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Abstract

Motivation: Microbial flow cytometry allows to rapidly characterize microbial community diversity and
dynamics. Recent research has demonstrated a strong connection between the cytometric diversity and
taxonomic diversity based on 16S rRNA gene amplicon sequencing data. This creates the opportunity to
integrate both types of data to study and predict the microbial community diversity in an automated and
efficient way. However, microbial flow cytometry data results in a number of unique challenges that need
to be addressed.
Results: The results of our work are threefold: i) We expand current microbial cytometry fingerprinting
approaches by using a model-based fingerprinting approach based upon Gaussian Mixture Models, which
we called PhenoGMM. ii) We show that microbial diversity can be rapidly estimated by PhenoGMM. In
combination with a supervised machine learning model, diversity estimations based on 16S rRNA gene
amplicon sequencing data can be predicted. iii) We evaluate our method extensively by using multiple
datasets from different ecosystems and compare its predictive power with a generic binning fingerprinting
approach that is commonly used in microbial flow cytometry. These results confirm the strong connection
between the genetic make-up of a microbial community and its phenotypic properties as measured by flow
cytometry.
Availability: All code and data supporting this manuscript is freely available on GitHub at: https:

//github.com/prubbens/PhenoGMM. Raw flow cytometry data is freely available on FlowRepository
and raw sequences via the NCBI Sequence Read Archive. The functionality of PhenoGMM has
been incorporated in the R package PhenoFlow: https://github.com/CMET-UGent/Phenoflow_
package.
Contact: Peter.Rubbens@UGent.be
Supplementary information: Supplementary data are available in attachment to this submission.

1 Introduction
Life as we know it would not be possible without microorganisms (Gilbert
and Neufeld, 2014). Microbial communities are driving forces
of biogeochemical processes such as the carbon and nitrogen
cycle (Falkowski et al., 2008), they maintain human health (Young, 2017)
and they are used for the creation of a vast array of products, such as
chemicals, antibiotics and food (Blaser et al., 2016). The field of microbial
ecology is interested in the diversity of a community and its relation
to ecosystem functionality (Konopka et al., 2015). Various tools have
been developed to study and monitor microbial communities. With the
emergence of 16S rRNA gene sequencing, researchers have uncovered the
genotypic diversity of microbial communities to a large extent (Van Dijk
et al., 2014). Although advances have been made to perform sequencing in
real-time (Ardui et al., 2018), most 16S rRNA gene amplicon sequencing

surveys are still expensive (Sims et al., 2014) and laborious in time (van
Dorst et al., 2014).

Instead of solely focusing on genotypic information, there is a need
to combine omics data with phenotypic information (De Vrieze et al.,
2018). One of such tools to study the phenotypic identity of microbial
communities is flow cytometry (FCM). FCM is a high-throughput
technique, able to measure hundreds to thousands of individual cells in
mere seconds. These measurements result in a multivariate description
of each cell, derived from both scatter and fluorescence signals. The
first is related to cell size and morphology, while the latter depends on
either autofluorescence properties or the interaction between the cell and
a specific stain. Common for microbial FCM is to use a stain that interacts
with the nucleic acid content of a cell (Koch et al., 2013b; Van Nevel et al.,
2013).

Many algorithms exist in the field of immunophenotyping cytometry
to identify separated cell populations (see e.g. the extensive benchmark
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studies by Aghaeepour et al. (2013) and Weber and Robinson (2016)).
However, the number of variables that describe a bacterial cell is
typically much lower than is common for cytometry setups studying
mammalian cells. As a result, cytometric distributions of individual
bacterial populations tend to overlap (Rubbens et al., 2017a), as the number
of bacterial populations in a community is typically much larger than the
number of differentiating signals. Therefore, bacterial cytometry data is
characterized by overlapping cell populations and these algorithms cannot
be applied for the analysis bacterial cytometry data. Consequently, data
analysis pipelines should be designed to address these characteristics.

In previous research, microbiologists have relied on cytometric
fingerprinting techniques (Koch et al., 2013b; Props et al., 2016). The
approaches that are currently used for the analysis of bacterial communities
can be broadly divided in two categories: i) manual annotation of clusters
(Günther et al., 2012; Koch et al., 2013b) and ii) automated approaches
that employ binning strategies (Li, 1997; Koch et al., 2013a; García et al.,
2015; Props et al., 2016). Such a fingerprint allows to derive community-
level variables in terms of the number of bins or clusters (i.e. gates),
cell counts per cluster and the position of those clusters (Koch et al.,
2014), despite the fact that there are no or only a few clearly separated
cell populations. These methods have a number of drawbacks: i) Manual
gating of regions of interest is laborious in time and operator dependent,
ii) only bivariate interactions of cytometry channels are considered and iii)
traditional binning approaches result in a large number of variables (e.g., a
fixed grid of dimensions 100×100 will result in 10,000 sample-describing
variables).

After a fingerprint has been constructed, one can calculate what is
called the cytometric or phenotypic diversity of a community (Li, 1997).
These are estimations of the diversity of a microbial community based on
the cell counts per cluster. If many clusters contain cells, a community
can be considered as ‘rich’. If the cells are equally distributed over
those clusters, a community can be considered as ‘even’. Recent reports
have shown a significant correlation between the cytometric diversity
and genotypic diversity derived from 16S gene sequencing data (García
et al., 2015; Props et al., 2016, 2018). In other words, there is a strong
connection between the genetic make-up of a microbial community and its
phenotypic properties, which can be quantified. This result has been backed
up by molecular identification using DGGE of sorted subpopulations (Park
et al., 2005; Koch et al., 2013b), the sequencing of sorted individual
cells or subpopulations (Zimmermann et al., 2016; Stepanauskas et al.,
2017; Günther et al., 2018) and by using a bottom-up approach in
which individual bacterial populations resulted in unique cytometric
characterizations, which can be automatically identified using machine
learning models (Rubbens et al., 2017a).

