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Abstract

Background: Analysis of heterogeneous populations such as viral quasispecies is
one of the most challenging bioinformatics problems. Although machine learning
models are becoming to be widely employed for the analysis of sequencing data
associated with such populations, their straightforward application is impeded by
multiple challenges associated with technological limitations and biases, difficulty
of selection of relevant features and need to compare genomic datastes of
different sizes and structures.

Methods: We propose a novel preprocessing approach to transform irregular
genomic data into normalized image data. Such representation allows to restate
the problems of classification and comparison of heterogeneous populations as
image classification problems which can be solved using variety of available
machine learning tools. We then apply the proposed approach to two important
molecular epidemiology problems: inference of viral infection stage and detection
of viral transmission clusters and outbreaks using next-generation sequencing
data.

Results: The infection staging method has been applied to HCV HVRI samples
collected from 108 recently and 257 chronically infected individuals. The
SVM-based image classification approach achieved more than 95% accuracy for
both recently and chronically HCV-infected individuals. Clustering has been
performed on the data collected from 33 epidemiologically curated outbreaks,
yielding more than 97% accuracy.

Availability: The developed software is freely available at
https:/ /bitbucket.org/adv_bio_coll /chronic_vs_clinic

Keywords: next-generation sequencing data; image normalization; staging HCV
infections; outbreaks investigations; clustering

Background

Currently, viral epidemics continue to be critical public health issues. Many emerg-
ing and long-standing epidemics are associated with small (~ 10 kilobases long)
positive-sense single stranded RNA virus, such Human Immunodeficiency Virus
(HIV), Hepatitis C virus (HCV), Zika virus (ZIKV) and dengue virus (DENV).
The paramount feature of these viruses is their extremely high mutation rate caused
by error-prone replication, which can be as high as 10~* [28], thus leading to sev-
eral expected mutations per every replication cycle. As a result, RNA viruses exist
in infected hosts as highly heterogeneous populations of genomic variants usually
referred to as wiral quasispecies. Intra-host and inter-host evolution of viral qua-

sispecies is a complex phenomenon defined by dynamics of virulence, infectivity,
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drug resistance, immune escape, transmission rates, behavorial patterns and other
phenotypic and epidemiological features, which plays crucial role in disease progres-
sion and outcome [1,5,7,26,30]. Challenges associated with understanding complex
quasispecies evolution attracted many researchers in different domains, including
virology, epidemiology, population genetics and systems biology.

Analysis of heterogeneous viral populations is one of the most challenging bioinfor-
matics tasks due both to the complexity of the underlying algorithmic problems and
features and sheer amount of data [2,22]. These challenges became especially com-
plicated in the recent decade with the advent of high-throughput sequencing (HTS),
which has now become a major tool for viral research by allowing to sample viral
populations on unprecedented depth [3,10,14,16,19,29,31]. Modern computational
virology continues mostly to rely on classical approaches, which includes sequence
analysis, phylogenetics/phylodynamics and structural bioinformatics [21,22]. In the
recent years, these approaches started to be complemented with the network analy-
sis [6,13,32]. Significant number of computational molecular epidemiology problems
could be defined using classification- or clustering-based objective. These problems
include inference of transmission clusters, detection of co-infections, therapy out-
come prediction, infection staging and other research and medical questions. Such
problems could be tackled by powerful methods of machine learning and deep learn-
ing. It should be expected that in the near future, in accordance with the general
trend in Al and Computer Science research, machine learning and deep learning
techniques will be utilized in viral research on a much wider scale. However, cur-
rently applications of machine learning and deep learning for viral studies is impeded
by multiple challenges, which could be thematically classified as follows:

Challenges associated with technological limitations.

High-throughput sequencing technologies and protocols are prone to errors and
biases, which are especially pronounced for viral data. Indeed, frequencies of minor
viral variants are often comparable with the level of sequencing noise; however, such
variants should not be simply discarded based on some frequency threshold, since
often they are the ones responsible for transmissions, immune escape or therapy
failure [7,11,12,17,26,30]. Presence of sequencing errors introduces the noise to the
data and produces outlier viral variants, which negatively affect the quality and
accuracy of machine learning classifiers.

