

"Changes in the microbial community of *Lubomirskia baicalensis* affected by Brown Rot Disease"

ROREX Colin<sup>1</sup>, BELIKOV Sergej<sup>2</sup>, BELKOVA Natalia<sup>2,3</sup>, CHERNOGOR Lubov<sup>2</sup>,

KHANAEV Igor<sup>2</sup>, NALIAN Armen<sup>1</sup>, MARTYNOVA-VAN KLEY Alexandra<sup>1</sup>

<sup>1</sup> Stephen F. Austin State University

<sup>2</sup> Limnological Institute SB RAS, Irkutsk, Russia

<sup>3</sup>Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia

## Abstract

2 Sponge diseases occur globally and the resulting reduction of sponge populations  
3 has negative effects on other organisms within the ecosystems due to loss of nutrient  
4 enrichment and loss of bioremediation. In Lake Baikal, the predominate sponge species  
5 *Lubomirskia baicalensis* is currently being infected with an unidentified pathogen resulting  
6 in a sharp decline in population. The current hypothesis is that the recent increase in  
7 methane concentration in the lake has caused dysbiosis within the bacterial community  
8 of *L. baicalensis* resulting in the disease outbreak. In this study we investigated the  
9 changes in the bacterial community between healthy and sick sponges using 16S  
10 bacterial profiling targeting veritable regions 3-5. Here we present data that the bacterial  
11 communities of the healthy sponge samples were significantly different from sick samples  
12 and several poorly classified organisms were identified by Indicator Species Analysis as  
13 significant. Organisms identified from the sick samples classified within taxonomic units  
14 that contain acidophilic bacteria which suggest pH may play a role. There was also an  
15 observed decrease in the number of identified methyltropic bacteria present in the sick  
16 sponge samples compared to the healthy.

## Introduction

20 Lake Baikal in Siberia is the largest rift lake in the world and home to an estimated  
21 20% of the world's fresh water. It was formed 25 million years ago via plate tectonics and  
22 is a unique ecosystem that is of significant cultural, economic, and scientific value. Native  
23 to Lake Baikal are several species of freshwater sponge, of which *Lubomirskia*

24 *baicalensis* is the predominate species. Currently, researchers at Lake Baikal are  
25 reporting an outbreak of disease affecting *L. baicalensis* [1 and 2].

26 This disease outbreak first occurred in 2011 [1]. Prior to this report there had been  
27 no historical record of systemic sponge disease in this location. The long-term effects of  
28 a severe sponge disease are difficult to predict. Losses in sponge population can result  
29 in increases of phytoplankton blooms with negative environmental and economic effects  
30 [3]. In addition, the loss of sponge mass can also negatively impact oxygen levels and  
31 nutrient availability in the ecosystem as sponges play critical roles as filter feeders, both  
32 consuming a wide range of microorganisms and increasing nutrient availability [4].

33 Sponge disease mechanisms can vary with some disease outbreaks caused by a  
34 single organism and others requiring multiple organisms. The disease outbreak in the  
35 Great Barrier Reef of *Rhopaloeides odorabile* was reported to have been caused by a  
36 novel  $\alpha$ -proteobacteria [5]. In the Red Sea, microbiota recovered from diseased sponge  
37 tissues taken from two sites 30 km apart were both found to be colonized by the same  
38 species of verrucomicrobia [6].

39 Several outbreaks have been shown to require exposure to multiple pathogenic  
40 microorganisms. In a disease outbreak off the coast of Papua New Guinea, five bacterial  
41 species were isolated from diseased tissue and used to inoculate healthy sponge tissue.  
42 Here the disease state was only replicated in culture when five bacterial isolates were  
43 used together as an inoculum [7]. In Sponge Necrosis Syndrome, two bacteria and four  
44 fungal species were identified in the diseased tissue. Reproducing the disease in culture  
45 required a mixture of one bacterial and one fungal species [8].

46           The Sponge White Patch disease, originally thought to be the cause of a sponge  
47   boring bacteria infecting *Amphimedon compressa*, was re-evaluated utilizing bacterial  
48   microbiome profiling techniques. It was found that diseased sponges had a different  
49   microbiota than healthy sponges, with some of the species detected previously implicated  
50   in other sponge and coral diseases [9].

