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Abstract

Background: Analysis of heterogeneous populations such as viral quasispecies is
one of the most challenging bioinformatics problems. Although machine learning
models are becoming to be widely employed for the analysis of sequencing data
associated with such populations, their straightforward application is impeded by
multiple challenges associated with technological limitations and biases, difficulty
of selection of relevant features and need to compare genomic datastes of
different sizes and structures.

Methods: We propose a novel preprocessing approach to transform irregular
genomic data into normalized image data. Such representation allows to restate
the problems of classification and comparison of heterogeneous populations as
image classification problems which can be solved using variety of available
machine learning tools. We then apply the proposed approach to two important
molecular epidemiology problems: inference of viral infection stage and detection
of viral transmission clusters and outbreaks using next-generation sequencing
data.

Results: The infection staging method has been applied to HCV HVR1 samples
collected from 108 recently and 257 chronically infected individuals. The
SVM-based image classification approach achieved more than 95% accuracy for
both recently and chronically HCV-infected individuals. Clustering has been
performed on the data collected from 33 epidemiologically curated outbreaks,
yielding more than 97% accuracy.

Availability: The developed software is freely available at
https://bitbucket.org/adv bio coll/chronic vs clinic

Keywords: next-generation sequencing data; image normalization; staging HCV
infections; outbreaks investigations; clustering

Background
Currently, viral epidemics continue to be critical public health issues. Many emerg-

ing and long-standing epidemics are associated with small (∼ 10 kilobases long)

positive-sense single stranded RNA virus, such Human Immunodeficiency Virus

(HIV), Hepatitis C virus (HCV), Zika virus (ZIKV) and dengue virus (DENV).

The paramount feature of these viruses is their extremely high mutation rate caused

by error-prone replication, which can be as high as 10−4 [28], thus leading to sev-

eral expected mutations per every replication cycle. As a result, RNA viruses exist

in infected hosts as highly heterogeneous populations of genomic variants usually

referred to as viral quasispecies. Intra-host and inter-host evolution of viral qua-

sispecies is a complex phenomenon defined by dynamics of virulence, infectivity,
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drug resistance, immune escape, transmission rates, behavorial patterns and other

phenotypic and epidemiological features, which plays crucial role in disease progres-

sion and outcome [1,5,7,26,30]. Challenges associated with understanding complex

quasispecies evolution attracted many researchers in different domains, including

virology, epidemiology, population genetics and systems biology.

Analysis of heterogeneous viral populations is one of the most challenging bioinfor-

matics tasks due both to the complexity of the underlying algorithmic problems and

features and sheer amount of data [2,22]. These challenges became especially com-

plicated in the recent decade with the advent of high-throughput sequencing (HTS),

which has now become a major tool for viral research by allowing to sample viral

populations on unprecedented depth [3,10,14,16,19,29,31]. Modern computational

virology continues mostly to rely on classical approaches, which includes sequence

analysis, phylogenetics/phylodynamics and structural bioinformatics [21,22]. In the

recent years, these approaches started to be complemented with the network analy-

sis [6,13,32]. Significant number of computational molecular epidemiology problems

could be defined using classification- or clustering-based objective. These problems

include inference of transmission clusters, detection of co-infections, therapy out-

come prediction, infection staging and other research and medical questions. Such

problems could be tackled by powerful methods of machine learning and deep learn-

ing. It should be expected that in the near future, in accordance with the general

trend in AI and Computer Science research, machine learning and deep learning

techniques will be utilized in viral research on a much wider scale. However, cur-

rently applications of machine learning and deep learning for viral studies is impeded

by multiple challenges, which could be thematically classified as follows:

Challenges associated with technological limitations.

High-throughput sequencing technologies and protocols are prone to errors and

biases, which are especially pronounced for viral data. Indeed, frequencies of minor

viral variants are often comparable with the level of sequencing noise; however, such

variants should not be simply discarded based on some frequency threshold, since

often they are the ones responsible for transmissions, immune escape or therapy

failure [7,11,12,17,26,30]. Presence of sequencing errors introduces the noise to the

data and produces outlier viral variants, which negatively affect the quality and

accuracy of machine learning classifiers.