We propose an extension of current fingerprinting approaches that is
able to deal with overlapping cell populations. Our workflow, which is
called ‘PhenoGMM’, makes use of Gaussian mixture models (GMM).
GMMs have been successfully applied to cytometry data before to
identify separated cell populations in an automated way (Boedigheimer
and Ferbas, 2008; Reiter et al., 2016). Interestingly, Hyrkas et al.
(2015) have shown that their GMM approach outperformed state-of-
the-art immunophenotyping cytometry algorithms for the automated
identification of phytoplankton populations. By overclustering the data,
GMMs can also be used to describe the distribution of the data, and
therefore PhenoGMM is able to deal with overlapping cell populations.
In addition, the number of mixtures that are needed to describe the data
is much lower compared to the number of variables that result from
traditional binning approaches. This facilitates the use of supervised
machine learning models. We demonstrate that bacterial diversity can be
predicted based on cytometric fingerprints derived from PhenoGMM. We
illustrate our method using multiple datasets, in which we use diversity
values derived from 16S rRNA gene amplicon sequencing data as target

values that need to be predicted. We compare its performance with the
predictive power of a generic traditional binning approach, which we have
called PhenoGrid. Finally, we highlight a number of possible extensions
concerning the integration of FCM with 16S rRNA gene sequencing, such
as the calculation ofβ-diversity values, the imputation of missing diversity
values and the prediction of individual OTU abundances based on FCM
data.

Materials and Methods

Methodology

Preprocessing
Two steps are carried out for all measurements before further analysis of the
data. First, all individual channels are transformed usingf(x) = asinh(x).
Next, background due to debris and noise has been removed using a fixed
digital gating strategy (Prest et al., 2013; Props et al., 2016). In other
words, a single gate is applied to separate bacterial cells from background
and is used for all samples.

Cytometric fingerprinting using Gaussian Mixture Models
In order to create a fingerprint template that can be used to extract variables
describing a specific sample, all samples in the dataset in the training set
need to be concatenated. Files are first subsampled to the same number of
cells per file (N_CELLS_MIN), in order to not bias the Gaussian Mixture
Model (GMM) towards a specific sample. This number can either be the
lowest number of cells present in one sample, or a number of choice. A
rough guideline can be to not let the training set be larger than 1 ×106

cells, depending on computational resources. Ifn denotes the total number
of samples, then the total number of cells (N_CELLS) in the training set
will be determined as N_CELLS = n × N_REP × N_CELLS_MIN, in
which N_REP denotes the number of technical replicates of a specific
sample. Typically, forward (FSC) and side scatter (SSC) channels are
included, along with one or two targeted fluorescence channels (denoted as
FLX, in which X indicates the number of a specific fluorescence detector).
Unless noted otherwise, channels FSC-H, SSC-H and FL1-H (488 nm)
were included for data analysis.

Once this training set is created, a GMM of K mixtures can be fitted
to the data. If X denotes the entire datamatrix or training set containing
N cells, then X consists of cells written as x1, ...,xN , of which each
cell is described byD variables (i.e., the number of signals collected from
the flow cytometer). Cell i is described as xi = {x1i , ..., xDi }. A GMM
consists out of a superposition of normal distributions N , of which each
distribution has its own mean µ and covariance matrix Σ. Each mixture
has a mixing coefficient or weight π, which represents the fraction of data
each mixture is describing. The distribution p, which describes the GMM,
can be written as follows:

p(X) =

K∑
k=1

πkN (X|µk,Σk). (1)

The set of parameters Θ = [πk,µk,Σk]Kk=1 is determined by the
expectation-maximization (EM) algorithm (Bishop, 2006). Once a GMM
has been trained on the concatenated data, one can cluster the cells in each
sample separately using the trained GMM. For this step, either a specific
number of cells of choice are sampled per replicate, or the lowest number
of cells of the replicates that are part of that specific sample, denoted
as N_CELLS_REP. After clustering, we count the number of cells per
cluster, after which the relative number of cells per cluster and sample can
be retrieved. The resulting variables can be used for different purposes: i) to
calculate diversity metrics in an unsupervised way or ii) as input variables
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to be included in predictive models. An illustration of PhenoGMM can be
seen in Fig. 1.

We used the GaussianMixture() function of the scikit-learn machine
learning library to implement our method (Pedregosa et al., 2011). This
function contains four different ways in which the covariance matrix of
each mixture is determined:

• diag: each mixture has its own diagonal covariance matrix.
• full: each mixture has its own general covariance matrix.
• spherical: each mixture has its own single variance.1

• tied: all mixtures share the same general covariance matrix.

Unless otherwise noted, we let each mixture have its own general
covariance matrix (full). mClust was used to integrate PhenoGMM in
the R package PhenoFlow (Scrucca et al., 2016).