51           In the case of the sponge disease reported in Lake Baikal, the causative  
52   organism(s) or factors have not been identified. One hypothesis is that the disease is  
53   caused by a dysbiosis in *L. baicalensis* as a result of increasing methane concentrations  
54   in Lake Baikal [1].

55           This pilot study classifies the bacterial communities using five tissue samples  
56   collected before and after the disease outbreak occurred. Our hypothesis is that sick  
57   sponges will have a distinct bacterial community not shared by healthy sponges and that  
58   significant taxa occurring within the sick sponges may correlate to factors related to  
59   disease state.

60

## 61           **Materials and Methods**

62

### 63           Samples

64

65           Three samples of DNA extracted from sponge tissue were received from our  
66   collaborators at the Lake Baikal, Irkutsk, Limnological Institute SB RAS. Two samples  
67   were collected from healthy sponges (PI and PII), the third sample (PIII) was collected  
68   from a diseased sponge. Already sequenced data was provided for three additional

69 samples. These additional samples were sequenced using the Roche 454 platform and  
70 include a duplicate of the diseased sample PIII-454, an uninfected sample Healthy-454,  
71 and a laboratory cultivated aggregates from dissociated single sponge cells called  
72 primmorphs (Table 1).

73

**Table 1.** Description of all samples in this study. Sample name is the identifier for this study. Organism ID is an arbitrary label used when the same DNA pool is shared or when both samples are taken from the same organism. The primer refers to the 16S variable regions used to sequence the sample. Outbreak status indicates whether the sample was collected before or after the first signs of disease were detected. The sequencing platform indicates which NGS sequencing platforms was used to generate sequencing data.

| Sample name | Organism ID | Primer | Health  | Pre/Post Outbreak | Sequencing platform |
|-------------|-------------|--------|---------|-------------------|---------------------|
| PI-357wF    | PI          | V3/V4  | Healthy | Pre               | Illumina MiSeq      |
| PI-515yF    | PI          | V4/V5  | Healthy | Pre               | Illumina MiSeq      |
| PII-357wf   | PII         | V3/V4  | Healthy | Post              | Illumina MiSeq      |
| PII-515yF   | PII         | V4/V5  | Healthy | Post              | Illumina MiSeq      |
| PIII-357wF  | PIII        | V3/V4  | Sick    | Post              | Illumina MiSeq      |
| PIII-515yF  | PIII        | V4/V5  | Sick    | Post              | Illumina MiSeq      |
| PIII-454    | PIII        | V1-V3  | Sick    | Post              | Roche 454           |
| Healthy-454 | PIV         | V1-V3  | Healthy | Post              | Roche 454           |
| Primmorphs  | PV          | V1-V3  | Treated | Post              | Roche 454           |

74

## 75 Amplification and Sequencing

76

77 Amplification and sequencing of amplicons was conducted by RTL Genomics of  
78 Lubbock, Texas ([www.rtlgenomics.com](http://www.rtlgenomics.com)). Samples were amplified using two 16S rRNA  
79 primer sets: 357wF/785R for variable regions 3 and 4 (V3-V4) and 515yF/916yR for  
80 variable regions 4 and 5 (V4-V5). Sequencing was conducted on an Illumina platform.

81

## 82 Primer sequences

83  
84 357wF (V3-V4)  
85  
86 **CCTACGGGNGGCWGCAG**  
87  
88 785R (V3-V4)  
89  
90 **GACTACHVGGGTATCTAATCC**  
91  
92 515yF (V4-V5)  
93  
94 **GTGYCAGCMGCCGCGGTAA**  
95  
96 926pfR (V4-V5)  
97  
98 **CCGYCAATTYMTTTRAGTTT**  
99  
100 Data Analysis  
101  
102       FASTA data was prepared by removing barcode information from sequence reads  
103       prior to taxonomic determination. Taxonomic data was generated for both Illumina and  
104       Roche 454 data sets using RDP classifier ([rdp.cme.msu.edu](http://rdp.cme.msu.edu)) with an 80% confidence  
105       threshold. Both data sets were then merged into a unified matrix file. An environmental

106 matrix was constructed with descriptive values for the samples such as primer,  
107 sequencing platform, disease condition, and collection date. The vegan package for R-  
108 studio (rstudio.com) was used for statistical analysis. Species data was visualized using  
109 the envfit function of vegan to construct a non-metric multidimensional scaling (NMDS)  
110 ordination and then fitted with descriptive variables to the ordination using 100,000  
111 permutations. Indicator species analysis (ISA) was performed and the samples were  
112 organized into three higher order groups based on primer and clustering in ordination  
113 space. PI-515yF and PII-515yF were clustered into the Healthy 1 group. The Healthy 2  
114 group consisted of PI-357wF, PII-357wF and Healthy-454. The Sick group consisted of  
115 the three PIII samples consisting of PIII-357wF, PIII-515yF and PIII-454. The primmorph  
116 sample was omitted from ISA as it contained only a single set of data.