Another important problem is the sampling and sequencing bias resulting in the

significant irregularities in the number and length of viral sequences for different

infected individuals. If classifiers capture this artificial differences as significant as-

sociations, it may result in overfitting and decline of accuracy after the thorough

cross-validation. Thus, application of machine learning to heterogeneous viral pop-

ulation data should be preceded by a preprocessing step, which should be able to

eliminate these irregularities through some sort of normalization. However, selection

of appropriate normalization approach is challenging. For instance, if we use text

classification techniques for preprocessing, then the current difference in number

of sequences across different files will either have to be dealt with truncation or

padding. This will either cause data loss (in case of truncation) or introduce irrele-

vant data (in case of padding). An ideal preprocessing method should not introduce

any of such issues.
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Challenges associated with feature selection and feature extraction.

Before applying machine learning methods for intra-host viral population classifi-

cation, genomic data of each population should be mapped into the euclidian space

Rn. It is usually done by identifying the numerical features that are relevant to

the problem under consideration. They can include various diversity measures [24],

population genetics parameters [4], physico-chemical properties [21] and other pa-

rameters specifically tailored to particular problems. These features are generally

identified in consultation with domain experts, and selection of the most relevant

features is daunting and resource-consuming task. The role of feature selection in

determining the classification performance is paramount. Selection of limited num-

ber of features from certain domains inevitably results in loss of information, while

increase of feature space dimensionality increases the risk of overfitting and jeopar-

dizes the algorithm’s scalability.

An ideal feature selection method should be able to capture the entire popula-

tion structure using a relatively simple and easily constructible data representation.

Furthermore, it should use a standard universal data format which has fixed num-

ber of features and can be applicable to different problems. Since genomic data is

essentially a textual information, it is tempting to utilize well-developed machin-

ery from the text classification domain [18, 20] for the purpose of construction of

such representation. Viral populations could be mapped to a euclidian spase us-

ing word2vec approaches [23], and classified using various available deep learning

models [18,20]. However, application of text processing approaches to viral research

could be impeded by several factors. Since they are based on deep neural network

models with large numbers of hyperparameters, it requires large annotated datasets

to train these models. However, in molecular epidemiology, the amount of available

training data is limited in comparison with the text processing domain. The datasets

of several hundred intra-host viral populations analyzed in this paper are typical in

this context. Although, word2vec or document embedding methods can be directly

employed, it is challenging to train a model to get higher classification performance.

Furthermore, since viral haplotypes are unique, the trained model could overfit the

data.

Challenges associated with data comparison.

Clustering of intra-host viral populations requires an inter-population distance mea-

sure, which takes into account complex population structures. It has been shown

that among simple alignment-based population distance measures, the minimal

distance between population variants allows to achieve the highest clustering ac-

curacy [9]. However, this measure is sensitive to noise and presence of outliers,

and does not take into account the whole population structure. Recently, several

simulation-based and network-based distance measures have been proposed [13,32],

which overcome above-mentioned limitations at the cost of lesser scalability. Thus,

the universal, accurate and efficiently computable inter-population distance mea-

sure, which takes into account the complex population structures still has to be

developed.
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Contribution

Several encoding schemes have been used in the literature for coding biomedical

data into numerical data for machine learning [37]. In this work, we propose a novel

method which converts genomic data into images which are then used for classifi-

cation. The new approach allows to utilize in genomic analysis the well-developed

machine learning methodology from the domain of image processing. The proposed

approach allows to address the aforementioned challenges by providing the data

structure for the representation of intra-host population structure which is com-

pact, easily adjustable, robust to technological noise, preserve structural properties

of populations and can be used for a variety of classification problems, where ma-

chine learning is useful.

We validated our approach by applying image processing techniques to two im-

portant molecular epidemiology problems. The first problem is the HCV infection

staging, i.e. inference whether a patient is recently or chronically infected using

viral sequences sampled by next-generation sequencing (NGS). It is known that

in ∼ 80% of cases untreated HCV infection turns into a chronic infection lead-

ing to severe health problems such as liver cirrhosis and hepatocellular carcinoma

(a form of liver cancer). HCV infection often does not manifest any symptoms in

its early stages, which impedes the timely diagnostic of disease. Furthermore, cur-

rently there are no diagnostic assays to determine the stage of an HCV infection.

Therefore, distinguishing recently infected patients from chronically infected pa-

tients using non-invasive methods such as analysis of genomic data would be highly

important both for personalized therapeutic purposes and for the epidemiological

surveillance (for example, for detection of incident HCV cases).

