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26 Abstract
27

28 Antibodies are essential to functional immunity, yet the epitopes targeted by antibody 

29 repertoires remain largely uncharacterized. To aid in characterization, we developed a 

30 generalizable strategy to identify antibody-binding epitopes within individual proteins and entire 

31 proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a 

32 random library and identified the peptides using next-generation sequencing. To identify 

33 antibody-binding epitopes and the antigens from which these epitopes were derived, we tiled the 

34 sequences of candidate antigens into short overlapping subsequences of length k (k-mers). We 

35 used the enrichment over background of these k-mers in the antibody-binding peptide dataset to 

36 identify antibody-binding epitopes. As a positive control, we used this approach, termed K-mer 

37 Tiling of Protein Epitopes (K-TOPE), to identify epitopes targeted by monoclonal and polyclonal 

38 antibodies of well-characterized specificity, accurately recovering their known epitopes. K-

39 TOPE characterized a commonly targeted antigen from Rhinovirus A, identifying three epitopes 

40 recognized by antibodies present in 83% of sera (n = 250). An analysis of 2,908 proteins from 

41 400 viral taxa that infect humans revealed seven enterovirus epitopes and five Epstein-Barr virus 

42 epitopes recognized by >30% of specimens. Analysis of Staphylococcus and Streptococcus 

43 proteomes similarly revealed six epitopes recognized by >40% of specimens. These common 

44 viral and bacterial epitopes exhibited excellent agreement with previously mapped epitopes. 

45 Additionally, we identified 30 HSV2-specific epitopes that were 100% specific against HSV1 in 

46 novel and previously reported antigens. The K-TOPE approach thus provides a powerful new 

47 tool to elucidate the organisms, antigens, and epitopes targeted by human antibody repertoires.

48

49
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50 Introduction
51

52 Immunological memory allows for rapid antibody responses towards diverse antigens 

53 long after initial exposure. For example, the adaptive immune response to many vaccinations is 

54 often sustained throughout an individual’s lifetime [1]. This immunological information is 

55 archived within the genes encoding B-cell and T-cell receptors along with the corresponding 

56 receptor structures, but has proven difficult to characterize in a comprehensive manner. The 

57 ability to more fully interrogate immunological memory could reveal exposures to pathogens, 

58 commensal organisms, and allergens. Such information has proven useful for correlating 

59 antibody responses with disease outcomes to design more effective vaccines [2]. A detailed 

60 record of immune exposures can also facilitate the identification of biomarkers to diagnose 

61 infectious [3], autoimmune [4], and allergic conditions [5]. Furthermore, the capability to 

62 broadly characterize antibody repertoires at the epitope level could be used to identify conserved 

63 pathogen epitopes [6] and tumor specific antigen epitopes [7] to aid in therapeutic discovery. 

64 A disease with prominent antibody responses is the common viral infection HSV, which 

65 causes human infections in the orofacial region (“cold sores”) and the genital region (“genital 

66 ulcers”) [8]. In 2012, the global prevalence of HSV1 was 3.7 billion people ages 0-49 [9] and the 

67 global prevalence of HSV2 was 417 million people ages 15-49 [10]. Diagnostic discovery 

68 generally focuses on diagnosing HSV2, since HSV2 infections can exacerbate HIV infections 

69 [10]. However, HSV1 and HSV2 contain the same genes [11] and the protein-coding regions of 

70 the HSV1 and HSV2 genomes share 83% sequence homology [12]. Therefore, researchers have 

71 often analyzed HSV glycoprotein G, since it differs substantially between the two HSV species 

72 [13]. In general, efforts have been limited to analyses of the surface-exposed envelope 
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73 glycoproteins [14–17], using approaches such as microarrays [18]. Therefore, it would be novel 

74 to probe immunological memory using the entire proteomes of HSV1 and HSV2.

75 Immunological memory has been investigated extensively through sequencing the 

76 variable regions of B- and T-cell receptor encoding genes amplified from circulating cells [19]. 

77 These methods have proven useful for identifying receptor-encoding genes that associate with 

78 vaccination [20]. Nevertheless, such genetic information has not generally provided insight into 

79 the specific environmental antigens and epitopes targeted, unless they are known a priori. 

80 Furthermore, these methods require large specimen volumes (>10 mL) to obtain a sufficient 

81 quantity of cells [20]. Thus, there remains a need for methods that identify the diverse antigen 

82 targets of adaptive immunity.

83 Several methods have been developed to profile the protein epitopes of the secreted 

84 antibody repertoire [21]. Approaches have often focused on linear epitopes since 85% of 

85 epitopes contain at least one contiguous stretch of five amino acids [22]. By analyzing linear 

86 epitopes, researchers have identified sensitive and specific diagnostic epitopes for numerous 

87 diseases [21]. One common approach to epitope mapping is to generate short overlapping 

88 peptides by tiling candidate antigens. These peptides are then assayed for serum antibody 

89 reactivity in peptide microarray [23] or bacteriophage display library [24] formats. However, 

90 because these methods are biased towards specific organisms, they do not enable comprehensive 

91 or hypothesis-free immune evaluation. One strategy to overcome the limitations of tiling 

92 experiments is to use fully random peptide libraries [5,25,26]. Here, experiments are less biased 

93 and methods can analyze epitopes corresponding to a variety of organisms and antigens. A 

94 disadvantage of microarrays is that they are typically several orders of magnitude less diverse 

95 than peptide display libraries (e.g. 105 [25] versus 1010 [5]), limiting the effectiveness with which 
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96 current methods can achieve epitope discovery for low titer antibodies. In random library 

97 experiments, epitopes are typically discovered using de novo motif discovery by unsupervised 

98 clustering [27]. The most widely used algorithm for this purpose, MEME, scales approximately 

99 quadratically with the number of input sequences, making it less useful for analyzing large 

100 datasets resulting from next generation sequencing (NGS). While full-length antibody-binding 

101 peptides can be analyzed, the majority of the binding energy is typically derived from just 5-6 

102 amino acids [28], thus other amino acids within the peptide will contribute noise. To rectify this 

103 problem researchers developed the IMUNE algorithm to reduce peptide datasets into statistically 

104 enriched patterns and cluster these patterns to build motifs [29].

