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Abstract

Antibodies are essential to functional immunity, yet the epitopes targeted by antibody
repertoires remain largely uncharacterized. To aid in characterization, we developed a
generalizable strategy to identify antibody-binding epitopes within individual proteins and entire
proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a
random library and identified the peptides using next-generation sequencing. To identify
antibody-binding epitopes and the antigens from which these epitopes were derived, we tiled the
sequences of candidate antigens into short overlapping subsequences of length k (k-mers). We
used the enrichment over background of these k-mers in the antibody-binding peptide dataset to
identify antibody-binding epitopes. As a positive control, we used this approach, termed K-mer
Tiling of Protein Epitopes (K-TOPE), to identify epitopes targeted by monoclonal and polyclonal
antibodies of well-characterized specificity, accurately recovering their known epitopes. K-
TOPE characterized a commonly targeted antigen from Rhinovirus A, identifying three epitopes
recognized by antibodies present in 83% of sera (n = 250). An analysis of 2,908 proteins from
400 viral taxa that infect humans revealed seven enterovirus epitopes and five Epstein-Barr virus
epitopes recognized by >30% of specimens. Analysis of Staphylococcus and Streptococcus
proteomes similarly revealed six epitopes recognized by >40% of specimens. These common
viral and bacterial epitopes exhibited excellent agreement with previously mapped epitopes.
Additionally, we identified 30 HSV2-specific epitopes that were 100% specific against HSV1 in
novel and previously reported antigens. The K-TOPE approach thus provides a powerful new

tool to elucidate the organisms, antigens, and epitopes targeted by human antibody repertoires.
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Introduction

Immunological memory allows for rapid antibody responses towards diverse antigens
long after initial exposure. For example, the adaptive immune response to many vaccinations is
often sustained throughout an individual’s lifetime [1]. This immunological information is
archived within the genes encoding B-cell and T-cell receptors along with the corresponding
receptor structures, but has proven difficult to characterize in a comprehensive manner. The
ability to more fully interrogate immunological memory could reveal exposures to pathogens,
commensal organisms, and allergens. Such information has proven useful for correlating
antibody responses with disease outcomes to design more effective vaccines [2]. A detailed
record of immune exposures can also facilitate the identification of biomarkers to diagnose
infectious [3], autoimmune [4], and allergic conditions [5]. Furthermore, the capability to
broadly characterize antibody repertoires at the epitope level could be used to identify conserved
pathogen epitopes [6] and tumor specific antigen epitopes [7] to aid in therapeutic discovery.

A disease with prominent antibody responses is the common viral infection HSV, which
causes human infections in the orofacial region (“cold sores) and the genital region (“genital
ulcers”) [8]. In 2012, the global prevalence of HSV1 was 3.7 billion people ages 0-49 [9] and the
global prevalence of HSV2 was 417 million people ages 15-49 [10]. Diagnostic discovery
generally focuses on diagnosing HSV2, since HSV2 infections can exacerbate HIV infections
[10]. However, HSV1 and HSV2 contain the same genes [11] and the protein-coding regions of
the HSV1 and HSV2 genomes share 83% sequence homology [12]. Therefore, researchers have
often analyzed HSV glycoprotein G, since it differs substantially between the two HSV species

[13]. In general, efforts have been limited to analyses of the surface-exposed envelope
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glycoproteins [ 14—17], using approaches such as microarrays [18]. Therefore, it would be novel
to probe immunological memory using the entire proteomes of HSV1 and HSV2.

Immunological memory has been investigated extensively through sequencing the
variable regions of B- and T-cell receptor encoding genes amplified from circulating cells [19].
These methods have proven useful for identifying receptor-encoding genes that associate with
vaccination [20]. Nevertheless, such genetic information has not generally provided insight into
the specific environmental antigens and epitopes targeted, unless they are known a priori.
Furthermore, these methods require large specimen volumes (>10 mL) to obtain a sufficient
quantity of cells [20]. Thus, there remains a need for methods that identify the diverse antigen
targets of adaptive immunity.

Several methods have been developed to profile the protein epitopes of the secreted
antibody repertoire [21]. Approaches have often focused on linear epitopes since 85% of
epitopes contain at least one contiguous stretch of five amino acids [22]. By analyzing linear
epitopes, researchers have identified sensitive and specific diagnostic epitopes for numerous
diseases [21]. One common approach to epitope mapping is to generate short overlapping
peptides by tiling candidate antigens. These peptides are then assayed for serum antibody
reactivity in peptide microarray [23] or bacteriophage display library [24] formats. However,
because these methods are biased towards specific organisms, they do not enable comprehensive
or hypothesis-free immune evaluation. One strategy to overcome the limitations of tiling
experiments is to use fully random peptide libraries [5,25,26]. Here, experiments are less biased
and methods can analyze epitopes corresponding to a variety of organisms and antigens. A
disadvantage of microarrays is that they are typically several orders of magnitude less diverse