117

## 118 **Results**

119

120 Species Richness

121

122 Species richness, the number of unique taxonomic groups in each data set, ranged  
123 from 37 taxonomic groups to 89 taxonomic groups. Samples amplified with the 515yF  
124 primer had the lowest species richness with 37 unique taxa with the PI sample, 40 with  
125 PII and 61 with the PIII sample. The samples amplified with the 357wF primer recovered  
126 more taxonomic groups with both PII and PIII recovering 77 unique taxa and PI 88. The  
127 Roche 454 samples, recovered 74, 78 and 89 for the PIII-454, Healthy-454 and  
128 primmorph samples respectively (Figure 1).

129

130 **Figure 1.** Species richness for all microbiome profiles. PI, PII and Healthy are samples  
131 obtained from uninfected sponge tissue. PIII are samples from an infected sponge.  
132 Primmorph is a sample that was cultured under laboratory conditions obtained from  
133 sponge tissue. Suffixes indicate primer set used 515yF for V4-V5 amplification, 357wF  
134 for V3-V4 or for samples sequenced on the Roche 454 (454) platform.

135

136 NMDS

137

138 Multiple different environmental variables were fitted to the NMDS data to test for  
139 relationships between the samples in ordination space. A p-value of 0.4374 was obtained  
140 when attempting to fit the sequencing platform to the data, indicating that the underlying  
141 relationship structuring the points in ordination space is unrelated to the type of sequencer  
142 used. Likewise, attempting to fit primer data to the ordination failed to achieve statistical  
143 significance with a p-value of 0.4385. Other factors considered, such as collection year,  
144 had no relevance to the ordination structure (p-value 0.7981).

145 A significant p-value of 0.023 was obtained when the data was fitted against the  
146 disease status of the sponge samples (Figure 2). The three samples from the diseased  
147 sponge PIII-357wF, PIII-515yF and PIII-454 clustered together in ordination space. The  
148 five samples from health sponges, while showing a wide distribution in ordination space,  
149 still formed a cluster around the Healthy-454 sample. The primmorph sample did not  
150 group with either of the two other groups.

151

152 **Figure 2.** NMDS fitting sponge disease status. Healthy samples are represented by  
153 circles. Sick samples by triangles and the primmorph sample by a square. Samples are  
154 linked by health status (sick, healthy, primmorph). PI and PII (both 515yF and 357wF  
155 primers) and Healthy-454 cluster in one group. The diseased samples PIII (515yF,  
156 357wF and 454) cluster. And the single primmorph sample is distinct from either groups.

157

158 Indicator Species Analysis

159

160 Several significant taxa were identified as significant by ISA (Table 2). Only  
161 statistically significant samples ( $p < 0.05$ ) were reported (Table 2). The Healthy 1 group,  
162 samples amplified with the V4-V5 primer, had no significant OTUs. Healthy 2 included  
163 an organism in the order Flavobacteriales, a broad classification of aquatic bacteria, and  
164 an organism in the family Clostridiaceae 1, which contains organisms of very different  
165 pathogenicities and ecological niches.

166

**Table 2.** Summary of the significant indicator species from all data sets. The sick group is a combined group of all PIII samples. The Healthy 2 group consists of the PI-357wF, PII-357wF and Healthy-454 samples. The group Healthy 1 did not contain any samples with a  $p < 0.05$ . A is the proportion of times a taxonomic group occurred within that group. B is the frequency the taxonomic group occurred in the samples that make up that group.

