bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al.

METHOD

Benchmarking principal component analysis for
large-scale single-cell RNA-sequencing

Koki Tsuyuzaki1'2, Hiroyuki Sato3, Kenta Satol'# and Itoshi Nikaido!®*

* Correspondence:
itoshi.nikaido@riken.jp Abstract
!Laboratory for Bioinformatics

Research, RIKEN Center for Principal component analysis (PCA) is an essential method for analyzing

Biosystems Dynamics Research, single-cell RNA-seq (scRNA-seq) datasets, but large-scale scRNA-seq datasets
|J:aF|)|a|r'1 ¢ author information | require long computational times and a large memory capacity.

ull list of author information is

available at the end of the article In ’FhIS work, we review 21 fast ar?d n?emor)./—efflaent PCA |mp|emenltat|ons (10
Equal contributor algorithms) and evaluate their application using 4 real and 18 synthetic datasets.

Our benchmarking showed that some PCA algorithms are faster, more memory
efficient, and more accurate than others. In consideration of the differences in the
computational environments of users and developers, we have also developed
guidelines to assist with selection of appropriate PCA implementations.

Keywords: Single-cell RNA-seq; Cellular heterogeneity; Dimension reduction;
Principal component analysis; Online/Incremental algorithm; Randomized
algorithm; Out-of-core; Sparse data format; R; Python; Julia

Background

The emergence of single-cell RNA sequencing (scRNA-seq) technologies [1], has en-
abled the examination of many types of cellular heterogeneity. For example, cellular
subpopulations consisting of various tissues [2—6], rare cells and stem cell niches [7],
continuous gene expression changes related to cell cycle progression [8], spatial co-
ordinates [9-11], and differences in differentiation maturity [12,13] have been cap-
tured by many scRNA-seq studies. As the measurement of cellular heterogeneity is
highly dependent on the number of cells measured simultaneously, a wide variety of
large-scale scRNA-seq technologies have been developed [14], including those using
cell sorting devices [15-17], Fludigm C1 [18-21], droplet-based technologies (Drop-
Seq [2—4], inDrop RNA-Seq [5, 6], the 10X Genomics Chromium system [22]), and
single-cell combinatorial-indexing RNA-sequencing (sci-RNA-seq [23]). Such tech-
nologies have encouraged the establishment of several large-scale genomics consor-
tiums, such as the Human Cell Atlas [24-26], Mouse Cell Atlas [27], and Tabula
Muris [28]. These projects are analyzing a tremendous number of cells by scRNA-seq
and tackling basic life science problems such as the number of cell types compris-
ing an individual, cell-type-specific marker gene expression and gene functions, and
molecular mechanisms of diseases at a single-cell resolution.

Nevertheless, the analysis of scRNA-seq datasets poses a potentially difficult prob-
lem; the cell type corresponding to each data point is unknown a priori [1,29-35].
Accordingly, researchers perform unsupervised machine learning (UML) methods,
such as dimensionality reduction and clustering, to reveal the cell type corre-
sponding to each individual data point. In particular, principal component analysis
(PCA [36-38]) is a commonly used UML algorithm applied across many situations.

mailto:itoshi.nikaido@riken.jp
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 2 of 30

Despite its wide use, there are several reasons why it is unclear how PCA should
be conducted for large-scale scRNA-seq. First, because the widely used PCA algo-
rithms and implementations load all elements of a data matrix into memory space,
for large-scale datasets such as the 1.3 million cells measured by 10X Genomics
Chromium [39] or the 2 million cells measured by sci-RNA-seq [23], the calculation
is difficult unless the memory size of the user’s machine is very large. Furthermore,
the same data analysis workflow is performed repeatedly, with deletions or additions
to the data or parameter changes for the workflow, and under such trial-and-error
cycles, PCA can become a bottleneck for the workflow. Therefore, some fast and
memory-efficient PCA algorithms are required.

Second, there are indeed some PCA algorithms that are fast and memory effi-
cient, but their practicality for use with large-scale scRNA-seq datasets is not fully
understood. Generally, there are trade-offs between the acceleration of algorithms
by some approximation methods and the accuracy of biological data analysis. Fast
PCA algorithms might overlook some important differential gene expression pat-
terns. In the case of large-scale scRNA-seq studies aiming to find novel cell types,
this property may cause a loss of clustering accuracy and not be acceptable.

Finally, actual computational time and memory efficiency are highly dependent
on the specific implementation, including the programming language, the method
for loading input files, and the data format. However, there is no benchmarking to
evaluate these properties. Such information is directly related to the practicality of
the software and is useful as a guideline for users and developers.

For the above reasons, in this research, we examine the practicality of fast and
memory-efficient PCA algorithms for use with large-scale scRNA-seq datasets. This
work provides four key contributions. First, we review the existing PCA algorithms
and their implementations (Figure 1). Second, we present a benchmark test with
selected PCA algorithms and implementations. To our knowledge, this is the first
comprehensive benchmarking of PCA algorithms and implementations with large-
scale scRNA-seq datasets. Third, we provide some original implementations of some
PCA algorithms and utility functions for quality control (QC), filtering, and fea-
ture selection. All commands are implemented in a fast and memory-efficient Julia
package. Finally, we propose guidelines for end-users and software developers.

Results

Review of PCA algorithms and implementations

PCA is widely used for data visualization [39-41], data QC [42], feature selec-
tion [13,43-49], de-noising [50,51], imputation [52-54], confirmation and removal
of batch effects [55-57], confirmation and estimation of cell-cycle effects [58], rare
cell type detection [59,60], cell type and cell state similarity search [61], pseudotime
inference [13,62-66], and spatial reconstruction [9].

Additionally, principal component (PC) scores are also used as the input of other
non-linear dimensionality reduction [67-73] and clustering methods [74-77] in or-
der to preserve the global structure, avoid the “curse of dimensionality” [78-81],
and save memory space. A wide variety of scRNA-seq data analysis tools actually
include PCA as an internal function or utilize PC scores as input for down-stream
analyses [22,82-89)].

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 3 of 30

We reviewed the existing PCA algorithms and implementations and classi-
fied the algorithms into six categories, namely, similarity transformation-based
(SimT), downsampling-based (DS), singular value decomposition (SVD) update-
based (SU), Krylov subspace-based (Krylov), gradient descent-based (GD), and
random projection-based (Rand) (Additional file 1 [22,42-44,49-52, 55-61, 63, 65,
69,74-77,82,85,89-113]). We have listed 21 PCA implementations (comprising 10
algorithms) that are freely available and easy to download, install, and use for anal-
yses. The correspondence of the reviewed PCA implementations and scRNA-seq
studies are summarized in Table 1.

To extend the scope of the algorithms used in the benchmarking, we originally
implemented some PCA algorithms in an out-of-core manner (Additional file 1).
The pseudo-code and source code of all the algorithms benchmarked in this study
are summarized in Additional file 2 and Additional file 3, respectively.

Benchmarking of PCA algorithms and implementations

Next, we performed the benchmarking tests of the PCA algorithms and implemen-
tations. The results of the benchmarking are summarized in Figure 2 [69,90,92,94—
99,107-109,114,115].

Real-world datasets

In consideration of the trade-offs among the large number of methods evaluated with
our limited time, computational resources, and manpower, we carefully selected real-
world datasets for the benchmarking. The latest scRNA-seq methods are divided
into two categories, namely, full-length scRNA-seq methods and high-throughput
scRNA-seq methods with specific cell dissociation and cellular/molecular barcoding
technologies such as droplet-based and split-and-pool experiments [34,35]. Because
the number of cells measured by scRNA-seq has been increased by the latter technol-
ogy, we selected the following four datasets generated by such technologies: human
peripheral blood mononuclear cells (PBMCs), human pancreatic cells (Pancreas),
mouse brain and spinal cord (BrainSpinalCord), and mouse cells from the cortex,
hippocampus, and ventricular zone (Brain) (Table 2). These datasets have been
used in many previous scRNA-seq studies [61,76,94,116-122].

The accuracy of PCA algorithms
Here, we evaluate the accuracy of the various PCA algorithms by using the four real-
world datasets. For the analyses of the PBMCs and Pancreas datasets, we set the
result of prcomp as the gold standard, which is a wrapper function for performing
SVD with LAPACK subroutines (Additional file 1). The other implementations are
compared with this result (Figures 1b and 2). For the BrainSpinalCord and Brain
datasets analyses, full-rank SVD by LAPACK is computationally difficult. Accord-
ing to the benchmarking guidelines developed by Mark D. Robinson’s group [123],
comparing the methods against each other is recommended when the ground truth
cannot be defined. Therefore, we just compared the results of the methods against
each other using several different criteria, such as the magnitude of the eigenvalues
and the clustering accuracy.

First, we performed t-stochastic neighbor embedding (t-SNE [67,68]) and uniform
manifold approximation and projection (UMAP [71,72]) for the results of each PCA

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 4 of 30

algorithm and compared the clarity of the cluster structures detected by the origi-
nal studies (Figures 1b, 3, Additional file 4, and Additional file 5). For the Brain-
SpinalCord and Brain datasets, only downsampling, IncrementalPCA (sklearn),
orthiter/gd/sgd/halko/algorithm971 (OnlinePCA.jl), and 0ocPCA_CSV (oocR-
PCA) could be performed, while the other implementations were terminated by
out-of-memory errors on 96 and 128 GB RAM machines. For the PBMCS and Pan-
creas datasets, compared with the gold standard cluster structures, the structures
detected by downsampling were unclear, and some distinct clusters determined by
the original studies were incorrectly combined into single clusters. In the realistic
situation when the cellular labels were unavailable a priori, the labels were ex-
ploratorily estimated by confirming differentially expressed genes, known marker-
genes, or related gene functions of clusters. In such a situation, downsampling may
overlook subgroups hiding in a cluster.

We also performed four clustering algorithms on all the results of the PCA imple-
mentations and calculated the adjusted Rand index (ARI [124]) to evaluate cluster-
ing accuracy (Additional file 6). Here, we only show the result of Louvain clustering
[125] (Figures 1b and 4). The ARI values show that the results of downsampling
and sgd (OnlinePCA.jl) were worse compared with the gold standard or other
implementations.

Next, we performed an all-to-all comparison between PCs from the gold stan-
dard and the other PCA implementations (Figures 1b, 5a, and Additional file
7). Because the PCs are unit vectors, when two PCs are directed in the same or
opposite direction, their cross product becomes 1 or —1, respectively. Both the
same and opposite direction vectors are mathematically identical in PCA opti-
mization, and different PCA implementations may yield PCs with different signs.
Accordingly, we calculated the absolute value of the cross product ranging from 0
to 1 for the all-to-all comparison and evaluated whether higher PCs, which corre-
spond to lower eigenvalues, are accurately calculated. The Figure 5a and Additional
file 7 show that the higher PCs based on downsampling, orthiter/gd/sgd (On-
linePCA.jl), and PCA (dask-ml [115]) become inaccurate as the dimensionality of
a PC increases. The higher PCs of these implementations also appear noisy and
unclear in pair plots of PCs between each implementation and seem uninformative
(Additional file 8, Additional file 9, Additional file 10, and Additional file 11). In
particular, the higher PCs calculated by downsampling and sgd (OnlinePCA.jl)
are sometimes influenced by the existence of outlier cells (Additional file 8 and
Additional file 9). When performing some clustering methods, such as k-means
and Gaussian mixture model (GMM [126]) methods, such outlier cells are also
detected as singleton clusters having only a single cell as their cluster member
(Additional file 12). Contrary to these results, all the implementations of IRLBA
and TRAM, as well as the randomized SVD approaches except for PCA (dask-ml),
are surprisingly accurate regardless of the language in which they are written or
their developers. Although PCA (dask-ml) is based on Halko’s method and is nearly
identical to the other implementations of Halko’s method, this function uses the di-
rect tall-and-skinny QR algorithm [127] (https://github.com/dask/dask/blob/
aTbf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg. py#L52), and
this characteristic might be related to the inaccuracy of the implementations. Be-
cause there is no gold standard in the case of the BrainSpinalCord and Brain

https://github.com/dask/dask/blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52
https://github.com/dask/dask/blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 5 of 30

datasets, we compared the eigenvectors of the PCA implementations in all possible
combinations (Additional file 13) and found that the higher PCs of downsampling
and sgd differed from those of the other PCA implementations.