than peptide display libraries (e.g. 105 [25] versus 100 [5]), limiting the effectiveness with which
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96  current methods can achieve epitope discovery for low titer antibodies. In random library
97  experiments, epitopes are typically discovered using de novo motif discovery by unsupervised
98  clustering [27]. The most widely used algorithm for this purpose, MEME, scales approximately
99  quadratically with the number of input sequences, making it less useful for analyzing large
100  datasets resulting from next generation sequencing (NGS). While full-length antibody-binding
101  peptides can be analyzed, the majority of the binding energy is typically derived from just 5-6
102 amino acids [28], thus other amino acids within the peptide will contribute noise. To rectify this
103 problem researchers developed the IMUNE algorithm to reduce peptide datasets into statistically
104  enriched patterns and cluster these patterns to build motifs [29].
105 A significant challenge for epitope mapping approaches is the association of epitopes and
106  motifs with their corresponding antigens. Neither MEME nor IMUNE have the integrated
107  capability to connect motifs to plausible antigens. Also, motifs identified through these methods
108  often fail to reach the seven amino acids requirement for unambiguous identification of antigens
109  within the full database of protein sequences [30]. Fundamentally, linear stretches in epitopes are
110  typically less than seven amino acids in length [22], therefore, protein database searches of
111 individual epitopes (such as through BLAST [31]) often fail to achieve statistical significance.
112 Using multiple epitope matches within a single candidate antigen can increase the confidence of
113 antigen prediction [26,32]. However, this method is insufficient for antigens with a single
114  important epitope. Additionally, protein database searches are conducted using short amino acid
115  sequences, therefore these searches do not fully leverage large quantitative binding datasets. To
116  address these challenges, we present a general approach for associating epitopes with antigens
117  using large peptide datasets. The K-mer Tiling of Protein Epitopes (K-TOPE) algorithm

118  identifies epitopes by computationally tiling candidate antigens into k-mers, which are then
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119  evaluated within large datasets of antibody-binding peptides. Here, we demonstrate the utility of
120  this approach by identifying linear epitopes within the proteomes of several prevalent infectious

121  pathogens.

122 Results
123

124 To enable the identification of protein epitopes bound by serum antibodies, we developed
125  amethod that uses a database of antibody-binding peptides to identify epitopes in known protein
126  sequences (Fig 1). First, we selected peptides binding to an individual antibody repertoire within
127  aspecimen (serum or plasma) from a bacterial display peptide library with 10'° random 12-mer
128  members. Then, we identified antibody-binding peptide sequences using NGS. To allow for the
129  manipulation of 20° (3.2 million) k-mers rather than full-length peptides, we processed peptides
130  into subsequences and evaluated the enrichments of all k-mers of length 5 [29]. Next, K-TOPE
131 tiled candidate antigen sequences, such as from a proteome, into overlapping k-mers. K-TOPE
132 used the enrichment values for these k-mers to construct an enrichment histogram across the

133 length of each protein sequence. The frequency value at each sequence position in the histogram
134 was proportional to the enrichment of k-mers that included that position. Specifically, for all k-
135  mers overlapping a position, we summed the log base 2 of the k-mer enrichment. Thus, higher
136  frequency values at a position in a protein sequence corresponded to a greater probability that a
137  position was included in an epitope. Epitopes were extracted from the maxima in the histogram
138  and scored based on their area under the curve (AUC). Finally, epitopes were assigned an

139  “epitope percentile” based on their rank in a list of scores generated from random proteins.

140  Fig 1. K-TOPE determines epitopes by tiling proteins into k-mers. (A) The input to the

141  algorithm is a dataset of approximately 10° peptides that were bound by serum antibodies. (B)
142 All 5-mers are evaluated for their enrichment in the list of peptides. (C) A portion of a protein

143 sequence is tiled into 5-mers which are weighted by their enrichment. This determines a
144  “frequency” value for each position in the sequence. (D) The frequency value for each position
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145  in a protein sequence is plotted as a histogram. Possible epitopes are highlighted in pink on the
146  graph. Epitope sequences, area under the curve (AUC) scores, and significance percentiles are
147  displayed.

148

149 To assess the utility of K-TOPE, we first determined epitopes for monoclonal and

150  polyclonal antibodies that bind specific, well-defined epitopes in cMyc, V5, and amyloid beta.
151  We spiked these antibodies into serum at a final concentration of 25 nM and then selected and
152 identified binding peptides. K-TOPE identified epitopes that corresponded closely to the

153  previously reported epitopes of these antibodies (Fig 2). Importantly, the enrichment histograms
154  generated by antibodies spiked into background serum or buffer were nearly identical (S1 Fig),
155  suggesting that the noisy serum environment minimally affected epitope identification.

156  Fig 2. K-TOPE found epitopes for antibodies with known specificity spiked into serum.
157  Histograms for antibodies with known specificity against amyloid beta (P05067), cMyc

158  (P01106), and V5 (P11207) had prominent epitopes (in pink). (A) K-TOPE analysis of amyloid
159  beta determined the epitope VKMDAEFRHD (668-678). This antibody was raised to whole
160  protein and is known from literature to have a conformation-specific discontinuous epitope that
161  maps to segments EFRHDSGY (673-680) and ED (692-693). (B) K-TOPE analysis of cMyc
162  determined the epitope EEQKLISEEDLLRKR (408-422). This antibody was raised to

163  AEEQKLISEEDLLRKRRE (407-424). (C) K-TOPE analysis of V5 determined the epitope
164  PIPNPLLGLDS (96-106). The antibody was raised to GKPIPNPLLGLDST (94-107).

165

166 To identify “public epitopes” conserved across many individuals, epitopes were

167  generated for each specimen individually and then clustered. Although many private epitopes
168  were identified for each specimen in this process, we focused on the far smaller set of public
169  epitopes to facilitate comparison with previous literature. Given the ubiquity of exposure to the
170 upper respiratory pathogen Rhinovirus A, we validated the approach by identifying epitopes
171  within its genome polyprotein. Using a unique set of 250 serum specimens, we identified

172 epitopes within Rhinovirus A that were targeted by 30% or more of the specimens (Fig 3A). Of
173 the 250 specimens, 87% exhibited binding to at least one of these consensus epitopes (Fig 3B).

174  Three of these epitopes were located within positions 570-620 (Fig 3C), in the antigenic
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175  attachment region of VP1. A fourth epitope within the VP2 region of the Rhinovirus A genome
176  polyprotein was targeted by 43% of the population.

