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Abstract

Principal component analysis (PCA) is an essential method for analyzing
single-cell RNA-seq (scRNA-seq) datasets, but large-scale scRNA-seq datasets
require long computational times and a large memory capacity.

In this work, we review 21 fast and memory-efficient PCA implementations (10
algorithms) and evaluate their application using 4 real and 18 synthetic datasets.
Our benchmarking showed that some PCA algorithms are faster, more memory
efficient, and more accurate than others. In consideration of the differences in the
computational environments of users and developers, we have also developed
guidelines to assist with selection of appropriate PCA implementations.
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Background
The emergence of single-cell RNA sequencing (scRNA-seq) technologies [1], has en-

abled the examination of many types of cellular heterogeneity. For example, cellular

subpopulations consisting of various tissues [2–6], rare cells and stem cell niches [7],

continuous gene expression changes related to cell cycle progression [8], spatial co-

ordinates [9–11], and differences in differentiation maturity [12, 13] have been cap-

tured by many scRNA-seq studies. As the measurement of cellular heterogeneity is

highly dependent on the number of cells measured simultaneously, a wide variety of

large-scale scRNA-seq technologies have been developed [14], including those using

cell sorting devices [15–17], Fludigm C1 [18–21], droplet-based technologies (Drop-

Seq [2–4], inDrop RNA-Seq [5, 6], the 10X Genomics Chromium system [22]), and

single-cell combinatorial-indexing RNA-sequencing (sci-RNA-seq [23]). Such tech-

nologies have encouraged the establishment of several large-scale genomics consor-

tiums, such as the Human Cell Atlas [24–26], Mouse Cell Atlas [27], and Tabula

Muris [28]. These projects are analyzing a tremendous number of cells by scRNA-seq

and tackling basic life science problems such as the number of cell types compris-

ing an individual, cell-type-specific marker gene expression and gene functions, and

molecular mechanisms of diseases at a single-cell resolution.

Nevertheless, the analysis of scRNA-seq datasets poses a potentially difficult prob-

lem; the cell type corresponding to each data point is unknown a priori [1, 29–35].

Accordingly, researchers perform unsupervised machine learning (UML) methods,

such as dimensionality reduction and clustering, to reveal the cell type corre-

sponding to each individual data point. In particular, principal component analysis

(PCA [36–38]) is a commonly used UML algorithm applied across many situations.
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Despite its wide use, there are several reasons why it is unclear how PCA should

be conducted for large-scale scRNA-seq. First, because the widely used PCA algo-

rithms and implementations load all elements of a data matrix into memory space,

for large-scale datasets such as the 1.3 million cells measured by 10X Genomics

Chromium [39] or the 2 million cells measured by sci-RNA-seq [23], the calculation

is difficult unless the memory size of the user’s machine is very large. Furthermore,

the same data analysis workflow is performed repeatedly, with deletions or additions

to the data or parameter changes for the workflow, and under such trial-and-error

cycles, PCA can become a bottleneck for the workflow. Therefore, some fast and

memory-efficient PCA algorithms are required.

Second, there are indeed some PCA algorithms that are fast and memory effi-

cient, but their practicality for use with large-scale scRNA-seq datasets is not fully

understood. Generally, there are trade-offs between the acceleration of algorithms

by some approximation methods and the accuracy of biological data analysis. Fast

PCA algorithms might overlook some important differential gene expression pat-

terns. In the case of large-scale scRNA-seq studies aiming to find novel cell types,

this property may cause a loss of clustering accuracy and not be acceptable.

Finally, actual computational time and memory efficiency are highly dependent

on the specific implementation, including the programming language, the method

for loading input files, and the data format. However, there is no benchmarking to

evaluate these properties. Such information is directly related to the practicality of

the software and is useful as a guideline for users and developers.

For the above reasons, in this research, we examine the practicality of fast and

memory-efficient PCA algorithms for use with large-scale scRNA-seq datasets. This

work provides four key contributions. First, we review the existing PCA algorithms

and their implementations (Figure 1). Second, we present a benchmark test with

selected PCA algorithms and implementations. To our knowledge, this is the first

comprehensive benchmarking of PCA algorithms and implementations with large-

scale scRNA-seq datasets. Third, we provide some original implementations of some

PCA algorithms and utility functions for quality control (QC), filtering, and fea-

ture selection. All commands are implemented in a fast and memory-efficient Julia

package. Finally, we propose guidelines for end-users and software developers.

Results
Review of PCA algorithms and implementations

PCA is widely used for data visualization [39–41], data QC [42], feature selec-

tion [13, 43–49], de-noising [50, 51], imputation [52–54], confirmation and removal

of batch effects [55–57], confirmation and estimation of cell-cycle effects [58], rare

cell type detection [59,60], cell type and cell state similarity search [61], pseudotime

inference [13,62–66], and spatial reconstruction [9].

