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ABSTRACT 

Background: Dimensionality reduction (DR) is an indispensable analytic 
component for many areas of single cell RNA sequencing (scRNAseq) data 
analysis. Proper DR can allow for effective noise removal and facilitate many 
downstream analyses that include cell clustering and lineage reconstruction. 
Unfortunately, despite the critical importance of DR in scRNAseq analysis and the 
vast number of DR methods developed for scRNAseq studies, however, few 
comprehensive comparison studies have been performed to evaluate the 
effectiveness of different DR methods in scRNAseq.  

Results: Here, we aim to fill this critical knowledge gap by providing a 
comparative evaluation of a variety of commonly used DR methods for scRNAseq 
studies. Specifically, we compared 18 different DR methods on 30 publicly 
available scRNAseq data sets that cover a range of sequencing techniques and 
sample sizes. We evaluated the performance of different DR methods for 
neighborhood preserving in terms of their ability to recover features of the original 
expression matrix, and for cell clustering and lineage reconstruction in terms of 
their accuracy and robustness. We also evaluated the computational scalability of 
different DR methods by recording their computational cost.  

Conclusions: Based on the comprehensive evaluation results, we provide 
important guidelines for choosing DR methods for scRNAseq data analysis. We 
also provide all analysis scripts used in the present study at 
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www.xzlab.org/reproduce.html. Together, we hope that our results will serve as 
an important practical reference for practitioners to choose DR methods in the 
field of scRNAseq analysis. 
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INTRODUCTION 

Single-cell RNA sequencing (scRNAseq) is a rapidly growing and widely applying 
technology [1-3]. By measuring gene expression at single cell level, scRNAseq 
provides an unprecedented opportunity to investigate the cellular heterogeneity of 
complex tissues [4-8]. However, despite the popularity of scRNAseq, analyzing 
scRNAseq data remains a challenging task. Specifically, due to the low capture 
efficiency and low sequencing depth per cell in scRNAseq data, gene expression 
measurements obtained from scRNAseq are noisy: collected scRNAseq gene 
measurements are often in the form of low expression counts, and in studies not 
based on unique molecular identifiers, are also paired with an excessive number 
of zeros known as dropouts [9]. Subsequently, dimensionality reduction (DR) 
methods that transform the original high-dimensional noisy expression matrix into 
a low-dimensional subspace with enriched signals become an important data 
processing step for scRNAseq analysis [10]. Proper DR can allow for effective 

noise removal, facilitate data visualization, and enable efficient and effective 
downstream analysis of scRNAseq [11].  

DR is indispensable for many types of scRNAseq analysis. Because of the 
importance of DR in scRNAseq analysis, many DR methods have been 
developed and are routinely used in scRNAseq software tools that include, but not 
limited to, cell clustering tools [12, 13] and lineage reconstruction tools [14]. 
Indeed, most commonly used scRNAseq clustering methods rely on DR as the 
first analytic step [15]. For example, Seurat applies clustering algorithms directly 
on a low dimensional space inferred from principal component analysis (PCA) [16]. 
CIDR improves clustering by improving PCA through imputation [17]. SC3 
combines different ways of PCA for consensus clustering [18]. Besides PCA, 
other DR techniques are also commonly used for cell clustering. For example, 
nonnegative matrix factorization (NMF) is used in SOUP [19]. Partial least 
squares is used in scPLS [20]. Diffusion map is used in destiny [21]. 
Multidimensional scaling (MSD) is used in ascend [22]. Variational inference 
autoencoder is used in scVI [23]. In addition to cell clustering, most cell lineage 
reconstruction and developmental trajectory inference algorithms also rely on DR 
[14]. For example, TSCAN builds cell lineages using minimum spanning tree 
based on a low dimensional PCA space [24]. Waterfall performs k-means 
clustering in the PCA space to eventually produce linear trajectories [25]. SLICER 
uses locally linear embedding (LLE) to project the set of cells into a lower 
dimension space for reconstructing complex cellular trajectories [26]. Monocle 
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employs either independent components analysis (ICA) or uniform manifold 
approximation and projection (UMAP) for DR before building the trajectory [27, 
28]. Wishbone combines PCA and diffusion maps to allow for bifurcation 
trajectories [29]. 