177  Fig 3. K-TOPE identified four epitopes in the Rhinovirus A genome polyprotein. (A) K-

178  TOPE was applied to the Rhinovirus A genome polyprotein (P07210) for 250 specimens.

179  Histograms for all specimens are shown as rows in a heat map. The specimens have been

180  clustered such that specimens that bind the same epitopes are adjacent. Regions that contain

181  epitopes are outlined by dotted lines. (B) A table of the percentage of the population that bound
182  each epitope. For instance, Epitope 1 is the percentage of specimens that targeted “1”, “1+2”,
183  71+37, “14+4”, ”1+2+3”, “14+2+4”, 1+2+3+4”. (C) The region from positions 570-620 is divided
184  into 3 sections that correspond to distinct epitopes. These epitopes are consensus epitopes which
185  were present in >30% of the 250 specimens. (D) Bar graph showing membership in different

186  epitope groups. For example, a specimen that binds epitopes 2 and 3 will belong to epitope group
187  “2+3”. In this population, 87% of the specimens bound at least one of the consensus epitopes.
188  The sequences of the epitopes were 1: QNPVENYT, 2: DSVLEVLVVPN, 3:

189  APALDAAETGHT, and 4: NHTHPGEQG.

190

191 To assess trends in the population, each specimen was assigned into one of eight groups
192  based on which of the three VP1 epitopes were bound (Fig 3D). Notably, epitope binding was
193  not independent, since the group of specimens targeting all three epitopes was 44% larger than
194  expected and the group targeting epitopes ‘1+3” was 50% smaller than expected (S1 Table). The
195  average age of the subset of specimens of known age (n=138) was 35 years, however, the epitope
196  group targeting all three epitopes had an average age of 17, and the epitope group targeting none
197  of the epitopes had an average age of 50 (S2 Table). Thus, people who targeted fewer Rhinovirus
198 A epitopes tended to be older.

199 Next, we investigated the utility of using K-TOPE to identify epitopes within a set of
200 2,908 proteins from 400 viral taxa with human tropism. This approach yielded 29 epitopes that
201  were bound by at least 30% of all specimens (Table 1). The prevalence of each epitope is noted,
202 which is defined as the proportion of specimens that bound the epitope. Some of these epitopes

203 have been reported previously [6,33—35]. Thus, a modest number of prominent linear viral

204  epitopes were bound by >30% of the specimens analyzed. A common antigen identified from
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208

209

210

211

212

213

this analysis was Epstein-Barr nuclear antigen 1 (EBNA1) from Epstein-Barr virus (EBV),

which is expressed in EBV-infected cells [36]. Additionally, the epitopes identified for the

enterovirus genus were consistent with the epitopes identified for Rhinovirus A, which is a

species in that genus (Fig 3). Several of the epitopes were likely due to false discovery (e.g.,

Mayaro virus and Lyssavirus), since these viruses are uncommon in a general population. There

is an intrinsic lower limit on false positives since antibodies only bind 5-6 amino acids, which is

not enough information to uniquely specify a protein subsequence. This limitation is especially

pronounced among evolutionarily related proteins in closely related species.

Table 1. A collection of 29 viral epitopes to which >30% of 250 specimens bound.

Epitope Protein Taxon Accession | Prevalence
DSVLNEVLVVPN Genome polyprotein Enterovirus P07210 0.668
PALTAAETG Genome polyprotein Enterovirus Q66575 0.588
GRRPFFHPV Epstein-Barr nuclear antigen 1 | Epstein-Barr virus (strain QIHVF7 0.524

GD1)
AGAGGGAGA Epstein-Barr nuclear antigen 1 | Epstein-Barr virus (strain QIHVF7 0.516
GD1)
KYTHPGEA Genome polyprotein Enterovirus Q82122 0.492
VRRPFFSD Protein UL84 Human cytomegalovirus P16727 0.452
NPVERYVDE Genome polyprotein Enterovirus Q82122 0.428
MVVPEFK DNA-binding protein Human mastadenovirus C P03265 0.428
EVKLPHWTPT Glycoprotein 42 Epstein-Barr virus (strain P03205 0.42
GD1)
KPQPEKPK Structural polyprotein Mayaro virus Q8QZ72 0.416
GGAGAGGAGAGGG | Epstein-Barr nuclear antigen 1 | Epstein-Barr virus (strain P03211 0.412
GDI1)
ININRPLE Large structural protein Lyssavirus Q9QSP0 0.412
RPSCIGCKG Epstein-Barr nuclear antigen 1 | Epstein-Barr virus (strain P03211 0.404
GDI1)
GAGAGAGGG Packaging protein UL32 Simplexvirus P89455 0.376
LEEVIVEKTK Genome polyprotein Enterovirus Q82081 0.352
KHTHPGI Replication origin-binding Human herpesvirus 3 P09299 0.352
protein
AETGHTNKI Genome polyprotein Enterovirus Q82122 0.344
YVFPHWITK Envelope glycoprotein gp63 Primate T-lymphotropic QOR5Q9 0.34
virus 3
KTTNTTTNT Immediate-early protein 2 Roseolovirus Q9QJ16 0.34
MAADKPTL Genome polyprotein Murray Valley P05769 0.34
encephalitis virus
SFIVPEFA Virion membrane protein A16 | Orthopoxvirus P16710 0.332
LVLPHWYMA Cytoplasmic envelopment Simplexvirus P89430 0.328
protein 1
YVDDMLNDI Large tegument protein Human herpesvirus 6A P52340 0.328
deneddylase (strain Uganda-1102)
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SSGPKHTQKV Genome polyprotein Enterovirus P03303 0.324
PVPEFQA Non-structural polyprotein Semliki forest virus P08411 0.316
VPVTPNIAI Genome polyprotein Hepatitis C virus Q68749 0.304
LHRPALTA Minor capsid protein L2 Human papillomavirus P36758 0.304
type 34
EHILNRPTG RNA-directed RNA Crimean-Congo Q6TQR6 0.304
polymerase L hemorrhagic fever
orthonairovirus
GEFIGSE Shutoff alkaline exonuclease Human herpesvirus 8 Q2HR95 0.3

214  K-TOPE was used to analyze 2,908 proteins from viruses with human tropism. This search

215  demonstrated that only a few prominent linear viral epitopes were bound by a large portion of the
216  population.