Additionally, principal component (PC) scores are also used as the input of other

non-linear dimensionality reduction [67–73] and clustering methods [74–77] in or-

der to preserve the global structure, avoid the “curse of dimensionality” [78–81],

and save memory space. A wide variety of scRNA-seq data analysis tools actually

include PCA as an internal function or utilize PC scores as input for down-stream

analyses [22,82–89].
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We reviewed the existing PCA algorithms and implementations and classi-

fied the algorithms into six categories, namely, similarity transformation-based

(SimT), downsampling-based (DS), singular value decomposition (SVD) update-

based (SU), Krylov subspace-based (Krylov), gradient descent-based (GD), and

random projection-based (Rand) (Additional file 1 [22, 42–44, 49–52, 55–61, 63, 65,

69, 74–77, 82, 85, 89–113]). We have listed 21 PCA implementations (comprising 10

algorithms) that are freely available and easy to download, install, and use for anal-

yses. The correspondence of the reviewed PCA implementations and scRNA-seq

studies are summarized in Table 1.

To extend the scope of the algorithms used in the benchmarking, we originally

implemented some PCA algorithms in an out-of-core manner (Additional file 1).

The pseudo-code and source code of all the algorithms benchmarked in this study

are summarized in Additional file 2 and Additional file 3, respectively.

Benchmarking of PCA algorithms and implementations

Next, we performed the benchmarking tests of the PCA algorithms and implemen-

tations. The results of the benchmarking are summarized in Figure 2 [69,90,92,94–

99,107–109,114,115].

Real-world datasets

In consideration of the trade-offs among the large number of methods evaluated with

our limited time, computational resources, and manpower, we carefully selected real-

world datasets for the benchmarking. The latest scRNA-seq methods are divided

into two categories, namely, full-length scRNA-seq methods and high-throughput

scRNA-seq methods with specific cell dissociation and cellular/molecular barcoding

technologies such as droplet-based and split-and-pool experiments [34,35]. Because

the number of cells measured by scRNA-seq has been increased by the latter technol-

ogy, we selected the following four datasets generated by such technologies: human

peripheral blood mononuclear cells (PBMCs), human pancreatic cells (Pancreas),

mouse brain and spinal cord (BrainSpinalCord), and mouse cells from the cortex,

hippocampus, and ventricular zone (Brain) (Table 2). These datasets have been

used in many previous scRNA-seq studies [61,76,94,116–122].

The accuracy of PCA algorithms

Here, we evaluate the accuracy of the various PCA algorithms by using the four real-

world datasets. For the analyses of the PBMCs and Pancreas datasets, we set the

result of prcomp as the gold standard, which is a wrapper function for performing

SVD with LAPACK subroutines (Additional file 1). The other implementations are

compared with this result (Figures 1b and 2). For the BrainSpinalCord and Brain

datasets analyses, full-rank SVD by LAPACK is computationally difficult. Accord-

ing to the benchmarking guidelines developed by Mark D. Robinson’s group [123],

comparing the methods against each other is recommended when the ground truth

cannot be defined. Therefore, we just compared the results of the methods against

each other using several different criteria, such as the magnitude of the eigenvalues

and the clustering accuracy.

First, we performed t-stochastic neighbor embedding (t-SNE [67,68]) and uniform

manifold approximation and projection (UMAP [71,72]) for the results of each PCA
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algorithm and compared the clarity of the cluster structures detected by the origi-

nal studies (Figures 1b, 3, Additional file 4, and Additional file 5). For the Brain-

SpinalCord and Brain datasets, only downsampling, IncrementalPCA (sklearn),

orthiter/gd/sgd/halko/algorithm971 (OnlinePCA.jl), and oocPCA CSV (oocR-

PCA) could be performed, while the other implementations were terminated by

out-of-memory errors on 96 and 128 GB RAM machines. For the PBMCS and Pan-

creas datasets, compared with the gold standard cluster structures, the structures

detected by downsampling were unclear, and some distinct clusters determined by

the original studies were incorrectly combined into single clusters. In the realistic

situation when the cellular labels were unavailable a priori, the labels were ex-

ploratorily estimated by confirming differentially expressed genes, known marker-

genes, or related gene functions of clusters. In such a situation, downsampling may

overlook subgroups hiding in a cluster.

We also performed four clustering algorithms on all the results of the PCA imple-

mentations and calculated the adjusted Rand index (ARI [124]) to evaluate cluster-

ing accuracy (Additional file 6). Here, we only show the result of Louvain clustering

[125] (Figures 1b and 4). The ARI values show that the results of downsampling

and sgd (OnlinePCA.jl) were worse compared with the gold standard or other

implementations.

Next, we performed an all-to-all comparison between PCs from the gold stan-

dard and the other PCA implementations (Figures 1b, 5a, and Additional file

7). Because the PCs are unit vectors, when two PCs are directed in the same or

opposite direction, their cross product becomes 1 or −1, respectively. Both the

same and opposite direction vectors are mathematically identical in PCA opti-

mization, and different PCA implementations may yield PCs with different signs.