| Healthy 2               |        |   |       |         |
|-------------------------|--------|---|-------|---------|
|                         | A      | B | Stat  | P value |
| Clostridiaceae 1        | 1      | 1 | 1     | 0.0396  |
| Flavobacteriales        | 1      | 1 | 1     | 0.0396  |
| Sick                    |        |   |       |         |
|                         | A      | B | Stat  | P value |
| Opitutus                | 1      | 1 | 1     | 0.0344  |
| Acidobacteria Gp3       | 0.9778 | 1 | 0.989 | 0.023   |
| Acetobacteraceae        | 0.84   | 1 | 0.916 | 0.0428  |
| Sick and Healthy 2      |        |   |       |         |
|                         | A      | B | Stat  | P value |
| Actinobacteria          | 1      | 1 | 1     | 0.0368  |
| Alcaligenaceae          | 1      | 1 | 1     | 0.0368  |
| Candidatus pelagibacter | 1      | 1 | 1     | 0.0368  |

167

168

169 Three taxa were identified within the Sick group. *Opitutus* is a poorly understood  
170 genus of Verrucomicrobia found in rice paddy soil [10]. *Acetobacteraceae* is a family of  
171 oxidative fermenters that can tolerate low acid environments. *Acidobacteria Gp3* is a  
172 subdivision of the phylum Acidobacteria which also contains known acidophiles.

173

174

175 The combined Healthy 2 and Sick group had several significant taxa common to  
176 aquatic ecosystems. *Pelagibacter unqiue* is the most abundant marine and freshwater  
177 bacterium on Earth [11]. *Alcaligenaceae* is a family of bacteria found in all non-extreme  
178 environments, some of which are known to be pathogenic. *Terrimicrobium*, a

179 Verrucomicrobia, is another poorly-characterized bacteria that was first found in rice  
180 paddies. One organism classified only at the phylum level, Actinobacteria, has members  
181 which are ubiquitous in terrestrial and aquatic ecosystems.

182

183 Methylotrophic bacteria

184

185 Only the V3-V4 primer set recovered sequence data that identified methylotrophic  
186 bacteria. The highest number of detected methylotroph sequences was in the PI  
187 samples, collected prior to the disease outbreak. We observed a decrease in the PII and  
188 PIII samples both collected after the disease outbreak with the lowest abundance in the  
189 sick PIII samples (Table 3).

**Table 3.** A table of **methylotrophic** organisms and the number of sequences recovered in each sample.

Samples highlighted in gray were collected from sick organisms. Samples are separated by primer set.

|             | Methyo-coccaceae | Methyo-cystaceae | Methyo-cystis | Methyo-philaceae | Methyo-soma | Methyo-tenera |
|-------------|------------------|------------------|---------------|------------------|-------------|---------------|
| PI-515yF    | 0                | 0                | 0             | 0                | 0           | 0             |
| PII-515yF   | 0                | 0                | 0             | 0                | 0           | 0             |
| PIII-515yF  | 0                | 0                | 0             | 0                | 0           | 0             |
| PI-357wF    | 0                | 0                | 0             | 401              | 0           | 144           |
| PII-357wF   | 0                | 2                | 12            | 0                | 16          | 0             |
| Healthy-454 | 0                | 0                | 22            | 5                | 5           | 22            |
| PIII-357wF  | 0                | 1                | 17            | 18               | 0           | 0             |

190

191

## 192 Discussion

193

194       Based on the species richness data, the 515yF primer set does not recover the  
195    same depth of taxonomic units as the 357wF primer set. This is most likely due to  
196    differences in the primers rather than a sample specific phenomenon. Both primer sets  
197    amplify the V4 region along with a different additional variable region. The choice of which  
198    variable region to sequence does have a noticeable impact on the type of data recovered  
199    [12]. One of the limitations of the 515yF-926pfR primer set was the lack of any recovered  
200    methyltroph sequences compared against the V1-V3 primer and the V4-V5 primer.

201       Multiple descriptive factors were tested against the NMDS to determine if they  
202    were likely to explain the distribution. Among the factors tested were sequencing  
203    platform, health status of the samples, primer used for amplification, *L. baikalensis*  
204    organism sampled, and whether the samples were collected before or after the outbreak.  
205    The only statistically significant factor was the health of the organism with a p value of  
206    0.0243. This indicates the bacterial communities of the sick samples are distinct from  
207    those of the healthy samples. This also drove the creation of the higher order groups  
208    used in ISA.