Defining α- and β-diversity
Both 16S gene amplicon sequencing and flow cytometry fingerprints give
rise to a compositional representation of a microbial community. The first
is determined by counting the number of similar sequences at a certain
taxonomic level, i.e. a taxonomic unit, the latter by counting the number
of cells present in a predefined gate or cluster in the cytometric fingerprint,
the phenotypic unit. Based on abundance data, one can calculate both
α- and β-diversity metrics. The first quantifies the diversity within a
sample, the latter the diversity between samples. As various diversity
metrics exist in ecology to calculate α-diversity; we use the Hill numbers
to quantify community diversity (Hill, 1973), as proposed by recent
reviews of Leinster and Cobbold (2012) and Daly et al. (2018). If we
let p = p1, ..., pS represent the vector of relative abundances, describing
the abundance of S bacterial populations, then we can define the richness
(D0) and evenness (D1, D2) of a microbial community as follows:

Dq=0(p) = S, (2)

Dq=1(p) = exp(−
S∑
i=1

pi ln pi), (3)

Dq=2(p) =
1∑S
i=1 p

2
i

. (4)

q denotes the order of the Hill-number, which is part of a general
family, which can be denoted as Dpq . It expresses the weight that is given
to more abundant populations.

β-diversity quantifies the difference in compositions between different
samples. Typically, this is calculated by performing ordination on a
dissimilarity matrix that contains the dissimilarities or distances between
samples. We quantify the dissimilarity between samples using the Bray-
Curtis dissimilarity (Bray and Curtis, 1957). If we let BCAB denote the
dissimilarity between samples A and B, BCAB is calculated using the
following equation:

BCAB =

∑S
i=1 |pA,i − pB,i|∑S
i=1 |pA,i + pB,i|

(5)

Predictive modeling
FCM fingerprints can be used as input variables to train a machine
learning model. We used Random Forest regression (Breiman, 2001), an
ensemble of decision trees, to predict α-diversity metrics. A randomized
grid search was performed to search for an optimal hyperparameter
combination (Bergstra and Bengio, 2012). This means that a 100 random
combinations of hyperparameter values were evaluated. The maximum

1 Note, this is not the same as k-means clustering. In this case, all mixtures
would share the same single variance.

number of variables that are considered at an individual split for a decision
tree was randomly drawn from {1, ...,K}, the minimum number of
samples for a specific leaf was randomly drawn between {1, ..., 5}.
The cross-validation strategy differed per experiment, and is described
accordingly.

Datasets

Dataset 1: In Silico Bacterial Communities
Data from 20 individual bacterial populations that were measured through
FCM were collected from Rubbens et al. (2017a). The data is available
at FlowRepository (accession ID: FR-FCM-ZZSH). In brief, bacterial
populations were measured after 24h of incubation, stained with SYBR
Green I and two technical replicates per population were measured on an
Accuri C6 (BD Biosciences). Fluorescence was measured by the targeted
detector (FL1, 530/30 nm) and three additional detectors, next to forward
(FSC) and side scatter (SSH) information that was collected as well.
Additional automated denoising was performed using the FlowAI package
(v1.4.4., default settings, target channel: FL1, changepoint detection:
150, Monaco et al. (2016)). A full experimental overview can be found
in Rubbens et al. (2017a). The lowest number of cells collected after
background removal amounted to 13166 cells.

Dataset 2: Cooling water microbiome
Data was used as presented in Props et al. (2016). Samples were collected
from the cooling water of a discontinuously operated research nuclear
reactor. This reactor underwent four phases: control, startup, operational
and shutdown. Samples were taken from two surveys (Survey I and II)
and analyzed through 16S rRNA gene amplicon sequencing (n = 77)
and FCM (n = 153). The sequencing and flow cytometric procedures
are extensively described in Props et al. (2016). Taxonomic identification
of the microbial communities was done at the operational taxonomic unit
(OTU) level at 97% similarity. Sequences are available from the NCBI
Sequence Read Archive (SRA) under (accession ID: SRP066190), flow
cytometry data is available from FlowRepository (accession ID: FR-FCM-
ZZNA). The lowest number of cells collected after background removal
amounted to 10565 cells.

Dataset 3: Freshwater lake system microbiome
A total of 173 samples collected from three types of freshwater lake
systems were analyzed. Data were used as presented in (Rubbens
et al., 2019). All samples were analyzed through 16S rRNA gene
amplicon sequencing and FCM. Samples originate from three different
freshwater lake systems: (1) 49 samples from Lake Michigan (2013 &
2015), (2) 62 samples from Muskegon Lake (2013-2015; one of Lake
Michigan’s estuaries), and (3) 62 samples from twelve Inland lakes in
Southeastern Michigan (2014-2015). Field sampling, DNA extraction,
DNA sequencing and processing are described in Chiang et al. (2018).
Fastq files were submitted to NCBI SRA under BioProject accession
number PRJNA412984 and PRJNA414423. Taxonomic identification of
microbial communities was done for each of the three lake datasets
separately and treated with an OTU abundance threshold cutoff of either 1
sequence in 3% of the samples. For comparison of taxonomic abundances
across samples, each the three datasets were then rarefied to an even
sequencing depth, which was 4,491 sequences for Muskegon Lake
samples, 5,724 sequences for the Lake Michigan samples, and 9,037
sequences for the Inland lake samples. Next, the relative abundance at
the OTU level was calculated by taking the count value and dividing it
by the sequencing depth of the sample. Flow cytometry procedures are
extensively described in Props et al. (2018). In brief, samples were stained
with SYBR Green I and three technical replicates were measured on an
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COMMUNITY K1 ... K100 D
2