Another important problem is the sampling and sequencing bias resulting in the
significant irregularities in the number and length of viral sequences for different
infected individuals. If classifiers capture this artificial differences as significant as-
sociations, it may result in overfitting and decline of accuracy after the thorough
cross-validation. Thus, application of machine learning to heterogeneous viral pop-
ulation data should be preceded by a preprocessing step, which should be able to
eliminate these irregularities through some sort of normalization. However, selection
of appropriate normalization approach is challenging. For instance, if we use text
classification techniques for preprocessing, then the current difference in number
of sequences across different files will either have to be dealt with truncation or
padding. This will either cause data loss (in case of truncation) or introduce irrele-
vant data (in case of padding). An ideal preprocessing method should not introduce
any of such issues.
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Challenges associated with feature selection and feature extraction.

Before applying machine learning methods for intra-host viral population classifi-
cation, genomic data of each population should be mapped into the euclidian space
R™. Tt is usually done by identifying the numerical features that are relevant to
the problem under consideration. They can include various diversity measures [24],
population genetics parameters [4], physico-chemical properties [21] and other pa-
rameters specifically tailored to particular problems. These features are generally
identified in consultation with domain experts, and selection of the most relevant
features is daunting and resource-consuming task. The role of feature selection in
determining the classification performance is paramount. Selection of limited num-
ber of features from certain domains inevitably results in loss of information, while
increase of feature space dimensionality increases the risk of overfitting and jeopar-
dizes the algorithm’s scalability.

An ideal feature selection method should be able to capture the entire popula-
tion structure using a relatively simple and easily constructible data representation.
Furthermore, it should use a standard universal data format which has fixed num-
ber of features and can be applicable to different problems. Since genomic data is
essentially a textual information, it is tempting to utilize well-developed machin-
ery from the text classification domain [18,20] for the purpose of construction of
such representation. Viral populations could be mapped to a euclidian spase us-
ing word2vec approaches [23], and classified using various available deep learning
models [18,20]. However, application of text processing approaches to viral research
could be impeded by several factors. Since they are based on deep neural network
models with large numbers of hyperparameters, it requires large annotated datasets
to train these models. However, in molecular epidemiology, the amount of available
training data is limited in comparison with the text processing domain. The datasets
of several hundred intra-host viral populations analyzed in this paper are typical in
this context. Although, word2vec or document embedding methods can be directly
employed, it is challenging to train a model to get higher classification performance.
Furthermore, since viral haplotypes are unique, the trained model could overfit the
data.

Challenges associated with data comparison.

Clustering of intra-host viral populations requires an inter-population distance mea-
sure, which takes into account complex population structures. It has been shown
that among simple alignment-based population distance measures, the minimal
distance between population variants allows to achieve the highest clustering ac-
curacy [9]. However, this measure is sensitive to noise and presence of outliers,
and does not take into account the whole population structure. Recently, several
simulation-based and network-based distance measures have been proposed [13,32],
which overcome above-mentioned limitations at the cost of lesser scalability. Thus,
the universal, accurate and efficiently computable inter-population distance mea-
sure, which takes into account the complex population structures still has to be

developed.
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Contribution

Several encoding schemes have been used in the literature for coding biomedical
data into numerical data for machine learning [37]. In this work, we propose a novel
method which converts genomic data into images which are then used for classifi-
cation. The new approach allows to utilize in genomic analysis the well-developed
machine learning methodology from the domain of image processing. The proposed
approach allows to address the aforementioned challenges by providing the data
structure for the representation of intra-host population structure which is com-
pact, easily adjustable, robust to technological noise, preserve structural properties
of populations and can be used for a variety of classification problems, where ma-
chine learning is useful.

We validated our approach by applying image processing techniques to two im-
portant molecular epidemiology problems. The first problem is the HCV infection
staging, i.e. inference whether a patient is recently or chronically infected using
viral sequences sampled by next-generation sequencing (NGS). It is known that
in ~ 80% of cases untreated HCV infection turns into a chronic infection lead-
ing to severe health problems such as liver cirrhosis and hepatocellular carcinoma
(a form of liver cancer). HCV infection often does not manifest any symptoms in
its early stages, which impedes the timely diagnostic of disease. Furthermore, cur-
rently there are no diagnostic assays to determine the stage of an HCV infection.
Therefore, distinguishing recently infected patients from chronically infected pa-
tients using non-invasive methods such as analysis of genomic data would be highly
important both for personalized therapeutic purposes and for the epidemiological
surveillance (for example, for detection of incident HCV cases).