209       ISA identified two organisms in taxonomic groups known to contain acidophiles,  
210    Acidobacteria gp3 and acetobacteraceae. Since these two organisms occur almost  
211    exclusively within the sick samples, 97.8% and 84% respectively, this suggests either  
212    these organisms or a low pH may be a correlating factor to disease.

213       Since methane and methyltrophs are hypothesized to be involved in the disease  
214    outbreak, it was unexpected that there was an observed decrease in abundance of  
215    methyltrophs in the sick samples. This suggests that methyltrophs could be a transient

216 component of the sponge microbiome during the course of infection with initial  
217 colonization of methyltrophs causing a dysbiosis event that enables pathogenic  
218 microorganisms to colonize causing disease. Then the observed decrease in  
219 methyltrophs may result from the changing post-infection bacterial community where  
220 other microorganisms are able to outcompete the methyltrophs.

221 In conclusion, we find that the bacterial community of sick sponges is distinct from  
222 that of healthy sponges. The identification of two poorly-classified acidophiles significant  
223 to the sick samples should be further investigated. To fully explore this both a larger data  
224 set needs to be obtained and an alternate V4-V5 primer used as the 515yF-926pfR primer  
225 did not recover any sequences classifying as methyltrophs. We propose that in addition  
226 to the collection of more samples, pH measurements both in the immediate environment  
227 and in sponge tissue should be collected.

228

229 **Acknowledgements**

230 This study was supported by the Government Contract no. VI.50.1.4, “Molecular Ecology  
231 and Evolution ....” (no. 0345-2015-0002).

232

233

234

235 **References**

236 1. Denikina NN, Dzyuba EV, Bel'kova NL, Khanaev IV, Feranchuk SI, Makarov MM, et  
237 al. The first case of disease of the sponge *Lubomirskia baicalensis*: Investigation of  
238 its microbiome. Biol Bull Acad Sci USSR. 2016;43, 263-270

239 2. Kulakova NV, Sakirko MV, Adelshin RV, Khanaev IV, Nebesnykh IA, Pérez T. Brown  
240 Rot Syndrome and Changes in the Bacterial Community of the Baikal Sponge  
241 *Lubomirskia baicalensis*. *Microb Ecol*. 2018;75(4), 1024-1034

242 3. Peterson BJ, Chester CM, Jochem FJ, Fourqurean JW. Potential role of sponge  
243 communities in controlling phytoplankton blooms in Florida Bay. *Mar Ecol Prog Ser*.  
244 2006;328, 93-103.

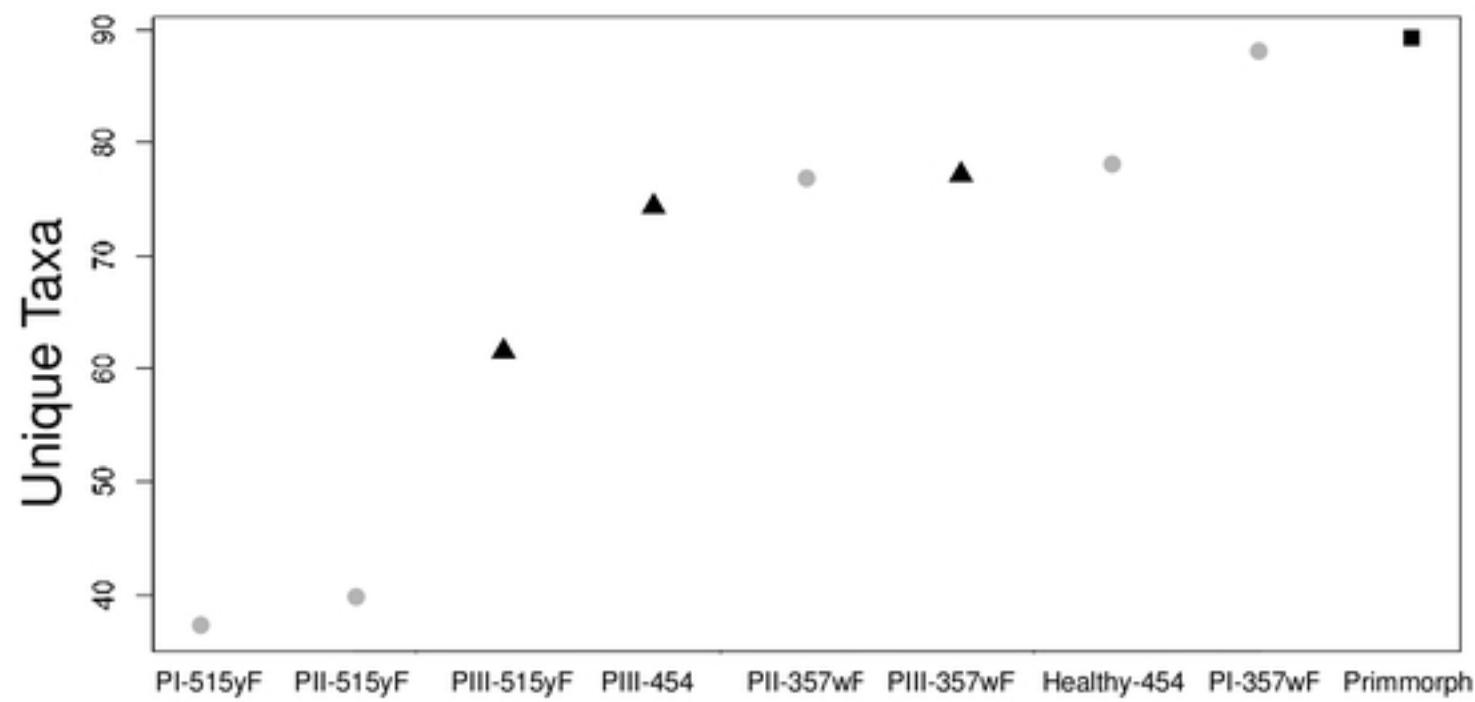
245 4. Bell JJ. The functional roles of marine sponges. *Estuar Coast Shelf Sci*. 2008;79, 341-  
246 353.