Besides the generic DR methods mentioned in the above paragraph, many DR 
methods have also been developed recently that are specifically targeted for 
modeling scRNAseq data. These scRNAseq specific DR methods can account for 
either the count nature of scRNAseq data and/or the dropout events commonly 
encountered in scRNAseq studies. For example, ZIFA relies on a zero-inflation 
normal model to model dropout events [30]. pCMF models both dropout events 
and the mean-variance dependence resulting from the count nature of scRNAseq 
data [31]. ZINB-WaVE incorporates additional gene-level and sample-level 
covariates for more accurate DR [32]. Finally, several deep learning-based DR 
methods have recently been developed to enable scalable and effective 
computation in large-scale scRNAseq data, including data that are collected by 
10X Genomics techniques [33] and/or from large consortium studies such as 
Human Cell Atlas (HCA) [34, 35]. Common deep learning-based DR methods for 
scRNAseq include Dhaka [36], scScope [37], VASC [38], scvis [39], and DCA [40], 
to name a few.  

With all these different DR methods for scRNAseq data analysis, one naturally 
wonders which DR method one would prefer for different types of scRNAseq 
analysis. Unfortunately, despite the popularity of scRNAseq technique, the critical 
importance of DR in scRNAseq analysis, and the vast number of DR methods 
developed for scRNAseq studies, few comprehensive comparison studies have 
been performed to evaluate the effectiveness of different DR methods for practical 
applications. Here, we aim to fill this critical knowledge gap by providing a 
comprehensive comparative evaluation of a variety of commonly used DR 
methods for scRNAseq studies. Specifically, we compared 18 different DR 
methods on 30 publicly available scRNAseq data sets that cover a range of 
sequencing techniques and sample sizes [12, 14, 41]. We evaluated the 
performance of different DR methods for neighborhood preserving in terms of 
their ability to recover features of the original expression matrix, and for cell 
clustering and lineage reconstruction in terms of their accuracy and robustness 
using different metrics. We also evaluated the computational scalability of 
different DR methods by recording their computational time. Together, we hope 
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our results can serve as an important guideline for practitioners to choose DR 
methods in the field of scRNAseq analysis.  
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RESULTS 
We evaluated the performance of 18 DR methods (Table 1; Figure S1) on 30 
publicly available scRNAseq data sets (Tables S1-S2) and 2 simulated data sets. 
Details of these data sets are provided in Methods and Materials. Briefly, these 
data sets cover a wide variety of sequencing techniques that include Smart-Seq2 
(8 data sets), Smart-Seq (5 data sets), 10X genomics (6 data sets), inDrop (1 data 
set), RamDA-seq (1 data set), sci-RNA-seq3 (1 data set), SMARTer (5 data sets) 
and others (3 data sets). In addition, these data sets cover a range of sample 
sizes from a couple of hundred cells to over tens of thousands of cells. In each 
data set, we evaluated the ability of different DR methods in preserving the 
original feature of the expression matrix, and, more importantly, their 
effectiveness for two important single cell analytic tasks: cell clustering and 
lineage inference. In particular, we used 14 real data sets together with 2 
simulated data sets for DR method comparison in terms of cell clustering 
performance. We used the another a set of 14 real data sets for DR method 
comparison in terms of trajectory inference. We used yet two additional 
large-scale scRNAseq data sets to examine the effectiveness and scalability of 
different DR methods there. In addition, we measured the computing stability of 
different DR methods and recorded their computation time. An overview of the 
comparison workflow is shown in Figure 1. Because common tSNE software can 
only extract a small number low-dimensional components [42-44], we only 
included tSNE results based on two low-dimensional components extracted from 
the recently developed fast FIt-SNE R package [44] in all figures. All data and 
analysis scripts for reproducing the results in the paper is available at 
www.xzlab.org/reproduce.html or https://github.com/xzhoulab/DRComparison. 