Because gene-wise eigenvectors (i.e., loading vectors) are also retrieved from the
data matrix and cell-wise eigenvectors (i.e., PCs), we also compared the loading
vectors (Figure 5b and Additional file 14). We extracted the top 500 genes in terms
of the largest absolute values of loading vectors and calculated the number of genes
in common between the two loading vectors. As is the case with the eigenvectors,
even for loading vectors, downsampling, orthiter/gd/sgd (OnlinePCA.jl), and
PCA (dask-ml [115]) become inaccurate as the dimensionality of the PC increases.
Because the genes with large absolute values for loading vectors are used as feature
values in some studies [43-48], inaccurate PCA implementations may lower the
accuracy of such an approach.

The distributions of the eigenvalues of downsampling, IncrementalPCA (sklearn),
and sgd (OnlinePCA.jl) also differ from those of the other implementations (Fig-
ure 6).

Calculation time, memory usage, and scalability

We compared the computational time and memory usage of all the PCA implemen-
tations (Figure 7). For the BrainSpinalCord dataset, downsampling itself was faster
than most of the PCA implementations, but other preprocessing steps, such as
matrix transposition and multiplication of the transposed data matrix and loading
vectors to calculate PCs, were slow and had high memory space requirements (Ad-
ditional file 3). For the Brain dataset, downsampling became slower than most of
the PCA implementations, and such a tendency is noticeable as the size of the data
matrix increases, because downsampling is based on the full-rank SVD in LAPACK.

We also found that the calculation time of PCA (dask-ml) was not as fast
in spite of its out-of-core implementation; for the BrainSpinalCord and Brain
datasets, this implementation could not finish the calculation within three days
in our computational environment. The other out-of-core PCA implementations,
such as IncrementalPCA (sklearn), orthiter/gd/sgd/halko/algorithm971 (On-
linePCA.jl), and 0ocPCA_CSV (0ocRPCA), were able to finish those calculations.

We also systemically estimated the calculation time, memory usage, and scal-
ability of all the PCA implementations using 18 synthetic datasets consisting of
{102, 103, 10*} gene x {102, 103, 10%, 10°, 105, 107} cell matrices (see Materials
and methods). We evaluated whether the calculations could be finished or were in-
terrupted by out-of-memory errors (Figure 1b). We also manually terminated a PCA
process that was unable to generate output files within three days (i.e., dask-ml).
All the terminated jobs are summarized in Additional file 15. To evaluate only the
scalability and computability, we set the number of epochs (also known as passes)
in orthiter/gd/sgd (OnlinePCA.jl) to one. However, in actual data analysis, a
value several times larger should be used.

Figures 8 and 9 show the calculation time and the memory usage of all the PCA
implementations, which can be scaled to a 10* x 107 matrix. IncrementalPCA
(sklearn) and oocPCA_CSV (0ocRPCA) were slightly slower than the other imple-
mentations (Figure 8), and this was probably because the inputs of these imple-
mentations were CSV files while the other implementations used compressed binary

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 6 of 30

files (Zstd). The memory usage of all the implementations were almost the same, ex-
cept for IncrementalPCA (sklearn) and cocPCA_CSV (0ocRPCA). 0ocPCA_CSV (oocR-
PCA) has a parameter that controls the maximum memory usage (mem), and we
set the value to 10 GB (Additional file 3). Indeed, the memory usage had con-
verged to around 10 GB (Figure 9). This property is considered an advantage of
this implementation; users can specify a different value to suit their computational

environment.

The relationship between file format and performance

We also counted the passes of the Brain matrix in the out-of-core implementa-
tions such as 0ocPCA_CSV (R, oocRPCA), IncrementalPCA (Python, sklearn), and
orthiter/gd/sgd/halko/algorithm971 (Julia, OnlinePCA.jl) (Figure 10a). In the
00cPCA_CSV (R, 0oocRPCA), IncrementalPCA (Python, sklearn), the data matrix
was passed to these function as the CSV format and in the other out-of-core imple-
mentations, the data matrix was firstly binarized and compressed in the Zstd file
format. We found that the calculation time was correlated with the number of passes
of the implementation. Furthermore, binarizing and data compression substantially
accelerated the calculation time. This suggests that the data loading process is very
critical for out-of-core implementation and that the overhead for this process has a
great effect on the overall calculation time and memory usage.

Accordingly, using different data formats, such as CSV, Zstd, Loom [93], and
hierarchical data format 5 (HDF5), provided by the 10X Genomics (10X-HDF5) for
the Brain dataset, we evaluated the calculation time and the memory usage for the
simple one-pass orthogonal iteration (qr(XW)), where qr is the QR decomposition,
X is the data matrix, and W represents the 30 vectors to be estimated as the
eigenvectors (Figure 10b). For this algorithm algorithm, incremental loading of large
block matrices (e.g., 5000 rows) from a sparse matrix was faster than incremental
loading of row vectors from a dense matrix, although the memory usage of the
former was lower.

While it is not obvious that the usage of a sparse matrix accelerates the PCA
with scRNA-seq datasets because scRNA-seq datasets are not particularly sparse
compared with data from other fields (cf. recommender systems or social net-
works [128,129]), we showed that it has the potential to speed up the calculation
time for scRNA-seq datasets.

When all row vectors stored in 10X-HDF5 are loaded at once, the calculation is
fastest, but the memory usage is also highest. Because the calculation time and
the memory usage have a trade-off and the user’s computational environment is
not always high-spec, the block size should be optionally specified as a command
argument. For the above reasons, we also developed tenxpca, which is a new imple-
mentation that performs Li’s method for a sparse matrix stored in the 10X-HDF5
format. Using all the genes in the CSC matrix incrementally, tenxpca was able to
finish the calculation in 1.3 hours with a maximum memory usage of 83.0 GB. This
is the fastest analysis of the Brain dataset in this study.

In addition to tenxpca, some algorithms used in this benchmarking, such as or-
thogonal iteration, GD, SGD, Halko’s method, and Li’s method, are implemented
as Julia functions and command line tools, which have been published as a Julia

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 7 of 30

package OnlinePCA.jl (Figure 11). When data are stored as a CSV file, they are
binarized and compressed in the Zstd file format (Figure 11a) and then some out-of-
core PCA implementations are performed. When data are in 10X-HDF5 format, Li’s
method is directly performed with the data by tenxpca (Figure 11b). We also im-
plemented some functions and command line tools to extract row-wise/column-wise
statistics such as mean and variance as well as highly variable genes (HVGs) [130]
in an out-of-core manner. Because such statistics are saved as small vectors, they
can be loaded by any programming language without out-of-core implementation
and used for QC, and the users can select only informative genes and cells. After
QC, the filtering command removes low-quality genes/cells and generates another
Zstd file.

Discussion

Guidelines for users

Based on all the benchmarking results and our implementation in this work, we
propose some user guidelines (Figure 12). Considering that bioinformatics studies
combine multiple tools to construct a user’s specific workflow, the programming
language is an important factor in selecting the right PCA implementation. There-
fore, we categorized the PCA implementations according to language (i.e., R [111],
Python [112], and Julia [113]; Figure 12, column-wise). In addition to the data ma-
trix size, we also categorized implementations according to the way they load data
(in-memory or out-of-core) as well as their input matrix format (dense or sparse,
Figure 12, row-wise). Here, we define the GC-value of a data matrix as the number
of genes x the number of cells.

If the data matrix is not too large (e.g., GC < 107), the data matrix can be
loaded as a dense matrix, and full-rank SVD in LAPACK is then accurate and
optimal (in-memory & dense matrix). In such a situation, the wrapper functions
for the full-rank SVD written in each language are suitable. However, if the data
matrix is much larger (e.g., GC > 108), an alternative to the full-rank SVD is
needed. Based on the benchmarking results, we recommend IRLBA, IRAM, Halko’s
method, and Li’s method as alternatives to the full-rank SVD. For intermediate
GC-values (108 < GC < 10'9), if the data matrix can be loaded into memory
as a sparse matrix, some implementations for these algorithms are available (in-
memory & sparse matrix). In particular, such implementations are effective for
large data matrices stored in 10X-HDF5 format using CSC format. Seurat2 [49]
also introduces this approach by combining the matrix market format (R, Matriz)
and irlba function (R, irlba). When the data matrix is dense and cannot be loaded
into memory space (e.g., GC > 10'9), the out-of-core implementations, such as
00cPCA_CSV (R, oocRPCA), IncrementalPCA (Python, sklearn), and algorithm971
(Julia, OnlinePCA.jl), are useful (dense matrix & out-of-core). If the data matrix is
extremely large and cannot be loaded into memory even if the data are formatted
as a sparse matrix, out-of-core PCA implementations for sparse matrix are needed.
Actually, R cannot load the Brain dataset, even if the data is formatted as a sparse
matrix (https://github.com/satijalab/seurat/issues/1644). Hence, in such
a situation, tenxpca can be used if the data is stored in the 10X-HDF5 format.

The PCA implementations examined in this work are affected by various param-
eters. For example, in gd and sgd (OnlinePCA.jl), the result is sensitive to the

https://github.com/satijalab/seurat/issues/1644
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 8 of 30

value of learning parameters and the number of epochs. Therefore, a grid-search
of such parameters is necessary (Additional file 17). When using IncrementalPCA
(sklearn), the user specifies the chunk size of the input matrix, and a larger value
slightly improves the accuracy of PCA (Additional file 16) and the calculation time
(Figure 8), although there is a trade-off between these properties and memory usage
(Figure 9). Both Halko’s method and Li’s method have a parameter for specifying
the number of power iterations (niter), and this iteration step sharpens the distri-
bution of eigenvalues and enforces a more rapid decay of singular values ([114] and
Additional file 3). In our experiments, the value of niter is critical for achieving
accuracy, and we highly recommend a niter value of three or larger (Additional file
18). In some implementations, the default values of the parameters are specified
as inappropriate values or cannot be accessed as a function parameter. Therefore,
users should carefully set the parameter or select an appropriate implementation.

Guidelines for developers

We have also established guidelines for developers. Many technologies such as data
formats, algorithms, and computational frameworks and environments are available
for developing fast, memory-efficient, and scalable PCA implementations (Addi-
tional file 19). Here, we focus on two topics.

The first topic is “loss of sparsity.” As described above, the use of a sparse ma-
trix can effectively reduce memory space and accelerate calculation, but developers
must be careful not to destroy the sparsity of a sparse matrix. PCA with a sparse
matrix is not equivalent to SVD with a sparse matrix; in PCA, all sparse ma-
trix elements must be centered by the subtraction of gene-wise average values.
Once the sparse matrix X is centered (X — Xiean), where Xyean has gene-wise
average values as column vectors, it becomes a dense matrix and the memory
usage is significantly increased. Obviously, the explicit calculation of the subtrac-
tion described above should be avoided. In such a situation, if multiplication of
this centered matrix and a dense vector/matrix is required, the calculation should
be divided into two parts, such as (X — Xyean) W = XW — Xpean W, where W
represents the vectors to be estimated as eigenvectors, and these parts should be
calculated separately. If one or both parts require more than the available mem-
ory space, such parts should be incrementally calculated in an out-of-core manner.
There are actually some PCA implementations that can accept a sparse matrix,
but they may require very long calculation times and large memory space because
of a loss of sparsity (cf. rpca of rsvd https://github.com/cran/rsvd/blob/
7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158). To our knowl-
edge, only prcomp-irlba in irlba (https://github.com/bwlewis/irlba/blob/
8aa970a7d399b46f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379), irlb in Cell
Ranger (https://github.com/10XGenomics/cellranger/blob/e5396c6c444acec6af84caard3655dd33a162852
lib/python/cellranger/analysis/irlb.py#L118), safe_sparse_dot in sklearn
(https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.
safe_sparse_dot.html), and tenxpca in OnlinePCA.jl (https://github.com/
rikenbit/OnlinePCA. j1/blob/c95a2455acdd9ee14£8833dc5c53615d5e24b5f1/
src/tenxpca.j1#L183) deal with this issue. Likewise, as an alternative to the
centering calculation, MaxAbsScaler in sklearn (https://scikit-learn.org/

https://github.com/cran/rsvd/blob/7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158
https://github.com/cran/rsvd/blob/7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158
https://github.com/bwlewis/irlba/blob/8aa970a7d399b46f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379
https://github.com/bwlewis/irlba/blob/8aa970a7d399b46f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379
https://github.com/10XGenomics/cellranger/blob/e5396c6c444acec6af84caa7d3655dd33a162852/lib/python/cellranger/analysis/irlb.py#L118
https://github.com/10XGenomics/cellranger/blob/e5396c6c444acec6af84caa7d3655dd33a162852/lib/python/cellranger/analysis/irlb.py#L118
https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.safe_sparse_dot.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.safe_sparse_dot.html
https://github.com/rikenbit/OnlinePCA.jl/blob/c95a2455acdd9ee14f8833dc5c53615d5e24b5f1/src/tenxpca.jl#L183
https://github.com/rikenbit/OnlinePCA.jl/blob/c95a2455acdd9ee14f8833dc5c53615d5e24b5f1/src/tenxpca.jl#L183
https://github.com/rikenbit/OnlinePCA.jl/blob/c95a2455acdd9ee14f8833dc5c53615d5e24b5f1/src/tenxpca.jl#L183
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 9 of 30

stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html) in-
troduces a scaling method in which the maximum absolute value of each gene
vector becomes one, thereby avoiding the loss of sparsity.