Accordingly, we calculated the absolute value of the cross product ranging from 0

to 1 for the all-to-all comparison and evaluated whether higher PCs, which corre-

spond to lower eigenvalues, are accurately calculated. The Figure 5a and Additional

file 7 show that the higher PCs based on downsampling, orthiter/gd/sgd (On-

linePCA.jl), and PCA (dask-ml [115]) become inaccurate as the dimensionality of

a PC increases. The higher PCs of these implementations also appear noisy and

unclear in pair plots of PCs between each implementation and seem uninformative

(Additional file 8, Additional file 9, Additional file 10, and Additional file 11). In

particular, the higher PCs calculated by downsampling and sgd (OnlinePCA.jl)

are sometimes influenced by the existence of outlier cells (Additional file 8 and

Additional file 9). When performing some clustering methods, such as k-means

and Gaussian mixture model (GMM [126]) methods, such outlier cells are also

detected as singleton clusters having only a single cell as their cluster member

(Additional file 12). Contrary to these results, all the implementations of IRLBA

and IRAM, as well as the randomized SVD approaches except for PCA (dask-ml),

are surprisingly accurate regardless of the language in which they are written or

their developers. Although PCA (dask-ml) is based on Halko’s method and is nearly

identical to the other implementations of Halko’s method, this function uses the di-

rect tall-and-skinny QR algorithm [127] (https://github.com/dask/dask/blob/

a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52), and

this characteristic might be related to the inaccuracy of the implementations. Be-

cause there is no gold standard in the case of the BrainSpinalCord and Brain
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datasets, we compared the eigenvectors of the PCA implementations in all possible

combinations (Additional file 13) and found that the higher PCs of downsampling

and sgd differed from those of the other PCA implementations.

Because gene-wise eigenvectors (i.e., loading vectors) are also retrieved from the

data matrix and cell-wise eigenvectors (i.e., PCs), we also compared the loading

vectors (Figure 5b and Additional file 14). We extracted the top 500 genes in terms

of the largest absolute values of loading vectors and calculated the number of genes

in common between the two loading vectors. As is the case with the eigenvectors,

even for loading vectors, downsampling, orthiter/gd/sgd (OnlinePCA.jl), and

PCA (dask-ml [115]) become inaccurate as the dimensionality of the PC increases.

Because the genes with large absolute values for loading vectors are used as feature

values in some studies [43–48], inaccurate PCA implementations may lower the

accuracy of such an approach.

The distributions of the eigenvalues of downsampling, IncrementalPCA (sklearn),

and sgd (OnlinePCA.jl) also differ from those of the other implementations (Fig-

ure 6).

Calculation time, memory usage, and scalability

We compared the computational time and memory usage of all the PCA implemen-

tations (Figure 7). For the BrainSpinalCord dataset, downsampling itself was faster

than most of the PCA implementations, but other preprocessing steps, such as

matrix transposition and multiplication of the transposed data matrix and loading

vectors to calculate PCs, were slow and had high memory space requirements (Ad-

ditional file 3). For the Brain dataset, downsampling became slower than most of

the PCA implementations, and such a tendency is noticeable as the size of the data

matrix increases, because downsampling is based on the full-rank SVD in LAPACK.

We also found that the calculation time of PCA (dask-ml) was not as fast

in spite of its out-of-core implementation; for the BrainSpinalCord and Brain

datasets, this implementation could not finish the calculation within three days

in our computational environment. The other out-of-core PCA implementations,

such as IncrementalPCA (sklearn), orthiter/gd/sgd/halko/algorithm971 (On-

linePCA.jl), and oocPCA CSV (oocRPCA), were able to finish those calculations.

We also systemically estimated the calculation time, memory usage, and scal-

ability of all the PCA implementations using 18 synthetic datasets consisting of

{102, 103, 104} gene × {102, 103, 104, 105, 106, 107} cell matrices (see Materials

and methods). We evaluated whether the calculations could be finished or were in-

terrupted by out-of-memory errors (Figure 1b). We also manually terminated a PCA

process that was unable to generate output files within three days (i.e., dask-ml).

All the terminated jobs are summarized in Additional file 15. To evaluate only the

scalability and computability, we set the number of epochs (also known as passes)

in orthiter/gd/sgd (OnlinePCA.jl) to one. However, in actual data analysis, a

value several times larger should be used.

Figures 8 and 9 show the calculation time and the memory usage of all the PCA

implementations, which can be scaled to a 104 × 107 matrix. IncrementalPCA

(sklearn) and oocPCA CSV (oocRPCA) were slightly slower than the other imple-

mentations (Figure 8), and this was probably because the inputs of these imple-

mentations were CSV files while the other implementations used compressed binary
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files (Zstd). The memory usage of all the implementations were almost the same, ex-

cept for IncrementalPCA (sklearn) and oocPCA CSV (oocRPCA). oocPCA CSV (oocR-

PCA) has a parameter that controls the maximum memory usage (mem), and we

set the value to 10 GB (Additional file 3). Indeed, the memory usage had con-

verged to around 10 GB (Figure 9). This property is considered an advantage of

this implementation; users can specify a different value to suit their computational

environment.

