other coverages,
BFC performs best with kmer size of 30bp, which was chosen in those cases. Overall, the
increase in kmer size results in a decreased number of corrections for all the tools with regards to

WGS data (Figure S5).

Our results show that Pollux and Musket make the largest number of corrections across all
coverage settings when applied to the D1 dataset (Figure S5). In general, higher coverage allows
error correction methods to make more corrections and fix more errors in the data. For the
majority of the surveyed methods higher coverage also results in decreasing the number of false
corrections (Figure S6). For approximately half of the tools (including BFC, Coral, and SGA)
gain constantly increases with coverage increase. For other tools, the gain has multiple trends
(Figure 2a). For the vast majority of the error correction tools in our study, the gain becomes
positive only for coverage up to 32x. The only methods that demonstrated positive gain for 16x
coverage were SGA and Coral. For coverage of 8x, Coral was the only method able to maintain a

positive gain. None of the surveyed methods were able to maintain positive gain for coverage
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lower than 8x (Figure 2a). Coverage level also had a strong impact on both precision and
sensitivity (Figure 2b-c). In general, none of the methods were able to correct more than 65% of
the data for datasets with coverage of 16x or less (Figure 2¢). Coverage of 32x allowed several
methods to correct more than 95% of errors with high precision (Figure 2f). The error correction
tools typically trimmed a minor portion of the reads. We compared the trimming rates and trends
across the error correction methods. Overall, the majority of error correction tools trim a small
percentage of bases. The only exception was Bless, which trimmed up to 30% of bases (Figure

S7). The vast majority of trimmed bases were correct bases (Figure S8 and S9).

We have also compared the accuracy of error correction algorithm on E. coli WGS data. The
relative performance of error correction methods was similar to the human WGS data. However,
the differences in performance between the tools on E. coli data were smaller compared to
human data specially for high coverage data (Figure 2d-f, j-1). Notably, many tools are able to
maintain excellent performance (gain above 90%) even for coverages as low as 8x. The tool with
the best performance for low coverage WGS when applied to both human and E. coli data was
Coral, which was able to maintain positive gain even for 1x WGS data for E. coli, and 4x for
human data (Figure 2g). Precision of error correction tools on E. coli was generally high even
for low coverage data (Figure 2h). Many tools are able to achieve sensitivity above 90% even
for 8x coverage (Figure 2i). Similar to human data, majority of the tools are able to maintain a

good balance between precision and sensitivity for 32x WGS data (Figure 2f, 1).

We have also investigated the performance of the tools in the low complexity regions. Excluding

the low complexity regions results in a moderate improvement of accuracy for the majority of
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the tools. The largest difference in performance between low complexity regions and the rest of
the genome was evident in results generated by Racer and Pollux. Notably, the only tool with a

negative gain for low complexity regions was Pollux (Figure S10).

We have also compared CPU time and the maximum amount of RAM used by each of the tools
based on WGS data (Figure S11). Bless, Racer, RECKONER, Lighter, and BFC were the fastest
tools and were able to correct the errors in less than two hours for the WGS sample
corresponding to chromosome 21 with 8x coverage. Other tools required more than five hours to
process the same samples. The tools with lowest memory footprint were Lighter, SGA, and
Musket, requiring less than 1GB of RAM to correct the reads in the samples. The tool with the

highest memory footprint was Coral, requiring more than 9GB of RAM to correct the errors.
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Figure 2. Correcting errors in whole genome sequencing data (D1 dataset). (a-f) WGS human

data. (g-1) WGS E. coli data. (a) Heatmap depicting the gain across various coverage settings.