The second problem is detection of outbreaks using NGS data. In molecular epi-
demiology, it is common to utilize the observation that viral populations from the
same outbreak are genetically related. Thus, some measure of genetic relatedness
could be used as a predictor for epidemiological relatedness [8, 34, 35]. In other
words, this problem could be considered as the problem of clustering of intra-host
viral populations. Until recently, most available tools for outbreak investigations
analyzed only a single representative sequence per population (usually consensus se-
quence) [34,35]. Although several recently published tools allow to take into account
entire intra-host populations [13,32,36], the problem of comparison and clustering
of viral populations still remains challenging [15].

We demonstrate that classification and clustering techniques based on normal-
ized image representations of intra-host viral populations allow to solve these two
problems with high accuracy.

Methods

Data collection

Intra-host HCV populations sampled by sequencing of a highly heterogeneous ge-
nomic region (HVR1) were analyzed. The data [4] used for classification of intra-
host HCV populations as recent and chronic consists of 365 NGS samples, including
108 datasets correponding to recently infected hosts and 257 datasets belonging to
chronically infected hosts. For clustering and indentification of outbreaks we used
the benchmark dataset [8,13,32] that consists of HCV intra-host populations col-
lected from 335 infected individuals by Centers for Disease Control and Prevention
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in 2008-2013. Of these, 142 HCV samples belong to epidemiologically curated out-
breaks involving from 2 to 19 patients, while the remaining datasets are epidemio-
logically isolated cases.

Sequence Image Normalization

We transform sequencing data into an image by the preprocessing method further
referred to as Sequence Image Normalization. We assume that sequences are aligned
and ordered by their counts, with sequences of the same counts being sorted lex-
icographically. Next, each symbol [ € {!A"/C'/T'/G'/ —'} is associated with a
particular color thus transforming the sequence alignment into an image. Finally,
the images corresponding to different infected hosts are normalized by transforming
them into fixed size images. The colors to represent nucleotides are selected from
the set of colors of higher variation in order to simplify identification of discrimi-
native features characterizing particular intra-host populations. Fig.1 demonstrates
an example of sequence image normalization output. Normalized images thus al-
lows to captures entire viral population structure using a single data representation
independent of the number of sequences and with minimum loss of existing data or
introduction of artificial data.

Raw pixel data of generated images are used as features to train machine learn-
ing models for the consecutive analysis, as demonstrated by Fig. 2. The number
of features depends on the image resolution: each image of the resolution = x y
corresponds to x X y x 3 feature vector, with each pixel having 3 RGB components.

In our experiments, sequencing datasets by default has been converted into images

with resolution of 480 x 480.
«———Sequence
-
Each DNA
letter is
— .
associated
with a color

Generate fixed size image
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Figure 1: Sequence Image normalization of a fasta file

Classification of intra-host viral populations

Identification of an HCV infection stage is considered as a binary classification
problem. Images corresponding to intra-host viral populations of samples described
above has been labeled based on the type of the infection as recent or chronic.
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This labeled data has been used to train the following machine learning classifi-
cation models: Stocastic Gradient Descent (SGD), Decision Tree, Gaussian Naive
Bayes(Gaussian NB), Linear Support Vector Machine (Linear SVM), Random For-
est and k-Nearest Neighbours(kNN). We used models’ implementations from python
scikit-learn library [25]. Different SVM kernels have been explored of which SVM
with linear kernel produced the best results. In linear SVM model, there is a regu-
larization parameter ¢ which helps in generalizing the model by controlling testing
and training errors. In this model, grid search is performed on ¢ values in the range
[—2,20]. For k-NN models, we selected the best model among the models with eu-
clidean and manhattan metrics and with & from the range [3, 20]. For random forest,
the best model has been chosen by performing grid search on the number of trees
in the range [10, 100].