Performance of DR methods for neighborhood preserving 
We first evaluated the performance of different DR methods in terms of preserving 
the original features of the gene expression matrix. To do so, we applied different 
DR methods to each of 30 scRNAseq data sets (28 real data and 2 simulated data; 
excluding the two large-scale data due to computing concerns) and evaluated the 
performance of these DR methods based on neighborhood preserving. 
Neighborhood preserving measures how the local neighborhood structure in the 
reduced dimensional space resembles that in the original space by computing a 
Jaccard index [45] (details in Methods and Materials). In the analysis, for each DR 
method and each scRNAseq data set, we applied the DR method to extract a 
fixed number of low-dimensional components (e.g. these are the principal 
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components in the case of PCA). We varied the number of low-dimensional 
components to examine their influence on local neighborhood preserving. 
Specifically, for each of 16 cell clustering data sets, we varied the number of low 
dimensional components to be either 2, 6, 14, or 20 when the data contains less 
than or equal to 300 cells, and we varied the number of low dimensional 
components to be either 0.5%, 1%, 2%, or 3% of the total number of cells when 
the data contains more than 300 cells. For each of the 14 trajectory inference data 
sets, we varied the number of low-dimensional components to be either 2, 6, 14, 
or 20 regardless of the number of cells. Finally, we also varied the number of 
neighborhood cells used in the Jaccard index to be either 10, 20, or 30. The 
evaluation results based on the Jaccard index of neighborhood preserving are 
summarized in Figures S2-S14.  

In the cell clustering data sets, we found that pCMF achieves the best 
performance of neighborhood preserving across all data sets and across all 
included low-dimensional components (Figures S2-S7). For example, with 30 
neighborhood cells and 0.5% of low-dimensional components, pCMF achieves a 
Jaccard index of 0.25. Its performance is followed by Poisson NMF (0.16), 
ZINB-WaVE (0.16), Diffusion Map (0.16), MDS (0.15), and tSNE (0.14). While the 
remaining two methods, scScope (0.1) and LTSA (0.06), do not fare well. 
Increasing number of neighborhood cells increases the absolute value of Jaccard 
index but does not influence the relative performance of DR methods (Figure S7). 
In addition, the relative performance of most DR methods remains largely similarly 
whether we focus on data sets with unique molecular identifiers (UMI) or data sets 
without UMI (Figure S8). However, we do notice two exceptions: the performance 
of pCMF decreases with increasing number of low-dimensional components in 
UMI data but increases in non-UMI data; the performance of scScope is higher in 
UMI data than its performance in non-UMI data. In the trajectory inference data 
sets, pCMF again achieves the best performance of neighborhood preserving 
across all data sets and across all included low-dimensional components (Figures 
S9-S14). Its performance is followed closely by scScope and Poisson NMF. For 
example, with 30 neighborhood cells and 20 low-dimensional components, the 
Jaccard index of pCMF, Poisson NMF, and scScope across all data sets are 0.3, 
0.28, and 0.26, respectively. Their performance is followed by ZINB-WaVE (0.19), 
FA (0.18), ZIFA (0.18), GLMPCA (0.18), and MDS (0.18). In contrast, LTSA also 
does not fare well across all included low-dimensional components (Figure S14). 
Again, increasing number of neighborhood cells increases the absolute value of 
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Jaccard index but does not influence the relative performance among DR 
methods (Figures S9-S14).  

We note that the measurement we used in this subsection, neighborhood 
preserving, is purely for measuring DR performance in terms of preserving the 
original gene expression matrix and may not be relevant for single cell analytic 
tasks that are the main focus of the present study: a DR method that preserves 
the original gene expression matrix may not be effective in extracting useful 
biological information from the expression matrix that is essential for key 
downstream single cell applications. Preserving the original gene expression 
matrix is rarely the sole purpose of DR methods for single cell applications: indeed, 
the original gene expression matrix (which is the best-preserved matrix of itself) is 
rarely, if ever, used directly in any downstream single cell applications including 
clustering and lineage inference, even though it is computationally easy to do so. 
Therefore, we will focus our main comparison in two important downstream single 
cell applications listed below.  

Performance of DR methods for cell clustering  
As our main comparison, we first evaluated the performance of different DR 
methods for cell clustering applications. To do so, we obtained 14 publicly 
available scRNAseq data sets and simulated two additional scRNAseq data sets 
using the Splatter package (Table S1). Each of the 14 real scRNAseq data sets 
contains known cell clustering information while each of the 2 simulated data sets 
contains 4 or 8 known cell types. For each DR method and each data set, we 
applied DR to extract a fixed number of low-dimensional components (e.g., these 
are the principal components in the case of PCA). We again varied the number of 
low-dimensional components as in the previous section to examine their influence 
on cell clustering analysis. We then applied either the hierarchical clustering 
method, the k-means clustering method, or Louvain clustering method [46] to 
obtain the inferred cluster labels. We used both normalized mutual information 
(NMI) and adjusted rand index (ARI) values for comparing the true cell labels and 
inferred cell labels obtained by clustering methods based on the low-dimensional 
components. 