The second topic is “lazy loading.” The out-of-core PCA implementations used
in this benchmarking explicitly calculate centering, scaling, and all other relevant
arithmetic operations from the extracted blocks of the data matrix. However, to
reduce the complexity of the source code, it is desirable to calculate such processes
as if the matrix was in memory and only when the data are actually required, so the
processes are lazily evaluated on the fly. Some packages, such as DeferredMatrix
in BiocSingular (R/Bioconductor, https://bioconductor.org/packages/devel/
bioc/html/BiocSingular.html), CenteredSparseMatriz (Julia, https://github.
com/jsams/CenteredSparseMatrix), Dask [115] (Python, https://dask.org),
and Vaezr (Python, https://vaex.io/), support lazy loading.

Future perspective

In this benchmarking study, we found that PCA implementations based on full-rank
SVD are accurate but cannot be scaled for use with high-throughput scRNA-seq
datasets such as the BrainSpinalCord and Brain datasets, and alternative imple-
mentations are thus required. Some methods approximate this calculation by us-
ing truncated SVD forms that are sufficiently accurate as well as faster and more
memory-efficient than full-rank SVD. The actual memory usage highly depends
on whether an algorithm is implemented as out-of-core and whether sparse ma-
trix can be specified as input. Some sophisticated implementations, including our
OnlinePCA jl, can handle such issues. Other PCA algorithms, such as downsam-
pling and SGD, are actually not accurate, and their use risks overlooking cellular
subgroups contained within scRNA-seq datasets. These methods commonly update
eigenvectors with small fractions of the data matrix, and this process may overlook
subgroups or subgroup-related gene expression, thereby causing the observed inac-
curacy. Our literature review, benchmarking, special implementation for scRNA-seq
datasets, and guidelines provide important resources for new users and developers
tackling the UML of high-throughput scRNA-seq.

Although the down-stream analyses of PCA vary widely, and we could not examine
all the topics of scRNA-seq analyses, such as rare cell-type detection [59,60] and
pseudotime analysis [13,62-66], differences among PCA algorithms might also affect
the accuracy of such analyses. Butler et al. showed batch effect removal can be
formalized as canonical correlation analysis (CCA) [49], which is mathematically
very similar to PCA. The optimization of CCA is also formalized in various ways,
including randomized CCA [131] or SGD of CCA [132].

This work also sheds light on the effectiveness of randomized SVD. This algorithm
is popular in population genetic studies [110]. In the present study, we also assessed
its effectiveness with scRNA-seq datasets with high heterogeneity. This algorithm
is relatively simple and some studies have implemented it from scratch (Table 1).
Simplicity may be the most attractive feature of this algorithm.

There are also many focuses of recent PCA algorithms (Additional file 19). The
randomized subspace iteration algorithm, which is a hybrid of Krylov and Rand
methodologies, was developed based on randomized SVD [133,134]. In pass-efficient

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://bioconductor.org/packages/devel/bioc/html/BiocSingular.html
https://bioconductor.org/packages/devel/bioc/html/BiocSingular.html
https://github.com/jsams/CenteredSparseMatrix
https://github.com/jsams/CenteredSparseMatrix
https://dask.org
https://vaex.io/
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 10 of 30

or one-pass randomized SVD, some tricks to reduce the number of passes have
been considered [135,136]. TeraPCA, which is a software tool for use in popula-
tion genetics studies, utilizes the Mailman algorithm to accelerate the expectation—
maximization algorithms for PCA [137,138]. Townes et al. recently proposed the
use of PCA for generalized linear models (GLM-PCA) and unified some PCA top-
ics, such as log-transformation, size factor normalization, non-normal distribution,
and feature selection, in their GLM framework [139,140]. Although such topics are
beyond the scope of the present work, the current discussion will be useful for the
development and application of such methods above.

Materials and methods

Empirical datasets

The gene expression matrix and cell type labels for the PBMCs dataset and the
Brain dataset [39] were downloaded from the 10X Genomics website (https:
//support.10xgenomics.com/single-cell-gene-expression/datasets/pbmc_
1k_protein_v3 and https://support.10xgenomics.com/single-cell/datasets/
1M_neurons, respectively). The gene expression matrix and cell type labels for the
Pancreas dataset [40] and the BrainSpinalCord dataset [41] were retrieved from the
GEO database (GSE84133 and GSE110823, respectively). For the Pancreas dataset,
only the sample of GSM2230759 was used. The genes of all matrices with zero vari-
ance were removed because such genes are meaningless for PCA calculation. We
also removed the ERCC RNA Spike-Ins, and the number of remaining genes and
cells are summarized in Table 2. Additionally, we investigated the effect of feature
selection on clustering accuracy (Additional file 20).

Simulated datasets

All count datasets were generated by the R rnbinom (random number based on a
negative binomial distribution) function with shape and rate parameters of 0.4 and
0.3, respectively. Matrices of {102, 103, 10*} genes x {102, 103, 104, 10°, 105, 107}
cells were generated.

Benchmarking procedures
Assuming digital expression matrices of unique molecular identifier (UMI) counts,
all the data files, including real and synthetic datasets, were in CSV format.
When using the Brain dataset, the matrix stored in 10X-HDF5 format was con-
verted to CSV using our in-house Python script (https://gist.github.com/
kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135£d5).

After being loaded by each PCA implementation, the raw data matrix X,,, was
converted to normalized values by count per median (CPMED [141-143]) normaliza-
tion according to the formula Xcpmea (7, 7) = Krav (1.7

T Xeaw(isk)
M is the number of columns and Libsize is the column-wise sum of counts of X.

xmedian (Libsize), where

After normalization, X.pmedq wWas transformed to X by the logarithm-transformation
X =logyy (Xcpmed + 1), where log;, is the element-wise logarithm. In all the ran-
domized PCA implementation, random seed was fixed.

When X, was extremely large and could not be loaded into the memory space
all at once, we prepared two approaches to perform PCA with X. When PCA

https://support.10xgenomics.com/single-cell-gene-expression/datasets/pbmc_1k_protein_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/pbmc_1k_protein_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/pbmc_1k_protein_v3
https://support.10xgenomics.com/single-cell/datasets/1M_neurons
https://support.10xgenomics.com/single-cell/datasets/1M_neurons
https://gist.github.com/kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5
https://gist.github.com/kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 11 of 30

implementations are orthiter, gd, sgd, halko, or algorithm971 (OnlinePCA jl),
each row-vector of X,., is normalized using the pre-calculated Libsize by the sumr
command, then log-transformed, and finally used for each of the PCA algorithms.
When using other out-of-core PCA implementations such as IncrementalPCA
(sklearn), oocPCA_CSV (oocRPCA), or PCA (dask-ml), there is no option to nor-
malize and log-transform each row-vector of X;.y, so we first calculated Xcpmed
using our in-house Python script (https://gist.github.com/kokitsuyuzaki/
5b6cebcaf37100c8794bdb89c7135£d5), which was then used for the input matrix
of the PCA implementations.

We also investigated the effect of differences in normalization methods on the PCA
results (Additional file 21). When performing each PCA implementation based on
the truncated SVD, the number of PCs was specified in advance (Table 2).

Although it is unclear how many cells should be used in downsampling, one empir-
ical analysis [94] suggests that 20,000 to 50,000 cells are sufficient for clustering and
detecting subpopulations in the Brain dataset. Thus 50,000/1, 300,000x 100 = 3.8%
of cells were sampled from each dataset and used for the downsampling method.
When performing IncrementalPCA (sklearn), the row-vectors, which match the
number of PCs, were extracted until the end of the lines of the files. When per-
forming irlb(Cell Ranger), the loaded dataset was first converted to a scipy sparse
matrix and passed to it because this function supports sparse matrix data stored
in 10X-HDF5 format. When performing the benchmark, conversion time and mem-
ory usage were also recorded. When performing all the functions of OnlinePCA.jl,
including orthiter/gd/sgd/halko/algorithm971, we converted the CSV data to
Zstd format, and the calculation time and the memory usage were recorded in
the benchmarking for fairness. For orthiter, gd, and sgd (OnlinePCA.jl), cal-
culations were performed until they converged (Additional file 17). For all the
randomized SVD implementations, the niter parameter value was set to 3 (Ad-
ditional file 18). When performing oocPCA_CSV, the users can also use oocPCA_BIN,
which performs PCA with binarized CSV files. The binarization is performed by the
csv2binary function, which is also implemented in the oocRPCA package. Although
data binarization accelerates the calculation time for PCA itself, we confirmed that
csv2binary is based on in-memory calculation, and in our computing environment,
csv2binary was terminated by an out-of-memory error. Accordingly, we only used
00cPCA_CSV, and the CSV files were directly loaded by this function.

Computational environment

All computations were performed on two-node machines with Intel Xeon E5-2697
v2 (2.70 GHz) processors and 128 GB of RAM, four-node machines with Intel Xeon
E5-2670 v3 (2.30 GHz) processors and 96 GB of RAM, and four-node machines with
Intel Xeon E5-2680 v3 (2.50 GHz) processors and 128 GB of RAM. Storage among
machines was shared by NFS, connected using InfiniBand. All jobs were queued by
the Open Grid Scheduler/Grid Engine (v2011.11) in parallel. The elapsed time and
maximum memory usage were evaluated using the GNU time command (v1.7).

Reproducibility
All the analyses were performed on the machines described above. We used R v3.5.0,
Python v3.6.4, and Julia v1.0.1 in the benchmarking; for t-SNE and CSV conversion

https://gist.github.com/kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5
https://gist.github.com/kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 12 of 30

of the Brain dataset, we used Python v2.7.9. The Sklearn (Python) package was used
to perform k-means and GMM clustering methods. The igraph (R), nn2 (R), and
Matrix (R) packages were used to perform Louvain clustering (Additional file 6).
The hdbscan (Python) package was used to perform HDBScan clustering. The bht-
sne (Python) package was used to perform t-SNE. Lastly, the umap (Python) pack-
age was used to perform UMAP. All the programs used to perform the PCA imple-
mentations in the benchmarking are summarized in Additional file 3. Orthogonal it-
eration, GD, SGD, Halko’s method, and Li’s method are implemented as orthiter,
gd, sgd, halko, and algorithm971, respectively, which are the Julia functions
or commands for OnlinePCA.jl (https://github.com/rikenbit/0OnlinePCA. j1).
We also published the script files used to perform the benchmarking (https:
//github.com/rikenbit/onlinePCA-experiments).

Abbreviations

PCA: principal component analysis; scRNA-seq: single-cell RNA sequencing; sci-RNA-seq: single-cell
combinatorial-indexing RNA-sequencing analysis; UML: unsupervised machine learning; QC: quality control; PC:
principal component; EVD: eigenvalue decomposition; SVD: singular value decomposition; SimT: similarity
transformation-based, DS: downsampling-based, SU: SVD update-based, Krylov: Krylov subspace-based, GD:
gradient descent-based,Rand: Random projection-based, Sklearn: scikit-learn; SKL: sequential Karhunen-Loeve
transform; IRLBA: augmented implicitly restarted Lanczos bidiagonalization; IRAM: implicitly restarted Arnoldi
method; GD: gradient descent; SGD: stochastic gradient descent; t-SNE: t-stochastic neighbor embedding; UMAP:
uniform manifold approximation and projection; FIt-SNE: Fourier transform-accelerated interpolation-based
t-stochastic neighbor embedding; oocPCA: out-of-core PCA; GMM: Gaussian mixture model; ARI: adjusted Rand
index; Zstd: Zstandard; UMI: unique molecular identifier; CSV: comma-separated values; HDF5: hierarchical data
format 5; 10X-HDF5: HDF5 provided by 10X Genomics; CSC: compressed sparse column format; CSR: compressed
sparse row format; CCA: canonical correlation analysis; GLM: generalized linear models; CPMED: Count per
median; HVGs: highly variable genes

Competing interests
The authors declare that they have no competing interests.

Funding

This work was supported by MEXT KAKENHI Grant Number 16K16152. This work was partially supported by the
Japan Science and Technology Agency (JST), PRESTO grant number JPMJPR1945, CREST grant number
JPMJCR16G3 and JPMJCR1926, and the Projects for Technological Development, Research Center Network for
Realization of Regenerative Medicine by Japan (18bm0404024h0001), the Japan Agency for Medical Research and
Development (AMED).