The second problem is detection of outbreaks using NGS data. In molecular epi-

demiology, it is common to utilize the observation that viral populations from the

same outbreak are genetically related. Thus, some measure of genetic relatedness

could be used as a predictor for epidemiological relatedness [8, 34, 35]. In other

words, this problem could be considered as the problem of clustering of intra-host

viral populations. Until recently, most available tools for outbreak investigations

analyzed only a single representative sequence per population (usually consensus se-

quence) [34,35]. Although several recently published tools allow to take into account

entire intra-host populations [13, 32, 36], the problem of comparison and clustering

of viral populations still remains challenging [15].

We demonstrate that classification and clustering techniques based on normal-

ized image representations of intra-host viral populations allow to solve these two

problems with high accuracy.

Methods
Data collection

Intra-host HCV populations sampled by sequencing of a highly heterogeneous ge-

nomic region (HVR1) were analyzed. The data [4] used for classification of intra-

host HCV populations as recent and chronic consists of 365 NGS samples, including

108 datasets correponding to recently infected hosts and 257 datasets belonging to

chronically infected hosts. For clustering and indentification of outbreaks we used

the benchmark dataset [8, 13, 32] that consists of HCV intra-host populations col-

lected from 335 infected individuals by Centers for Disease Control and Prevention
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in 2008–2013. Of these, 142 HCV samples belong to epidemiologically curated out-

breaks involving from 2 to 19 patients, while the remaining datasets are epidemio-

logically isolated cases.

Sequence Image Normalization

We transform sequencing data into an image by the preprocessing method further

referred to as Sequence Image Normalization. We assume that sequences are aligned

and ordered by their counts, with sequences of the same counts being sorted lex-

icographically. Next, each symbol l ∈ {′A′,′ C ′,′ T ′,′G′,′−′} is associated with a

particular color thus transforming the sequence alignment into an image. Finally,

the images corresponding to different infected hosts are normalized by transforming

them into fixed size images. The colors to represent nucleotides are selected from

the set of colors of higher variation in order to simplify identification of discrimi-

native features characterizing particular intra-host populations. Fig.1 demonstrates

an example of sequence image normalization output. Normalized images thus al-

lows to captures entire viral population structure using a single data representation

independent of the number of sequences and with minimum loss of existing data or

introduction of artificial data.

Raw pixel data of generated images are used as features to train machine learn-

ing models for the consecutive analysis, as demonstrated by Fig. 2. The number

of features depends on the image resolution: each image of the resolution x × y

corresponds to x× y× 3 feature vector, with each pixel having 3 RGB components.

In our experiments, sequencing datasets by default has been converted into images

with resolution of 480× 480.

Figure 1: Sequence Image normalization of a fasta file

Classification of intra-host viral populations

Identification of an HCV infection stage is considered as a binary classification

problem. Images corresponding to intra-host viral populations of samples described

above has been labeled based on the type of the infection as recent or chronic.
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This labeled data has been used to train the following machine learning classifi-

cation models: Stocastic Gradient Descent (SGD), Decision Tree, Gaussian Naive

Bayes(Gaussian NB), Linear Support Vector Machine (Linear SVM), Random For-

est and k-Nearest Neighbours(kNN). We used models’ implementations from python

scikit-learn library [25]. Different SVM kernels have been explored of which SVM

with linear kernel produced the best results. In linear SVM model, there is a regu-

larization parameter c which helps in generalizing the model by controlling testing

and training errors. In this model, grid search is performed on c values in the range

[−2, 20]. For k-NN models, we selected the best model among the models with eu-

clidean and manhattan metrics and with k from the range [3, 20]. For random forest,

the best model has been chosen by performing grid search on the number of trees

in the range [10, 100].

Figure 2: Sequence Image normalization of a fasta file

Trained classifiers has been validated based on their accuracy, area under the

curve (AUC), precision, and recall. Accuracy (Acc) is defined as the proportion of

test cases correctly classified as either recent or chronic. Precision (Prec) measures

the fraction of the correctly classified populations within each predicted infection

class, while recall (Rec) measures the fraction of the true recent or chronic pop-

ulations that are correctly predicted as such. Validation has been performed via

stratified 10-fold cross validation. Specifically, in addition to the standard 10-fold

cross-validation, we employ ”leave-one-outbreak-out” cross-validation and random

undersampling methods to balance the datasets. In our current data, some of the

samples come from the same HCV outbreak. Such samples are close to each other

by their nucleotide composition, thus their presence may lead to over-fitting of any

particular method. In ”leave-one-outbreak-out” cross-validation, data from each of

these outbreaks was used in the validation set, while other samples are used in the

training sets. Random undersampling has been performed to balance the difference

in sizes of datasets of recent and chronic hosts. In this method, chronic dataset size

is reduced by random subsampling to match the acute dataset size.