The relationship between file format and performance

We also counted the passes of the Brain matrix in the out-of-core implementa-

tions such as oocPCA CSV (R, oocRPCA), IncrementalPCA (Python, sklearn), and

orthiter/gd/sgd/halko/algorithm971 (Julia, OnlinePCA.jl) (Figure 10a). In the

oocPCA CSV (R, oocRPCA), IncrementalPCA (Python, sklearn), the data matrix

was passed to these function as the CSV format and in the other out-of-core imple-

mentations, the data matrix was firstly binarized and compressed in the Zstd file

format. We found that the calculation time was correlated with the number of passes

of the implementation. Furthermore, binarizing and data compression substantially

accelerated the calculation time. This suggests that the data loading process is very

critical for out-of-core implementation and that the overhead for this process has a

great effect on the overall calculation time and memory usage.

Accordingly, using different data formats, such as CSV, Zstd, Loom [93], and

hierarchical data format 5 (HDF5), provided by the 10X Genomics (10X-HDF5) for

the Brain dataset, we evaluated the calculation time and the memory usage for the

simple one-pass orthogonal iteration (qr(XW)), where qr is the QR decomposition,

X is the data matrix, and W represents the 30 vectors to be estimated as the

eigenvectors (Figure 10b). For this algorithm algorithm, incremental loading of large

block matrices (e.g., 5000 rows) from a sparse matrix was faster than incremental

loading of row vectors from a dense matrix, although the memory usage of the

former was lower.

While it is not obvious that the usage of a sparse matrix accelerates the PCA

with scRNA-seq datasets because scRNA-seq datasets are not particularly sparse

compared with data from other fields (cf. recommender systems or social net-

works [128, 129]), we showed that it has the potential to speed up the calculation

time for scRNA-seq datasets.

When all row vectors stored in 10X-HDF5 are loaded at once, the calculation is

fastest, but the memory usage is also highest. Because the calculation time and

the memory usage have a trade-off and the user’s computational environment is

not always high-spec, the block size should be optionally specified as a command

argument. For the above reasons, we also developed tenxpca, which is a new imple-

mentation that performs Li’s method for a sparse matrix stored in the 10X-HDF5

format. Using all the genes in the CSC matrix incrementally, tenxpca was able to

finish the calculation in 1.3 hours with a maximum memory usage of 83.0 GB. This

is the fastest analysis of the Brain dataset in this study.

In addition to tenxpca, some algorithms used in this benchmarking, such as or-

thogonal iteration, GD, SGD, Halko’s method, and Li’s method, are implemented

as Julia functions and command line tools, which have been published as a Julia
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package OnlinePCA.jl (Figure 11). When data are stored as a CSV file, they are

binarized and compressed in the Zstd file format (Figure 11a) and then some out-of-

core PCA implementations are performed. When data are in 10X-HDF5 format, Li’s

method is directly performed with the data by tenxpca (Figure 11b). We also im-

plemented some functions and command line tools to extract row-wise/column-wise

statistics such as mean and variance as well as highly variable genes (HVGs) [130]

in an out-of-core manner. Because such statistics are saved as small vectors, they

can be loaded by any programming language without out-of-core implementation

and used for QC, and the users can select only informative genes and cells. After

QC, the filtering command removes low-quality genes/cells and generates another

Zstd file.

Discussion
Guidelines for users

Based on all the benchmarking results and our implementation in this work, we

propose some user guidelines (Figure 12). Considering that bioinformatics studies

combine multiple tools to construct a user’s specific workflow, the programming

language is an important factor in selecting the right PCA implementation. There-

fore, we categorized the PCA implementations according to language (i.e., R [111],

Python [112], and Julia [113]; Figure 12, column-wise). In addition to the data ma-

trix size, we also categorized implementations according to the way they load data

(in-memory or out-of-core) as well as their input matrix format (dense or sparse,

Figure 12, row-wise). Here, we define the GC-value of a data matrix as the number

of genes × the number of cells.

If the data matrix is not too large (e.g., GC ≤ 107), the data matrix can be

loaded as a dense matrix, and full-rank SVD in LAPACK is then accurate and

optimal (in-memory & dense matrix). In such a situation, the wrapper functions

for the full-rank SVD written in each language are suitable. However, if the data

matrix is much larger (e.g., GC ≥ 108), an alternative to the full-rank SVD is

needed. Based on the benchmarking results, we recommend IRLBA, IRAM, Halko’s

method, and Li’s method as alternatives to the full-rank SVD. For intermediate

GC-values (108 ≤ GC ≤ 1010), if the data matrix can be loaded into memory

as a sparse matrix, some implementations for these algorithms are available (in-

memory & sparse matrix). In particular, such implementations are effective for

large data matrices stored in 10X-HDF5 format using CSC format. Seurat2 [49]

also introduces this approach by combining the matrix market format (R, Matrix )

and irlba function (R, irlba). When the data matrix is dense and cannot be loaded

into memory space (e.g., GC ≥ 1010), the out-of-core implementations, such as

oocPCA CSV (R, oocRPCA), IncrementalPCA (Python, sklearn), and algorithm971

(Julia, OnlinePCA.jl), are useful (dense matrix & out-of-core). If the data matrix is

extremely large and cannot be loaded into memory even if the data are formatted

as a sparse matrix, out-of-core PCA implementations for sparse matrix are needed.