Author’s contributions

KT and HS surveyed the PCA algorithms and implementations. KT and IN designed the benchmarking test. KT and
KS implemented the Julia program and performed all the analyses. KT retrieved and preprocessed the test dataset
to evaluate the proposed method. All the authors have written, read, and approved the manuscript.

Acknowledgements

We thank Mr. Akihiro Matsushima and Mr. Manabu Ishii for their assistance with the IT infrastructure for the data
analysis. We are also grateful to all member of the Laboratory for Bioinformatics Research, RIKEN Center for
Biosystems Dynamics Research for their helpful advice. Computations were partially performed on the NIG
supercomputer at ROIS National Institute of Genetics.

Author details

!Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Japan. 2Japan Science
and Technology Agency, PRESTO, Japan. 3Department of Applied Mathematics and Physics, Graduate School of
Informatics, Kyoto University, Japan. *Department of Biotechnology, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Japan. °Bioinformatics Course, Master’s/Doctoral Program in Life Science
Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Japan.

References

1. Trapnell, C.: Defining cell types and states with single-cell genomics. Genome Research 25(10), 1491-1498
(2015)

2. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki,
N., Martersteck, E.M., Trombetta, J.J., Weitz, D.A., Sanes, J.R., Shalek, A.K., Regev, A., McCarroll, S.A.:
Highly parallel genome-wide expression profiling of individual cells using nanoliter dropltes. Cell 161,
1202-1214 (2015)

3. Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko, E.Z., Kowalczyk, M., Adiconis, Z., Levin,
J.Z., Nemesh, J., Goldman, M., McCarroll, S.A., Cepko, C.L., Regev, A., Sanes, J.R.: Comprehensive
classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308-1323 (2016)

https://github.com/rikenbit/OnlinePCA.jl
https://github.com/rikenbit/onlinePCA-experiments
https://github.com/rikenbit/onlinePCA-experiments
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 13 of 30

4. Campbell, J.N., Macosko, E.Z., Fenselau, H., Pers, T.H., Lyubetskaya, A., Tenen, D., Goldman, M.,
Verstegen, A.M.J., Resch, J.M., McCarroll, S.A., Rosen, E.D., Lowell, B.B., Tsai, L.T.: A molecular census of
arcuate hypothalamus and median eminence cell types. Nature Neuroscience 20(3), 484-496 (2017)

5. Klein, A.M., Mazutis, L., Akartuna, |., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A., Kirschner,
M.W.: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201

(2015)
6. Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr,
S.S., Klein, A.M., Melton, D.A., Yanai, l.: A single-cell transcriptomic map of the human and mouse pancreas

reveals inter- and intra-cell population structure. Cell Systems 3(4), 346-360 (2016)

7. Grun, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., sasaki, N., Clevers, H., Oudenaarden, A.:
Single-cell messenger rna sequencing reveals rare intestinal cell types. Nature 525, 251-255 (2015)

8. Buettner, F., Natarajan, K.N., Casale, F.P., Proserpio, V., Scialdone, A., Theis, F.J., Teichmann, S.A.,
Marioni, J.C., Stegle, O.: Computational analysis of cell-to-cell heterogeneity in single-cell rna-sequencing data
reveals hidden subpopulations of cells. Nature Biotechnology 33(2), 155-160 (2015)

9. Durruthy-Durruthy, R., Gottlieb, A., Hartman, B.H., Waldhaus, J., Laske, R.D., Altman, R., Heller, S.:
Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157, 1-15
(2014)

10. Achim, K., Pettit, J.B., Saraiva, L.R., Gavriouchkina, D., Larsson, T., Arendt, D., Marioni, J.C.:
High-throughput spatial mapping of single-cell rna-seq data to tissue of origin. Nature Computational Biology
33(5), 503-509 (2015)

11. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A.: Spatial reconstruction of single-cell gene
expression data. Nature Biotechnology 33(5), 495-508 (2015)

12. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokhare, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen,
T.S., Rinn, J.L.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of
single cells. Nature Biotechnology 32, 381-386 (2014)

13. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., Trapnell, C.: Reversed graph embedding
resolves complex single-cell trajectories. Nature Methods 14(10), 979-982 (2017)

14. Svensson, V., Tormo, R.V., Teichmann, S.A.: Exponential scaling of single-cell rna-seq in the past decade.
Nature Protocols 13(4), 599-604 (2017)

15. Sasagawa, Y., Danno, H., Takada, H., Ebisawa, M., Tanaka, K., Hayashi, T., Kurisaki, A., Nikaido, I.:
Quartz-seq2: a high-throughput single-cell rna-sequencing method that effectively uses limited sequence reads.
BMC Genome Biology 19(29) (2018)

16. Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung,
S., Tanay, A., Amit, |.: Massively parallel single cell rna-seq for marker-free decomposition of tissues into cell
types. Science 343(6172), 776-779 (2014)

17. Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L., Gennert, D., Li, S.,
Livak, K.L., Rozenblatt-Rosen, O., Dor, Y., Regev, A., Yanai, |.: Cel-seq2: sensitive highly-multiplexed
single-cell rna-seq. BMC Genome Biology 17(77) (2016)

18. Zeisel, A., Mufioz-Manchado, A.B., Codeluppi, S., Lénnerberg, P., Manno, G.L., Juréus, A., Marques, S.,
Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-Leffler, J., Linnarsson, S.: Cell
types in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science 347(6226), 1138-1142
(2015)

19. Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L., Gennert, D., Li, S.,
Livak, K.J., Rozenblatt-Rosen, O., Dor, Y., Regev, A., Yanai, |.: Cel-seq2: sensitive highly-multiplexed
single-cell rna-seq. Genome Biology 17(77) (2016)

20. Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, R.S., Gaublomme,
J.T., Yosef, N., Schwartz, S., Fowler, B., Weaver, S., Wang, J., Ding, R., Raychowdhury, R., Friedman, N.,
Hacohen, N., Park, H., May, A.P., Regev, A.: Single cell rna seq reveals dynamic paracrine control of cellular
variation. Nature 510(7505) (2014)

21. Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A.,
Dolbeare, T., Bertagnolli, D., Goldy, J., Shapovalova, N., Pary, S., Parry, C., Lee, C., Smith, K., Bernard, A.,
Madisen, L., Sunkin, S.M., Hawrylycz, M., Koch, C., Zeng, H.: Adult mouse cortical cell taxonomy revealed
by single cell transcriptomics. Nature Neuroscience 19(2), 335-346 (2016)

22. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D.,
McDermott, G.P., Zhu, J., Gregory, M. T., Shuga, J., Montesclaros, L., Underwood, J.G., Masquelier, D.A.,
Nishimura, S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwai, R., Wong, A., Ness, K.D.,
Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J., Ericson, N.G., Stevens, E.A., Radich,
J.P., Mikkelsen, T.S., Hindson, B.J., Bielas, J.H.: Massively parallel digital transcriptional profiling of single
cells. Nature Communications 8(14049), 1-12 (2017)

23. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen,
L., Steemers, F.J., Trapnell, C., Shendure, J.: The single-cell transcriptional landscape of mammalian
organogenesis. Nature (2019)

24. Consortium, T.H.: The human cell atlas white paper (2017)

25. Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A., Teichmann, S.A.: The human cell atlas: from vision to
reality. Nature 550, 451-453 (2017)

26. Regev, A., Teichmann, S.A., Lander, E.S., Amit, |., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P.,
Carninci, P., Clatworthy, M., Clevers, H., Deplancke, B., Dunham, |., Eberwine, J., Eils, R., Enard, W.,
Farmer, A., Fugger, L., Gottgens, B., Hacohen, N., Haniffa, M., Hemberg, M., Kim, S., Klenerman, P.,
Kriegstein, A., Lein, E., Linnarsson, S., Lundberg, E., Lundeberg, J., Majumder, P., Marioni, J.C., Merad, M.,
Mhlanga, M., Nawijn, M., Netea, M., Nolan, G., Pe'er, D., Phillipakis, A., Ponting, C.P., Quake, S., Reik, W.,
Rozenblatt-Rosen, O., Sanes, J., Satija, R., Schumacher, T.N., Shalek, A., Shapiro, E., Sharma, P., Shin,
J.W., Stegle, O., Stratton, M., Stubbington, M.J.T., Theis, F.J., Uhlen, M., van Oudenaarden, A., Wagner,

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Tsuyuzaki et al.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.
39.

40.

41.

42.

43.

a4,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

aCC-BY 4.0 International license.
Page 14 of 30

A., Watt, F., Weissman, J., Wold, B., Xavier, R., Yosef, N., Participants, H.C.A.M.: Science forum: The
human cell atlas. eLife, 37041 (2017)

Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z., Chen, H., Ye, F., Huang, D.,
Xu, Y., Huang, W., Jiang, M., Jiang, X., Mao, J., Chen, Y., Lu, C., Xie, J., Fang, Q., Wang, Y., Yue, R, Li,
T., Huang, H., Orkin, S.H., Yuan, G.C., Chen, M., Guo, G.: Mapping the mouse cell atlas by microwell-seq.
Cell 172(5), 1091-1107 (2018)

Consortium, T.T.M.: Single-cell transcriptomics of 20 mouse organs creates a tabula muris. Nature
562(7727), 367-372 (2018)

Wagner, A., Regev, A., Yosef, N.: Revealing the vectors of cellular identity with single-cell genomics. Nature
Biotechnology 34(11), 1145-160 (2017)

Stegle, O., Teichmann, S.A., Marioni, J.C.: Computational and analytical challenges in single-cell
transcriptomics. Nature Reviews Genetics 16(3), 133-145 (2015)

Bacher, R., Kendziorski, C.: Design and computational analysis of single-cell rna-sequencing experiments.
BMC Genome Biology 17(63) (2016)

Poulin, J.F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J.M., Awatramani, R.: Disentangling neural cell diversity
using single-cell transcriptomics. Nature Neuroscience 19(9), 1131-1141 (2016)

Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., Teichmann, S.A.: The technology and biology of
single-cell rna sequencing. Molecular Cell 58(4), 610-620 (2015)

Chen, G., Ning, B., Shi, T.: Single-cell rna-seq technologies and related computational data analysis. Frontiers
in Genetics 10(317) (2019)

Stuart, T., Satija, R.: Integrative single-cell analysis. Nature Reviews Genetics 20(5), 257-272 (2019)
Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(11),
559-572 (1901)

Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Educational
Psychology 24, 417-441 (1933)

Broa, R., K, S.A.: Principal component analysis. Royal Society of Chemistry 6(2812), 2812-2831 (2014)
Genomics, X.: 1.3 Million Brain Cells from E18 Mice.
https://support.10xgenomics.com/single-cell/datasets/1M_neurons

Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr,
S.S., Klein, A.M., Melton, D.A., Yanai, |.: A single-cell transcriptomic map of the human and mouse pancreas
reveals inter- and intra-cell population structure. Cell Systems 3(4), 346-360 (2016)

Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Graybuck, L.T., Peeler, D.J.,
Mukherjee, S., Chen, W., Pun, S.H., Sellers, D.L., Tasic, B., Seelig, G.: Single-cell profiling of the developing
mouse brain and spinal cord with split-pool barcoding. Science 360(6385), 176-182 (2018)

Cole, M.B., Risso, D., Wagner, A., DeTomaso, D., Ngai, J., Purdom, E., Dudoit, S., Yosef, N.: Performance
assessment and selection of normalization procedures for single-cell rna-seq. Cell Systems 8(4), 315-328
(2019)

Taguchi, Y.-H.: Principal component analysis-based unsupervised feature extraction applied to single-cell gene
expression analysis. In: 14th International Conference, ICIC 2018, pp. 816-826 (2018). China

Lin, Z., Yang, C., Zhu, Y., Duchi, J., Fu, Y., Wang, Y., Jiang, B., Zamanighomi, M., Xu, X., Li, M., Sestan,
N., Zhao, H., Wong, W.H.: Simultaneous dimension reduction and adjustment for confounding variation.
PNAS 113(51), 14662-14667 (2016)

Lasrado, R., Boesmans, W., Kleinjung, J., Pin, C., Bell, D., Bhaw, L., McCallum, S., Zong, H., Luo, L.,
Clevers, H., Vanden, B.P., Pachnis, V.: Lineage-dependent spatial and functional organization of the
mammalian enteric nervous system. Science 356(6339), 722-726 (2017)

Wagner, F.: Go-pca: An unsupervised method to explore gene expression data using prior knowledge. PLOS
ONE 10(11), 0143196 (2015)