105 A significant challenge for epitope mapping approaches is the association of epitopes and 

106 motifs with their corresponding antigens. Neither MEME nor IMUNE have the integrated 

107 capability to connect motifs to plausible antigens. Also, motifs identified through these methods 

108 often fail to reach the seven amino acids requirement for unambiguous identification of antigens 

109 within the full database of protein sequences [30]. Fundamentally, linear stretches in epitopes are 

110 typically less than seven amino acids in length [22], therefore, protein database searches of 

111 individual epitopes (such as through BLAST [31]) often fail to achieve statistical significance. 

112 Using multiple epitope matches within a single candidate antigen can increase the confidence of 

113 antigen prediction [26,32]. However, this method is insufficient for antigens with a single 

114 important epitope. Additionally, protein database searches are conducted using short amino acid 

115 sequences, therefore these searches do not fully leverage large quantitative binding datasets. To 

116 address these challenges, we present a general approach for associating epitopes with antigens 

117 using large peptide datasets. The K-mer Tiling of Protein Epitopes (K-TOPE) algorithm 

118 identifies epitopes by computationally tiling candidate antigens into k-mers, which are then 
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119 evaluated within large datasets of antibody-binding peptides. Here, we demonstrate the utility of 

120 this approach by identifying linear epitopes within the proteomes of several prevalent infectious 

121 pathogens. 

122 Results
123

124 To enable the identification of protein epitopes bound by serum antibodies, we developed 

125 a method that uses a database of antibody-binding peptides to identify epitopes in known protein 

126 sequences (Fig 1). First, we selected peptides binding to an individual antibody repertoire within 

127 a specimen (serum or plasma) from a bacterial display peptide library with 1010 random 12-mer 

128 members. Then, we identified antibody-binding peptide sequences using NGS. To allow for the 

129 manipulation of 205 (3.2 million) k-mers rather than full-length peptides, we processed peptides 

130 into subsequences and evaluated the enrichments of all k-mers of length 5 [29]. Next, K-TOPE 

131 tiled candidate antigen sequences, such as from a proteome, into overlapping k-mers. K-TOPE 

132 used the enrichment values for these k-mers to construct an enrichment histogram across the 

133 length of each protein sequence. The frequency value at each sequence position in the histogram 

134 was proportional to the enrichment of k-mers that included that position. Specifically, for all k-

135 mers overlapping a position, we summed the log base 2 of the k-mer enrichment. Thus, higher 

136 frequency values at a position in a protein sequence corresponded to a greater probability that a 

137 position was included in an epitope. Epitopes were extracted from the maxima in the histogram 

138 and scored based on their area under the curve (AUC). Finally, epitopes were assigned an 

139 “epitope percentile” based on their rank in a list of scores generated from random proteins.

140 Fig 1. K-TOPE determines epitopes by tiling proteins into k-mers. (A) The input to the 
141 algorithm is a dataset of approximately 106 peptides that were bound by serum antibodies. (B) 
142 All 5-mers are evaluated for their enrichment in the list of peptides. (C) A portion of a protein 
143 sequence is tiled into 5-mers which are weighted by their enrichment. This determines a 
144 “frequency” value for each position in the sequence. (D) The frequency value for each position 
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145 in a protein sequence is plotted as a histogram. Possible epitopes are highlighted in pink on the 
146 graph. Epitope sequences, area under the curve (AUC) scores, and significance percentiles are 
147 displayed.
148
149 To assess the utility of K-TOPE, we first determined epitopes for monoclonal and 

150 polyclonal antibodies that bind specific, well-defined epitopes in cMyc, V5, and amyloid beta. 

151 We spiked these antibodies into serum at a final concentration of 25 nM and then selected and 

152 identified binding peptides. K-TOPE identified epitopes that corresponded closely to the 

153 previously reported epitopes of these antibodies (Fig 2). Importantly, the enrichment histograms 

154 generated by antibodies spiked into background serum or buffer were nearly identical (S1 Fig), 

155 suggesting that the noisy serum environment minimally affected epitope identification.

156 Fig 2. K-TOPE found epitopes for antibodies with known specificity spiked into serum. 
157 Histograms for antibodies with known specificity against amyloid beta (P05067), cMyc 
158 (P01106), and V5 (P11207) had prominent epitopes (in pink). (A) K-TOPE analysis of amyloid 
159 beta determined the epitope VKMDAEFRHD (668-678). This antibody was raised to whole 
160 protein and is known from literature to have a conformation-specific discontinuous epitope that 
161 maps to segments EFRHDSGY (673-680) and ED (692-693). (B) K-TOPE analysis of cMyc 
162 determined the epitope EEQKLISEEDLLRKR (408-422). This antibody was raised to 
163 AEEQKLISEEDLLRKRRE (407-424). (C) K-TOPE analysis of V5 determined the epitope 
164 PIPNPLLGLDS (96-106). The antibody was raised to GKPIPNPLLGLDST (94-107).
165
166 To identify “public epitopes” conserved across many individuals, epitopes were 

167 generated for each specimen individually and then clustered. Although many private epitopes 

168 were identified for each specimen in this process, we focused on the far smaller set of public 

169 epitopes to facilitate comparison with previous literature. Given the ubiquity of exposure to the 

170 upper respiratory pathogen Rhinovirus A, we validated the approach by identifying epitopes 

171 within its genome polyprotein. Using a unique set of 250 serum specimens, we identified 

172 epitopes within Rhinovirus A that were targeted by 30% or more of the specimens (Fig 3A). Of 

173 the 250 specimens, 87% exhibited binding to at least one of these consensus epitopes (Fig 3B). 

174 Three of these epitopes were located within positions 570-620 (Fig 3C), in the antigenic 
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175 attachment region of VP1. A fourth epitope within the VP2 region of the Rhinovirus A genome 

176 polyprotein was targeted by 43% of the population. 