SH0C PL3 1o 1498 1 34 23 4 2 13
TGATGTTACTCTTTGCCGACTTGACGAAACCTACACGACGRGAGGGGAGCCGGCCGTACACT
s TTTTCACTTGGGCCTTCTOAGAMATCAGCTIGTAA
s 1
s
CCGGACTIGEGTCCTTCTITTCACTGGGCCOTCTCHGAMAATCCAGETIGTAR —) —
SH0C P13 1h 1340 1
CCGRACTTGEGTCCATCTTTTCACTTGGGCCOTCTCAGAMAATCCAGETTGTAR
s 1
GCCACTGRGOAGTCCTROCRCTCRLCTACTTTCCATGGTGGGGMCTGRGCTANGTCTTAT
CCGGACTTGE TIGGGCCETCTCAAMATCCAKTIGTAA

Original sequence Normalized Image Numeric pixel data as
data features

Figure 2: Sequence Image normalization of a fasta file

Trained classifiers has been validated based on their accuracy, area under the
curve (AUC), precision, and recall. Accuracy (Acc) is defined as the proportion of
test cases correctly classified as either recent or chronic. Precision (Prec) measures
the fraction of the correctly classified populations within each predicted infection
class, while recall (Rec) measures the fraction of the true recent or chronic pop-
ulations that are correctly predicted as such. Validation has been performed via
stratified 10-fold cross validation. Specifically, in addition to the standard 10-fold
cross-validation, we employ ”leave-one-outbreak-out” cross-validation and random
undersampling methods to balance the datasets. In our current data, some of the
samples come from the same HCV outbreak. Such samples are close to each other
by their nucleotide composition, thus their presence may lead to over-fitting of any
particular method. In ”leave-one-outbreak-out” cross-validation, data from each of
these outbreaks was used in the validation set, while other samples are used in the
training sets. Random undersampling has been performed to balance the difference
in sizes of datasets of recent and chronic hosts. In this method, chronic dataset size
is reduced by random subsampling to match the acute dataset size.

Clustering of intra-host viral populations

We detect outbreak by clustering images representing intra-host viral populations.
For this purpose, we employed agglomerative hierarchical clustering, k-means clus-
tering and mini-batch k-means clustering. As before, we used models’ implementa-
tions from python scikit-learn library [25]. Several distance measures have been
employed, including euclidean, manhattan and cosine metrics. Hierarchical cluster-
ing has been executed using complete, average and ward linkage approaches.
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Figure 3: Accuracy and AUC (Area under the curve) comparisons of several simple
classification methods after training them based on the normalized image data.

Normalized Mutual Information (NMI) [33], homogeneity [27] and complete-
ness [27] scores as used as metrics to analyze the clustering performance. These
measures evaluated the assigned cluster labels after clustering compared to the
actual cluster class label of each intra-host viral population. Homogeneity score
measures if the all members of a cluster actually belong to one cluster class label,
while the completeness scores measure if all the members of an actual cluster class
label are grouped into the same cluster. NMI measures the mutual information
shared between the individuals in the clusters. All these measures range from 0 to
1 and the values closer to 1 refer to better clustering efficiency. To evaluate the
effectiveness of the normalization method in detecting relatedness between any pair
of samples, we compute AUROC (Area under ROC curve) is computed (as done
n [13]). Viral populations taken from the same outbreak are considered as geneti-
cally related, otherwise as unrelated. There are 55945 pairs of samples, and 479 of
them are related. After computing the distances between each pair of samples, all
the pairs crossing a threshold value are considered as related. To compute AUROC
curve, false-postive rate (FPR) and true-postive rate(TPR) are measured by mod-
ifying the threshold starting from the best threshold value where there are no false

positives.
Results

Classification of infection stages

Stratified 10-fold cross validation has been initially performed to analyze the per-
formance of several classification methods trained using the normalized image data.
On Fig. 3 accuracies and AUC of the best models for each of the methods are shown
using box plots, with the average metrics being emphasized by the red line. Linear
SVM demonstrated superior performance compared to all other models, with an
average accuracy of 97.545% and low accuracy variance. Other models with the
exception of Gaussian NB have accuracies higher than 85%, thus exceeding accura-
cies of existing methods which are primarily based on feature extraction methods
(see Comparison with previous methods subsection). Accuracy metric alone cannot
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Figure 4: Precision and Recall comparisons of several simple classification methods
after training them based on the image data generated after our sequence image
preprocessing method.

justify the performance of the model as it needs to also achieve higher precision
and recall metrics for each infection type. Fig. 4a - 4d demonstrate the precision
and recall metrics for chronic and recent samples separately. As before, linear SVM
achieved the best performance over all other models with an average precision and
recall values of 98.11% and 98.45% for chronic populations and 96.52% and 95.36%
for recent populations, respectively. This model also has low variance across the
values obtained from all the folds. Noticeably, other models with the exception of
Gaussian NB also achieve more than 80% values for these metrics.