Cerosaletti, K., Barahmand-Pour-Whitman, F., Yang, J., DeBerg, H.A., Dufort, M.J., Murray, S.A., Israelsson,
E., Speake, C., Gersuk, V.H., Eddy, J.A., Reijonen, H., Greenbaum, C.J., Kwok, W.W., Wambre, E., Prlic, M.,
Gottardo, R., Nepom, G.T., Linsley, P.S.: Single-cell rna sequencing reveals expanded clones of islet
antigen-reactive cd4+ t cells in peripheral blood of subjects with type 1 diabetes. Journal of Immunology
199(1), 323-325 (2017)

Li, J., Klughammer, J., Farlik, M., Penz, T., Spittler, A., Barbieux, C., Berishvili, E., Bock, C., Kubicek, S.:
Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Reports
17(2), 178-187 (2016)

Butler, H.P. A, Smibert, P., Papalexi, E., Satija, R.: Integrated analysis of single cell transcriptomic data
across conditions, technologies, and species. Nature Biotechnology 36, 411-420 (2018)

Lun, A.T., McCarthy, D.J., Marioni, J.C.: A step-by-step workflow for low-level analysis of single-cell rna-seq
data with bioconductor. F1000Research Version2 (2016)

llicic, T., Kim, J.K., Kolodziejczyk, A.A., Bagger, F.O., McCarthy, D.J., Marioni, J.C., Teichmann, S.A.:
Classification of low quality cells from single-cell rna-seq data. BMC Genome Biology 17(29) (2016)

Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K.R., Chaffer, C.L.,
Pattabiraman, D., Bierie, B., Mazutis, L., Wolf, G., Krishnaswamy, S., Pe’er, D.: Recovering gene interactions
from single-cell data using data diffusion. Cell 174(3), 716-729 (2018)

Li, W.V., Li, J.J.: An accurate and robust imputation method scimpute for single-cell rna-seq data. Nature
Communication 9(997) (2018)

Gong, W., Kwak, 1.Y., Pota, P., Koyano-Nakagawa, N., Garry, D.J.: Drimpute: imputing dropout events in
single cell rna sequencing data. BMC Bioinformatics 19(220) (2018)

Biittner, M., Miao, Z., Wolf, F.A., Teichmann, S.A., Theis, F.J.: A test metric for assessing single-cell rna-seq
batch correction. Nature methods 16(1), 43-49 (2019)

Shaham, U., Stanton, K.P., Zhao, J., Li, H., Raddassi, K., Montgomery, R., Kluger, Y.: Removal of batch
effects using distribution-matching residual networks. Bioinformatics 33(16), 25392546 (2017)

https://support.10xgenomics.com/single-cell/datasets/1M_neurons
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Tsuyuzaki et al.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

aCC-BY 4.0 International license.
Page 15 of 30

Korsunsky, I., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.-R.,
Raychaudhuri, S.: Fast, sensitive, and accurate integration of single cell data with harmony. bioRxiv (2018).
doi:10.1101/461954

Scialdone, A., Natarajan, K.N., Saraiva, L.R., Proserpio, V., Teichmann, S.A., Stegle, O., Marioni, J.C.,
Buettner, F.: Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85,
54-61 (2015)

Tsoucas, D., Yuan, G.C.: Giniclust2: a cluster-aware, weighted ensemble clustering method for cell-type
detection. BMC Genome Biology 19(1) (2018)

Herman, J.S., Sagar, Griin, D.: Fateid infers cell fate bias in multipotent progenitors from single-cell rna-seq
data. Nature methods 15, 379-386 (2018)

Sato, K., Tsuyuzaki, K., Shimizu, K., Nikaido, I.: Cellfishing.jl: an ultrafast and scalable cell search method for
single-cell rna sequencing. BMC Genome Biology 20(1) (2019)

Diaz, A., Liu, S.J., Sandoval, C., Pollen, A., Nowakowski, T.J., Lim, D.A., Kriegstein, A.: Scell: integrated
analysis of single-cell rna-seq data. Bioinformatics 32(14), 2219-2220 (2016)

Ji, Z., Ji, H.: Tscan: Pseudo-time reconstruction and evaluation in single-cell rna-seq analysis. Nucleic Acids
Research 44(13) (2016)

Shin, J., Berg, D.A., Zhu, Y., Shin, J.Y., Song, J., Bonaguidi, M.A., Enikolopov, G., Nauen, D.W., Christian,
K.M., Ming, G.L., Song, H.: Single-cell rna-seq with waterfall reveals molecular cascades underlying adult
neurogenesis. Cell Stem Cell 17(3), 360-372 (2015)

Street, K., Risso, D., Fletcher, R.B., Das, D., Ngai, J., Yosef, N., Purdom, E., Dudoit, S.: Slingshot: cell
lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19(477) (2018)

Campbell, K.R., Yau, C.: Probabilistic modeling of bifurcations in single-cell gene expression data using a
bayesian mixture of factor analyzers. Wellcome Open Research 2(19) (2017)

Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Reseach, 2579-2605 (2008)
Maaten, L.: Accelerating t-sne using tree-based algorithms. Journal of Machine Learning Reseach, 3221-3245
(2014)

Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y.: Fast interpolation-based t-sne for
improved visualization of single-cell rna-seq data. Nature methods 16, 243-245 (2019)

Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: In
NIPS, p. 2004 (2003)

Mclnnes, L., Healy, J., Saul, N., GroBberger, L.: Umap: Uniform manifold approximation and projection for
dimension reduction. The Journal of Open Source Software 3(29), 861 (2018)

Becht, E., Mclnnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., Newell, E:W.:
Dimensionality reduction for visualizing single-cell data using umap. Nature Biotechnology 37, 38—-44 (2019)
Weinreb, C., Wolock, S., Klein, A.M.: Spring: a kinetic interface for visualizing high dimensional single-cell
expression data. Bioinformatics 34(7), 1246-1248 (2018)

Kiselev, V.Y., Kirschner, K., Schaub, M.T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K.N., Reik, W.,
Barahona, M., Green, A.R., Hemberg, M.: Sc3: consensus clustering of single-cell rna-seq data. Nature
methods 14(5), 483-486 (2017)

Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell rna-seq
data by kernel-based similarity learning. Nature methods 14(4), 414-416 (2017)

Yang, Y., Huh, R., Culpepper, HW., Lin, Y., Love, M.I., Li, Y.: Safe-clustering: Single-cell aggregated (from
ensemble) clustering for single-cell rna-seq data. Bioinformatics (2018)

Zurauskiene, J., Yau, C.: pcareduce: hierarchical clustering of single cell transcriptional profiles. BMC
Bioinformatics 17(140) (2016)

Wagpner, A., Regev, A., Yosef, N.: Revealing the vectors of cellular identity with single-cell genomics. Nature
Biotechnology 34(11), 1145-1160 (2016)

Andrews, T.S., Hemberg, M.: Identifying cell populations with scrnaseq. Molecular Aspects of Medicine 59,
114-122 (2018)

Kiselev, V.Y., Andrews, T.S., Hemberg, M.: Challenges in unsupervised clustering of single-cell rna-seq data.
Nature Reviews 20(5), 273-282 (2019)

Oskolkov, N.: How to cluster in High Dimensions.
https://towardsdatascience.com/how-to-cluster-in-high-dimensions-4ef693bacc6

McCarthy, D.J., Campbell, K.R., Lun, A.T., Wills, Q.F.: Scater: pre-processing, quality control, normalization
and visualization of single-cell rna-seq data in r. Bioinformatics 33(8), 1179-1186 (2017)

Jenkins, D., Faits, T., Khan, M.M., Briars, E., Carrasco, P.S., Johnson, W.E.: singleCellTK: Interactive
Analysis of Single Cell RNA-Seq Data.
https://bioconductor.org/packages/release/bioc/html/singleCellTK.html (2018)

Tian, L., Su, S., Dong, X., Amann-Zalcenstein, D., Biben, C., Seidi, A., Hilton, D.J., Naik, S.H., Ritchie,
M.E.: scpipe: A flexible r/bioconductor preprocessing pipeline for single-cell rna-sequencing data. PLOS
Computational Biology 14(8), 1006361 (2018)

Yip, S.H., Wang, P., Kocher, J.A., Sham, P.C., Wang, J.: Linnorm: improved statistical analysis for single cell
rna-seq expression data. Nucleic Acids Research 45(22), 179 (2017)

Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller, HW.,
McElrath, M.J., Prlic, M., Linsley, P.S., Gottardo, R.: Mast: a flexible statistical framework for assessing
transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data. BMC Genome
Biology 16(278) (2015)

Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak,
M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., Zupan, B.: Orange: Data mining
toolbox in python. Journal of Machine Learning Research, 2349-2353 (2013)

Zhu, X., Wolfgruber, T.K., Tasato, A., Arisdakessian, C., Garmire, D.G., Garmire, L.X.: Granatum: a graphical
single-cell rna-seq analysis pipeline for genomics scientists. BMC Genome Medicine 9(108) (2017)

http://dx.doi.org/10.1101/461954
https://towardsdatascience.com/how-to-cluster-in-high-dimensions-4ef693bacc6
https://bioconductor.org/packages/release/bioc/html/singleCellTK.html
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Tsuyuzaki et al.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.
111.
112.

113.
114.

116.

117.

118.

119.

120.

121.

122.

123.

aCC-BY 4.0 International license.
Page 16 of 30

Azizi, E., Carr, A.J., Plitas, G., Cornish, A.E., Konopacki, C., Prabhakaran, S., Nainys, J., Wu, K., Kiseliovas,
V., Setty, M., Choi, K., Fromme, R.M., Dao, P., McKenney, P.T., Wasti, R.C., Kadaveru, K., Mazutis, L.,
Rudensky, A.Y., Pe'er, D.: Single-cell map of diverse immune phenotypes in the breast tumor
microenvironment. Cell 5(23), 1293-1308 (2018)

Golub, G.H., Loan, C.F.V.: Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences),
Fourth Edition. Johns Hopkins University Press, Baltimore (2012)

Senabouth, A., Lukowski, S., Alquicira, J., Andersen, S., Mei, X., Nguyen, Q., Powell, J.: ascend: R package
for analysis of single cell rna-seq data. GigaScience 8(8), 087 (2019)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondl, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.:
Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825-2830 (2011)
Wolf, F.A., Angerer, P., Theis, F.J.: Scanpy: large-scale single-cell gene expression data analysis. BMC
Genome Biology 19(15) (2018)

Bhaduri, A., Nowakowski, T.J., Pollen, A.A., Kriegstein, A.R.: Identification of cell types in a mouse brain
single-cell atlas using low sampling coverage. BMC Biology (2018)

Levy, A., M, K.: Sequential karhunen-loeve basis extraction and its application to images. IEEE Transactions
on Image Processing 9(8), 1371-1374 (2000)

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Vorst, H.V.D.: Templates for the Solution of Algebraic
Eigenvalue Problems, A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (1987)
Lehoucq, R., Maschhoff, K., Sorensen, D., Yang, C.. ARPACK SOFTWARE.
https://www.caam.rice.edu/software/ARPACK/

Qiu, Y.: Spectra: C++ Library For Large Scale Eigenvalue Problems. https://spectralib.org

Larsen, R.M.: PROPACK homepage. http://sun.stanford.edu/~rmunk/PROPACK/

Baglama, J., Reichel, L.: Augmented implicitly restarted lanczos bidiagonalization methods. SIAM Journal on
Scientific Computing 27(1), 19-42 (2005)

Lehoucq, R.B., Sorensen, D.C., Yang, C.: Arpack users’ guide: Solution of large-scale eigenvalue problems
with implicitly restarted arnoldi methods (1997)

Chen, J., Noack, A., Edelman, A.: Fast computation of the principal components of genotype matrices in
julia. arXiv (2018). doi:arXiv:1808.03374v1

Balzano, L., Chi, Y., Lu, Y.M.: Streaming pca and subspace tracking: The missing data case. Proceedings of
the IEEE 106(8), 1293-1310 (2018)

Oja, E.: A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology 15,
267-273 (1982)

Oja, E., Karhunen, J.: On stochastic approximation of the eigenvectors and eigenvalues of the expectation of
a random matrix author links open overlay panel. Journal of Mathematical Analysis and Applications 106(1),
69-84 (1985)

Oja, E.: Principal components, minor components, and linear neural networks. Neural Networks 5, 927-935
(1992)

Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Rev., Survey and Review 53(2), 217-288 (2011)
Halko, N., Martinsson, P.G., Shkolnisky, Y., M, T.: An algorithm for the principal component analysis of large
data sets. SIAM Journal on Scientific Computing 33(5), 2580-2594 (2011)

Li, H., C, L.G., Szlam, A., Stanton, K.P., Kluger, Y., Tygert, M.: Algorithm 971: An implementation of a
randomized algorithm for principal component analysis. ACM Transactions on Mathematical Software 43(3)
(2017)