177 Fig 3. K-TOPE identified four epitopes in the Rhinovirus A genome polyprotein. (A) K-
178 TOPE was applied to the Rhinovirus A genome polyprotein (P07210) for 250 specimens. 
179 Histograms for all specimens are shown as rows in a heat map. The specimens have been 
180 clustered such that specimens that bind the same epitopes are adjacent. Regions that contain 
181 epitopes are outlined by dotted lines. (B) A table of the percentage of the population that bound 
182 each epitope. For instance, Epitope 1 is the percentage of specimens that targeted “1”, “1+2”, 
183 ”1+3”, “1+4”, ”1+2+3”, “1+2+4”, ”1+2+3+4”. (C) The region from positions 570-620 is divided 
184 into 3 sections that correspond to distinct epitopes. These epitopes are consensus epitopes which 
185 were present in >30% of the 250 specimens. (D) Bar graph showing membership in different 
186 epitope groups. For example, a specimen that binds epitopes 2 and 3 will belong to epitope group 
187 “2+3”. In this population, 87% of the specimens bound at least one of the consensus epitopes. 
188 The sequences of the epitopes were 1: QNPVENYI, 2: DSVLEVLVVPN, 3: 
189 APALDAAETGHT, and 4: NHTHPGEQG.
190
191 To assess trends in the population, each specimen was assigned into one of eight groups 

192 based on which of the three VP1 epitopes were bound (Fig 3D). Notably, epitope binding was 

193 not independent, since the group of specimens targeting all three epitopes was 44% larger than 

194 expected and the group targeting epitopes ‘1+3’ was 50% smaller than expected (S1 Table). The 

195 average age of the subset of specimens of known age (n=138) was 35 years, however, the epitope 

196 group targeting all three epitopes had an average age of 17, and the epitope group targeting none 

197 of the epitopes had an average age of 50 (S2 Table). Thus, people who targeted fewer Rhinovirus 

198 A epitopes tended to be older.

199 Next, we investigated the utility of using K-TOPE to identify epitopes within a set of 

200 2,908 proteins from 400 viral taxa with human tropism. This approach yielded 29 epitopes that 

201 were bound by at least 30% of all specimens (Table 1). The prevalence of each epitope is noted, 

202 which is defined as the proportion of specimens that bound the epitope. Some of these epitopes 

203 have been reported previously [6,33–35]. Thus, a modest number of prominent linear viral 

204 epitopes were bound by >30% of the specimens analyzed. A common antigen identified from 
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205 this analysis was Epstein-Barr nuclear antigen 1 (EBNA1) from Epstein-Barr virus (EBV), 

206 which is expressed in EBV-infected cells [36]. Additionally, the epitopes identified for the 

207 enterovirus genus were consistent with the epitopes identified for Rhinovirus A, which is a 

208 species in that genus (Fig 3). Several of the epitopes were likely due to false discovery (e.g., 

209 Mayaro virus and Lyssavirus), since these viruses are uncommon in a general population. There 

210 is an intrinsic lower limit on false positives since antibodies only bind 5-6 amino acids, which is 

211 not enough information to uniquely specify a protein subsequence. This limitation is especially 

212 pronounced among evolutionarily related proteins in closely related species.

213 Table 1. A collection of 29 viral epitopes to which >30% of 250 specimens bound. 

Epitope Protein Taxon Accession Prevalence
DSVLNEVLVVPN Genome polyprotein Enterovirus P07210 0.668
PALTAAETG Genome polyprotein Enterovirus Q66575 0.588
GRRPFFHPV Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain 

GD1)
Q1HVF7 0.524

AGAGGGAGA Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain 
GD1)

Q1HVF7 0.516

KYTHPGEA Genome polyprotein Enterovirus Q82122 0.492
VRRPFFSD Protein UL84 Human cytomegalovirus P16727 0.452
NPVERYVDE Genome polyprotein Enterovirus Q82122 0.428
MVVPEFK DNA-binding protein Human mastadenovirus C P03265 0.428
EVKLPHWTPT Glycoprotein 42 Epstein-Barr virus (strain 

GD1)
P03205 0.42

KPQPEKPK Structural polyprotein Mayaro virus Q8QZ72 0.416
GGAGAGGAGAGGG Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain 

GD1)
P03211 0.412

ININRPLE Large structural protein Lyssavirus Q9QSP0 0.412
RPSCIGCKG Epstein-Barr nuclear antigen 1 Epstein-Barr virus (strain 

GD1)
P03211 0.404

GAGAGAGGG Packaging protein UL32 Simplexvirus P89455 0.376
LEEVIVEKTK Genome polyprotein Enterovirus Q82081 0.352
KHTHPGI Replication origin-binding 

protein
Human herpesvirus 3 P09299 0.352

AETGHTNKI Genome polyprotein Enterovirus Q82122 0.344
YVFPHWITK Envelope glycoprotein gp63 Primate T-lymphotropic 

virus 3
Q0R5Q9 0.34

KTTNTTTNT Immediate-early protein 2 Roseolovirus Q9QJ16 0.34
MAADKPTL Genome polyprotein Murray Valley 

encephalitis virus
P05769 0.34

SFIVPEFA Virion membrane protein A16 Orthopoxvirus P16710 0.332
LVLPHWYMA Cytoplasmic envelopment 

protein 1
Simplexvirus P89430 0.328

YVDDMLNDI Large tegument protein 
deneddylase

Human herpesvirus 6A 
(strain Uganda-1102)

P52340 0.328
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SSGPKHTQKV Genome polyprotein Enterovirus P03303 0.324
PVPEFQA Non-structural polyprotein Semliki forest virus P08411 0.316
VPVTPNIAI Genome polyprotein Hepatitis C virus Q68749 0.304
LHRPALTA Minor capsid protein L2 Human papillomavirus 

type 34
P36758 0.304

EHILNRPTG RNA-directed RNA 
polymerase L

Crimean-Congo 
hemorrhagic fever 
orthonairovirus

Q6TQR6 0.304

GEFIGSE Shutoff alkaline exonuclease Human herpesvirus 8 Q2HR95 0.3
214 K-TOPE was used to analyze 2,908 proteins from viruses with human tropism. This search 
215 demonstrated that only a few prominent linear viral epitopes were bound by a large portion of the 
216 population.
217
218 We performed a similar analysis for the proteomes of the genera Streptococcus and 