Each row corresponds to an error correction tool, and each column corresponds to a dataset with

a given coverage. (b) Heatmap depicting the precision across various coverage settings. Each

row corresponds to an error correction tool, and each column corresponds to a dataset with a

given coverage. (¢) Heatmap depicting the sensitivity across various coverage settings. Each row

corresponds to an error correction tool, and each column corresponds to a dataset with a given
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coverage. (d) Scatter plot depicting the number of TP corrections (x-axis) and FP corrections (y-
axis) for datasets with 32x coverage. (e) Scatter plot depicting the number of FP corrections (x-
axis) and FN corrections (y-axis) for datasets with 32x coverage. (f) Scatter plot depicting the

sensitivity (x-axis) and precision (y-axis) for datasets with 32x coverage.
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Correcting errors in the TCR sequencing data

We compared the ability of error correction methods to fix the errors in reads derived from the T
cell receptor (TCR) repertoire (D2 dataset). Similarly to our study of the WGS data, we explored
the effect of kmer size on the accuracy of error correction methods for TCR-Seq data. As we
observed with the WGS data, with TCR-Seq data an increase in kmer size improves the gain for
some of the tools, while for other tools it has no effect (Figure S4, S12). Thus, we used the
largest kmer size for all surveyed methods. We also investigated the effect of kmer size using
real TCR-Seq data derived from 10 individuals diagnosed with HIV. Error-free reads for a gold
standard were generated by consensus using UMI-based clustering (see the Methods section).

We observe no effect generated by kmer size on the accuracy of error correction (Figure S13).

We have used simulated TCR-Seq data (D3 dataset) to compare the performance of the error
correction tools across various coverages. All error correction tools are able to maintain positive
gain on simulated TCR-Seq data across various coverages (Figure S14). All surveyed tools also
maintain high precision rates (0.76-0.99) (Figure S15). We observed larger variation in
sensitivity across the tools and coverages. For several error correction methods, sensitivity drops
when the coverage rate increases (Figure S16). Next, we have used real TCR-Seq data to
compare the performance of error correction tools. The highest accuracy is achieved using

Lighter and BFC methods, followed by SGA (Figure 3a).

Lighter and BFC achieve a desirable balance between precision and sensitivity, and generally

manifest similar performance according to all metrics, including number of TPs and FPs. Due to
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the increased number of ignored errors (FNs), SGA demonstrates the lowest sensitivity among
all error correction methods (Figure 3b-d). Similarly to WGS data, the majority of error
correction tools do not trim or only trim a minor portion of the reads. Similar to results generated
from WGS datasets, only a small number of reads were trimmed. Typically, the majority of

trimmed bases were correct bases (Figure S17).
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Figure 3. Correcting errors in TCR-Seq data (D2 dataset). (a) Bar plot depicting the gain
across various error correction methods when applied to TCR-Seq data. Vertical bars depict the
various gains across 10 TCR-Seq samples. (b) Scatter plot depicting the number of TP
corrections (x-axis) and FP corrections (y-axis). Mean value across 10 samples is reported for
each tool. (¢) Scatter plot depicting the number of TP corrections (x-axis) and FP corrections (y-
axis). Each dot represents a mean value reported for each tool when applied across 10 samples.
(d) Scatter plot depicting the sensitivity (x-axis) and precision (y-axis) of each tool. Mean value

across 10 samples is reported for each tool.
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Correcting errors in the viral sequencing data

In contrast with the results produced from immune repertoire sequencing data, none of the error
correction tools are suitable for correcting reads derived from the heterogeneous viral
populations (D4 dataset). Despite the ability of the methods to correct the majority of
sequencing errors, the high number of incorrect adjustments resulted in a decreased precision

across all the methods (Figure S18).

We performed additional analysis to investigate the factors contributing to the reduced
performance of error correction tools on the viral sequencing data. We used a real HIV-1
sequencing benchmark? composed of five HIV-1 subtype B haplotypes mixed in-vitro (D5
dataset) (Table 1). To prepare error-free reads we have applied haplotype-based error correction
protocol able to eliminate sequencing errors by matching the read with the haplotype of origin.
After the haplotype and reads were matched, the sequencing errors are corrected by replacing
bases from reads with the based from the haplotype of origin. Details about the D5 dataset and

haplotype-based error correction protocol are provided in the Supplementary Materials.