247 5. Webster NS, Negri AP, Webb RI, Hill R. A spongin-boring  $\alpha$ -proteobacterium is the  
248 etiological agent of disease in the Great Barrier Reef sponge *Rhopaloeides odorabile*.  
249 *Mar Ecol Prog Ser*. 2002;232, 305-309.

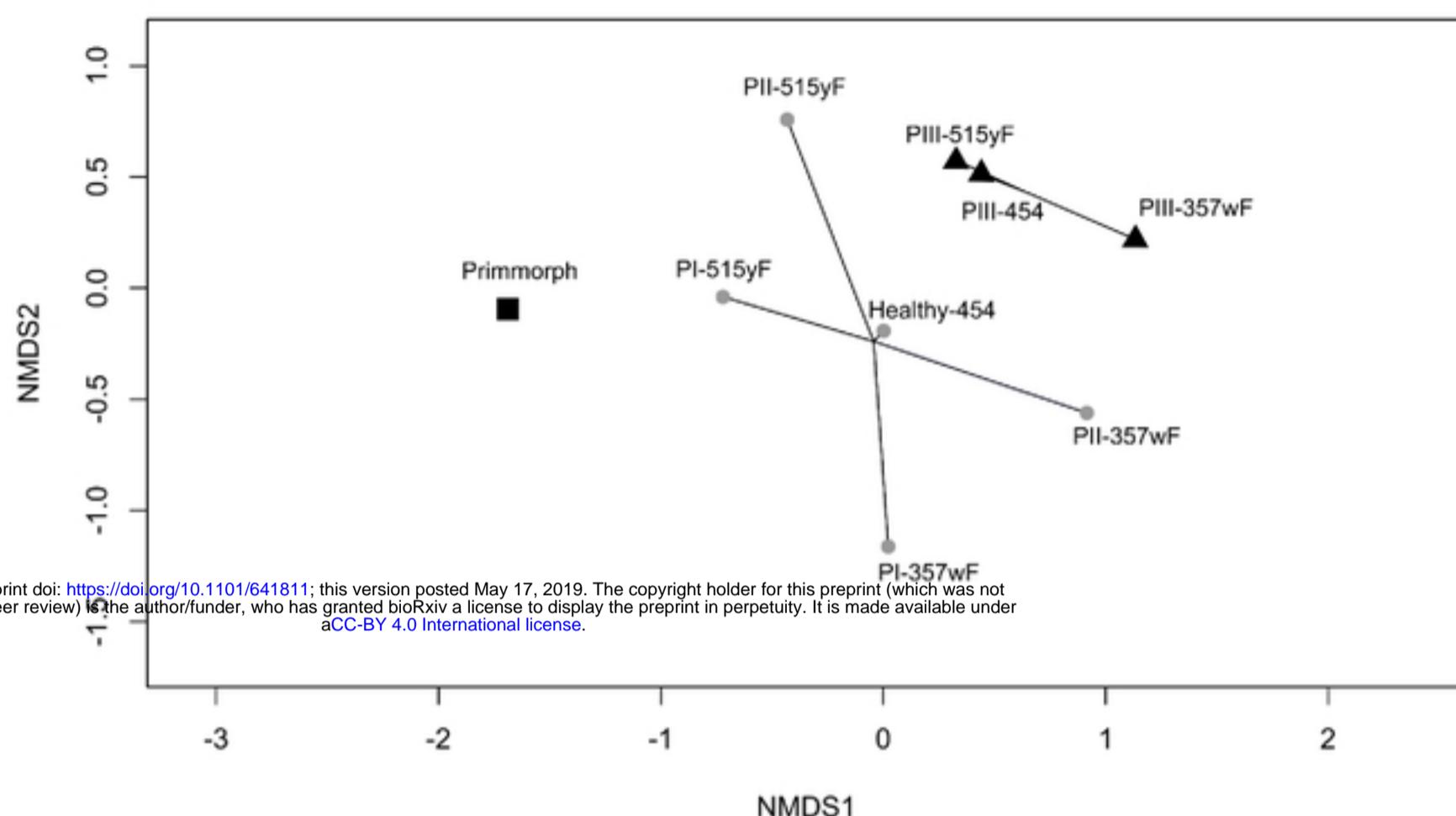
250 6. Gao ZM, Wang Y, Tian RM, Lee OO, Wong YH, Batang ZB, et al. Pyrosequencing  
251 revealed shifts of prokaryotic communities between healthy and disease-like tissues  
252 of the Red Sea sponge *Crella cyathophora*. *PeerJ*. 2015.;3, e890.