219 Staphylococcus, which are common bacterial human pathogens with 2,976 and 3,071 proteins in 

220 their respective proteomes. K-TOPE was used with each of these proteomes to determine 

221 epitopes bound by >30% of a population of 250 specimens, yielding 9 epitopes for Streptococcus 

222 and 13 epitopes for Staphylococcus (Table 2). The epitope LIPEFIG(R) in ATP-dependent Clp 

223 protease ATP-binding subunit ClpX was the most prevalent Streptococcus epitope and second 

224 most prevalent Staphylococcus epitope. Therefore, K-TOPE could not determine which genus 

225 generated this epitope. The most prevalent Staphylococcus epitope was PTHYVPEFKGS from 

226 extracellular matrix protein-binding protein emp, which is a known virulence factor [37]. For 

227 Streptococcus, the second most prevalent epitope was GQKMDDMLNS from the highly 

228 antigenic Streptolysin O protein [38]. This epitope falls within a 70 amino acid range in 

229 Streptolysin O that is known to bind antibodies [39]. The sequence “DKP” was present in 5/9 

230 Streptococcus epitopes and the sequence “PEFXG” was present in 6/13 Staphylococcus epitopes 

231 (Table 2). Therefore, there are multiple candidate antigens that may correspond to these highly 

232 enriched sequences.

233
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234 Table 2. Epitopes in the proteomes of the genera Staphylococcus and Streptococcus which 
235 were bound by >30% of 250 specimens. 

Epitope Protein Accession Prevalence
Streptococcus
LIPEFIGR ATP-dependent Clp protease ATP-binding subunit ClpX P63793 0.512
GQKMDDMLNS Streptolysin O Q5XE40 0.436
QIPALDKPL FMN-dependent NADH-azoreductase A4W2Z7 0.416
IADKPILD UPF0154 protein SSU05_1707 A4VX34 0.392
TVADKPVA Phenylalanine--tRNA ligase beta subunit Q5XCX3 0.360
RTPDKPT Agglutinin receptor P16952 0.324
VVPNIWR Putative 2-dehydropantoate 2-reductase P65666 0.320
LLNRPIHD CCA-adding enzyme Q5M153 0.320
TLADKPEF Autolysin P06653 0.308
Staphylococcus
PTHYVPEFKGS Extracellular matrix protein-binding protein emp Q2FIK4 0.572
LIPEFIG ATP-dependent Clp protease ATP-binding subunit ClpX B9DNC0 0.508
NKPEFSGAT 3-isopropylmalate dehydratase small subunit Q4L7U3 0.436
NKNNKNNKN Translation initiation factor IF-2 Q4L5X1 0.372
KLGNIVPEYK Extracellular matrix protein-binding protein emp P0C6P1 0.360
KLCRICFRE 30S ribosomal protein S14 type Z Q5HM12 0.352
DFLNRPVD Proline--tRNA ligase Q4L5W5 0.348
EKNNNNNNNNS Alkaline shock protein 23 Q4L860 0.320
GVVPNISR UvrABC system protein A Q5HHQ9 0.312
LIPEFNQV Homoserine kinase Q8CSQ2 0.308
SPEFLGSQ Undecaprenyl-diphosphatase B9DK59 0.308
VGINRPTY Putative glycosyltransferase TagX O05154 0.308
VIPEFNND Peptide chain release factor 2 Q4L4H9 0.300

236 K-TOPE was used to analyze 2,976 proteins from Streptococcus and 3,071 proteins from 
237 Staphylococcus.
238
239 The most prevalent epitopes identified through proteome searches were validated by 

240 comparison to previously reported epitopes. We chose to analyze the viral proteins EBNA1 from 

241 EBV and the Poliovirus 1 genome polyprotein (representing Enterovirus), which were present 

242 five and seven times, respectively, in Table 1. Bacterial proteins chosen for validation were 

243 Streptolysin O, corresponding to the second most prevalent Streptococcus epitope (Table 2), and 

244 Extracellular matrix protein-binding protein emp, corresponding to most prevalent 

245 Staphylococcus epitope (Table 2). In all cases, K-TOPE found prominent peaks in the histograms 

246 that corresponded to reported epitopes (Fig 4) [6,33,35,40]. Additionally, K-TOPE identified an 

247 immunogenic region of GA-repeats from positions 100-350 in the analysis of EBNA1 [23]. We 
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248 used a nonparametric statistical test to assign significance to the overlap between K-TOPE 

249 epitopes and known epitopes. Using this method, all epitopes evaluated using K-TOPE had P-

250 values below 0.05 (Fig 4C). 

251 Fig 4. Epitopes identified through proteome searches were validated using literature-
252 reported epitopes. In (A), (B), and (C), a histogram is shown for a single specimen with 
253 significant peaks (in pink). To the right of the histogram is a heat map for 250 specimens. For 
254 (A), there is a region of antigenic GA-repeats from positions 100-350. The table in (D) provides 
255 the statistical significance of agreement between literature epitopes and K-TOPE epitopes for the 
256 labeled peaks in (A), (B), and (C). The UniProt accessions used for this analysis were P03211 for 
257 EBNA1, Q8NXI8 for extracellular matrix protein-binding protein emp, and P03300 for 
258 Poliovirus 1 Genome Polyprotein. Statistical tests where epitopes with >50% GA content were 
259 removed are denoted by an asterisk “*”. All identified epitopes had p-values below 0.05.
260
261 To identify HSV species-specific epitopes, we analyzed 12 HSV2 specimens and 10 

262 HSV1 specimens. Since these viruses share many of the same proteins in their proteomes [11], 

263 HSV1 specimens were appropriate controls for HSV2 specimens and vice-versa. To begin, we 

264 identified species-specific epitopes in glycoprotein G, which is a protein that varies significantly 

265 between the two species (Fig 5) [41]. There was a single HSV1 epitope, PMPSIGLEE, bound by 

266 40% of HSV1 specimens and a single HSV2 epitope, GGPEEFEGAGD, bound by all HSV2 

267 specimens. This HSV2-specific epitope aligned well with previous epitopes found for 

268 glycoprotein G2 [13,42,43] (Table 3). Also, this epitope has been validated as an HSV2-specific 

269 diagnostic [44,45]. The HSV1-specific epitope was also similar to the previously reported 

270 epitope DHTPPMPSIGLE [18]. Interestingly, the two HSV-specific epitopes terminated in an 

271 identical 7-mer sequence EGAGDGE (PMPSIGLEEEEEEEGAGDGE and 

272 GGPEEFEGAGDGE) [42]. This suggests that the regions containing these epitopes may be 

273 evolutionarily or structurally related targets of the immune system.