Abraham, G., Inouye, M.: Fast principal component analysis of large-scale genome-wide data. PLOS ONE
9(4), 93766 (2014)

lhaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of Computational and
Graphical Statistics 5(3), 299-314 (1996)

Rossum, G.: Python reference manual. Technical Report (1995)

Perkel, J.M.: Julia: come for the syntax, stay for the speed. Nature 572(7767), 141-142 (2019)

Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Randomized matrix decompositions using r. Journal of
Statistical Software 89(11) (2019). doi:10.18637 /jss.v089.i11

Rocklin, M.: Dask: Parallel computation with blocked algorithms and task scheduling. In: Huff, K., Bergstra,
J. (eds.) Proceedings of the 14th Python in Science Conference, pp. 130-136 (2015)

Lacono, G., Mereu, E., Guillaumet-Adkins, A., Corominas, R., Cusco, |., Rodriguez-Esteban, G., Gut, M.,
Perez-Jurado, L.A., Gut, |., Heyn, H.: bigscale: an analytical framework for big-scale single-cell data. Genome
Research 28(6), 878-890 (2018)

Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F.,
Marine, J.-C., Geurts, P., Aerts, J., Oord, J., Atak, Z.K., Wouters, J., Aerts, S.: Scenic: single-cell regulatory
network inference and clustering. Nature methods 14, 1083-1086 (2017)

Kisekev, V.Y., Yiu, A., Hemberg, M.: scmap: projection of single-cell rna-seq data across data sets. Nature
methods 15, 359-362 (2018)

Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., Murray, J.I., Raj, A., Li, M., Zhang,
N.R.: Saver: gene expression recovery for single-cell rna sequencing. Nature methods 15, 539-542 (2018)
Wang, D., Gu, J.: Vasc: Dimension reduction and visualization of single-cell rna-seq data by deep variational
autoencoder. Genomics, Proteomics & Bioinformatics 16(5), 320-331 (2018)

Ding, J., Condon, A., Shah, S.P.: Interpretable dimensionality reduction of single cell transcriptome data with
deep generative models. Nature Communications 2002 (2018)

Pliner, H.A., Shendure, J., Trapnell, C.: Supervised classification enables rapid annotation of cell atlases.
Nature Methods (2019)

Weber, L.M., Saelens, W., Cannoodt, R., Soneson, C., Hapfelmeier, A., Gardner, P.P., Boulesteix, A.-L.,

https://www.caam.rice.edu/software/ARPACK/
https://spectralib.org
http://sun.stanford.edu/~rmunk/PROPACK/
http://dx.doi.org/arXiv:1808.03374v1
http://dx.doi.org/10.18637/jss.v089.i11
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Tsuyuzaki et al.

124.
125.

126.

127.

128.

129.
130.

131.
132.

133.

135.

136.

137.

138.

139.

140.

141.

142.

143.

aCC-BY 4.0 International license.
Page 17 of 30

Saeys, Y., Robinson, M.D.: Essential guidelines for computational method benchmarking. BMC Genome
Biology 20(125) (2019)

Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193-218 (1985)

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks.
arXiv (2008). doi:arXiv:0803.0476v2

Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New
York City (2006)

Benson, A.R., Gleich, D.F., Demmel, J.: Direct qr factorizations for tall-and-skinny matrices in mapreduce
architectures. Proceedings of the IEEE International Conference on Big Data (2013).
doi:10.1109/BigData.2013.6691583

Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer
42(8), 30-37 (2009)

Davis, T.: University of Florida Sparse Matrix Collection. https://sparse.tamu.edu

Yip, S.H., Sham, P.C., J, W.: Evaluation of tools for highly variable gene discovery from single-cell rna-seq
data. Briefing in Bioinformatics, 011 (2018)

Mineiro, P., Karampatziakis, N.: A randomized algorithm for cca. arXiv (2014). doi:arXiv:1411.3409v1

Arora, R., Cotter, A., Livescu, K., Srebro, N.: Stochastic optimization for pca and pls. In: 2012 50th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pp. 861-868 (2012)

Bose, A., Kalantzis, V., Kontopoulou, E., Elkady, M., Paschou, P., Drineas, P.: Terapca: a fast and scalable
software package to study genetic variation in tera-scale genotypes. Bioinformtaics btz157 (2019)

Musco, C., Musco, C.: Randomized block krylov methods for stronger and faster approximate singular value
decomposition. arXiv (2015). doi:arXiv:1504.05477

Wang, S.: A practical guide to randomized matrix computations with matlab implementations. arXiv (2015).
doi:arXiv:1505.07570v6

Yu, W., Gu, Y., Li, J., Liu, S., Li, Y.: Single-pass pca of large high-dimensional data. In: Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 3350-3356 (2017). Hong Kong
Agrawal, A., Chiu, A.M., Halperin, M.L.E., Sankararaman, S.: Scalable probabilistic pca for large-scale genetic
variation data. bioRxiv (2019). doi:10.1101/729202

Liberty, E., Zucker, S.W.: The mailman algorithm: A note on matrix—vector multiplication. Information
Processing Letters 109(3), 179-182 (2009)

Townes, F.W., Hicks, S.C., Aryee, M.J., Irizarry, R.A.: Feature selection and dimension reduction for single cell
rna-seq based on a multinomial model. bioRxiv (2019). doi:10.1101/574574

Chen, M., Li, W., Zhang, W., Wang, X.: Dimensionality reduction with generalized linear models. In:
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1267-1272
(2013). Beijing

Shekhar, K., Lapan, S.W., Whitney, |.E., Tran, N.M., Macosko, E.Z., Kowalczyk, M., Adiconis, X., Levin,
J.Z., Nemesh, J., Goldman, M., McCarroll, S.A., Cepko, C.L., Regev, A., Sanes, J.R.: Comprehensive
classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166(5), 1306-1323 (2016)

van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K.R., Chaffer, C.L.,
Pattabiraman, D., Bierie, B., Mazutis, L., Wolf, G., Krishnaswamy, S., Peer, D.: Recovering gene interactions
from single-cell data using data diffusion. Cell 174(3), 716-729 (2018)

Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D.,
McDermott, G.P., Zhu, J., Gregory, M. T., Shuga, J., Montesclaros, L., Underwood, J.G., Masquelier, D.A.,
Nishimura, S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwaj, R., Wong, A., Ness, K.D.,
Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, W.J. K R andd Valente, Ericson, N.G., Stevens, E.A., Radich,
J.P., Mikkelsen, T.S., Hindson, B.J., Bielas, J.H.: Massively parallel digital transcriptional profiling of single
cells. Nature Communications 8(14049) (2017)

http://dx.doi.org/arXiv:0803.0476v2
http://dx.doi.org/10.1109/BigData.2013.6691583
https://sparse.tamu.edu
http://dx.doi.org/arXiv:1411.3409v1
http://dx.doi.org/arXiv:1504.05477
http://dx.doi.org/arXiv:1505.07570v6
http://dx.doi.org/10.1101/729202
http://dx.doi.org/10.1101/574574
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al.

Figures
a b
. - - s N
3 Literature review of o & Goldstandard +Good - Bad
3 - = . . .
& | existing PCA algorithms and implementations | | S 2oz Tr e e
= a a a
— &0 °
| Gold standard L I X I 2255 £
2 7 Dim! Dim! Dim1
S 10 Algorithms prcomp = 5

3 21 implementations (Only when the dataset is small)

s .

N " + Good = Bad

I
s | 1 £
Q3 - 3
= §(4 Real Datasets) [1 8 Synthetic Datasetsj gﬂ
ﬁ <= l l [lvecl - vec2||
2 Absolute value of
= i =2 ss product of

3 Time g o vectors

3 Accuracy Memory %

E ” g pCs

_ Scalability L J

(- 7\
C Hour
l l Scalability
— Calculation time
Fast, memory efficient, and scalable PCA, /
QC, highly variable genes, and filtering 2 3 4 5 6 7 losloMo.ofcells)
GB
l l Scalability

g Memory usage

£ | Recommendation for users and developers

3 .

3 Future extensions L T3 4 5 g 7 ety
Figure 1 Overview of benchmarking in this work. (a) Schematic overview of this work. (b)
Evaluation metrics of the benchmarking with real-world datasets. (c) Evaluation metrics of the
benchmarking with synthetic datasets.

Page 18 of 30

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 19 of 30

a b c d
O e] s rworee | G
-s\
&
N >
K &)
s & & & > § &
Ny O 3 i~
S & & £ & < 58
Implementation 7 § & ¥ & S . o8 5
(package) A S S N o v <
prcomp Golub-Kahan SimT O(NM min(NM)) O(NM) R + - >10 [90]
PCA (Sklearn, full) Golub-Kahan SimT O(NM min(N.M)) O(NM) Python + CircleCl 8 [90,92]
fit (MultiVariateStats ji) Golub-Kahan SimT O(NM min(NM)) O(NM) Julia + TravisCl 5 [90]
Downsampling Golub-Kahan DS O(NM'min(N,M)) O(NM) ? ? - = = = = = 4 4+ = o = = = = [94]
IncrementalPCA (sklearn) SKL SU ONM(K+B)2/B) O(BM) Python LMW + + + + + + + + >11 % Pyl + documentationhtml + 5 1951
irlba (irlba) IRLBA Krylov O(KM) O(NM) R Mw - + + + + + - 9 + CRAN 4 vignette: + CRAN 7 [96]
svds (RSpectra) IRAM Krylov O(K2M) ONM) R LMW - + + + 4+ 4+ - 9 + CRAN + ignet - 3 (9698
propack.svd (svd) IRLBA Krylov O(KM) O(NM) R MW - 4+ + 4+ 4+ + + 9 + CRAN + man/ - CRAN 8 [96.99]
PCA (sklearn, arpack) IRAM Krylov O(K2M) O(NM) Python LMW - 4+ + + + + + 10 + PyPI + docum tionhtml 4 CircleCl 2 [96,97]
irlb (Ceil Ranger) IRLBA Krylov O(KM) O(NM) Python L - 4+ + + + + + - 9 + 10X % Support page + TravisCl 0 [96]
svds (drpack jl) IRAM Krylov O(K2M) O(NM) Julia LMW - + + + + + - 10 4+ GitHub + Sphinx-julia + TravisCl 0 [96,99]
orthiter (OnlinePCAji) Orthogonal iteration Krylov. O(KNM) O(KM) Julia LMW 4 + 4+ + 4+ 4+ + >11 £ GitHib * + TravisCl 0 This paper
gd (OnlinePCAjl) GD GD O(KNM) O(KM) Julia LMW + + = + + + + >1 - GitHub =+ + TravisCl 0 This paper
sgd (OnlinePCAjl) SGD GD O(K?NM) O(KM) Julia LMW + - - - - 4+ 4 >11 - GitHib * + TravisCl 0 This paper
rsvd (rsvd) Halko's method Rand O(LNM) O(NM) R MW - + + + + + + 9 + CRAN + man/ + CRAN 3 nmn
'00CcPCA_CSV (00cRPCA) Li's method Rand O(LNM) 0(BM) R MW + + + + + + + + >11 + GitHb * man/ + - 2 169]
PCA (sklearn, randomized) Halko's method Rand O(LNM) O(NM) Python LMW - 4+ + + + + + 10 + PyPI + documentationhtml 4 CircleCl 2 [107,108]
randomized_svd (sklearn) Li's method Rand O(LNM) ONM) Python LMW - + + + + + + - 9 + PP+ documentationhtml + CircleCl 7 109
PCA (dask-ml) Halko's method Rand O(LNM) O(BM) Python LMW + + + - + + + + 8 + Pyl 4+ Sphinx + TravisCl 1 nizj
halko (OnlinePCA ji) Halko's method Rand O(LNM) O(KM) Julia LMW + + + + + + + + >11 + GitHub * + TravisCl 0O This paper
algorithm971 (OnlinePCAjl) Li's method Rand O(LNM) O(KM) Julia LMW + + 4 + + + + > + GitHub =+ + TravisCl 0 This paper
N : No. genes. L : Linux LGC : Minimum logio(NM) of the * 10X Genomics website
Good/Exists/ M: No. cells M: Mac 08 jobs crashed by out-of-memory
Normal M : No. of sampled cells W : Windows erros
- Bad/Does not exists/Difficult B : Block size
Unknown/Not evaluated (No. of sampled genes)
L : Random dimension
Figure 2 Summary of results. (a) Theoretical properties summarized by our literature review. (b)
Properties related to each implementation. (c) Performance evaluated by benchmarking with
real-world and synthetic datasets. (d) User-friendliness evaluated by some metrics.