Actually, R cannot load the Brain dataset, even if the data is formatted as a sparse

matrix (https://github.com/satijalab/seurat/issues/1644). Hence, in such

a situation, tenxpca can be used if the data is stored in the 10X-HDF5 format.

The PCA implementations examined in this work are affected by various param-

eters. For example, in gd and sgd (OnlinePCA.jl), the result is sensitive to the
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value of learning parameters and the number of epochs. Therefore, a grid-search

of such parameters is necessary (Additional file 17). When using IncrementalPCA

(sklearn), the user specifies the chunk size of the input matrix, and a larger value

slightly improves the accuracy of PCA (Additional file 16) and the calculation time

(Figure 8), although there is a trade-off between these properties and memory usage

(Figure 9). Both Halko’s method and Li’s method have a parameter for specifying

the number of power iterations (niter), and this iteration step sharpens the distri-

bution of eigenvalues and enforces a more rapid decay of singular values ( [114] and

Additional file 3). In our experiments, the value of niter is critical for achieving

accuracy, and we highly recommend a niter value of three or larger (Additional file

18). In some implementations, the default values of the parameters are specified

as inappropriate values or cannot be accessed as a function parameter. Therefore,

users should carefully set the parameter or select an appropriate implementation.

Guidelines for developers

We have also established guidelines for developers. Many technologies such as data

formats, algorithms, and computational frameworks and environments are available

for developing fast, memory-efficient, and scalable PCA implementations (Addi-

tional file 19). Here, we focus on two topics.

The first topic is “loss of sparsity.” As described above, the use of a sparse ma-

trix can effectively reduce memory space and accelerate calculation, but developers

must be careful not to destroy the sparsity of a sparse matrix. PCA with a sparse

matrix is not equivalent to SVD with a sparse matrix; in PCA, all sparse ma-

trix elements must be centered by the subtraction of gene-wise average values.

Once the sparse matrix X is centered (X − Xmean), where Xmean has gene-wise

average values as column vectors, it becomes a dense matrix and the memory

usage is significantly increased. Obviously, the explicit calculation of the subtrac-

tion described above should be avoided. In such a situation, if multiplication of

this centered matrix and a dense vector/matrix is required, the calculation should

be divided into two parts, such as (X −Xmean)W = XW − XmeanW , where W

represents the vectors to be estimated as eigenvectors, and these parts should be

calculated separately. If one or both parts require more than the available mem-

ory space, such parts should be incrementally calculated in an out-of-core manner.

There are actually some PCA implementations that can accept a sparse matrix,

but they may require very long calculation times and large memory space because

of a loss of sparsity (cf. rpca of rsvd https://github.com/cran/rsvd/blob/

7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158). To our knowl-

edge, only prcomp irlba in irlba (https://github.com/bwlewis/irlba/blob/

8aa970a7d399b46f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379), irlb in Cell

Ranger (https://github.com/10XGenomics/cellranger/blob/e5396c6c444acec6af84caa7d3655dd33a162852/

lib/python/cellranger/analysis/irlb.py#L118), safe sparse dot in sklearn

(https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.

safe_sparse_dot.html), and tenxpca in OnlinePCA.jl (https://github.com/

rikenbit/OnlinePCA.jl/blob/c95a2455acdd9ee14f8833dc5c53615d5e24b5f1/

src/tenxpca.jl#L183) deal with this issue. Likewise, as an alternative to the

centering calculation, MaxAbsScaler in sklearn (https://scikit-learn.org/
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stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html) in-

troduces a scaling method in which the maximum absolute value of each gene

vector becomes one, thereby avoiding the loss of sparsity.

The second topic is “lazy loading.” The out-of-core PCA implementations used

in this benchmarking explicitly calculate centering, scaling, and all other relevant

arithmetic operations from the extracted blocks of the data matrix. However, to

reduce the complexity of the source code, it is desirable to calculate such processes

as if the matrix was in memory and only when the data are actually required, so the

processes are lazily evaluated on the fly. Some packages, such as DeferredMatrix

in BiocSingular (R/Bioconductor, https://bioconductor.org/packages/devel/

bioc/html/BiocSingular.html), CenteredSparseMatrix (Julia, https://github.

com/jsams/CenteredSparseMatrix), Dask [115] (Python, https://dask.org),

and Vaex (Python, https://vaex.io/), support lazy loading.