Similar to results generated from the D4 HIV dataset, the majority of error correction methods
were unable to accurately correct errors (Figure S19). Notably, only Racer and Fiona were able
achieve gain above 60%; other methods have zero or negative gain. Sensitivity was below 45%
for the majority of the methods, except Racer was able to achieve 90.0% sensitivity. Precision

ranged from 20% to 99% (Figure S20). The improved performance of error correction tools on
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D5 HIV mixture dataset can be attributed to a small number of haplotypes present in mixture

compared to number of haplotypes in the real HIV sample (D4 dataset).

We further investigated the factors which can influence the accuracy of error correction in viral
sequencing data. First, we varied the diversity between haplotypes. We have generated three
datasets each consisting of two haplotypes. The diversity was measured using the Hamming
distance and varied between 5.94% and 0.02%. The reduced diversity between haplotypes had a
positive effect for majority of error correction method, allowing seven out of 10 methods to
achieve positive gain on low-diversity datasets (Hamming distance between haplotypes <0.29%)

(Figure S21).

We have also performed additional experiments to investigate the effect of number of errors
present in the data on the ability of methods to accurately correct errors. We have
computationally changed the error rate of viral dataset D5 (Supplementary Methods). In total,
we have obtained eighth dataset with the error rate ranging from 107 to 3.3x107. In general,
increased error rate had a negative impact on the ability of the majority of the methods to
accurate correct errors. Tools, which maintained consistent performance across dataset with
various error rates were Fiona and Racer. Notably, Racer was able to maintain gain above 70%

across all datasets with various error-rates (Figure S22).

Discussion
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Our systematic assessment of currently available error correction tools highlights the advantages
and limitations of computational error correction techniques across different types of datasets
containing different levels of heterogeneity. We evaluated the performance of error correction
algorithms on typical DNA sequencing data and highly heterogeneous data derived from human
immune repertoires and intra-host viral populations. We observed large variability in the
performance of error correction methods when applied to different types of datasets, with no
single method performing best on all types of data. For example, surveyed methods deliver
improved sequencing reads for datasets with coverage higher than 8x when applied to WGS data.
The variability in observed performance of error correction tools emphasizes the importance of
benchmarking in order to inform the selection of an appropriate tool for any given data set and

research question.

We observed that majority of the methods are capable of producing accurate results only for high
coverage datasets, suggesting that that depth of coverage is an important parameter when
considering the choice of error correction tool. We determined that genomic coverage larger than
8x is required to successfully correct errors in WGS data for Coral, and 16x coverage was
required for SGA to correct errors. Other tools are only able to successfully correct errors for
coverage higher than 16x. A genomic coverage of 32x allows several methods to correct more
than 90% of the errors with high precision. For example, Bless was able to correct 93% of the
errors with 96% precision. Our results suggest that genomic coverage for WGS data should be
taken into account when choosing the appropriate error correction tool. We also evaluated the
effect of kmer size on the accuracy of error correction tools. An increase in kmer size typically

offers an increase in accuracy of error correction when applied to both WGS and TCR-Seq data.
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Our study found that performance of error correction methods vary substantially when applied to
data across various domains of biology, with no single method performing best on all types of
examined datasets. We noticed that error correction methods are particularly useful in the field of
immunogenomics, where multiple error correction methods may significantly improve results—
even for extremely low coverage rates. These results suggest that computational error correction
tools have potential to replace UMI-based error correction protocols. UMIs are commonly
applied to data in immunogenomics studies in order to correct sequencing errors, but the
computational cost of using UMIs may have a negative impact on the ability to reach adequate

coverage.

In contrast, none of the methods we studied were able to accurately correct errors in the data
derived from heterogeneous viral populations. One potential reason is the complexity of the HIV
virus, which is comprised of multiple similar strains that can confound the performance of the
error-correction algorithms. Every region of each HIV viral strain is unique; the distribution of
mutations is relatively even across the viral genome when compared to TCR. In contrast, the

diversity of TCR is mainly driven by the differences in CDR3 sequence.