274
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275 Table 3. Alignment of an HSV2-specific glycoprotein G2 epitope with previously reported 
276 epitopes.

 Peptides Reference
G G P E E F E G A G D K-TOPE

P E E F E G A G D G E P P E D D D S G [13]
P P P P E H R G G P E E F E G A G D G E P P E [42]

A P P P P E H R G G P E E F E G A G D G [43]
277

278 Fig 5. K-TOPE identified epitopes for glycoprotein G1 using HSV1 specimens and for 
279 glycoprotein G2 using HSV2 specimens. For glycoprotein G1, a representative histogram for a 
280 single specimen is shown in (A) and a heat map for all HSV1 specimens is shown in (C). For 
281 glycoprotein G2, a representative histogram for a single specimen is shown in (B) and a heat 
282 map for all HSV2 specimens is shown in (D). There was a single epitope identified for each 
283 protein.
284
285 To identify candidate HSV species-specific epitopes, we analyzed the HSV1 and HSV2 

286 proteomes. We identified 30 HSV2-specific epitopes that were 100% specific with prevalence > 

287 30% (Table 4). Notably, 11 of these epitopes were bound by all HSV2 specimens. K-TOPE 

288 identified a glycoprotein C epitope PRTTPTPPQ with 83% prevalence which was contained in a 

289 previously identified epitope RNASAPRTTPTPPQPRKATK [18]. In contrast to the numerous 

290 HSV2-specific epitopes, only 4 HSV1-specific epitopes were identified, and the highest 

291 prevalence achieved was only 40% (Table 5). One of these epitopes, RIRLPHI, overlapped with 

292 the previously identified epitope HRRTRKAPKRIRLPHIR [46] in the well-described antigen 

293 glycoprotein D [17]. One possible explanation for the discovery of fewer HSV1-specific epitopes 

294 is that the HSV2 specimens had high IgM levels, whereas the HSV1 specimens had high IgG 

295 levels. Since high IgM levels occur with severe recurrent herpes infections [47], we would 

296 expect the high IgM HSV2 sera to yield more epitopes. 

297

298

299
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300 Table 4. HSV2-specific epitopes were identified. 

 Epitope Protein Accession Prevalence
GGPEEFEGAGD Envelope glycoprotein G P13290 1
PLYARTTPAKF Tegument protein UL47 P89467 1
VDSQRLTPGGSVS Tegument protein UL21 P89444 1
KARKKGTSAL Envelope glycoprotein B P08666 1
TPLRYACVL Tegument protein UL47 P89467 1
ANSPWAPVL mRNA export factor P28276 1
RYSPLHN Envelope glycoprotein B P08666 1
EAMLNDAR Large tegument protein deneddylase P89459 1
QRLTPH Large tegument protein deneddylase P89459 1
LRYTPAGEV Envelope glycoprotein H P89445 1
RTPSMR Major viral transcription factor ICP4 homolog P90493 1
LATNNA Small capsomere-interacting protein P89458 0.917
LRTNNL Ribonucleoside-diphosphate reductase small subunit P69521 0.917
PRTTPTPPQ Envelope glycoprotein C Q89730 0.833
HRLYAVVA Inner tegument protein P89460 0.833
PSTPAMLNLG Ribonucleoside-diphosphate reductase large subunit P89462 0.667
VTKHTALCAR Large tegument protein deneddylase P89459 0.583
TRDYAGL Envelope glycoprotein I P13291 0.583
RLTVAQ Envelope glycoprotein I P13291 0.583
RSLGIA Protein UL20 P89443 0.583
IRDLARTFA Thymidine kinase P89446 0.5
DITAKHRCL Major capsid protein P89442 0.5
ETPAQPPRY Capsid scaffolding protein P89449 0.5
VSGITPTQ Tripartite terminase subunit 1 P89451 0.5
HEELYYGPVS Tegument protein VP22 P89468 0.417
IQDLAYAIV Ribonucleoside-diphosphate reductase large subunit P89462 0.417
GPAQRHTY DNA polymerase catalytic subunit P89453 0.417
YFEEYAYS Envelope glycoprotein B P08666 0.417
LDDFDL Tegument protein VP16 P68336 0.417
AARLIDALYAEFLGG Envelope glycoprotein H P89445 0.333

301 A total of 30 epitopes were identified that were 100% specific against HSV1.

302 Table 5. HSV1-specific epitopes were identified. 

Epitope Protein Accession Prevalence
RIRLPHI Envelope glycoprotein D Q69091 0.4
PMPSIGLEE Envelope glycoprotein G P06484 0.4
CAAFVNDYSLV Major capsid protein P06491 0.3
EMADTFLDT ICP47 protein P03170 0.3

303 Only 4 epitopes were identified that were 100% specific against HSV2.

304 We sought to determine whether the HSV2-specific epitopes were contained in proteins 

305 that differed between the HSV species [41]. We determined 8 HSV2-specific epitopes with 

306 sequences that were contained in both HSV proteomes (S3 Table). Our analysis suggested that 
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307 these epitopes were only targeted by HSV2 specimens, despite their presence in the HSV1 

308 proteome. Thus, even sequences that are conserved between species could serve as species-

309 specific targets.

310 Discussion
311

312 Here, we present a generalizable methodology for identifying epitopes within candidate 

313 immunogenic proteins. By tiling proteins into k-mers and evaluating those k-mers in a database 

314 of antibody-binding peptides, we determined epitopes for individuals and a population. 