Future perspective

In this benchmarking study, we found that PCA implementations based on full-rank

SVD are accurate but cannot be scaled for use with high-throughput scRNA-seq

datasets such as the BrainSpinalCord and Brain datasets, and alternative imple-

mentations are thus required. Some methods approximate this calculation by us-

ing truncated SVD forms that are sufficiently accurate as well as faster and more

memory-efficient than full-rank SVD. The actual memory usage highly depends

on whether an algorithm is implemented as out-of-core and whether sparse ma-

trix can be specified as input. Some sophisticated implementations, including our

OnlinePCA.jl , can handle such issues. Other PCA algorithms, such as downsam-

pling and SGD, are actually not accurate, and their use risks overlooking cellular

subgroups contained within scRNA-seq datasets. These methods commonly update

eigenvectors with small fractions of the data matrix, and this process may overlook

subgroups or subgroup-related gene expression, thereby causing the observed inac-

curacy. Our literature review, benchmarking, special implementation for scRNA-seq

datasets, and guidelines provide important resources for new users and developers

tackling the UML of high-throughput scRNA-seq.

Although the down-stream analyses of PCA vary widely, and we could not examine

all the topics of scRNA-seq analyses, such as rare cell-type detection [59, 60] and

pseudotime analysis [13,62–66], differences among PCA algorithms might also affect

the accuracy of such analyses. Butler et al. showed batch effect removal can be

formalized as canonical correlation analysis (CCA) [49], which is mathematically

very similar to PCA. The optimization of CCA is also formalized in various ways,

including randomized CCA [131] or SGD of CCA [132].

This work also sheds light on the effectiveness of randomized SVD. This algorithm

is popular in population genetic studies [110]. In the present study, we also assessed

its effectiveness with scRNA-seq datasets with high heterogeneity. This algorithm

is relatively simple and some studies have implemented it from scratch (Table 1).

Simplicity may be the most attractive feature of this algorithm.

There are also many focuses of recent PCA algorithms (Additional file 19). The

randomized subspace iteration algorithm, which is a hybrid of Krylov and Rand

methodologies, was developed based on randomized SVD [133,134]. In pass-efficient
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or one-pass randomized SVD, some tricks to reduce the number of passes have

been considered [135, 136]. TeraPCA, which is a software tool for use in popula-

tion genetics studies, utilizes the Mailman algorithm to accelerate the expectation–

maximization algorithms for PCA [137, 138]. Townes et al. recently proposed the

use of PCA for generalized linear models (GLM-PCA) and unified some PCA top-

ics, such as log-transformation, size factor normalization, non-normal distribution,

and feature selection, in their GLM framework [139,140]. Although such topics are

beyond the scope of the present work, the current discussion will be useful for the

development and application of such methods above.

Materials and methods
Empirical datasets

The gene expression matrix and cell type labels for the PBMCs dataset and the

Brain dataset [39] were downloaded from the 10X Genomics website (https:

//support.10xgenomics.com/single-cell-gene-expression/datasets/pbmc_

1k_protein_v3 and https://support.10xgenomics.com/single-cell/datasets/

1M_neurons, respectively). The gene expression matrix and cell type labels for the

Pancreas dataset [40] and the BrainSpinalCord dataset [41] were retrieved from the

GEO database (GSE84133 and GSE110823, respectively). For the Pancreas dataset,

only the sample of GSM2230759 was used. The genes of all matrices with zero vari-

ance were removed because such genes are meaningless for PCA calculation. We

also removed the ERCC RNA Spike-Ins, and the number of remaining genes and

cells are summarized in Table 2. Additionally, we investigated the effect of feature

selection on clustering accuracy (Additional file 20).

Simulated datasets

All count datasets were generated by the R rnbinom (random number based on a

negative binomial distribution) function with shape and rate parameters of 0.4 and

0.3, respectively. Matrices of {102, 103, 104} genes × {102, 103, 104, 105, 106, 107}
cells were generated.

Benchmarking procedures

Assuming digital expression matrices of unique molecular identifier (UMI) counts,

all the data files, including real and synthetic datasets, were in CSV format.

When using the Brain dataset, the matrix stored in 10X-HDF5 format was con-

verted to CSV using our in-house Python script (https://gist.github.com/

kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5).

After being loaded by each PCA implementation, the raw data matrix Xraw was

converted to normalized values by count per median (CPMED [141–143]) normaliza-

tion according to the formula Xcpmed (i, j) = Xraw(i,j)∑M
k=1 Xraw(i,k)

∗median (Libsize), where

M is the number of columns and Libsize is the column-wise sum of counts of X.

After normalization, Xcpmed was transformed to X by the logarithm-transformation

X = log10 (Xcpmed + 1), where log10 is the element-wise logarithm. In all the ran-

domized PCA implementation, random seed was fixed.

When Xraw was extremely large and could not be loaded into the memory space

all at once, we prepared two approaches to perform PCA with X. When PCA
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implementations are orthiter, gd, sgd, halko, or algorithm971 (OnlinePCA.jl),

each row-vector of Xraw is normalized using the pre-calculated Libsize by the sumr

command, then log-transformed, and finally used for each of the PCA algorithms.

When using other out-of-core PCA implementations such as IncrementalPCA

(sklearn), oocPCA CSV (oocRPCA), or PCA (dask-ml), there is no option to nor-

malize and log-transform each row-vector of Xraw, so we first calculated Xcpmed

using our in-house Python script (https://gist.github.com/kokitsuyuzaki/

5b6cebcaf37100c8794bdb89c7135fd5), which was then used for the input matrix

of the PCA implementations.