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 20 of 30
SimT DS SU Krylov GD Rand
prcomp Sklearn . . OnlinePCA.jl OnlinePCA.jl
preomp (Downsampling) (Incremental) irlba (irlba) (sgd) (algorithm971)
2 S i iy - LS R o~ gy g
S % s : N 3,
g‘i & ¥ w&%‘g ‘é £ &
% . *
., W - o » #
(D) . el e P i
o g o & i o8 4&
: cfie w¥ e e Be e
< 3 e
[a W
el
=
50
S = X X
Mm .g
o
n
= P i
— A D
50X X
= ;
£ -
X : Out-of-memory
Figure 3 The comparison of t-stochastic neighbor embedding (t-SNE) plots. Comparison of
multiple principal component analysis (PCA) implementations performed with empirical datasets:
PBMCs (102 cells), Pancreas (10° cells), BrainSpinalCord (10° cells), and Brain datasets (10°
cells). t-SNE was performed with the result of each PCA implementation.

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 21 of 30
1.00 o 1.00
W 0.75 - S 0.75
; . . -
2 050 | ® SimT < E 0.50
: Dssu S =
. ov -
E 025 | 3 af M & oz - -_— -
* Rand o PES =S > 4>
0.00 oA 000
1.00 _ L T 7 e e e e e 1.00
23 o7 NNUREERNREERANEAI
0.75 0.75
o =
£ 050 e 0.50
= aa - Outof =7 = =
> QCS 0.25 0.25 Memory
< - s + >
0.00 0.00
9&5 E m'; mlﬁg gflggq.‘:u EELLE QE{L SEw ; m%g a_‘f\ggq'bluwﬁgklﬂg
ST BESUBE DT OROC SS9 TS AT eSSBS OO YO SSSOECE
SR 2 eET BT oG EREELDB JegesE8EExsS ERSE 08
SESE 2ELCE0SE §EEETD S555 25<€E0SE BEEnGY
gLE w. oL €= R RS dRE B o=k c = p-R
2508 ©Ra 80§ CF5E sx TEC8 TRABTLOS CFEsEx
€3 | b [S 3& 5 69 = | S € S (e3¢
g3 & g O o c'E % §S € 5 O T E <
L I o cEs 2 <] K} TES 2
]] = S e b] i_i" 3 R b
£ 8% & 5 8% &
— Algorithm
Figure 4 Clustering accuracy comparison. Clustering accuracy was evaluated by the adjusted
Rand index (ARI) of the result of Louvain clustering. Multiple principal component analysis (PCA)
implementations were performed for PBMCs (102 cells), Pancreas (102 cells), BrainSpinalCord
(105 cells), and Brain datasets (10° cells); Louvain clustering was performed for the PCA results.
For each PCA result, Louvain clustering calculations were performed ten times. The cluster labels
are the same as those of the respective original papers.

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 22 of 30

SimT DS SU Krylov GD Rand

Sklearn preomp Sklearn irlba (irlba) OnlinePCAjl OnlinePCAjl
(LAPACK) (Downsampling) (Incremental) friba (s, (szd) (algorithm971)

a5
N R
T 5
BB

Figure 5 Comparison of all combinations of eigenvectors. Absolute values of the cross products
of all combinations between the eigenvectors of the gold standard methods and those of the other
principal component analysis (PCA) implementations were calculated. The closer the value is to 1,
the closer the two corresponding eigenvectors are to each other. If two PCA results are equal
without considering differences in sign, the matrix in this figure becomes an identity matrix.

Pancreas PBMCs Pancreas PBMCs

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Tsuyuzaki et al.

aCC-BY 4.0 International license.

a PBMCs
~ - preomp
Sican poa LapAGK
Ty
& .
= .
£
7}
~preamp
SN cuntamoing
ean etaeriaPcA
=3 ~
~
@ - :
a
A
preomy
5. e ba
e svis
> e o pomaskond
s SHeC Aok
S . PAEAEA
> ok gics
) OnlinePCA_orthiter
 preamo
OnlinePCA_gd
Sninerih-Soa
a >
- preomp.
ap: A
Siaam Py
B Siaam Pox apaimesd
= sklearn_randomi
s - sk T oA
= OnlinePCA_halko
K} . Crinerea-sipsame
“

Pancreas c

- preomp.
Skleam_PCA LAPACK ot
MulivarateStats_fit N

Downsampling 2
sklear_IncrementalPCA

Apacky sids |
GhineFCA ontiter 4 %

- preomp.
OninePCA_gd
- OnlinePGA_sgd

Eigenvalues

dask il PG
OniinePCA_hako

- GninePCA algortme71

BrainSpinalCord

Principal components

- Downsamplin

o
~ OnlinePCA_halko
- OnlinePCA_algorithm971

- Downsamplin
+ skleam_IncrementalPCA
+ OnlinePCA_orthiter

OnlinePCA”gd
OnlinePCA_sgd
CRPCA_GocPCA_CSV

o0
+- OnlinePCA_hal
- OnlinePCA_algorithmg71

Figure 6 Comparison of eigenvalues. Distribution of eigenvalues of all the principal component
analysis (PCA) implementations for each real dataset.

Page 23 of 30

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al.

a Elapsed Time b Maximum Memory Usage
1.5
I Data /O + PCA
00 I Preprocess (e.g. binalization)

PBMCs
Seconds

1
0
2.0

0.5

Pancreas
HO_L‘II’S

50I | |I| |I
| I I [T II I

Gigabytes
5

[=]
w

o

Gigabytes

0.0 I-_l___II___I__I_.__ DI||IIIIIIII._.IIIII__

200
8 b 150
= @
=0 210 2
=58
m v":I P - > <« 2 > < > >
= 05 I II(.'J ©
0.0 I 0
40
30 40
S 3
. p— \:-, =
< 32 <)
[T Out of =5 Out of
= 20
M Memory O} Memory
10 <» B I “«» > B <>
. ! | I LLTY LD
Q. = o o Vo DWVWSTTVD h=] (=R — — -
ESSESESRCELERREATRS IS BE=ESE835EEBBE2E352,
al =0 < @ 1=0= 7 Q< W ad = - ONYF @
SeEES g B 8- 55gd/ER -0 Bl S ES W B B ES <o ET0E
53085582 0E P a0 NESE SpsEoSRC 2T 0S8 8ESE
<ESE SE/EE5E8 GEE¥cS LR EETFSSET0RELRS
Oots8 S35=eacE 888 30 S95=-2ccE 8882w
£83g 2geg<2S5 Sg5S:d £385 2323<865 SgEtid
JEE & = <9 & = £ | = =
£3 p £ 5 S&- o9 ES & c = f)n.“\ o9
= g 8 FEs ¢ g§= £ g ° Ecs ¢
x) =] = = - T5 £
G B g8 = 2 3 g8z =
5 - o » oxw o

Figure 7 Comparison of the elapsed time and maximum memory usage for empirical datasets.
(a) Elapsed time and (b) memory usage of all principal component analysis (PCA)
implementations calculated for each empirical dataset. We used our in-house Julia script to
preprocess the Brain dataset.

Page 24 of 30

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 25 of 30
10 dimensions 20 dimensions 30 dimensions
2.0
- sklearn_IncrementalPCA
+ OnlinePCA _orthiter
1.5 - OnlinePCA _gd
n . OnlinePCAsgd
g + 00cRPCA_00cPCA_CSV
S 10 - OnlinePCA_halko
5] - OnlinePCA_algorithma71
<
S 05
0.0
2
2.0 2.0 2.0
w15 15 15
Q
8 10 1.0 1.0
CAE : :
@
S 05 é 0.5 é 05 é
=~
3 0.0 0.0 0.0
S 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
2
= 2.0 2.0 2.0
=
3
= 18 15 15
5 Q
2 5 1.0 1.0
3 :
[
S 05 05 05
=~
0.0 0.0 0.0
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
—— No. Cells (Log10-scaled)
Figure 8 Comparison of the elapsed time for simulated datasets. Synthetic datasets
({102, 103, 10} gene x {102, 103, 10%, 10, 10%, 105, 107} cell matrices) were randomly
generated, and all the out-of-core principal component analysis (PCA) implementations were
performed. In each panel, the logarithm of the number of cells is indicated along each z-axis, and
the elapsed time (hours) is shown along each y-axis.

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 26 of 30
10 dimensions 20 dimensions 30 dimensions
25 - sklearn_IncrementalPCA 25 25
+ OnlinePCA _orthiter
2.0 |+ OnlinePCA_gd 2.0 2.0
w « OnlinePCA _sgd / /
g 4.5 |+ 00cAPCA_00cPCA_CSV 15 / 15 /
D ' - OnlinePCA_halko / 7
+ OnlinePCA _algorithm971
&}
st
S
=
w
Q
<]
Q
&)
5 &
T —
E
2
S
=)
o
= 25 25 25
8
=3 20 20 20
g 8
.20 1.5 1.5 1.5
5 g
QO 10 10 10
[l
(=
— 05 4—/ 05 #/ 05 J
0.0 00 0.0
2 3 4 5 6 7 2 3 4 5 6 7 > 3 4 5 8 7
—— No. Cells (Log10-scaled)
Figure 9 Comparison of the maximum memory usage for simulated datasets. Synthetic datasets
({102, 103, 10*} gene x {102, 103, 10%, 10, 10°, 108, 107} cell matrices) were randomly
generated, and all the out-of-core principal component analysis (PCA) implementations were
performed. In each panel, the logarithm of the number of cells is indicated along the z-axis, and
memory usage (GB) is shown along the y-axis.

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 27 of 30

40
sgd (OnlinePCA.jl) .

IncrementalPCA
(Sklearn, CSV)

oocPCA_CSV

20 / (00cRPCA, CSV)

halko
(OnlmePCAjl 0 - 3iter)

Hours

gd (OnlinePCA.jl)
orthiter (OnlinePCA.jl)

algorlthm971 (OnlinePCA.jl)

40 60
No. passes

Figure 10 Relationships of the algorithms/implementations, the number of passes, and the file
format with the elapsed time for performing principal component analysis (PCA) with the
Brain dataset. (a) Number of passes for the data matrix and the computation time for each
algorithms/implementations were calculated. (b) Elapsed time and memory usage for one-pass
orthogonal iteration were calculated.

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al. Page 28 of 30

g _ Meel) M
L gl csv | 10X-HDFs
- 2 (scData.csv) (scData.h5)
sz log10(Mean) Z
Gene-wise QC lcstbin
¥ M
. = Incremental
Gene-wise summary sumr, hvg Julia binary: | row-vector tenxsumr
(Mean, Var, CV2, #NonZero, Pvals) Jiltering (scData.zst) | loading tenxpca
B ‘Many PCA algorithms
Cell-wise summary Tibrary size | (e.g., algorithm971)
(Sum of counts) normalization Eigen_vectors.csv

. K
Loadings.csv <H K M
N KF K

Eigen_values.csv

l Result of PCA

log0g# Counts)

5.60

Further data analysis

500 10
Cell
Cell-wise QC (e.g., Visualization, Clustering, DEGs)

Figure 11 OnlinePCA.jl schematic. Input CSV files were first saved as a binary file with the
csv2bin command and analyzed with the gd and sgd commands, which perform incremental
principal component analysis (PCA). When using the HDF5 file format defined by 10X Genomics,
we converted the file to CSV format using an in-house Python script. Gene-wise or cell-wise
summary statistics were calculated using the sumr command. Highly variable genes can also be
calculated with the hvg command. Because the gene-wise and cell-wise summary statistics are
expressed as small vectors, they can be used to perform precise data quality control (QC) with any
programming language without out-of-core implementations. After QC, the filtering command
removed low-quality genes and cells using a user-specified index. Combined with the small size
vectors, some out-of-core PCA implementations, such as orthiter/gd/sgd/halko/algorithm971
have commands to incrementally update eigenvectors from the row vector of the data matrix. The
tenxpca command directly performed algorithm971 on 10X-HDF files.

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Tsuyuzaki et al.

.
R Python Julia
" In-memory & Dense matrix)(_ In-memory & Dense matrix In-memory & Dense matrix
=
'\7 - prcomp/svd - PCA (sklearn, full/arpack) - fit (MultivariateStats.jl)
o) - irlba (irlba) - PCA (sklearn, randomized, - svd (LinearAlgebra.jl)
%) - rpca/rsvd (rsvd, g>=3) iterated_power>=3) - eigs/svds (Arpack.jl)
= N\
S In-memory & Sparse matrix)\(_ In-memory & Sparse matrix In-memory & Sparse matrix
\
'L) irlba/prcomp_irlba (irlba, irlb (Cell Ranger, tenxpca (OnlinePCA.jl, if the format
&) center vector is specified) if the format is 10X-HDF5) is 10X-HDF5, niter>=3)
g
(=1
Out-of-core & Dense matrix) Out-of-core & Dense matrix Out-of-core & Dense matrix
_ IncrementalPCA algorithm971
o | [COPCALSV CoocRRCA, its>=3) (sklearn, chunksizes=100) (OnlinePCA.j1, niter>=3)
(=
N A
®) Out-of-core & Sparse matrix)(_ Out-of-core & Sparse matrix Out-of-core & Sparse matrix
&)
e N tenxpca (OnlinePCA.jl, if the format
is 10X-HDF5, niter>=3)
&

GC: No. Genes x No. Cells

Figure 12 User guidelines. Recommended PCA implementations categorized based on written
language and matrix size.