315 Importantly, we have demonstrated that K-TOPE can identify disease-specific epitopes and 

316 antigens. One of the main features of this approach is that it combines k-mers to determine 

317 composite epitopes that may not explicitly exist in the peptide dataset. Another important 

318 element is using an antigen sequence to identify epitopes, thereby surmounting the 7 amino acid 

319 requirement for successful antigen identification [30].

320 The K-TOPE approach to epitope mapping differs from reported methods in several 

321 important ways. While proteome-derived peptide libraries have been used to identify disease-

322 specific epitopes [33,48], these methods lack the flexibility to examine multiple proteomes. For 

323 instance, separate libraries would be required to analyze both HSV1 and HSV2. Even a library 

324 that contains peptides spanning all viral proteomes cannot easily be extended to much larger 

325 bacterial or parasitic proteomes [24]. A disadvantage of microarrays is that they have far lower 

326 5-mer coverage (~27% [32]), than surface display (~100%) which could limit the application of 

327 k-mer approaches. Other algorithms have been developed that identify binding motifs in peptide 

328 datasets, but they lack the integrated capability to connect motifs to protein antigens [49,50]. 

329 Also, the direct method of aligning peptides to sequences becomes computationally infeasible 

330 with a large number of peptides and candidate antigens [51].
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331 The heterogeneity of experimental approaches complicates the validation of putative 

332 epitopes and their associated antigens. The Immune Epitope Database (IEDB) has an all-

333 inclusive representation of information [52], which may not reflect important distinctions in 

334 experimental platforms, specimens, and data analysis techniques. For instance, there are likely 

335 numerous false positive epitopes for highly studied organisms and few identified epitopes for 

336 poorly studied organisms. Also, there is a lack of quantitative data reported for epitopes [53], 

337 such as the proportion of a given population that binds an epitope. To address this lack of 

338 information, we first used K-TOPE to analyze specimens for responses to common pathogens in 

339 a general population. This allows newly identified “public epitopes” to be benchmarked by 

340 nearly any set of serum specimens. We required that a proportion of the population bind an 

341 epitope to reduce false positives. Although analysis of the variation in private epitopes could be 

342 valuable for understanding the variation in immune responses, it would complicate validation. 

343 We determined public epitopes in Rhinovirus A and showed that people who targeted fewer 

344 Rhinovirus A epitopes tended to be older, perhaps due to immunosenescence [54], reduced 

345 pathogen exposure, or a lower incidence of rhinovirus infections [55]. With a diverse group of 

346 specimens, it was possible to confirm that the RRPFF epitope in EBV’s protein EBNA1 is a very 

347 commonly targeted epitope [33]. Since the specimens used to determine public epitopes were not 

348 assayed for responses to pathogens, acute and chronic infections could not be readily 

349 distinguished from prior infections. These public epitopes could be further validated using 

350 specimens with acute infections or using longitudinal studies to determine if these epitopes 

351 appear upon vaccination [56]. We did not find epitopes corresponding to measles or rubella 

352 vaccination, which is consistent with a recent study that comprehensively identified viral 

353 epitopes [57]. This implies that for these viruses, high titer antibodies targeting linear epitopes 
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354 may not be present. For HSV1 and HSV2, we determined whether an epitope was specific by 

355 analyzing specimens infected by both virus species. Unexpectedly, we demonstrated that even 

356 epitopes present in the conserved regions of both species’ proteomes could be species-specific. 

357 The difference in binding was likely due to differences in the structure and post-translational 

358 modifications of the proteins. For the HSV analysis, we validated epitopes using previous 

359 studies, however, it was difficult to know a priori whether a non-validated epitope was novel or 

360 spurious. In general, since studies use different specimens, experiments, and computational 

361 analyses, it is unlikely for the epitopes of two studies to completely coincide. 

362 K-TOPE provides a new tool for identifying diagnostic biomarkers, vaccine components, 

363 and candidate therapeutic targets. This approach could be used in the iterative process of 

364 designing a vaccine, since it would be useful to know which epitopes are elicited in a population 

365 by vaccination. Vaccine formulation could be altered to maximize the percentage of the 

366 population that targets epitopes associated with a positive disease outcome [2]. K-TOPE could 

367 also enable the development of diagnostics that assign disease based on the presence of epitopes. 

368 Since this method only involves a single experimental screen, in principle multiple diseases 

369 could be simultaneously diagnosed [58]. By searching for consensus epitopes in a disease group 

370 that are absent in a control group, K-TOPE can discover disease-specific epitopes. For an 

371 autoimmune disease, the entire human proteome could be analyzed to determine autoantigen 

372 epitopes [33]. Similarly, using clinical histories of viral infection, K-TOPE can analyze the 

373 proteomes of suspected pathogens to link epitopes to infections [24]. With specimens that have 

374 HLA information, it could be possible to detect a correlation between HLA type and bound 

375 epitopes [59]. This could have implications for how we determine genetic predisposition to 

376 immunological disease. 
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377 There are important limitations to the conditions in which this approach could be 

378 successful. First, this approach is currently limited to the identification of linear epitopes. 

379 However, since 85% of epitopes have at least one linear stretch of five amino acids [22], 

380 conformational epitopes with linear segments may be represented in the datasets. We chose to 

381 focus on linear epitopes since methods that identify conformational epitopes often require 3D 

382 protein structures, which are scarce relative to the number of protein sequences. This report 

383 focuses on epitopes from common pathogens which are high-titer, but it could be difficult to 

384 detect rare antibody epitopes. Methods that selectively deplete out high-titer antibodies could 

385 prove effective for probing rare antibodies [60]. Another limitation is that protein sequences tend 

386 to have a large degree of conservation and redundancy [61], as demonstrated by the false 

387 positives found in the viral epitope search. Thus, even for analyses of non-immunogenic 

388 proteomes, false positives will occur due to evolutionary or coincidental sequence overlap with 

389 immunogenic proteomes. The issue of false positives can be partially allayed by deliberately 

390 choosing the set of investigated proteins, such that all proteins are plausible candidate antigens. 