253 7. Cervino JM, Winiarski-Cervino K, Polson SW, Goreau T, Smith GW. Identification of  
254 bacteria associated with a disease affecting the marine sponge *anthellabasta* in New  
255 Britain, Papua New Guinea. *Mar Ecol Prog Ser*. 2006;324, 139-150.

256 8. Sweet M, Bulling M, Cerrano C. A novel sponge disease caused by a consortium of  
257 microorganisms. *Coral Reefs*. 2015;34, 871-883.


258 9. Angermeier H, Glöckne V, Pawlik JR, Lindquist NL, Hentschel U. Sponge white patch  
259 disease affecting the Caribbean sponge *Amphimedon compressa*. *Dis Aquat Organ*.  
260 2012;99, 95-102.

261 10. Chin KJ, Janssen PH. Propionate Formation by *Opitutus terrae* in Pure Culture and  
262 in Mixed Culture with a Hydrogenotrophic Methanogen and Implications for Carbon  
263 Fluxes in Anoxic Rice Paddy Soil. *J Appl Environ Microbiol.* 2002;68(4), 2089–2092.


264 11. Morris RM, Rappé MS, Cannon SA, Vergin KL, Siebold WA, Carlson CA, et al. SAR11  
265 clade dominates ocean surface bacterioplankton communities. *Nature* 2002;420,  
266 806–810

267 12. Rintala A, Pietilä S, Munukka E, Eerola E, Pursiheimo JP, Laiho A, et al. Gut  
268 Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target  
269 Region, Whereas the Impact of DNA Extraction Is Minor. *J Biomol Tech.* 2017;28(1),  
270 19–30.





**Figure 1.** Species richness for all microbiome profiles. PI, PII and Healthy are samples obtained from uninfected sponge tissue. PIII are samples from an infected sponge. Primmorph is a sample that was cultured under laboratory conditions obtained from sponge tissue. Suffixes indicate primer set used 515yF for V4-V5 amplification, 357wF for V3-V4 or for samples sequenced on the Roche 454 (454) platform.



**Figure 2.** NMDS fitting sponge disease status. Healthy samples are represented by gray circles. Sick samples by triangles and the primmorph sample by a square. Samples are linked by health status (sick, healthy, primmorph). PI and PII (both 515yF and 357wF primers) and Healthy-454 cluster in one group. The diseased samples PIII (515yF, 357wF and 454)