Our benchmarking study focused on benchmarking computational error correction tools. The
evaluation of error correction on downstream analyses has been performed and published
elsewhere® and is beyond the scope of the current study. In future studies, we anticipate that
additional knowledge about the structured properties of analyzed genomes will be used to

develop bioinformatics tools that produce more accurate and reliable results. For example,
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structures of genomes from different organisms are shaped by epistasis resulting in co-
dependence of different variants®®3!. The incorporation of the effects of epistasis into error-
correction methods may help researchers distinguish between real and artificial genomic

heterogeneity and eventually result in a higher accuracy of error correction.
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Methods

Running error correction tools

Error correction tools were installed using the directions provided with each of the respective
tools (Table 2). Wrappers were then prepared in order to run each of the respective tools as well
as create standardized log files. When running the tools, we chose the Illumina technology option
and paired-end mode when possible. In cases where the paired-end option is not available (Table
1), we prepared single-end reads obtained from paired-end data by disregarding pairing
information and treating each read from the pair as a single-end read. The computational pipeline
to compare error correction methods is open source, free to use under the MIT license, and

available at https://github.com/Mangul-Lab-USC/benchmarking.error.correction

Generating error-free reads using UMI-based clustering
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Error-free reads for gold standard were generated using UMI-based clustering. Reads were
grouped based on matching UMIs and corrected by consensus, where an 80% majority was
required to correct sequencing errors without affecting naturally occurring SNVs (Figure 1B).

UMI-based clustering was used to produce error-free reads for the D2 and D4 databases.

Generating simulated datasets

We generated simulated data mimicking the WGS data (D1). To generate the D1 dataset, we
developed a customized version of the tool WgSim!? (Figure S1). Read coverage varied between
1 and 32. Briefly, the customized version, along with generating the sequencing reads with
errors, can report the error-free reads to the files provided as command line arguments. The

WgSim fork is available at https://github.com/mandricigor/wgsim.

We simulated WGS data from chromosome 21 using the following command:
wgsim -r 0.001 -R 0.0001 -e 0.005 -1 $rlen -2 $rlen -A 0 -N $nr
Escherichia coli_str k 12 substr mgl655.ASM584v2.dna.chromosome.Chromosome.f
a datasets/ecoli/wgsim_rl_${rlen} cov_${cov}.l.fastq
datasets/ecoli/wgsim_rl_${rlen} cov_${cov}.2.fastq
true reads/ecoli/true rl ${rlen} cov_${cov}.l.fastq

true_reads/ecoli/true rl ${rlen} cov_${cov}.2.fastq 1>logfile.txt 2>err.txt
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We generated simulated data mimicking the TCR-Seq data (D3). To generate the TCR-Seq
dataset, we have used the T cell receptor alpha chain (TCRA)*. We generated samples with read
lengths of 100bp. Read coverage varied between 1 and 32. For all the samples, the mean

fragment length was set to 200 bp.

Generating error-free reads using haplotype-based error correction protocol

We prepared viral dataset D5 using real sequencing data from NCBI with the accession number
SRR961514 prepared by Giallonardo et al.?%. This is a MiSeq sequencing experiment on a
mixture of five subtype B HIV-1 viruses with different genomes. The original dataset contains
714994 MiSeq 2x250bp reads that we mapped on all five HIV-1 reference genomes. Each read
was assigned to the reference with which it has a minimum number of mismatches. Since
unmapped reads do not have the best match, we dropped them; as a result, there were 706182
remaining reads. The original error rate in the dataset was 1.44%. We modified these reads as
follows: first, we corrected the corresponding portion of errors with a corresponding reference
nucleotides to obtain different levels of errors in the datasets (1.44%, 0.33%, 0.0033%,
0.0001%); second, we created datasets with original 1.44% error rate and different number of
haplotypes in the mixture (1, 2, 5); third, we created datasets with mixtures of two haplotypes
with the original 1.44% error rate but with different levels of diversity between haplotypes

(Hamming distance=5.94%, 0.29%, 0.02%)).