ORANGE 0.006 ... 0.010 49.2

GREEN 0.010 ... 0.008 60.2

BLUE 0.006 ... 0.010 57.5

A

B

C

D
COMMUNITY OTU1 ... OTU20 D

2

ORANGE 0.56 ... 0 2.8

GREEN 0.13 ... 0.02 8.8

BLUE 0.07 ... 0.06 7.19

Cell count table OTU tableE

Fig. 1. Illustration of PhenoGMM for two channels (FL1-H and FSC-H) using K = 100 mixtures. A: The analysis starts from cytometric measurements of three bacterial communities
of interest, noted as ’ORANGE’ (S = 6), ’GREEN’ (S = 8) and ’BLUE’ (S = 15). B: Data of the three communities are concatenated into one dataframe, to which is a GMM with
K = 100 mixtures is fitted. This results in a cluster structure, which is depicted on the right. C: The fingerprint template is used to derive relative cell counts per cluster and per bacterial
community. D: This results in a ’count’ table, which can be used to rapidly quantify the cytometric diversity based on equations 2-4 (in this case D2). E: Based on the count table derived
using PhenoGMM, one can try and predict diversity metrics based another type of data such as 16S rRNA gene sequencing, using a machine learning model.

Accuri C6 (BD Biosciences). The lowest number of cells collected after
denoising amounted to 2342 cells.

Experimental setup

Our proposed fingerprinting approach based on GMMs was compared
to a generic fixed binning approach, which we have called PhenoGrid.
In brief, we implemented a binning grid of L = 128 × 128 for each
bivariate parameter combination, after which relative cell fractions per bin
were determined. The resulting cell fractions were next concatenated into
one vector.

Both PhenoGMM and PhenoGrid result in multiple variables that
describe cell counts, either per cluster or bin. This can be used to perform:

1. Unsupervised α-diversity estimation, by directly calculatingD0, D1

and D2 according to equations 2, 3 and 4 based on the cell count
vectors.

2. Unsupervised β-diversity estimations, by calculating Bray-Curtis
dissimilarities (equation 5) between the cytometric fingerprints.

3. Supervised α-diversity predictions, with cytometric fingerprints as
input variables to predict true target variables D0, D1 and D2 based
on 16S rRNA gene sequencing data, by means of Random Forest
regression.

4. Supervised taxon abundance predictions, with cytometric fingerprints
as input variables to predict true taxon abundances, based on 16S
rRNA gene sequencing data, by means of Random Forest regression.

Research question 1: Does PhenoGMM allowα-diversity estimations
of in silico synthetic microbial communities?
The main goal is to estimate (i.e., unsupervised) or predict (i.e., supervised)
α-diversity metrics based on cytometric fingerprinting of the data.
Dataset 1 contains the cytometric characterization of individual bacterial
populations. By using a data-aggregation step, it is possible to create
bacterial communities of different compositions. As it is known which
cell belongs to which species, diversity indices can be calculated with
high accuracy by simply counting the number of bacterial populations that
are present in a community (D0) or by counting the fraction of cells that
comes from every population (D1, D2). A training set representing 300
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different in silico compositions, and a test set containing 100 different
compositions, were created in the following way:

1. Sample uniformly at random a number S′i between two and 20; this
is the number of populations that will make up community i.

2. Select randomly which S′i populations will make up the total
community (from S = 20 populations).

3. Use the Dirichlet distribution to randomly sample a specific
composition that sums to 1, containing the selected populations. The
Dirichlet distribution can be used to model the joint distribution of
individual fractions of multiple species (Friedman and Alm, 2012).
The evenness of the composition depends on the concentration
parameter a, which determines how evenly the weight will be spread
over multiple species. If a is low, only a few species will make up a
large part of the community. Ifa is high, the fraction of each population
will be almost equally divided.

Using these compositions, in silico communities can be sampled
accordingly. This results in a training and test set containing 300 and 100
cytometric representations of bacterial communities respectively, ranging
from two to 20 populations, with varying compositions. This experiment
was repeated for a = 0.1, 1, 10. Random forests were trained using
5-fold cross-validation. Both unsupervised and supervised α-diversity
estimations were reported for the test set.

Research question 2: Does PhenoGMM allow α-diversity predictions
based on 16S rRNA gene sequencing data for freshwater microbial
communities?
Analogous to experiment 1, the main goal is here to both estimate and
predict α-diversity metrics based on cytometric fingerprinting of the data.
However, different from dataset 1, we will now use α-diversity values
based on 16S rRNA gene amplicon sequencing. Dataset 2 and 3 contain
natural communities, which were measured both by FCM and 16S rRNA
gene amplicon sequencing. These values were used as target variables to
predict. 10-fold cross-validation was used to select hyperparameters for the
Random Forest model, for which predictive performance of the validation
sets is reported. Unsupervised estimations were reported based on the full
dataset.

Extensions
1. We quantified the correlation between β-diversity estimations based

on FCM and 16S rRNA gene amplicon sequencing data for all datasets.
2. Missing diversity values based on 16S rRNA gene amplicon

sequencing were imputed based on PhenoGMM for dataset 2.
3. Individual abundances of the first twenty bacterial populations in the

composition (either sampled in silico or based on 16S rRNA gene
sequencing) were predicted based on cytometric fingerprints for all
datasets.

Performance evaluation
• Unsupervised and supervised α-diversity estimations were quantified

by calculating the Kendall’s rank correlation coefficient τ between the
true and estimated values. The τB implementation, which is able to
deal with ties, is calculated as follows:

τB =
Nc −Nd√

(Nc +Nd +Nt)× (Nc +Nd +Nu)
. (6)

Nc denotes the number of concordant pairs between true and
predicted values, Nd the number of discordant pairs, Nt the number
of ties in the true values and Nu the number of ties in the predicted
values. Values range from -1 (perfect negative association) to +1
(perfect positive association) and a value of 0 indicates the absence

of an association. This was done using the kendalltau() function in
Scipy (v1.0.0).