217

218 We performed a similar analysis for the proteomes of the genera Streptococcus and

219  Staphylococcus, which are common bacterial human pathogens with 2,976 and 3,071 proteins in
220  their respective proteomes. K-TOPE was used with each of these proteomes to determine

221  epitopes bound by >30% of a population of 250 specimens, yielding 9 epitopes for Streptococcus
222 and 13 epitopes for Staphylococcus (Table 2). The epitope LIPEFIG(R) in ATP-dependent Clp
223 protease ATP-binding subunit ClpX was the most prevalent Streptococcus epitope and second
224 most prevalent Staphylococcus epitope. Therefore, K-TOPE could not determine which genus
225  generated this epitope. The most prevalent Staphylococcus epitope was PTHY VPEFKGS from
226  extracellular matrix protein-binding protein emp, which is a known virulence factor [37]. For
227  Streptococcus, the second most prevalent epitope was GQKMDDMLNS from the highly

228  antigenic Streptolysin O protein [38]. This epitope falls within a 70 amino acid range in

229  Streptolysin O that is known to bind antibodies [39]. The sequence “DKP” was present in 5/9
230  Streptococcus epitopes and the sequence “PEFXG” was present in 6/13 Staphylococcus epitopes
231  (Table 2). Therefore, there are multiple candidate antigens that may correspond to these highly

232 enriched sequences.

233
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Table 2. Epitopes in the proteomes of the genera Staphylococcus and Streptococcus which

were bound by >30% of 250 specimens.
Epitope Protein Accession | Prevalence

Streptococcus

LIPEFIGR ATP-dependent Clp protease ATP-binding subunit ClpX | P63793 0.512
GQKMDDMLNS Streptolysin O Q5XE40 0.436
QIPALDKPL FMN-dependent NADH-azoreductase A4W2Z7 0.416
IADKPILD UPFO0154 protein SSU05 1707 A4VX34 0.392
TVADKPVA Phenylalanine--tRNA ligase beta subunit Q5XCX3 0.360
RTPDKPT Agglutinin receptor P16952 0.324
VVPNIWR Putative 2-dehydropantoate 2-reductase P65666 0.320
LLNRPIHD CCA-adding enzyme Q5M153 0.320
TLADKPEF Autolysin P06653 0.308
Staphylococcus

PTHYVPEFKGS Extracellular matrix protein-binding protein emp Q2FIK4 0.572
LIPEFIG ATP-dependent Clp protease ATP-binding subunit ClpX | BOIDNCO 0.508
NKPEFSGAT 3-isopropylmalate dehydratase small subunit Q4L7U3 0.436
NKNNKNNKN Translation initiation factor IF-2 Q4L5X1 0.372
KLGNIVPEYK Extracellular matrix protein-binding protein emp POC6P1 0.360
KLCRICFRE 308 ribosomal protein S14 type Z Q5HM12 0.352
DFLNRPVD Proline--tRNA ligase Q4L5W5 0.348
EKNNNNNNNNS Alkaline shock protein 23 Q4L860 0.320
GVVPNISR UvrABC system protein A Q5HHQ9 0.312
LIPEFNQV Homoserine kinase Q8CSQ2 0.308
SPEFLGSQ Undecaprenyl-diphosphatase B9DK59 0.308
VGINRPTY Putative glycosyltransferase TagX 005154 0.308
VIPEFNND Peptide chain release factor 2 Q4L4H9 0.300

K-TOPE was used to analyze 2,976 proteins from Streptococcus and 3,071 proteins from

Staphylococcus.

The most prevalent epitopes identified through proteome searches were validated by

comparison to previously reported epitopes. We chose to analyze the viral proteins EBNA1 from
EBYV and the Poliovirus 1 genome polyprotein (representing Enterovirus), which were present
five and seven times, respectively, in Table 1. Bacterial proteins chosen for validation were
Streptolysin O, corresponding to the second most prevalent Streptococcus epitope (Table 2), and
Extracellular matrix protein-binding protein emp, corresponding to most prevalent
Staphylococcus epitope (Table 2). In all cases, K-TOPE found prominent peaks in the histograms
that corresponded to reported epitopes (Fig 4) [6,33,35,40]. Additionally, K-TOPE identified an

immunogenic region of GA-repeats from positions 100-350 in the analysis of EBNA1 [23]. We
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248  used a nonparametric statistical test to assign significance to the overlap between K-TOPE

249  epitopes and known epitopes. Using this method, all epitopes evaluated using K-TOPE had P-
250  values below 0.05 (Fig 4C).

251  Fig 4. Epitopes identified through proteome searches were validated using literature-

252 reported epitopes. In (A), (B), and (C), a histogram is shown for a single specimen with

253  significant peaks (in pink). To the right of the histogram is a heat map for 250 specimens. For
254  (A), there is a region of antigenic GA-repeats from positions 100-350. The table in (D) provides
255  the statistical significance of agreement between literature epitopes and K-TOPE epitopes for the
256  labeled peaks in (A), (B), and (C). The UniProt accessions used for this analysis were P03211 for
257  EBNAI, Q8NXIS for extracellular matrix protein-binding protein emp, and P03300 for

258  Poliovirus 1 Genome Polyprotein. Statistical tests where epitopes with >50% GA content were
259  removed are denoted by an asterisk “*”. All identified epitopes had p-values below 0.05.