Error correction methods designed for mixed genomes
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Most error correction methods are designed for a single genome, yet Pollux is a unique method
designed for metagenomics data composed of multiple microbial genomes. It also can work for
sequencing data derived from a single genome. Pollux determines the number of occurrences of
each observed kmer in the data. The kmer counts are used to determine kmer depth profile for

each read and localize sequencing errors.

Choosing kmer size

We use kmer sizes ranging from 20bp to 30bp for each of the datasets. In cases where the error
correction tool was equipped with an option for the genome size, we provided the length of
corresponding genome size. The genome size used for the T cell and B cell immune repertoire

sequencing was 405,000 bp, while the whole genome sequencing size used was 3,000,000 bp.

Evaluating error correction accuracy

The evaluation of error correction involves obtaining the error-free reads, the original raw reads,
and the original reads corrected by computational error correction tools. Reads are then
compared using multiple sequence alignment. We used MUSCLE? to perform multiple
sequence alignment. Raw read represents the base before the error correction tool has been used.
E.C. read represents the base after the error correction tool has been used. True read represents
the correct base. True positive (TP) indicates a sequencing error was correctly changed. False
negative (FN) indicates that either an error was ignored, or an error was incorrectly changed

(Figure S1). False positive (FP) indicates a correct base was changed to an incorrect base. True
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negative (TN) indicates a correct base was left as is. Trimming was additionally evaluated as
either TP or FP trimming. FN base calls were evaluated as either FN wrong if the base was
changed incorrectly or just FN if the base was untouched and should have been corrected.
(Figure S2). We have also reported-CPU time and the maximum amount of RAM used by each

of the tools.

Data compression format

Due to the quantity and size of the error corrected fastq files, the evaluation of the reads was
compressed. In order to summarize the errors that were not resolved by each of the various tools,
a method similar to the evaluation of error correction was utilized. In substitute for determining
the number of TP, TN, FP from INDELSs, FP from trimming, normal FP, and FN bases, the data
compression will represent this data in the following reduced manner. The format is in the
following order: read name, length, TP, FN, FN WRONG, FP, FP INDEL, FP TRIM, TP TRIM
(Example: 1 22 238 1:0:0 3:0:0_0/1,100,3,0,0,0,0,0,0). By producing this data only when a
TP, FP of any type, and FN are encountered, this procedure enables the extraction of important
features in the error correction of each read in a condensed form due to the large volume of
reads. This data is stored at the following link for future access:

https://drive.google.com/drive/u/0/folders/14ctrY1B5ldzwecY XG3MaoCmpgLK7SkIPZ.

Estimating performance

12


https://doi.org/10.1101/642843
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642843; this version posted December 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

We compared the performance of the error correction tools by reporting wall time, CPU time,
and the maximum amount of RAM used by each of the tool. These performance metrics were
obtained via -qsub option, with an additional -m bse option allowing automatically generated
CPU and memory usage statistics. A typical node of the cluster used to benchmark the tools has
dual twelve-core 2.2GHz Intel ES-2650v4 CPUs and an Intel 800GB DC S3510 Series MLC (6

Gb/s, 0.3 DWPD) 2.5" SATA SSD.

Comparing performance of tools across the genomic categories

We compared the performance of error correction tools across different genomic categories
based on sequence complexity. In order to annotate genome (more precisely, chromosome 21 of
the human genome) with a category, we used RepeatMasker (version 4.0.9). As a result, the
genome was divided into multiple categories (the most abundant ones are: “LINE/L1”,
“SINE/Alu”, “LTR/ERVL-MaLR”, “LINE/L2”, “LTR/ERV1”, “LTR/ERVL”, “SINE/MIR”,
“Simple_repeat”, “DNA/hAT-Charlie”, “DNA/TcMar-Tigger”, “Satellite/centr”, “DNA/hAT-
Tip100”, “LTR/Gypsy”, “Low_complexity”, “LINE/CR1”, “LINE/RTE-X", “Satellite”, “LTR”,
“LTR/ERVK™). We also introduced a category “normal” which consists of sequences not in any
of the aforementioned categories. A read is considered to belong to a category X if it overlaps a

sequence from category X.
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