Cell clustering with different clustering methods 
The evaluation results on DR methods based on clustering analysis using the 
k-means clustering algorithm are summarized in Figure 2 (for NMI criterion) and 
Figure S15 (for ARI criterion). Because the results based on either of the two 
criteria are similar, we will mainly explain the results based on the NMI criteria in 
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Figure 2. For easy visualization, we also display the results averaged across data 
sets in Figure S16. A few patterns are noticeable. First, as one would expect, 
clustering accuracy depends on the number of low-dimensional components that 
are used for clustering. Specifically, accuracy is relatively low when the number of 
included low-dimensional components is very small (e.g. 2 or 0.5%) and generally 
increases with the number of included components. In addition, accuracy usually 
saturates once a sufficient number of components is included, though the 
saturation number of components can vary across data sets and across methods. 
For example, the average NMI across all data sets and across all methods are 
0.61, 0.66, 0.67 and 0.67 for increasingly large number of components, 
respectively. Second, when conditional on using a low number of components, 
scRNAseq specific DR method ZINB-WaVE and generic DR methods ICA and 
MDS often outperform the other methods. For example, with the lowest number of 
components, the average NMI across all data sets for MDS, ICA and ZINB-WaVE 
are 0.82, 0.77 and 0.76, respectively (Figure S16A). The performance of MDS, 
ICA and ZINB-WaVE is followed by LLE (0.75), Diffusion Map (0.71), ZIFA (0.69), 
PCA (0.68), FA (0.68), tSNE (0.68), NMF (0.59) and DCA (0.57). While the 
remaining four methods, Poisson NMF (0.42), pCMF (0.41), scScope (0.26), and 
LTSA (0.12), do not fare well with a low number of components. Third, with 
increasing number of low-dimensional components, generic methods such as FA, 
ICA, MDS and PCA are often comparable with scRNAseq specific methods such 
as ZINB-WaVE. For example, with the highest number of low-dimensional 
components, the average NMI across all data sets for FA, ICA, PCA, ZINB-WaVE, 
LLE and MDS are 0.85, 0.84, 0.83, 0.83, 0.82 and 0.82, respectively. Their 
performance is followed by ZIFA (0.79), NMF (0.73), and DCA (0.69). The same 
four methods, pCMF (0.55), Poisson NMF (0.31), scScope (0.31), and LTSA (0.06) 
again do not fare well with a large number of low-dimensional components (Figure 
S16A). The comparable results of generic DR methods with scRNAseq specific 
DR methods with a high number of low-dimensional components are also 
consistent some of the previous observations; for example, the original 
ZINB-WaVE paper observed that PCA can generally yield comparable results 
with scRNAseq specific DR methods in real data [32].  

Besides the k-means clustering algorithm, we also used the hierarchical 
clustering algorithm to evaluate the performance of different DR methods (Figures 
S17-S19). In this comparison, we had to exclude one DR method, scScope, as 
hierarchical clustering does not work on the extracted low-dimensional 
components from scScope. Consistent with the k-means clustering results, we 
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found that the clustering accuracy measured by hierarchical clustering is relatively 
low when the number of low-dimensional components is very small (e.g. 2 or 
0.5%), but generally increases with the number of included components. In 
addition, consistent with the k-means clustering results, we found that generic DR 
methods often yield results comparable to or better than scRNAseq specific DR 
methods (Figures S17-S19). In particular, with a low number of low-dimensional 
components, MDS achieves the best performance (Figure S19). With a moderate 
or high number of low-dimensional components, two generic DR methods, FA and 
NMF, often outperform various other DR methods across a range of settings. For 
example, when the number of low-dimensional components is moderate (6 or 1%), 
both FA and NMF achieve an average NMI value of 0.80 across data sets (Figure 
S19A). In this case, their performance is followed by PCA (0.72), Poisson NMF 
(0.71), ZINB-WaVE (0.71), Diffusion Map (0.70), LLE (0.70), ICA (0.69), ZIFA 
(0.68), pCMF (0.65), and DCA (0.63). tSNE (0.31) does not fare well, either 
because it only extracts two-dimensional components or because it does not pair 
well with hierarchical clustering. We note, however, that the clustering results 
obtained by hierarchical clustering are often slightly worse than that obtained by 
k-means clustering across settings (e.g., Figure S16 vs Figure S19), consistent 
with the fact that many scRNAseq clustering methods use k-means as a key 

ingredient [18, 25]. 