260

261 To identify HSV species-specific epitopes, we analyzed 12 HSV2 specimens and 10

262  HSVI1 specimens. Since these viruses share many of the same proteins in their proteomes [11],
263  HSVI1 specimens were appropriate controls for HSV2 specimens and vice-versa. To begin, we
264  identified species-specific epitopes in glycoprotein G, which is a protein that varies significantly
265  between the two species (Fig 5) [41]. There was a single HSV1 epitope, PMPSIGLEE, bound by
266  40% of HSV1 specimens and a single HSV2 epitope, GGPEEFEGAGD, bound by all HSV2
267  specimens. This HSV2-specific epitope aligned well with previous epitopes found for

268  glycoprotein G2 [13,42,43] (Table 3). Also, this epitope has been validated as an HSV2-specific
269  diagnostic [44,45]. The HSV 1-specific epitope was also similar to the previously reported

270  epitope DHTPPMPSIGLE [18]. Interestingly, the two HSV-specific epitopes terminated in an
271  identical 7-mer sequence EGAGDGE (PMPSIGLEEEEEEEGAGDGE and

272  GGPEEFEGAGDGE) [42]. This suggests that the regions containing these epitopes may be

273  evolutionarily or structurally related targets of the immune system.

274
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275  Table 3. Alignment of an HSV2-specific glycoprotein G2 epitope with previously reported
276  epitopes.

Peptides IReference

G|G|PE|E|F|E|G|A|G|D K-TOPE
PEE|FIE|G|A|GD|GE[P|PIEDDIDS|G| [13]
P|P|P|P|E/H|R|G|G|P|E[E|F|E|G|A|GD|G|E|P|P|E [42]
A[P|P|P|P[EH[R|G|G|PE|E[F|E|G|A|GD|G [43]

277

278  Fig 5. K-TOPE identified epitopes for glycoprotein G1 using HSV1 specimens and for

279  glycoprotein G2 using HSV2 specimens. For glycoprotein G1, a representative histogram for a
280  single specimen is shown in (A) and a heat map for all HSV1 specimens is shown in (C). For
281  glycoprotein G2, a representative histogram for a single specimen is shown in (B) and a heat
282  map for all HSV2 specimens is shown in (D). There was a single epitope identified for each

283  protein.

284

285 To identify candidate HSV species-specific epitopes, we analyzed the HSV1 and HSV2
286  proteomes. We identified 30 HSV2-specific epitopes that were 100% specific with prevalence >
287  30% (Table 4). Notably, 11 of these epitopes were bound by all HSV2 specimens. K-TOPE

288  identified a glycoprotein C epitope PRTTPTPPQ with 83% prevalence which was contained in a
289  previously identified epitope RNASAPRTTPTPPQPRKATK [18]. In contrast to the numerous
290  HSV2-specific epitopes, only 4 HSV 1-specific epitopes were identified, and the highest

291  prevalence achieved was only 40% (Table 5). One of these epitopes, RIRLPHI, overlapped with
292  the previously identified epitope HRRTRKAPKRIRLPHIR [46] in the well-described antigen
293  glycoprotein D [17]. One possible explanation for the discovery of fewer HSV 1-specific epitopes
294  is that the HSV2 specimens had high IgM levels, whereas the HSV1 specimens had high IgG
295  levels. Since high IgM levels occur with severe recurrent herpes infections [47], we would

296  expect the high [gM HSV2 sera to yield more epitopes.

297

298

299
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Table 4. HSV2-specific epitopes were identified.

Epitope Protein Accession| Prevalence
GGPEEFEGAGD Envelope glycoprotein G P13290 1
PLYARTTPAKF Tegument protein UL47 P89467 1
VDSQRLTPGGSVS Tegument protein UL21 P89444 1
KARKKGTSAL Envelope glycoprotein B P08666 1
TPLRYACVL Tegument protein UL47 P89467 1
ANSPWAPVL mRNA export factor P28276 1
RYSPLHN Envelope glycoprotein B P08666 1
EAMLNDAR Large tegument protein deneddylase P89459 1
QRLTPH Large tegument protein deneddylase P89459 1
LRYTPAGEV Envelope glycoprotein H P89445 1
RTPSMR Major viral transcription factor ICP4 homolog P90493 1
LATNNA Small capsomere-interacting protein P89458 0.917
LRTNNL Ribonucleoside-diphosphate reductase small subunit | P69521 0.917
PRTTPTPPQ Envelope glycoprotein C Q89730 0.833
HRLYAVVA Inner tegument protein P89460 0.833
PSTPAMLNLG Ribonucleoside-diphosphate reductase large subunit | P89462 0.667
VTKHTALCAR Large tegument protein deneddylase P89459 0.583
TRDYAGL Envelope glycoprotein I P13291 0.583
RLTVAQ Envelope glycoprotein I P13291 0.583
RSLGIA Protein UL20 P89443 0.583
IRDLARTFA Thymidine kinase P89446 0.5
DITAKHRCL Major capsid protein P89442 0.5
ETPAQPPRY Capsid scaffolding protein P89449 0.5
VSGITPTQ Tripartite terminase subunit 1 P89451 0.5
HEELYYGPVS Tegument protein VP22 P89468 0.417
IQDLAYAIV Ribonucleoside-diphosphate reductase large subunit | P89462 0.417
GPAQRHTY DNA polymerase catalytic subunit P89453 0.417
YFEEYAYS Envelope glycoprotein B P08666 0.417
LDDFDL Tegument protein VP16 P68336 0.417
AARLIDALYAEFLGG Envelope glycoprotein H P89445 0.333
A total of 30 epitopes were identified that were 100% specific against HSV1.

Table 5. HSV1-specific epitopes were identified.