• Supervised predictions are evaluated by calculating the R2 between
true (y = {y1, ..., yn}) and predicted (ŷ = {ŷ1, ..., ŷn}) values:

R2(y, ŷ) = 1−
∑n−1
i=0 (yi − ŷi)2∑n−1
i=0 (yi − ȳ)2

, (7)

in which ȳ denotes the average value of y. If R2 = 1,
predictions were correctly estimated. IfR2 < 0, predictions are worse
than random guessing.The r2_score()-function from the scikit-learn
machine learning library was used.

• Unsupervised β-diversity estimations were evaluated by calculating
the correlation between Bray-Curtis dissimilarity matrices (BC) based
on FCM and 16S rRNA gene sequencing data using a Mantel-
test (Mantel, 1967). This test assesses the alternative hypothesis that
the distances between samples based on cytometry data are linearly
correlated with those based on 16S rRNA gene sequencing data. It
makes use of the cross-product term ZM across the two matrices for
each element ij:

ZM =

n∑
i=1

n∑
j=1

BCFCM
ij ×BC16S

ij . (8)

The test statistic ZM is normalized and then compared to a null
distribution, based on 1000 permutations.

Results

PhenoGMM allows to predict α-diversity of in silico
synthetic microbial communities

300 different bacterial communities were assembled by aggregating
cytometric characterizations of individual populations in varying
compositions (creating communities in silico), constituting the training
set. This allowed to simulate community compositions in an accurate
way, as cell labels according to taxonomy are known for every individual
cell. Based on these compositions, diversity metrics could be accurately
determined, and were used as target variables to evaluate diversity
estimations and predictions. We repeated the experiment for three different
values of a, in which a determines how evenly the weight is spread
amongst the different populations. If a is small, only a few species
will be dominantly present, if a is large, chances are high that the
weight is evenly spread amongst the different populations. This is
illustrated using Lorenz curves, which depict the cumulative proportion of
abundance versus the cumulative proportion of bacterial species (SI Fig. 1).
100 additional bacterial communities were assembled using the same
aggregation strategy, making up the test set.

Cytometric fingerprints were determined on the concatenated
representation of the samples in the training set, to which a GMM of
K = 128 or a fixed binning grid of dimensions 128×128 was fitted. The
resulting cell counts were first used to directly calculate estimations of α-
diversity metrics according to equations 2-4, i.e. in an unsupervised way.
Second, the cell counts were used as input variables to predict D0, D1

and D2 by means of Random Forest regression.
PhenoGMM was compared with a generic fixed binning approach

called ’PhenoGrid’ (Table 1). To compare supervised with unsupervised
performances, Kendall’s τB was calculated between true and estimated
diversity values, which also allowed to quantify the level of significance.
We conclude that α-diversity could be estimated properly, as predictions
were significantly correlated with the true values according to τB . As
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Table 1. Summary of unsupervised and supervised α-diversity estimations for different a, quantified by τB , using both PhenoGMM versus PhenoGrid. Values
denote the average τB after 10 runs, along with corresponding standard deviation (SD). Values are bolded if the mean value of one approach is significantly higher
than the mean value of the other approach according to a student’s t-test (α = 0.05).

PhenoGMM PhenoGrid
Dataset τB(D0) τB(D1) τB(D2) τB(D0) τB(D1) τB(D2)

a = 0.1 0.29± 0.07 0.43± 0.06 0.40± 0.05 NS 0.18± 0.07 NS
Unsupervised a = 1 0.31± 0.07 0.47± 0.05 0.47± 0.06 0.23± 0.06 0.20± 0.05 0.17± 0.06

a = 10 0.26± 0.05 0.46± 0.05 0.45± 0.06 0.20± 0.06 0.17± 0.07 NS
a = 0.1 0.43± 0.05 0.62± 0.04 0.62± 0.03 0.54± 0.03 0.58± 0.02 0.54± 0.02

Supervised a = 1 0.61± 0.02 0.64± 0.02 0.62± 0.04 0.71± 0.03 0.67± 0.03 0.63± 0.04
a = 10 0.72± 0.04 0.71± 0.03 0.70± 0.03 0.74± 0.05 0.72± 0.04 0.72± 0.04

NS: Not significant (average P > 0.05)

expected, unsupervised estimations resulted in lower correlations with
true diversity metrics compared to supervised predictions, although still
significant in most cases (Kendall’s τB , level of significance α = 0.05).
The only exceptions wereD1 andD2 for a = 10 when using PhenoGrid.
PhenoGMM resulted in better unsupervised α-diversity estimations than
PhenoGrid, but both approaches resulted in a comparable supervised
performance.R2 values were considerably higher than zero, and slightly in
favor of PhenoGMM (SI Table 1). We note that the predictive performance
mainly depended on a and the diversity metric of choice. For example, the
hardest setting was the one in which a = 0.1 and D0 the target variable
to predict. In this case only a few populations made up a large part of the
community (low a), but an equal weight is attributed to all species when
defining diversity. Generally, if the abundance of populations is taken into
account (q > 0), α-diversity predictions were better. In other words,
FCM is able to capture community structure rather than the identity of the
community.