Linear SVM model has been analyzed further with leave-one-outbreak-out and
random undersampling validation combined with 10-fold cross-validation. Table 1
shows the results of these methods compared to the standard 10-fold cross vali-
dation on the whole dataset. The classification accuracy remains stable under the
additional sampling methods.

Detection of transmission clusters

The results of k-means, mini-batch k-means and hierarchical clustering models are
shown in Table 2 . In our experiments, agglomerative hierarchical clustering with
ward linkage and euclidean distance between images demonstrated the best perfor-
mance. Furthermore, we evaluated the accuracy of detection of epidemiologically
related pairs of populations. Two populations are considered to be related, if the
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Table 1: Performance metrics of Linear SVM classifier assessed by standard 10-
fold cross validation, leave-one-outbreak-out validation and random undersampling
methods

Sampling Methods Accuracy Precision- Precision- Recall- Recall- AUC

‘ Chronic Acute Chronic Acute
Standard 10-fold 97.545% 98.105% 96.515% 98.446 % 95.364% 96.905%
cross-validation
Leave-one- 96.075% 97.004% 91.0% 98.446 % 83.5% 90.973%
outbreak-out
Random undersam- || 95.164% 96.328% 94.661% 94.155 % 96.173% 95.164%
pling

Table 2: Performance metrics of various clustering methods

[ Clustering Method [| NMI | homogeneity | completeness ]
k-means 0.986 0.994 0.978
Mini-batch k-means 0.985 0.992 0.978
Hierarchical 0.987 0.994 0.979

distance between corresponding images is below a specified threshold. ROC curves
for the accuracy of detection of epidemiologically related pairs for different distance
measures and thresholds are shown on Fig. 6. All distance measures expressed con-
sistent performance, with AUC exceeding 0.99 for all of them.

Effect of image resolution

All the experimental results discussed above have been obtained using the default
image resolution 480 x 480. We analyzed the impact of image resolution on classifi-
cation and clustering performance. Resolution values have been varied from 50 x 50
to 550 x 550 with step size of 50. Fig. 5a shows the performance metrics of strat-
ified 10-fold cross validation using LinearSVM model for detecting stage of HCV
infections based for different image resolutions. Highest accuracy is achieved at the
resolution 450x450, although the accuracy mostly saturates approximately after
the resolution 300 x 300. Similar performance has been observed for agglomerative
hierarchical clustering (Fig. 5b).

Comparison with previous methods

Previously published model [24] classifies the stages of HCV infection using one
of the following 3 parameters: variant frequencies entropy, average position-wise
nucleotide entropy and the average distance from viral variants to the most frequent
variant of the population. On our data, AUC for these parameters was equal to
~ 81%, ~ 66% and ~ 78%, respectively, while the proposed classifier based on
image normalization yielded ~ 96.9% AUC.

We also compared the proposed method for the inference of genetic relatedness
between different HCV samples with the two methods VOICE and ReD proposed
n [13]. Image clustering method achieves sensitivity of 98.181% and AUROC of
99.2% which is similar to the VOICE algorithm and higher than ReD algorithms.

Conclusion

In this study, we propose a novel method for generation of fixed set of features
representing heterogeneous viral populations, which is widely applicable for vari-
ous classification and clustering tasks addressed by machine learning. The method
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Figure 5: Performance metrics (Y-axis) of classification and clustering methods
based on different image resolutions(X-axis).
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Figure 6: Performance of AUROC in detection of epidemiologically related pairs of
populations with different distance metrics.

converts sequencing data into fixed-size images thus addressing several issues as-
sociated with comparison of viral populations by machine learning methods. The
simplicity of the sequence image normalization method makes it a robust approach
for converting genomic data into numerical data. The image data also helps in
visualization of the original genomic data. Experimental results demonstrate that
the preprocessing method converting sequencing data into images can be success-
fully applied to different problems from the domain of molecular epidemiology and
molecular surveillance of viral diseases, with simple binary classifiers and clustering
techniques applied to the image data providing better or comparable accuracies
than the existing models. In future work, sequence image normalization machinery
can be applied to other challenging problems in viral genomics, such as detection
of co-infections and prediction of drug resistance and therapy outcome.
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