391 Sequence conservation was demonstrated with the Enterovirus epitope PALTAVETGATNPL 

392 [35], as well as with the Human herpesvirus 6A epitope YVDDMLNDI (Table 1) which shares 

393 the k-mer “DDMLN” with the Streptococcus epitope GQKMDDMLNS (Table 2). Generally, if 

394 an epitope sequence is present identically in multiple antigens, all candidate antigens should be 

395 considered equally plausible without further biological, epidemiological, or experimental 

396 information. It is important to note that one of the purposes of K-TOPE is to reduce thousands of 

397 candidate proteins to a small set of proteins that can be experimentally validated.  

398 In summary, the present approach enables the discovery of epitopes within the proteomes 

399 of any organism whose sequence is deposited into the protein database. The challenge of 
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400 associating epitopes with antigens can be surmounted by transforming sets of antibody-binding 

401 peptides to k-mers and tiling proteins of interest. Advancements upon this paradigm may enable 

402 comprehensive immunological evaluations from serum and other biological tissues.

403 Materials and methods
404

405 Strains and reagents 

406 E. coli strain MC1061 was used with surface display vector pB33eCPX for all library 

407 screening experiments. Protein A/G magnetic beads were from Thermo Scientific Pierce. 

408 Antibodies with known specificity included C3956 rabbit anti-c-Myc polyclonal antibody 

409 (Sigma), anti-beta amyloid 1-42 antibody [mOC31] - conformation-specific (ab201059) 

410 (Abcam), and rabbit V8137 Anti-V5 polyclonal antibody (Sigma). Antibodies were spiked into 

411 healthy donor serum at a concentration of 25 nM. All sera (n=273) were obtained as deidentified 

412 specimens from biobanks according to institutional guidelines, (Biosafety authorization numbers 

413 #201417, #201713), and handled according to CDC-recommended BSL2 guidelines. 

414 Bacterial peptide display and sequencing

415 The bacterial peptide display screening protocol was carried out as previously described 

416 [29,62]. Briefly, an E. coli library displaying approximately 8 billion different 12-mer peptides 

417 was combined with 1:100 diluted serum. We used magnetic selection with Protein A/G beads to 

418 isolate bacterial cells with bound antibodies. Then, we confirmed that this isolated fraction of 

419 bacteria bound antibodies using flow cytometry. Amplicons were prepared from the isolated 

420 fraction for sequencing using the Illumina NextSeq.
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421 Protein databases

422 Protein sequences were obtained from UniProt or by using the Biopython module [63]. 

423 Accessions for proteins are noted in figures and figure captions. For the epitope validation, 

424 accessions were chosen that reference the most highly annotated version of the proteins 

425 identified in Table 1 and Table 2. The list of random proteins used for statistical analysis was 

426 obtained through a UniProt search of “reviewed:yes”. The viral proteome search used a Uniref 

427 search of “uniprot:(host:"homo sapiens" reviewed:yes fragment:no) AND identity:0.9” and 

428 yielded 2,908 proteins. The Staphylococcus proteome search used a Uniref search of 

429 “uniprot:(taxonomy:"Staphylococcus [1279]" fragment:no reviewed:yes) AND identity:0.9” and 

430 yielded 3,071 proteins. The Streptococcus proteome search used a Uniref search of 

431 “uniprot:(taxonomy:"Streptococcus [1301]" fragment:no reviewed:yes) AND identity:0.9” and 

432 yielded 2,976 proteins. HSV analysis used a UniProt search of “reviewed:yes AND 

433 organism:"Human herpesvirus 1 (strain 17) (HHV-1) (Human herpes simplex virus 1) [10299]" 

434 AND proteome:up000009294” for HSV1, yielding 73 proteins and a Uniprot search of 

435 “reviewed:yes AND organism:"Human herpesvirus 2 (strain HG52) (HHV-2) (Human herpes 

436 simplex virus 2) [10315]" AND proteome:up000001874” for HSV2, yielding 72 proteins.

437 Selection of literature epitopes

438 For EBNA1, RRPFF was chosen because it was noted that RRPFF antibodies were found 

439 in the serum of healthy individuals [33]. KRPSCIGCK was noted as an EBNA1 epitope that was 

440 preferentially targeted by pre-eclamptic women, but was also targeted by healthy controls [6]. 

441 The motif XPEFXGSXX was discovered and inferred to correspond to VPEFKGSLP in 

442 Staphylococcus aureus using protein database searches [40]. For Poliovirus 1, the epitope 

443 PALTAVETGATNPL was found to be a cross-reactive epitope in many enteroviruses [35].
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444 Sequence processing

445 All software files are posted on GitHub (https://github.com/mlpaull/KTOPE) and all 278 

446 antibody-binding peptide files are available on Dryad (doi:10.5061/dryad.v7d0350). The imune-

447 processor.jar file is available for research, non-profit, and non-commercial use and requires a 

448 license for commercial use. All other software is available under the MIT license. The algorithms 

449 for generating nonredundant sequence lists from FASTQ files, outputting enrichment values for 

450 subsequences, and exhaustively calculating k-mer statistics were adapted from IMUNE (imune-

451 processor.jar and calculate-patterns.jar) [29]. We added the capability to start with lists of 

452 peptides rather than NGS data. The enrichment of a k-mer is defined as the ratio of the number 

453 of observations of the k-mer to the “expected” number of observations. The “expected” value is 

454 calculated as the product of the total number of sequences, the number of frames the k-mer could 

455 fit in the sequences, and the probability of the k-mer appearing based on amino acid usage. If a 

456 k-mer’s enrichment is above the “enrichment minimum” (2.0 for this study), it is used in K-

457 TOPE. K-mers need to be calculated only once per specimen. All interaction with IMUNE-

458 derived code is through a Python module which sets up a folder hierarchy and acts as a wrapper 

459 for IMUNE-derived code (imuneprocessor.py). These programs are memory and hard-drive 

460 intensive and it is recommended to have at least 16 GB of free RAM and 100 GB of hard-drive 

461 space. Analysis was carried out on a Dell Optiplex 9020 with an Intel® Core™ i7-4790 CPU @ 

462 3.60 GHz, 64-bit operating system, and 32.0 GB of RAM. Processing FASTQ files into 

463 subsequences from 12 specimens, each containing approximately 1.5 million unique sequences, 