Finally, besides the k-means and hierarchical clustering methods, we also 
performed clustering analysis based on a community detection algorithm Louvain 
clustering method [46]. Unlike the k-means and hierarchical clustering methods, 
Louvain method does not require a pre-defined number of clusters and can infer 
the number of clusters in an automatic fashion. Following software 
recommendation [28, 46], we set the k-nearest neighbor parameter in Louvain 
method to be 50 for graph building in the analysis. We measured DR performance 
again by either average NMI (Figure S20) or ARI (Figure S21). Consistent with the 
k-means clustering results, we found that the clustering accuracy measured by 
Louvain method is relatively low when the number of low-dimensional 
components is very small (e.g. 2 or 0.5%), but generally increases with the 
number of included components. With a low number of low-dimensional 
components, ZINB-WaVE (0.72) achieves the best performance (Figures 
S20-S22). With a moderate or high number of low-dimensional components, two 
generic DR methods, FA and MDS, often outperform various other DR methods 
across a range of settings (Figures S20-S22). For example, when the number of 
low-dimensional components is high (6 or 1%), FA achieves an average NMI 
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value of 0.77 across data sets (Figure S22A). In this case, its performance is 
followed by NMF (0.76), MDS (0.75), GLMPCA (0.74), LLE (0.74), PCA (0.73), 
ICA (0.73), ZIFA (0.72), and ZINB-WaVE (0.72). Again consistent with the 
k-means clustering results, scScope (0.32) and LTSA (0.21) do not fare well. We 
also note that the clustering results obtained by Louvain method are often slightly 
worse than that obtained by k-means clustering and slightly better than that 
obtained by hierarchical clustering across settings (e.g., Figure S16 vs Figure S19 
vs Figure S22).  

Normalization does not influence the performance of DR methods 
While some DR methods (e.g. Poisson NMF, ZINB-WaVE, pCMF and DCA) 
directly model count data, many DR methods (e.g. PCA, ICA, FA, NMF, MDS, 
LLE, LTSA, Isomap, Diffusion Map, UMAP, and tSNE) require normalized data. 
The performance of DR methods that use normalized data may depend on how 
data are normalized. Therefore, we investigated how different normalization 
approaches impact on the performance of the aforementioned DR methods that 
use normalized data. We examined two alternative data transformation 
approaches, log2 CPM (count per million; 11 DR methods) and z-score (10 DR 
methods), in addition to the log2 count we used in the previous results 
(transformation details are provided in Methods and Materials). The evaluation 
results are summarized in Figures S23-S30 and are generally insensitive to the 
transformation approach deployed. For example, with the k-means clustering 
algorithm, when the number of low-dimensional components is small (1%), PCA 
achieves an NMI value of 0.82, 0.82 and 0.81, for log2 count transformation, log2 
CPM transformation, and z-score transformation, respectively (Figures S16A, 
S26A, and S30A). Similar results hold for the hierarchical clustering algorithm 
(Figures S16B, S26B, and S30B) and Louvain clustering method (Figures S16C, 
S26C, and S30C). Therefore, different data transformation approaches do not 
appear to substantially influence the performance of DR methods.  