Epitope Protein Accession | Prevalence
RIRLPHI Envelope glycoprotein D Q69091 0.4
PMPSIGLEE Envelope glycoprotein G P06484 0.4
CAAFVNDYSLV Major capsid protein P06491 0.3
EMADTFLDT ICP47 protein P03170 0.3

Only 4 epitopes were identified that were 100% specific against HSV2.

We sought to determine whether the HSV2-specific epitopes were contained in proteins
that differed between the HSV species [41]. We determined 8 HSV2-specific epitopes with

sequences that were contained in both HSV proteomes (S3 Table). Our analysis suggested that
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307 these epitopes were only targeted by HSV2 specimens, despite their presence in the HSV1
308 proteome. Thus, even sequences that are conserved between species could serve as species-

309  specific targets.

310  Discussion
311

312 Here, we present a generalizable methodology for identifying epitopes within candidate
313  immunogenic proteins. By tiling proteins into k-mers and evaluating those k-mers in a database
314  of antibody-binding peptides, we determined epitopes for individuals and a population.

315  Importantly, we have demonstrated that K-TOPE can identify disease-specific epitopes and

316  antigens. One of the main features of this approach is that it combines k-mers to determine

317  composite epitopes that may not explicitly exist in the peptide dataset. Another important

318 element is using an antigen sequence to identify epitopes, thereby surmounting the 7 amino acid
319  requirement for successful antigen identification [30].

320 The K-TOPE approach to epitope mapping differs from reported methods in several

321  important ways. While proteome-derived peptide libraries have been used to identify disease-
322 specific epitopes [33,48], these methods lack the flexibility to examine multiple proteomes. For
323  instance, separate libraries would be required to analyze both HSV1 and HSV2. Even a library
324  that contains peptides spanning all viral proteomes cannot easily be extended to much larger
325  Dbacterial or parasitic proteomes [24]. A disadvantage of microarrays is that they have far lower
326  5-mer coverage (~27% [32]), than surface display (~100%) which could limit the application of
327  k-mer approaches. Other algorithms have been developed that identify binding motifs in peptide
328  datasets, but they lack the integrated capability to connect motifs to protein antigens [49,50].
329  Also, the direct method of aligning peptides to sequences becomes computationally infeasible

330  with a large number of peptides and candidate antigens [51].
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331 The heterogeneity of experimental approaches complicates the validation of putative

332 epitopes and their associated antigens. The Immune Epitope Database (IEDB) has an all-

333 inclusive representation of information [52], which may not reflect important distinctions in

334  experimental platforms, specimens, and data analysis techniques. For instance, there are likely
335 numerous false positive epitopes for highly studied organisms and few identified epitopes for
336  poorly studied organisms. Also, there is a lack of quantitative data reported for epitopes [53],
337  such as the proportion of a given population that binds an epitope. To address this lack of

338 information, we first used K-TOPE to analyze specimens for responses to common pathogens in
339  a general population. This allows newly identified “public epitopes” to be benchmarked by

340 nearly any set of serum specimens. We required that a proportion of the population bind an

341  epitope to reduce false positives. Although analysis of the variation in private epitopes could be
342 valuable for understanding the variation in immune responses, it would complicate validation.
343  We determined public epitopes in Rhinovirus A and showed that people who targeted fewer

344  Rhinovirus A epitopes tended to be older, perhaps due to immunosenescence [54], reduced

345  pathogen exposure, or a lower incidence of rhinovirus infections [55]. With a diverse group of
346  specimens, it was possible to confirm that the RRPFF epitope in EBV’s protein EBNAL is a very
347  commonly targeted epitope [33]. Since the specimens used to determine public epitopes were not
348  assayed for responses to pathogens, acute and chronic infections could not be readily

349  distinguished from prior infections. These public epitopes could be further validated using

350  specimens with acute infections or using longitudinal studies to determine if these epitopes

351  appear upon vaccination [56]. We did not find epitopes corresponding to measles or rubella

352  vaccination, which is consistent with a recent study that comprehensively identified viral

353  epitopes [57]. This implies that for these viruses, high titer antibodies targeting linear epitopes
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may not be present. For HSV1 and HSV2, we determined whether an epitope was specific by
analyzing specimens infected by both virus species. Unexpectedly, we demonstrated that even
epitopes present in the conserved regions of both species’ proteomes could be species-specific.
The difference in binding was likely due to differences in the structure and post-translational
modifications of the proteins. For the HSV analysis, we validated epitopes using previous
studies, however, it was difficult to know a priori whether a non-validated epitope was novel or
spurious. In general, since studies use different specimens, experiments, and computational
analyses, it is unlikely for the epitopes of two studies to completely coincide.

K-TOPE provides a new tool for identifying diagnostic biomarkers, vaccine components,
and candidate therapeutic targets. This approach could be used in the iterative process of
designing a vaccine, since it would be useful to know which epitopes are elicited in a population
by vaccination. Vaccine formulation could be altered to maximize the percentage of the
population that targets epitopes associated with a positive disease outcome [2]. K-TOPE could
also enable the development of diagnostics that assign disease based on the presence of epitopes.
Since this method only involves a single experimental screen, in principle multiple diseases
could be simultaneously diagnosed [58]. By searching for consensus epitopes in a disease group
that are absent in a control group, K-TOPE can discover disease-specific epitopes. For an
autoimmune disease, the entire human proteome could be analyzed to determine autoantigen
epitopes [33]. Similarly, using clinical histories of viral infection, K-TOPE can analyze the
proteomes of suspected pathogens to link epitopes to infections [24]. With specimens that have
HLA information, it could be possible to detect a correlation between HLA type and bound
epitopes [59]. This could have implications for how we determine genetic predisposition to

immunological disease.
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377 There are important limitations to the conditions in which this approach could be

378  successful. First, this approach is currently limited to the identification of linear epitopes.