Computational efficiency
We timed different steps in the workflow of PhenoGMM for a = 1 and
D1. The time in seconds was determined in function of the number of
mixtures K (Fig. 2A). Each analysis was run on a separate node of a
computer infrastructure, with 2.6 Ghz CPU and 20GB of RAM for each
node. The timing consists out of the following steps: fitting a GMM, using
this model to extract variables per sample and calculating D1 directly
according to equation 3 (Fig. 2A), or with the addition of fitting a Random
Forest model to predictD1 (Fig. 2B). We sampled 5000 cells per sample.
As we have 300 samples in our training set, this amounts to fitting a
GMM to 1,5 million cells. Most importantly, the entire analysis remains
under one hour. Most of the time is spent on fitting the GMM. Training a
Random Forest model on the fitted GMM comes with an average increase
of 24,4% of the runtime forK = 256. The predictive performance of both
PhenoGMM and PhenoGrid was evaluated in function of the total runtime,
indicating that PhenoGMM needs much less time than PhenoGrid to reach
its optimal performance (SI Fig. 2).

Influence of hyperparameters on α-diversity estimations
In order to provide guidance concerning use of the model, the most
important parameters were varied one by one (i.e., the number of included
detectors D, the number of mixtures K, the number of cells sampled per
file to fit a GMM denoted as N_CELLS_MIN, the number of cells sampled
per individual sample to determine the cell counts per cluster denoted as
N_CELLS_REP, a learning curve in function of N_SAMPLES and the
TYPE of covariance matrix used to fit a GMM). The performance was
quantified using R2(D1) for a = 1 for a supervised analysis (SI Fig. 3).
The results indicate that considering the predictive performance:

• D: including additional detectors improves the performance.

• K: generally, the higher K, the better the performance, which
saturates after a specific threshold.

• N_CELLS_MIN: predictions are quite robust for this parameter.
• N_CELLS_REP: predictions are quite robust for this parameter.
• N_SAMPLES: predictive performance did not saturate yet at

N_SAMPLES = 300.
• TYPE: predictions are quite robust for the type of covariance matrix,

but the ‘full’ type resulted in the best predictions.

PhenoGMM allows to predict α-diversity for freshwater
microbial communities

α-diversity predictions were made based on cytometric fingerprinting
of natural microbial communities, which were either part of a cooling
water system (i.e. Survey I, II or combined), or a freshwater lake system
(i.e. Inland, Michigan, Muskegon or all of them combined). α-diversity
values, based on 16S rRNA gene amplicon sequencing, were used as target
variables to predict. Supervised predictions were the result of Random
Forest regression, which was tuned using ten-fold cross-validation. Values
are reported for the model that returned the best combined predictions on
the validation folds using Kendall’s τB (Table 2) and R2

CV (SI Table 2).
Diversity predictions were feasible (i.e., significant according to τB for
α = 0.05 and considerably higher than zero for R2

CV), but depending
on the dataset and diversity index. For example, predictions of D0 were
easier to make compared to D1 or D2 for the Inland lake-system and
were better for the cooling water system than for the lake systems. The
predictive performance of PhenoGMM (K = 256) was better or similar
compared to PhenoGrid (K = 128× 128).

Unsupervised diversity estimations were evaluated as well (SI Table 3).
Diversity estimations were highly significant for the cooling water
microbiome, but were insignificant in a number of cases for the freshwater
lake systems according to both approaches (D0 andD2 for the Inland lakes
and Muskegon lake; Kendall’s τB , α = 0.05). PhenoGrid outperformed
PhenoGMM in most cases, indicating that even more mixtures might be
needed to make it competitive with PhenoGrid in this setting. We conclude
that FCM shows a strong connection with 16S rRNA gene sequencing
data. FCM is sensitive for the community structure and can be used to
adequately perform microbial diversity estimations and predictions of
natural communities.

PhenoGMM allows estimations of β-diversity
β-diversity, which quantifies the difference in community composition
between different samples, can be determined as well using both 16S
rRNA gene amplicon sequencing and FCM. This was done by calculating
Bray-Curtis dissimilarities between all communities based on relative
fractions per OTU or mixture. A mantel test was used to calculate the
correlation between Bray-Curtis dissimilarity matrices, derived from the
the two types of data using both PhenoGMM and PhenoGrid (SI Table 4).
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A: Unsupervised B: Supervised

Fig. 2. Benchmarking of PhenoGMM vs PhenoGrid. Each model was run five times. A: time t, in seconds, versus K, the number of mixtures or dimension of the grid. B: Performance
expressed inR2(D1) in function ofK.

Both approaches resulted in statistically significant correlations (Mantel
test, α = 0.05). PhenoGMM resulted in better (synthetic microbial
communities) or similar (freshwater communities) β-diversity estimations
compared to PhenoGrid.

PhenoGMM can be used to impute missing α-diversity values
It is common practice in the field of microbial ecology to analyze only a
subset of samples by 16S rRNA gene amplicon sequencing. This was also
the case for the cooling water dataset, for which all samples (n = 153)
were analyzed through FC<, but additionally roughly half (n = 77) by
both FCM and 16S rRNA gene amplicon sequencing. PhenoGMM allowed
to make inference concerning theα-diversity of these missing samples. An
example is given for D1, for both survey I and II (Fig. 3). Predictions are
the average of ten runs of PhenoGMM. This illustrates how FCM can be
integrated with 16S rRNA gene sequencing in order to frequently monitor
a microbial community of interest, and reduce the number of samples that
have to be analyzed by 16S rRNA gene sequencing at the same time.