Performance of DR methods in UMI vs non-UMI based data sets 
scRNAseq data generated from UMI-based technologies (e.g., 10X genomics) 
are often of large scale, come with almost no amplification bias, do not display 
apparent dropout events, and can be accounted for by over-dispersed Poisson 
distributions. In contrast, data generated from non UMI-based techniques (e.g., 
Smart-Seq2) are often of small scale, have high capture rate, and come with 
excessive dropout events. Subsequently, the unwanted variation from these two 
types of dataset can be quite different. To investigate how different DR methods 
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perform in these two different types of data sets, we grouped 14 cell clustering 
data sets into a UMI-based group (7 data sets) and a non UMI-based group (7 
data sets). In the UMI-based data sets, we found that many DR methods perform 
reasonably well and their performance is relatively stable across a range of 
included low-dimensional components (Figure S31A). For example, with the 
lowest number of low-dimensional components, the average NMI of PCA, ICA, FA, 
NMF, GLMPCA, ZINB-WaVE, and MDS are 0.73, 0.73, 0.73, 0.73, 0.74, and 0.75, 
respectively. Their performance remains similar with increasing number of 
low-dimensional components. However, a few DR methods, including Poisson 
NMF, pCMF, scScope, and LTSA, all have extremely low performance across 
settings. In the non UMI-based data sets, the same set of DR methods perform 
reasonably well though their performance can vary with respect to the number of 
low-dimensional components (Figure S31B). For example, with a low number of 
low-dimensional components, five DR methods, MDS, UMAP, ZINB-WaVE, ICA, 
and tSNE, perform reasonably well. The average NMI of these methods are 0.83, 
0.81, 0.80, 0.78, and 0.77, respectively. With increasing number of 
low-dimensional components, four additional DR methods, PCA, ICA, FA, and 
ZINB-WaVE, also start to catchup. However, a similar set of DR methods, 
including GLMPCA, Poisson NMF, scScope, LTSA, and occasionally pCMF, also 
do not perform well in these non-UMI data sets.  

Visualization of clustering results 

We visualized the cell clustering results in two example data sets: the Kumar data 
which is non-UMI based and the PBMC3k data which is UMI based. The Kumar 
data consists of mouse embryonic stem cells cultured in three different media 
while the PBMC3k data consists of 11 blood cell types (data details in the 
Supplementary Information). Here, we extracted 20 low-dimensional components 
in the Kumar data and 32 low low-dimensional components in the PBMC3k data 
with different DR methods. We then performed tSNE analysis on these 
low-dimensional components to extract the two tSNE components for 
visualization (Figures S32-S33). Importantly, we found that the tSNE visualization 
results are not always consistent with clustering performance for different DR 
methods. For example, in the Kumar data, the low dimensional space constructed 
by FA, pCMF and MDS often yield clear clustering visualization with distinguish 
clusters (Figure S32), consistent with their good performance in clustering (Figure 
2). However, the low dimensional space constructed by PCA, ICA, and ZIFA often 
do not yield clear clustering visualization (Figure S32), even though these 
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methods all achieve high cell clustering performance (Figure 2). Similarly, in the 
PBMC3k data set, FA and MDS perform well in clustering visualization (Figure 
S33), which is consistent with their good performance in clustering analysis 
(Figure 2). However, PCA and ICA do not fare well in clustering visualization 
(Figure S33), even though both of them achieve high clustering performance 
(Figure 2). The inconsistency between cluster visualization and clustering 
performance highlights the difference in the analytic goal of these two analyses: 
cluster visualization emphasizes on extracting as much information as possible 
using only the top two-dimensional components, while clustering analysis often 
requires a much larger number of low-dimensional components to achieve 
accurate performance. Subsequently, DR methods for data visualization may not 
fare well for cell clustering, and DR methods for cell clustering may not fare well 
for data visualization [20].  

Rare cell type identification 
So far, we have focused on clustering performance in terms of assigning all cells 
to cell types without distinguishing whether the cells belong to a rare population or 
a non-rare population. Identifying rare cell populations can be of significant 
interest in certain applications and performance of rare cell type identification may 
not always be in line with general clustering performance [47, 48]. Here, we 
examine the effectiveness of different DR methods in facilitating the detection of 
rare cell populations. To do so, we focused on the PBMC3k data from 10x 
Genomics [33]. The PBMC3k data were measured on 3,205 cells with 11 cell 
types. We considered CD34+ cell type (17 cells) as the rare cell population. We 
paired the rare cell population with either CD19+ B cells (406 cells) or 
CD4+/CD25 T Reg cells (198) cells to construct two data sets with different rare 
cell proportions. We name these two data sets PBMC3k1Rare1 and 
PBMC3k1Rare2, respectively. We then applied different DR methods to each 
data and used F-measure to measure the performance of rare-cell type detection 
following [49, 50] (details in Methods and Materials). The results are summarized 
in Figures S34-S35.  