Page 29 of 30

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/642595; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Tsuyuzaki et al.

Tables

aCC-BY 4.0 International license.

Table 1 Use cases of PCA implementations in scRNA-seq studies.

Page 30 of 30

scRNA-seq studies

PCA algorithms

Commands or functions used in the studies

In most cases

[13,42, 43,51, 52,55, 56, 58, 60, 63,

65,74,77,82,85,91, 93]
Bhaduri et al., [94]
Loompy [93]

Scanpy [93]
Cell Ranger [22]
Seurat2 [49]
Scran [50]
SAFE [76]

MAGIC [52]

Harmony [57]
Scater [82]

GiniClust2 [59]
SIMLR [75]

SEQC [89]
CellFishing.jl [61]

Golub-Kahan method

Downsampling

SKL

IRLBA

SKL

Halko’s method
IRLBA

IRLBA

Golub-Kahan method
IRLBA

IRLBA

Golub-Kahan method
Halko’s method
Halko's method
IRLBA

Golub-Kahan method
IRLBA

IRLBA

Halko's method
Golub-Kahan method
Halko's method

Li's method

prcomp/svd (R)
PCA (Python, sklearn)

Unknown

IncrementalPCA (Python, sklearn)
PCA (Python, sklearn)
IncrementalPCA (Python, sklearn)
TruncatedSVD (Python, sklearn)
irlb (Python, from scratch)
irlba (R, irlba)

svd (R)

irlba (R, irlba)

irlba (R, irlba)

svds (MATLAB)

randPCA (MATLAB, from scratch)
PCA (Python, sklearn)

irlba (R, irlba)

prcomp (R)

irlba (R, irlba)

propack.svd (R, svd)

fast.rsvd (R, from scratch)

PCA (Python, sklearn)

PCA (Python, sklearn)

rsvd (Julia, from scratch)

Table 2 Real-world datasets for benchmarking

File size File size File size

Dataset No. Genes No. Cells No. Cell types PCs used (LogCPMED, (Count, (Count,

CSV) CSV) Binary)

PBMCs 17484 713 6 PC1-3 45 MB 24 MB 2.1 MB

Pancreas 17499 3605 14 PC1-12 530 MB 287 MB 22 MB

S Brain 25893 156049 73 PCL-16 9.3 MB 7.5 GB 197 MB
pinalCord

Brain 18782 1306127 60 PC1-20 290 GB 58 GB 3.2GB

Additional Files

Additional File 1 — Review of existing PCA algorithms and implementations. (PDF 271 KB)

Additional File 2 — Pseudo-code of all the PCA algorithms. (PDF 178 KB)

Additional File 3 — Source code of all the PCA implementations. (PDF 59 KB)

Additional File 4 — Results of t-SNE of all the PCA implementations. (PNG 623 KB)

Additional File 5 — Results of UMAP of all the PCA implementations. (PNG 368 KB)

Additional File 6 — Results of clustering methods of all the PCA implementations (PDF 3.6 MB)

Additional File 7 — Eigenvectors of all the PCA implementations (PBMCs and Pancreas). (PNG 308 MB)
Additional File 8 — Pair plots of all the PCA (PBMCs) implementations. (TAR.GZ 649 KB)

Additional File 9 — Pair plots of all the PCA (Pancreas) implementations. (TAR.GZ 4.9 MB)

Additional File 10 — Pair plots of all the PCA (BrainSpinalCord) implementations. (TAR.GZ 3.1 MB)
Additional File 11 — Pair plots of all the PCA (Brain) implementations. (TAR.GZ 5.8 MB)

Additional File 12 — Number of singleton clusters. (PNG 271 KB)

Additional File 13 — Eigenvectors of all the PCA implementations (BrainSpinalCord and Brain). (PNG 532 KB)
Additional File 14 — Loading vectors of all the PCA implementations (PBMCs and Pancreas). (PNG 349 KB)
Additional File 15 — Crashed jobs caused by out-of-memory errors. (TXT 882 B)

Additional File 16 — Parameter tuning of the IncrementalPCA implementations. (PDF 445 KB)

Additional File 17 — Parameter tuning of the orthogonal iteration, gradient descent, and stochastic gradient
descent implementations. (PDF 1.3 MB)

Additional File 18 — Parameter tuning of the randomized SVD implementations. (PDF 734 KB)

Additional File 19 — Developer guidelines. (PNG 1.1 MB)

Additional File 20 — Effect of feature selection on clustering accuracy. (PDF 1 MB)

Additional File 21 — Comparison of normalizing size factors. (HTML 1.4 MB)

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

LLBUOLE Yoo
+

— Outar

: $ BT
n._cu_mc_gm urerg
urerg i

e
ety

e -
P aems

Fom
———— Algorithm

sOWdd

B Eazum

J L —

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Krylov

ke

SimT DS

o oy

1
 E
L)
EE

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

DS/SU SimT

Krylov

Rand

a PBMCs b Pancreas

Gt o1 Beca o1
i) St

AR e

BrainSpinalCord

smsamping
- wm,‘ o

s —

Brain

wing

sl Heeheaecn

© et e
Gninepoa

- Binerca hako
© Brlnerca_Sigormon

Pritiipal componetts

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Hours.

a b
sgd (ontinercain @ °

IncrementalPCA
(Skiearn, CSV)

Hours

i [-
©00cPCA_CSV

20 / (onckrC4, CSV))
E
@
halko ©2
linePCAjl. O -
1o OulerC1,0 -3 ter) o
3 od (OulinelC 1

orthiter (OuinelCAf) o

S N
algorithma71 (OntincPCAf) § & & &8s
NI & ¢
0 0 & & & § AN
No. passes vy & ¢
g & @
g & &
§ & ¢
5

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

——— Gigabytes (Log!0-scaled)

10 dimensions

10° Genes

30 dimensions

20 dimensions

25 25 25
20 20 20
s s s
“
<1 10 0 gl
z
Sos os 05
00 00
T s 4 5 6 s s s 7 s s 7
25 25 25
20 20 20
215 15 15
H y
S o 10 10
2 Y/
- 05 = 05 o5 =
00 =— = — 00 = 00 = — =

———» No. Cells (Log10-scaled)

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

existing PCA algorithms and implementations

Gold standard.

preomp
Tonly when the dataset is smal)

10 Algorithms
21 implementations

a
{ Literature review of }

Gold suandard+ Good
o AROR o AR

LN

+ Good
pee

s g
(4 Real Datasets) (18 Synthetic Datasets) | &
| | .
Time H
Accuracy Memory H
Scalability
| ! s Seaabity
Caleulaion tme
Fast, memory efficient, and scalable PCA, ///
Qc, highly variable genes, and filtering .
| | ks . Scataily
Recommendation for users and developers /
Future extensions T e

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

M

g M (eell)
k8 g csv 10X-HDF5
— Z’“ (scData.csv) (scData.h3)
e
Gene-wise QC |esvapin
M
N Incremental
Gene-wise summary i tenxsumr
(Mean, Var, CVZ, #NonZero, Pvals) ot tenxpea
Many PCA algorithms
Cell-wise summary e (c.g., algorithm971)
P o Library sizo
(Sum of counts) Siotialization K Eigen_vectors.csy
Loadings.csv K M
N|| KO K
Eigen_valucs.csv
| Result of PCA

Further data analysis
(c.g., Visualization, Clustering, DEGs)

Cell-wise QC

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Implementation
(package)

[
ok T ONMmNI OMM R LY - 4 4 & 4 = - @ N+ o N s e
POA i 1 Goliitr ST ONMmANAI QMM o L - 4 £ & = - 8 4 GHUb | cemeiehe & Orks 8 s
Lyr— Goor ST ORGMmeNWI ONM W DA - & b+ £ & - - 3 f Gt +oTeka 5 @9
Daunsenping Cowbiaher DS OMMme oMM 7 7 - - - - - -+ o+ o & - - E - - - s
IncrementaPCA b s S ODMIEES) OBM fyben UR 4+ + £ £+ + & o0l £ B+ ocunerstonm +oores 5
i WA Kyoe 0K oMM R W - b & o+ & b - 9 4 a4
e W Ky KM oMW R LW -+ 4 b £ £ - 9+ oo+
propck s i WA Kyee oM oMM R W - ¢ b+ o+ s s - 3 o+
[y — W Ko KW ONW Bmen W - + 4+ £ £ 5 - 10 4 B 4+
i it WA Kyee oM oMW Bwen L - 4 b & & & & - 8 b om0 E
svds st R Kyer KWL ONML Wi W - b 4 & & & & - 10 4 G 4
orther inTCi Onvcgiiryin Kiyor OKMNL OGN Wi MW b b 4+ & 4 4 4 o0 E G x S e
P @ W oKL KM M W b b 4 - &+ T - G e TR 8 Thsper
sad st s @ oKMN Ol M W b - - - - - 4 d a1 - G GO TR 2 Thoper
v nd T T T + 2 m
COPCACSVipncy Uerwhd Rwd OMNML DM R DM £ b £ & b & b & a0 4 G s - 2 e
POA Uskon rimocmaso) kcrmind Rad OLNML ONM Freen O - 4 £ £ & &+ - 10 4 PR 4 > noom
randominec s G L' mthad UMM oMM B LW - 4 4 £ £ 5+ - 9 4 bt 0w
POA tinir L T + et na
Pako(mc bakcumenod Keed OUMW KWL M W £ b b £ & & & & o0l 4 o d W0+ e 5 Insoser
agorthmT fhemecii Ustehod Ked OUMM OGN M LW 4 4 4 £ £ £ 5 £ o0l 4 M E Ceowtd + Teso 3 nsoser
o e L s G M o0 1 e = 10X G vabsrs
o -~ Min ol a0 o ssts0 byt e
i tnanenne: osustee g s—

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

b Maximum Memory Usage

Elapsed Time

§ psato- Foa

§ P28 neaizeion)

08T vod e
e

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

= Hours (Logl0-sculed)y

10 dimensions

st ncromertzPGA
G

104 Genes

20 dimensions.

30 dimensions.

s s s
]
510 10 10
o
30 i
w =
P — s
T s P
]
510 10 10
<l
308 o8 os
0 o 0
P 7 Fa— T s

———» No. Cells (LoglO-scaled)

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

SimT DS Krylov GD Rand
. preomp Skiearn Zip OnlinePCAjI OnlinePCAjl
preomp (Downsampling) (Incremental) irlpa (ribs) (5gd) (algorithm971)
@ - “ s £
1S * - et 0= ™ K ks .
s e 2 I
jas] 5 ‘ o .
) 4 $ & &
@
<
2 3
Q
g @
3]
¥
B
53
g E X]
= B
@
= ¥
s X X B
m VIR

X : Out-of-memory

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

<108

14

R

Python

Julia

In-memory & Dense matrix

- preomp/svd
- irlba (irlba)
- rpca/rsvd (rsvd, g-=3)

In-memory & Dense matrix

- PCA (sklearn, full/arpack)
- PCA (sklearn, randomized,
D

er>=3;

iterated_p

In-memory & Dense matrix

- fit (MultivarigteStats.jl)
- svd (LinearAlgebra.jl)
- eigs/svds (Arpack.j1)

In-memory & Sparse matrix

In-memory & Sparse matrix

In-memory & Sparse matrix

< 10!

tenxpca (OnlinePCA.jl, if the format
1is 10X-HDF5, niter>=3)

irlba/prcomp_irlba (irlba,
center vector is specified)

irlb (Cell Ranger,
if the format is 10X-HDFS)

108<C

Out-of-core & Dense matrix

Out-of-core & Dense matrix

Out-of-core & Dense matrix

IncrementalPCA algorithmo71
- | Rk (sklearn, chunksize>=108) (OnlinePCA. 31, niters=3)
A = = -
9} Out-of-core & Sparse matrix Out-of-core & Sparse matrix Out-of-core & Sparse matrix

tenxpca (OnlinePCA.jl, if the format

None None is 10X-HDFS, niter>=3)

GC: No. Genes x No. Cells

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