PhenoGMM allows to predict individual bacterial abundances
The fact that biodiversity can be estimated from cytometric data implies
that the taxonomic structure of a microbial community is captured by
the cytometric fingerprint. This opens up the opportunity to predict
variations in abundance of individual bacterial populations as well. First,
we constructed a fingerprint using 20 mixtures for the in silico dataset
and correlated the relative cell counts per mixture with variations in
individual abundances of bacterial populations (Fig. 4A). In most cases
multiple clusters are correlated with multiple populations, which is

due to the fact that bacterial populations exhibit overlapping cytometric
fingerprints (Fig. 4B). At the same time, no cluster is correlated with all
bacterial populations, motivating that despite the overlapping structure in a
cytometric fingerprint, variations in the clusters can be related to variations
in individual populations as well. The same procedure was applied for the
Muskegon dataset, in which counts in 128 mixtures were correlated with
the first 128 OTUs in the abundance table (SI Fig. 4). The same results
hold, meaning that almost every OTU shows a significant correspondence
with cell count variations in multiple, but never all clusters.

Therefore, we tested whether we could predict the abundance of
individual bacterial populations for all datasets (Fig. 4C). For dataset 1, the
individual abundances are known due to the experimental setup, for dataset
2 and 3 we tested whether we could predict abundance values for the first
20 taxa in the OTU-table based on 16S rRNA gene amplicon sequencing
data2. Predictions of taxon abundances were quantified in terms of theR2

on the test set for in silico synthetic communities or the R2
CV for natural

communities (Fig.4). The results indicate that individual taxon abundances
can be predicted based on cytometry data. For dataset 1 this was possible for
all populations, with a = 0.1 being the easiest setup to do so and a = 10

being the hardest setup to do so. This can be explained, as the weights of
a composition will be divided over few species for a = 0.1, compared to
compositions for a = 10. In other words, differences between individual
abundances will be larger for a = 0.1, making it easier to predict them.

2 Except for Survey I, for which results are presented for 18 taxa due to
the fact that two taxa did not vary in abundance which resulted in ’perfect’
predictions

Table 2. Summary of supervised α-diversity estimations for different a, quantified by τB , using both PhenoGMM versus PhenoGrid. Performance was quantified
based on estimations for the validation folds, using 10-fold cross-validation. Values denote the average τB of 10 different runs, along with corresponding standard
deviation (SE). Values are bolded if the mean value of one approach is significantly higher than the mean value of the other approach according to a student’s t-test
(α = 0.05).

PhenoGMM PhenoGrid
Dataset τB(D0) τB(D1) τB(D2) τB(D0) τB(D1) τB(D2)

Survey I 0.40± 0.03 0.49± 0.06 0.53± 0.05 0.27± 0.07 0.48± 0.04 0.49± 0.06
Survey II 0.66± 0.04 0.61± 0.04 0.62± 0.03 0.62± 0.03 0.59± 0.04 0.59± 0.04

Survey I+II 0.55± 0.03 0.63± 0.014 0.64± 0.04 0.52± 0.04 0.59± 0.03 0.61± 0.04

Inland 0.25± 0.07 0.33± 0.05 0.22± 0.02 NS 0.27± 0.04 NS
Michigan 0.26± 0.07 0.42± 0.05 0.39± 0.05 NS 0.35± 0.06 0.36± 0.03
Muskegon 0.35± 0.04 0.29± 0.04 0.19± 0.08 NS NS NS
All lake systems 0.510± 0.018 0.48± 0.02 0.44± 0.02 0.38± 0.03 0.38± 0.02 0.34± 0.03

NS: Not significant (average P > 0.05)
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A: Survey 1 B: Survey 2

Fig. 3. Predictions of ten different runs forD2 for which no 16S rRNA gene amplicon sequencing data was available for the cooling water dataset (Survey I and II), using PhenoGMM.

For natural communities, we note that it was possible to predict taxon
abundances for 67-95% of the evaluated taxa.

Discussion
In this paper we have extensively shown that flow cytometry (FCM)
can be used to estimate and predict microbial biodiversity. To do so,
we proposed a more advanced fingerprinting strategy based on Gaussian
Mixture Models (GMMs), called PhenoGMM. Our approach allows to
create meaningful variables and reduces the number sample-describing
variables considerably compared to traditional binning approaches. This
makes the use of predictive models, in this study by means of Random
Forest regression, much more feasible. We evaluated the performance of
PhenoGMM both for unsupervised estimations and supervised predictions
of biodiversity using multiple datasets. We compared it with the
performance of a generic traditional binning approach, which we in this
work called PhenoGrid.

In the first part of the paper, we constructed communities in
silico by aggregating cytometric characterizations of individual bacterial
populations in different compositions. This allowed us to simulate
microbial community compositions in a highly precise and controlled
way. In the second part we showed that flow cytometry data can be used
to predict biodiversity values based on 16S rRNA gene sequencing data.
Upon making predictions, PhenoGMM resulted in either more or equally
accurate predictions compared to PhenoGrid for all datasets. Unsupervised
estimations of α-diversity resulted in higher correlations with the target
diversity values for PhenoGMM for the synthetic communities, while
estimations were better for PhenoGrid for natural communities, for
which the diversity was determined based on 16S rRNA gene amplicon
sequencing. Total analysis time of PhenoGMM remains under one hour.

Many algorithms exist for the analysis of cytometry data. However,
most of these methods are developed for an automated analysis of
immunophenotyping data, in which many separated cell populations
can be identified. Microbial cytometry data has a number of different
characteristics, which is why most of these approaches are not applicable.
The reason is that bacterial cells are typically much smaller in both cell size
and volume compared to eukaryotic ells (Robinson, 2018). In addition, no
general antibody-based panels have been established for microbial cells
due to the high complexity of microbial communities (Koch and Müller,
2018). One has to rely on general DNA stains, for which it is difficult
to develop multicolor approaches (Buysschaert et al., 2016). Therefore,
the number of variables describing an individual bacterial cell is typically

much lower than e.g. a human cell. As a result, cytometric distributions
of bacterial populations tend to overlap, as the number of bacterial
populations is larger than the number of differentiating signals. GMMs
allow to model overlapping cell distributions. However, as distributions
overlap, it is hard to determine the exact number of populations. That is
why we overcluster the data by choosing a sufficient number ofKmixtures.
As K increases, the performance saturates gradually, and more mixtures
will not improve predictions.