Clustering of intra-host viral populations

We detect outbreak by clustering images representing intra-host viral populations.

For this purpose, we employed agglomerative hierarchical clustering, k-means clus-

tering and mini-batch k-means clustering. As before, we used models’ implementa-

tions from python scikit-learn library [25]. Several distance measures have been

employed, including euclidean, manhattan and cosine metrics. Hierarchical cluster-

ing has been executed using complete, average and ward linkage approaches.
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Figure 3: Accuracy and AUC (Area under the curve) comparisons of several simple

classification methods after training them based on the normalized image data.

Normalized Mutual Information (NMI) [33], homogeneity [27] and complete-

ness [27] scores as used as metrics to analyze the clustering performance. These

measures evaluated the assigned cluster labels after clustering compared to the

actual cluster class label of each intra-host viral population. Homogeneity score

measures if the all members of a cluster actually belong to one cluster class label,

while the completeness scores measure if all the members of an actual cluster class

label are grouped into the same cluster. NMI measures the mutual information

shared between the individuals in the clusters. All these measures range from 0 to

1 and the values closer to 1 refer to better clustering efficiency. To evaluate the

effectiveness of the normalization method in detecting relatedness between any pair

of samples, we compute AUROC (Area under ROC curve) is computed (as done

in [13]). Viral populations taken from the same outbreak are considered as geneti-

cally related, otherwise as unrelated. There are 55945 pairs of samples, and 479 of

them are related. After computing the distances between each pair of samples, all

the pairs crossing a threshold value are considered as related. To compute AUROC

curve, false-postive rate (FPR) and true-postive rate(TPR) are measured by mod-

ifying the threshold starting from the best threshold value where there are no false

positives.

Results

Classification of infection stages

Stratified 10-fold cross validation has been initially performed to analyze the per-

formance of several classification methods trained using the normalized image data.

On Fig. 3 accuracies and AUC of the best models for each of the methods are shown

using box plots, with the average metrics being emphasized by the red line. Linear

SVM demonstrated superior performance compared to all other models, with an

average accuracy of 97.545% and low accuracy variance. Other models with the

exception of Gaussian NB have accuracies higher than 85%, thus exceeding accura-

cies of existing methods which are primarily based on feature extraction methods

(see Comparison with previous methods subsection). Accuracy metric alone cannot
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Figure 4: Precision and Recall comparisons of several simple classification methods

after training them based on the image data generated after our sequence image

preprocessing method.

justify the performance of the model as it needs to also achieve higher precision

and recall metrics for each infection type. Fig. 4a - 4d demonstrate the precision

and recall metrics for chronic and recent samples separately. As before, linear SVM

achieved the best performance over all other models with an average precision and

recall values of 98.11% and 98.45% for chronic populations and 96.52% and 95.36%

for recent populations, respectively. This model also has low variance across the

values obtained from all the folds. Noticeably, other models with the exception of

Gaussian NB also achieve more than 80% values for these metrics.

Linear SVM model has been analyzed further with leave-one-outbreak-out and

random undersampling validation combined with 10-fold cross-validation. Table 1

shows the results of these methods compared to the standard 10-fold cross vali-

dation on the whole dataset. The classification accuracy remains stable under the

additional sampling methods.

Detection of transmission clusters

The results of k-means, mini-batch k-means and hierarchical clustering models are

shown in Table 2 . In our experiments, agglomerative hierarchical clustering with

ward linkage and euclidean distance between images demonstrated the best perfor-

mance. Furthermore, we evaluated the accuracy of detection of epidemiologically

related pairs of populations. Two populations are considered to be related, if the
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Table 1: Performance metrics of Linear SVM classifier assessed by standard 10-

fold cross validation, leave-one-outbreak-out validation and random undersampling

methods
Sampling Methods Accuracy Precision-

Chronic
Precision-
Acute

Recall-
Chronic

Recall-
Acute

AUC

Standard 10-fold
cross-validation

97.545% 98.105% 96.515% 98.446 % 95.364% 96.905%

Leave-one-
outbreak-out

96.075% 97.004% 91.0% 98.446 % 83.5% 90.973%

Random undersam-
pling

95.164% 96.328% 94.661% 94.155 % 96.173% 95.164%

Table 2: Performance metrics of various clustering methods
Clustering Method NMI homogeneity completeness

k-means 0.986 0.994 0.978
Mini-batch k-means 0.985 0.992 0.978

Hierarchical 0.987 0.994 0.979

distance between corresponding images is below a specified threshold. ROC curves

for the accuracy of detection of epidemiologically related pairs for different distance

measures and thresholds are shown on Fig. 6. All distance measures expressed con-

sistent performance, with AUC exceeding 0.99 for all of them.