464 required 2.3 hours and calculating k-mer enrichment required 7.7 minutes. The duration of these 

465 calculations scales approximately linearly with the number of specimens and sequences.
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466 K-TOPE algorithm

467 The K-TOPE algorithm (Code S1) is written in Python 3.6 (KTOPE.py). A usage guide 

468 for KTOPE is available (Text S1). First, there is a RAM-intensive step of loading k-mer 

469 enrichment data into memory as a dictionary. The enrichment dictionary for 250 specimens 

470 required approximately 4 GB of RAM. Then, a protein of interest is chosen for analysis and its 

471 sequence is loaded. This protein is tiled into k-mers of a set length. For this study, 5-mers were 

472 used. Each position in the protein sequence is assigned a frequency counter that starts at 0. The 

473 frequency counter of each sequence position contained in an enriched k-mer is incremented by 

474 the logarithm base 2 of the k-mer’s enrichment. For instance, if 3 k-mers that overlapped at a 

475 position had enrichments of 2, 4, and 8, the frequency for that position would be log2 2 + log2 4

476 . The frequency counters are compiled into a histogram which is smoothed using a + log2 8 = 6

477 moving window. For this analysis, the window had width 7 and used linear weighting with 1 in 

478 the center and 0.1 at the edges. Minima and maxima are identified in the smoothed histogram. 

479 All intervals between 2 minima that contain a maximum are used to define epitopes. Epitopes 

480 were limited to a minimum length of 6 and a maximum length of 15. Epitopes are scored using 

481 the area under the curve of the un-smoothed histogram. To assign statistical significance to each 

482 epitope, the epitope’s score is ranked in a list of scores for epitopes of the same length generated 

483 through an analysis of 10,000 random proteins. This rank is reported as a percentile in the 

484 distribution of random protein epitope scores. For this study, a percentile cutoff of 95% was 

485 used. For 12 specimens, analysis of 10,000 random proteins required 10.0 minutes. 

486 After determining epitopes for individual specimens, K-TOPE can determine consensus 

487 epitopes for a population. Each epitope is characterized by a “centroid” which is the weighted 

488 central position of the epitope, indexed as a position in the protein sequence. Centroids for all 
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489 epitopes that meet the percentile cutoff are compiled. They are then clustered using k-means to 

490 associate close centroids with the KMeans function from scitkit-learn [64]. A representative 

491 epitope is made for each cluster and kept if it meets a minimum prevalence in the population. 

492 Closely overlapping epitopes are removed and the final list is sorted by prevalence. Consensus 

493 epitopes can be determined for each protein in a proteome, generating a list of epitopes prevalent 

494 in a population. Determination of consensus epitopes for the Rhinovirus A genome polyprotein 

495 (P07210) for 250 specimens required 24.4 seconds. The proteome searches for viruses with 

496 human tropism, Staphylococcus, and Streptococcus for 250 specimens required 3.1, 2.3, and 1.9 

497 hours, respectively.

498 We calculated expected membership of epitope groups by multiplying the proportions of 

499 the population that bound each epitope. For example, if epitope 1 was bound by 32% of the 

500 population and epitope 2 was bound by 67%, then the expected membership of epitope group 

501 ‘1+2’ would be 21%. We ranked the overlaps between K-TOPE derived epitopes and literature 

502 epitopes in a list of 10,000 randomly generated epitope overlaps to determine a p-value. To 

503 remove redundant epitopes found in the proteome searches, we used the PAM30 similarity 

504 matrix to align two epitopes and compare each position to calculate a similarity score. Epitopes 

505 that had similarity scores >10, were in the same protein, and were from different organisms were 

506 considered redundant. We removed the less prevalent of the two redundant epitopes. 

507 The HSV analysis used “disease” group specimens to identify epitopes and “control” 

508 group specimens to subtract epitopes. Epitopes were identified in the disease group that met the 

509 epitope percentile cutoff (95%) and the minimum prevalence (30%). Then, all disease epitopes 

510 were evaluated in the control group. For an epitope to be considered disease-specific, its score 

511 had to be below the epitope percentile cutoff (80%) in all control specimens. To identify HSV2-
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512 specific epitopes that were also in the HSV1 proteome, we identified epitopes that exactly 

513 matched a subsequence in an HSV1 protein.

514 Data visualization

515 Fig 1 was created using Inkscape. Histograms and heat maps were generated using the 

516 Matplotlib python module [65]. Bar graphs were generated using GraphPad Prism 7.
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738 Supporting information
739

740 S1 Fig. A comparison of histograms generated by K-TOPE when antibodies were added to 
741 serum or buffer. Histograms were generated for antibodies against cMyc (P01106), V5 
742 (P11207), and amyloid beta (P05067). The most prominent peaks were present regardless of 
743 whether antibodies were added to serum or buffer. This suggests that the binding signature of a 
744 single antibody was not obscured by the many other antibody specificities present in serum.

745

746 S1 Table. The expected and actual membership of different epitope groups. The expected 
747 membership of epitope groups was calculated by multiplying the proportions of the population 
748 that bound each epitope. For example, if epitope 1 was bound by 32% of the population and 
749 epitope 2 was bound by 67%, then the expected membership of epitope group ‘1+2’ would be 
750 21%. Note that specimens in groups only bound the epitopes in the groups e.g. specimens in 
751 group ‘1’ did not bind ‘2’ or ‘3’. Generally, the actual and expected membership values agreed 
752 except for the ‘1+2+3’ group which had higher membership than expected and the ‘1+3’ group 
753 which had lower membership than expected (in bold).

754

755 S2 Table. The average age for each epitope group. The average age for the 138 specimens for 
756 which there was age data was 35. The ‘None’ group had an average age of 50 which was notably 
757 higher than the average age of 35 (in bold). Additionally, the ‘1+2+3’ group had a lower average 
758 age of 17 (in bold). This discrepancy suggests that older people targeted fewer Rhinovirus A 
759 epitopes.

760

761 Table S3. Eight HSV2-specific epitopes were also in the HSV1 proteome.

762

763 Code S1. KTOPE software, written in Python 3.6.

764

765 Text S1. KTOPE usage guide.
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