379  However, since 85% of epitopes have at least one linear stretch of five amino acids [22],

380 conformational epitopes with linear segments may be represented in the datasets. We chose to
381  focus on linear epitopes since methods that identify conformational epitopes often require 3D
382  protein structures, which are scarce relative to the number of protein sequences. This report

383  focuses on epitopes from common pathogens which are high-titer, but it could be difficult to

384  detect rare antibody epitopes. Methods that selectively deplete out high-titer antibodies could
385  prove effective for probing rare antibodies [60]. Another limitation is that protein sequences tend
386  to have a large degree of conservation and redundancy [61], as demonstrated by the false

387  positives found in the viral epitope search. Thus, even for analyses of non-immunogenic

388  proteomes, false positives will occur due to evolutionary or coincidental sequence overlap with
389  immunogenic proteomes. The issue of false positives can be partially allayed by deliberately

390 choosing the set of investigated proteins, such that all proteins are plausible candidate antigens.
391  Sequence conservation was demonstrated with the Enterovirus epitope PALTAVETGATNPL
392  [35], as well as with the Human herpesvirus 64 epitope YVDDMLNDI (Table 1) which shares
393  the k-mer “DDMLN” with the Streptococcus epitope GQKMDDMLNS (Table 2). Generally, if
394  an epitope sequence is present identically in multiple antigens, all candidate antigens should be
395  considered equally plausible without further biological, epidemiological, or experimental

396  information. It is important to note that one of the purposes of K-TOPE is to reduce thousands of
397  candidate proteins to a small set of proteins that can be experimentally validated.

398 In summary, the present approach enables the discovery of epitopes within the proteomes

399  of any organism whose sequence is deposited into the protein database. The challenge of
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400  associating epitopes with antigens can be surmounted by transforming sets of antibody-binding
401  peptides to k-mers and tiling proteins of interest. Advancements upon this paradigm may enable

402  comprehensive immunological evaluations from serum and other biological tissues.

403 Materials and methods
404

405 Strains and reagents

406 E. coli strain MC1061 was used with surface display vector pB33eCPX for all library
407  screening experiments. Protein A/G magnetic beads were from Thermo Scientific Pierce.

408  Antibodies with known specificity included C3956 rabbit anti-c-Myc polyclonal antibody

409  (Sigma), anti-beta amyloid 1-42 antibody [mOC31] - conformation-specific (ab201059)

410  (Abcam), and rabbit V8137 Anti-V5 polyclonal antibody (Sigma). Antibodies were spiked into
411  healthy donor serum at a concentration of 25 nM. All sera (n=273) were obtained as deidentified
412  specimens from biobanks according to institutional guidelines, (Biosafety authorization numbers

413  #201417,#201713), and handled according to CDC-recommended BSL2 guidelines.

414 Bacterial peptide display and sequencing

415 The bacterial peptide display screening protocol was carried out as previously described
416  [29,62]. Briefly, an E. coli library displaying approximately 8 billion different 12-mer peptides
417  was combined with 1:100 diluted serum. We used magnetic selection with Protein A/G beads to
418  1isolate bacterial cells with bound antibodies. Then, we confirmed that this isolated fraction of
419  bacteria bound antibodies using flow cytometry. Amplicons were prepared from the isolated

420  fraction for sequencing using the [llumina NextSeq.
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421 Protein databases

422 Protein sequences were obtained from UniProt or by using the Biopython module [63].
423 Accessions for proteins are noted in figures and figure captions. For the epitope validation,

424 accessions were chosen that reference the most highly annotated version of the proteins

425  identified in Table 1 and Table 2. The list of random proteins used for statistical analysis was
426  obtained through a UniProt search of “reviewed:yes”. The viral proteome search used a Uniref
427  search of “uniprot:(host:"homo sapiens" reviewed:yes fragment:no) AND identity:0.9” and
428  yielded 2,908 proteins. The Staphylococcus proteome search used a Uniref search of

429  “uniprot:(taxonomy:"Staphylococcus [1279]" fragment:no reviewed:yes) AND identity:0.9” and
430  yielded 3,071 proteins. The Streptococcus proteome search used a Uniref search of

431  “uniprot:(taxonomy:"Streptococcus [1301]" fragment:no reviewed:yes) AND identity:0.9” and
432 yielded 2,976 proteins. HSV analysis used a UniProt search of “reviewed:yes AND

433 organism:"Human herpesvirus 1 (strain 17) (HHV-1) (Human herpes simplex virus 1) [10299]"
434  AND proteome:up000009294” for HSV1, yielding 73 proteins and a Uniprot search of

435  “reviewed:yes AND organism:"Human herpesvirus 2 (strain HG52) (HHV-2) (Human herpes

436  simplex virus 2) [10315]" AND proteome:up000001874” for HSV2, yielding 72 proteins.
437  Selection of literature epitopes

438 For EBNA1, RRPFF was chosen because it was noted that RRPFF antibodies were found
439  in the serum of healthy individuals [33]. KRPSCIGCK was noted as an EBNA1 epitope that was
440  preferentially targeted by pre-eclamptic women, but was also targeted by healthy controls [6].
441  The motif XPEFXGSXX was discovered and inferred to correspond to VPEFKGSLP in

442 Staphylococcus aureus using protein database searches [40]. For Poliovirus 1, the epitope

443  PALTAVETGATNPL was found to be a cross-reactive epitope in many enteroviruses [35].
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444  Sequence processing