Few reports exist that quantitatively evaluate fingerprinting approaches
for the analysis of microbial data. A brief comparison study with n = 21

samples has been recently conducted (Menyhárt et al., 2018), illustrating
a better performance for FlowFP (Rogers and Holyst, 2009), compared
to the use of FlowCyBar (Koch et al., 2013b). FlowFP is quite similar
compared to PhenoGMM, as it makes use of an adaptive binning approach,
in which bins are smaller when the density of the data is higher, while
FlowCyBar makes use of manually annotated clusters. However, the bins
are still rectangular in shape, while PhenoGMM allows clusters to be of
any shape. Most fingerprinting strategies make use of manual annotation
of clusters or of fixed binning approaches (see e.g. the report by Koch
et al. (2014) which qualitatively discusses different existing methods). In
almost all cases, only bivariate interactions are inspected. PhenoGMM
allows to model the full parameter space at once. This is interesting,
because although it is hard to develop multicolor approaches for bacterial
analyses, they are possible (see e.g. the work by Barbesti et al. (2000)). In
addition our research group has established that additional detectors that
capture signals due to spillover can assist in the discrimination between
bacterial species (Rubbens et al., 2017b). Therefore, the parameter space
in which bacterial cells can be described is increasing, and PhenoGMM is
able to model this straightforwardly. Because it is in an adaptive strategy
as well, by defining small clusters in regions of high density and vice
versa, it reduces the number of sample-describing variables considerably
compared to fixed binning approaches. Other adaptive binning strategies
have been proposed for microbial FCM data as well, however these still
only investigate bivariate interactions (Amalfitano et al., 2018; Huang
et al., 2018).

Our approach comes with a number of caveats. First, PhenoGMM fits
a fingerprint template based on the concatenation of measured samples.
New samples are characterized based on this template. In case multiple
samples diverge considerably from those which were used to determine
the template (for example in case an experiment was conducted in different
conditions), we recommend to refit the model. Second, PhenoGMM
overclusters the data, which might result in a number of correlated
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Fig. 4. A: Correspondence between variations in cell counts per mixture (columns) and abundances of bacterial populations (columns), quantified using the Kendall’s τB . Values are given
if P ≤ 0.05, after performing a Benjamini-Hochberg correction for multiple hypothesis testing. B: Distribution of the number significant correlation with every mixture for each bacterial
population. C:Predictions of taxon abundances for different datasets, expressed in terms of the R2 for the in silico datasets, using held-out test set, for the freshwater datasets the R2

CV is
reported.

variables. We recommend therefore researchers to use a classification or
regression method that is able to deal with multicollinearity, which is
why we used Random Forest regression in this work. Other methods that
might be suitable are regularized regression methods, such as the Lasso
or ElasticNet (Tibshirani, 1996; Zou and Hastie, 2005). Third, although
the performance tends to saturate once K is high enough, this threshold
seems to application dependent, and one needs to validate the settings of
the approach.

Our in silico benchmark study made use of cytometric characterizations
of individual bacterial populations. These populations are known to
exhibit considerable heterogeneity due to cell size diversity and cell cycle
variations (Vives-Rego et al., 2003). Our research group has recently
shown that the cytometric diversity of an individual population reduces
when that population is part of a co-culture (Heyse et al., 2019). Therefore,
data used for the in silico community creation setup cannot be used to
study environmental samples, as we hypothesize that members of natural
communities will have a different cytometric fingerprint as opposed to
populations that were grown and measured individually. Yet we believe
that our in silico approach is useful, as it allows to simulate variations in
cytometric community structure with high precision.

In this study we focused mainly on estimations of α-diversity (i.e.,
within-sample diversity), but quantification of β-diversity (i.e. between-
sample diversity) can be successfully performed as well. In addition, it
is possible to predict variations in the abundance of a specific bacterial
populations. This might be interesting for certain biotechnological
applications, in which researchers or engineers are not interested in the
total diversity of the community but in the behavior of a specific bacterial
population.

PhenoGMM allows to infer diversity metrics efficiently, both in an
unsupervised and supervised setting. Technological advancements have
enabled an automation of the data acquisition, resulting in a detailed
characterization of the microbial community on-line (i.e., samples are
measured at routine intervals between 5-15 min) or even in real-time

(i.e., near-continuous measurements) (Hammes et al., 2012; Besmer and
Hammes, 2016). Therefore we see great potential to use FCM as a monitor
technique to rapidly investigate microbial community dynamics. In this
work we have confirmed the strong correspondence between FCM and
the genetic make-up of a community, quantified by 16S rRNA gene
sequencing. Therefore, FCM can be integrated with other types of data
and machine learning models can be used to exploit the relationship
between the two. One fruitful approach would be to routinely monitor
the microbial community using FCM, and additionally analyze states
’of high interest’ by for example 16S rRNA gene amplicon sequencing.
Cytometric fingerprinting in combination with a supervised machine
learning model can then be used to predict the diversity of missing samples
(conform Fig. 3). The use of predictive models can also be used to
perform classification at the community level, to for example categorize
communities according to the system they are part of (De Roy et al., 2012;
Dhoble et al., 2018), or to identify a case versus control status.
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