Effect of image resolution

All the experimental results discussed above have been obtained using the default

image resolution 480× 480. We analyzed the impact of image resolution on classifi-

cation and clustering performance. Resolution values have been varied from 50×50

to 550 × 550 with step size of 50. Fig. 5a shows the performance metrics of strat-

ified 10-fold cross validation using LinearSVM model for detecting stage of HCV

infections based for different image resolutions. Highest accuracy is achieved at the

resolution 450x450, although the accuracy mostly saturates approximately after

the resolution 300× 300. Similar performance has been observed for agglomerative

hierarchical clustering (Fig. 5b).

Comparison with previous methods

Previously published model [24] classifies the stages of HCV infection using one

of the following 3 parameters: variant frequencies entropy, average position-wise

nucleotide entropy and the average distance from viral variants to the most frequent

variant of the population. On our data, AUC for these parameters was equal to

∼ 81%, ∼ 66% and ∼ 78%, respectively, while the proposed classifier based on

image normalization yielded ∼ 96.9% AUC.

We also compared the proposed method for the inference of genetic relatedness

between different HCV samples with the two methods VOICE and ReD proposed

in [13]. Image clustering method achieves sensitivity of 98.181% and AUROC of

99.2% which is similar to the VOICE algorithm and higher than ReD algorithms.

Conclusion
In this study, we propose a novel method for generation of fixed set of features

representing heterogeneous viral populations, which is widely applicable for vari-

ous classification and clustering tasks addressed by machine learning. The method
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Figure 5: Performance metrics (Y-axis) of classification and clustering methods

based on different image resolutions(X-axis).
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Figure 6: Performance of AUROC in detection of epidemiologically related pairs of

populations with different distance metrics.

converts sequencing data into fixed-size images thus addressing several issues as-

sociated with comparison of viral populations by machine learning methods. The

simplicity of the sequence image normalization method makes it a robust approach

for converting genomic data into numerical data. The image data also helps in

visualization of the original genomic data. Experimental results demonstrate that

the preprocessing method converting sequencing data into images can be success-

fully applied to different problems from the domain of molecular epidemiology and

molecular surveillance of viral diseases, with simple binary classifiers and clustering

techniques applied to the image data providing better or comparable accuracies

than the existing models. In future work, sequence image normalization machinery

can be applied to other challenging problems in viral genomics, such as detection

of co-infections and prediction of drug resistance and therapy outcome.

Acknowledgements
PS was partially supported by NIH grant 1R01EB025022 ”Viral Evolution and

Spread of Infectious Disease in Complex Networks: Big Data Analysis and Mod-

eling”. A.Z. has been partially supported by NSF Grants DBI-1564899 and CCF-

1619110 and NIH Grant 1R01EB025022-01. PIB was supported by GSU Molecular

Basis of Disease fellowship.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2019. ; https://doi.org/10.1101/642108doi: bioRxiv preprint 

https://doi.org/10.1101/642108
http://creativecommons.org/licenses/by-nc-nd/4.0/


Basodi et al. Page 11 of 12

Competing Interests
We declare that we have no competing interests

Author details
1Computer Science Department, Georgia State University, 25 Park Place NE, Atlanta, GA, 30303, USA. 2The

Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, 11991, Russia.
3Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA.

References
1. Andria Apostolou, Michael L Bartholomew, Rebecca Greeley, Sheila M Guilfoyle, Marcia Gordon, Carol Genese,

Jeffrey P Davis, Barbara Montana, and Gwen Borlaug. Transmission of hepatitis c virus associated with

surgical procedures-new jersey 2010 and wisconsin 2011. MMWR. Morbidity and mortality weekly report,

64(7):165–170, 2015.

2. Irina Astrovskaya, Nicholas Mancuso, Bassam Tork, Serghei Mangul, Alex Artyomenko, Pavel Skums, Lilia
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