445 All software files are posted on GitHub (https://github.com/mlpaull/KTOPE) and all 278

446  antibody-binding peptide files are available on Dryad (doi:10.5061/dryad.v7d0350). The imune-
447  processor.jar file is available for research, non-profit, and non-commercial use and requires a
448  license for commercial use. All other software is available under the MIT license. The algorithms
449  for generating nonredundant sequence lists from FASTQ files, outputting enrichment values for
450  subsequences, and exhaustively calculating k-mer statistics were adapted from IMUNE (imune-
451  processor.jar and calculate-patterns.jar) [29]. We added the capability to start with lists of

452  peptides rather than NGS data. The enrichment of a k-mer is defined as the ratio of the number
453  of observations of the k-mer to the “expected” number of observations. The “expected” value is
454  calculated as the product of the total number of sequences, the number of frames the k-mer could
455  fit in the sequences, and the probability of the k-mer appearing based on amino acid usage. If a
456  k-mer’s enrichment is above the “enrichment minimum” (2.0 for this study), it is used in K-

457  TOPE. K-mers need to be calculated only once per specimen. All interaction with IMUNE-

458  derived code is through a Python module which sets up a folder hierarchy and acts as a wrapper
459  for IMUNE-derived code (imuneprocessor.py). These programs are memory and hard-drive

460 intensive and it is recommended to have at least 16 GB of free RAM and 100 GB of hard-drive
461  space. Analysis was carried out on a Dell Optiplex 9020 with an Intel® Core™ 17-4790 CPU @
462  3.60 GHz, 64-bit operating system, and 32.0 GB of RAM. Processing FASTQ files into

463  subsequences from 12 specimens, each containing approximately 1.5 million unique sequences,
464  required 2.3 hours and calculating k-mer enrichment required 7.7 minutes. The duration of these

465  calculations scales approximately linearly with the number of specimens and sequences.
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466 K-TOPE algorithm

467 The K-TOPE algorithm (Code S1) is written in Python 3.6 (KTOPE.py). A usage guide
468  for KTOPE is available (Text S1). First, there is a RAM-intensive step of loading k-mer

469  enrichment data into memory as a dictionary. The enrichment dictionary for 250 specimens

470  required approximately 4 GB of RAM. Then, a protein of interest is chosen for analysis and its
471  sequence is loaded. This protein is tiled into k-mers of a set length. For this study, 5-mers were
472  used. Each position in the protein sequence is assigned a frequency counter that starts at 0. The
473  frequency counter of each sequence position contained in an enriched k-mer is incremented by
474  the logarithm base 2 of the k-mer’s enrichment. For instance, if 3 k-mers that overlapped at a
475  position had enrichments of 2, 4, and 8, the frequency for that position would be log, 2 + log; 4
476 + log, 8 = 6. The frequency counters are compiled into a histogram which is smoothed using a
477  moving window. For this analysis, the window had width 7 and used linear weighting with 1 in
478  the center and 0.1 at the edges. Minima and maxima are identified in the smoothed histogram.
479  All intervals between 2 minima that contain a maximum are used to define epitopes. Epitopes
480  were limited to a minimum length of 6 and a maximum length of 15. Epitopes are scored using
481  the area under the curve of the un-smoothed histogram. To assign statistical significance to each
482  epitope, the epitope’s score is ranked in a list of scores for epitopes of the same length generated
483  through an analysis of 10,000 random proteins. This rank is reported as a percentile in the

484  distribution of random protein epitope scores. For this study, a percentile cutoff of 95% was
485  used. For 12 specimens, analysis of 10,000 random proteins required 10.0 minutes.

486 After determining epitopes for individual specimens, K-TOPE can determine consensus
487  epitopes for a population. Each epitope is characterized by a “centroid” which is the weighted

488  central position of the epitope, indexed as a position in the protein sequence. Centroids for all
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489  epitopes that meet the percentile cutoff are compiled. They are then clustered using k-means to
490  associate close centroids with the KMeans function from scitkit-learn [64]. A representative

491  epitope is made for each cluster and kept if it meets a minimum prevalence in the population.
492  Closely overlapping epitopes are removed and the final list is sorted by prevalence. Consensus
493  epitopes can be determined for each protein in a proteome, generating a list of epitopes prevalent
494 in a population. Determination of consensus epitopes for the Rhinovirus A genome polyprotein
495  (P07210) for 250 specimens required 24.4 seconds. The proteome searches for viruses with

496  human tropism, Staphylococcus, and Streptococcus for 250 specimens required 3.1, 2.3, and 1.9
497  hours, respectively.

498 We calculated expected membership of epitope groups by multiplying the proportions of
499  the population that bound each epitope. For example, if epitope 1 was bound by 32% of the

500  population and epitope 2 was bound by 67%, then the expected membership of epitope group
501 ‘142’ would be 21%. We ranked the overlaps between K-TOPE derived epitopes and literature
502  epitopes in a list of 10,000 randomly generated epitope overlaps to determine a p-value. To

503  remove redundant epitopes found in the proteome searches, we used the PAM30 similarity

504  matrix to align two epitopes and compare each position to calculate a similarity score. Epitopes
505 that had similarity scores >10, were in the same protein, and were from different organisms were
506  considered redundant. We removed the less prevalent of the two redundant epitopes.

507 The HSV analysis used “disease” group specimens to identify epitopes and “control”

508  group specimens to subtract epitopes. Epitopes were identified in the disease group that met the
509  epitope percentile cutoff (95%) and the minimum prevalence (30%). Then, all disease epitopes
510  were evaluated in the control group. For an epitope to be considered disease-specific, its score

511  had to be below the epitope percentile cutoff (80%) in all control specimens. To identify HSV2-
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512 specific epitopes that were also in the HSV1 proteome, we identified epitopes that exactly

513  matched a subsequence in an HSV1 protein.
514 Data visualization

515 Fig 1 was created using Inkscape. Histograms and heat maps were generated using the

516  Matplotlib python module [65]. Bar graphs were generated using GraphPad Prism 7.
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