We also investigated the effect of differences in normalization methods on the PCA

results (Additional file 21). When performing each PCA implementation based on

the truncated SVD, the number of PCs was specified in advance (Table 2).

Although it is unclear how many cells should be used in downsampling, one empir-

ical analysis [94] suggests that 20,000 to 50,000 cells are sufficient for clustering and

detecting subpopulations in the Brain dataset. Thus 50, 000/1, 300, 000×100 = 3.8%

of cells were sampled from each dataset and used for the downsampling method.

When performing IncrementalPCA (sklearn), the row-vectors, which match the

number of PCs, were extracted until the end of the lines of the files. When per-

forming irlb(Cell Ranger), the loaded dataset was first converted to a scipy sparse

matrix and passed to it because this function supports sparse matrix data stored

in 10X-HDF5 format. When performing the benchmark, conversion time and mem-

ory usage were also recorded. When performing all the functions of OnlinePCA.jl ,

including orthiter/gd/sgd/halko/algorithm971, we converted the CSV data to

Zstd format, and the calculation time and the memory usage were recorded in

the benchmarking for fairness. For orthiter, gd, and sgd (OnlinePCA.jl), cal-

culations were performed until they converged (Additional file 17). For all the

randomized SVD implementations, the niter parameter value was set to 3 (Ad-

ditional file 18). When performing oocPCA CSV, the users can also use oocPCA BIN,

which performs PCA with binarized CSV files. The binarization is performed by the

csv2binary function, which is also implemented in the oocRPCA package. Although

data binarization accelerates the calculation time for PCA itself, we confirmed that

csv2binary is based on in-memory calculation, and in our computing environment,

csv2binary was terminated by an out-of-memory error. Accordingly, we only used

oocPCA CSV, and the CSV files were directly loaded by this function.

Computational environment

All computations were performed on two-node machines with Intel Xeon E5-2697

v2 (2.70 GHz) processors and 128 GB of RAM, four-node machines with Intel Xeon

E5-2670 v3 (2.30 GHz) processors and 96 GB of RAM, and four-node machines with

Intel Xeon E5-2680 v3 (2.50 GHz) processors and 128 GB of RAM. Storage among

machines was shared by NFS, connected using InfiniBand. All jobs were queued by

the Open Grid Scheduler/Grid Engine (v2011.11) in parallel. The elapsed time and

maximum memory usage were evaluated using the GNU time command (v1.7).

Reproducibility

All the analyses were performed on the machines described above. We used R v3.5.0,

Python v3.6.4, and Julia v1.0.1 in the benchmarking; for t-SNE and CSV conversion
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of the Brain dataset, we used Python v2.7.9. The Sklearn (Python) package was used

to perform k-means and GMM clustering methods. The igraph (R), nn2 (R), and

Matrix (R) packages were used to perform Louvain clustering (Additional file 6).

The hdbscan (Python) package was used to perform HDBScan clustering. The bht-

sne (Python) package was used to perform t-SNE. Lastly, the umap (Python) pack-

age was used to perform UMAP. All the programs used to perform the PCA imple-

mentations in the benchmarking are summarized in Additional file 3. Orthogonal it-

eration, GD, SGD, Halko’s method, and Li’s method are implemented as orthiter,

gd, sgd, halko, and algorithm971, respectively, which are the Julia functions

or commands for OnlinePCA.jl (https://github.com/rikenbit/OnlinePCA.jl).

We also published the script files used to perform the benchmarking (https:

//github.com/rikenbit/onlinePCA-experiments).
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Figures

Figure 1 Overview of benchmarking in this work. (a) Schematic overview of this work. (b)
Evaluation metrics of the benchmarking with real-world datasets. (c) Evaluation metrics of the
benchmarking with synthetic datasets.
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Figure 2 Summary of results. (a) Theoretical properties summarized by our literature review. (b)
Properties related to each implementation. (c) Performance evaluated by benchmarking with
real-world and synthetic datasets. (d) User-friendliness evaluated by some metrics.
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Figure 3 The comparison of t-stochastic neighbor embedding (t-SNE) plots. Comparison of
multiple principal component analysis (PCA) implementations performed with empirical datasets:
PBMCs (102 cells), Pancreas (103 cells), BrainSpinalCord (105 cells), and Brain datasets (106

cells). t-SNE was performed with the result of each PCA implementation.
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Figure 4 Clustering accuracy comparison. Clustering accuracy was evaluated by the adjusted
Rand index (ARI) of the result of Louvain clustering. Multiple principal component analysis (PCA)
implementations were performed for PBMCs (102 cells), Pancreas (103 cells), BrainSpinalCord
(105 cells), and Brain datasets (106 cells); Louvain clustering was performed for the PCA results.
For each PCA result, Louvain clustering calculations were performed ten times. The cluster labels
are the same as those of the respective original papers.
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Figure 5 Comparison of all combinations of eigenvectors. Absolute values of the cross products
of all combinations between the eigenvectors of the gold standard methods and those of the other
principal component analysis (PCA) implementations were calculated. The closer the value is to 1,
the closer the two corresponding eigenvectors are to each other. If two PCA results are equal
without considering differences in sign, the matrix in this figure becomes an identity matrix.
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Figure 6 Comparison of eigenvalues. Distribution of eigenvalues of all the principal component
analysis (PCA) implementations for each real dataset.
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Figure 7 Comparison of the elapsed time and maximum memory usage for empirical datasets.
(a) Elapsed time and (b) memory usage of all principal component analysis (PCA)
implementations calculated for each empirical dataset. We used our in-house Julia script to
preprocess the Brain dataset.
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Figure 8 Comparison of the elapsed time for simulated datasets. Synthetic datasets
({102, 103, 104} gene × {102, 103, 104, 104, 105, 106, 107} cell matrices) were randomly
generated, and all the out-of-core principal component analysis (PCA) implementations were
performed. In each panel, the logarithm of the number of cells is indicated along each x-axis, and
the elapsed time (hours) is shown along each y-axis.
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Figure 9 Comparison of the maximum memory usage for simulated datasets. Synthetic datasets
({102, 103, 104} gene × {102, 103, 104, 104, 105, 106, 107} cell matrices) were randomly
generated, and all the out-of-core principal component analysis (PCA) implementations were
performed. In each panel, the logarithm of the number of cells is indicated along the x-axis, and
memory usage (GB) is shown along the y-axis.
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Figure 10 Relationships of the algorithms/implementations, the number of passes, and the file
format with the elapsed time for performing principal component analysis (PCA) with the
Brain dataset. (a) Number of passes for the data matrix and the computation time for each
algorithms/implementations were calculated. (b) Elapsed time and memory usage for one-pass
orthogonal iteration were calculated.
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Figure 11 OnlinePCA.jl schematic. Input CSV files were first saved as a binary file with the
csv2bin command and analyzed with the gd and sgd commands, which perform incremental
principal component analysis (PCA). When using the HDF5 file format defined by 10X Genomics,
we converted the file to CSV format using an in-house Python script. Gene-wise or cell-wise
summary statistics were calculated using the sumr command. Highly variable genes can also be
calculated with the hvg command. Because the gene-wise and cell-wise summary statistics are
expressed as small vectors, they can be used to perform precise data quality control (QC) with any
programming language without out-of-core implementations. After QC, the filtering command
removed low-quality genes and cells using a user-specified index. Combined with the small size
vectors, some out-of-core PCA implementations, such as orthiter/gd/sgd/halko/algorithm971
have commands to incrementally update eigenvectors from the row vector of the data matrix. The
tenxpca command directly performed algorithm971 on 10X-HDF files.
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Figure 12 User guidelines. Recommended PCA implementations categorized based on written
language and matrix size.
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Tables

Table 1 Use cases of PCA implementations in scRNA-seq studies.

scRNA-seq studies PCA algorithms Commands or functions used in the studies
In most cases

Golub-Kahan method
prcomp/svd (R)

[13, 42, 43, 51, 52, 55, 56, 58, 60, 63,
65, 74, 77, 82, 85, 91, 93]

PCA (Python, sklearn)

Bhaduri et al., [94] Downsampling Unknown
Loompy [93] SKL IncrementalPCA (Python, sklearn)

Scanpy [93]
IRLBA PCA (Python, sklearn)
SKL IncrementalPCA (Python, sklearn)
Halko’s method TruncatedSVD (Python, sklearn)

Cell Ranger [22] IRLBA irlb (Python, from scratch)
Seurat2 [49] IRLBA irlba (R, irlba)

Scran [50]
Golub-Kahan method svd (R)
IRLBA irlba (R, irlba)

SAFE [76] IRLBA irlba (R, irlba)

MAGIC [52]
Golub-Kahan method svds (MATLAB)
Halko’s method randPCA (MATLAB, from scratch)
Halko’s method PCA (Python, sklearn)

Harmony [57] IRLBA irlba (R, irlba)

Scater [82]
Golub-Kahan method prcomp (R)
IRLBA irlba (R, irlba)

GiniClust2 [59] IRLBA propack.svd (R, svd)
SIMLR [75] Halko’s method fast.rsvd (R, from scratch)

SEQC [89]
Golub-Kahan method PCA (Python, sklearn)
Halko’s method PCA (Python, sklearn)

CellFishing.jl [61] Li’s method rsvd (Julia, from scratch)

Table 2 Real-world datasets for benchmarking

Dataset No. Genes No. Cells No. Cell types PCs used
File size

(LogCPMED,
CSV)

File size
(Count,
CSV)

File size
(Count,
Binary)

PBMCs 17484 713 6 PC1-3 45 MB 24 MB 2.1 MB
Pancreas 17499 3605 14 PC1-12 530 MB 287 MB 22 MB

Brain
SpinalCord

25893 156049 73 PC1-16 9.3 MB 7.5 GB 197 MB

Brain 18782 1306127 60 PC1-20 290 GB 58 GB 3.2 GB
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