Overall, we found that Isomap achieves the best performance for rare cell type 
detection across a range of low-dimensional components in both data sets with 
different rare cell type proportions. As expected, the ability to detect rare cell 
population increases with increasing rare cell proportions. In the PBMC3k1Rare1 
data, the F-measure by Isomap with four different number of low-dimensional 
components (0.5%, 1%, 2%, and 3%) are 0.74, 0.79, 0.79, and 0.79, respectively 
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(Figure S34). The performance of Isomap is followed by ZIFA (0.74, 0.74, 0.74, 
and 0.74) and GLMPCA (0.74, 0.74, 0.73, and 0.74). In the PBMC3k1Rare2 data, 
the F-measure by Isomap with four different number of low-dimensional 
components (0.5%, 1%, 2%, and 3%) are 0.79, 0.79, 0.79, and 0.79, respectively 
(Figure S35). The performance of Isomap is also followed by ZIFA (0.74, 0.74, 
0.74, and 0.74) and GLMPCA (0.74, 0.74, 0.74, and 0.74). Among the remaining 
methods, Poisson NMF, pCMF, scScope, and LTSA do not fare well for rare cell 
type detection. We note that many DR methods in conjunction with Louvain 
clustering method often yield an F-measure of zero when the rare cell type 
proportion is low (Figure S34C; PBMC3kRare1, 4.0% CD34+ cells) and only 
become reasonable with increasingly large rare cell type proportions (Figure 
S35C; PBMC3kRare2, 7.9% CD34+ cells). The poor performance of the Louvain 
clustering method for rare cell type detection is likely because its automatic way of 
determining cell cluster number does not fare well in the presence of 
uneven/un-balanced cell type proportions. 

Stability analysis across data splits 
Finally, we investigated the stability and robustness of different DR methods. To 
do so, we randomly split the Kumar data into two subsets with an equal number of 
cells for each cell type in the two subsets. We applied each DR method to the two 
subsets and measured the clustering performance in each subset separately. We 
repeated the procedure 10 times to capture the potential stochasticity during the 
data split. We visualized the clustering performance of different DR methods in 
the two subsets separately. Such visualization allows us to check the 
effectiveness of DR methods with respective to reduced sample size in the subset, 
as well as the stability/variability of DR methods across different split replicates 
(Figure S36). The results show that six DR methods, PCA, ICA, FA, ZINB-WaVE, 
MDS, and UMAP often achieve both accurate clustering performance and highly 
stable and consistent results across the subsets. The accurate and stable 
performance of ICA, ZINB-WaVE, MDS, and UMAP is notable even with a 
relatively small number of low-dimensional components. For example, with very 
small number of low-dimensional components, ICA, ZINB-WaVE, MDS, and 
UMAP achieve an average NMI value of 0.98 across the two subsets, with 
virtually no performance variability across data splits (Figure S36). 

Overall, the results suggest that, in terms of downstream clustering analysis 
accuracy and stability, PCA, FA, NMF, and ICA are preferable across a range of 
data sets examined here. In addition, scRNAseq specific DR methods such as 
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ZINB-WaVE, GLMPCA, and UMAP are also preferable if one is interested in 
extracting a small number of low-dimensional components, while generic methods 
such as PCA or FA are also preferred when one is interested in extracting a large 
number of low-dimensional components.  

Performance of DR methods for trajectory inference 
We evaluated the performance of different DR methods for lineage inference 
applications (details in Methods and Materials). To do so, we obtained 14 publicly 
available scRNAseq data sets, each of which contains known lineage information 
(Table S2). The known lineage in all these data are linear, without bifurcation or 
multifurcation patterns. For each data set, we applied one DR method at a time to 
extract a fixed number of low-dimensional components. In the process, we varied 
the number of low-dimensional components from 2, 6, 14 to 20 to examine their 
influence for downstream analysis. With the extracted low-dimensional 
components, we applied two commonly used trajectory inference methods: 
Slingshot [51] and Monocle3 [28, 52]. Slingshot is a clustering dependent 
trajectory inference method, which requires additional cell label information. We 
therefore first used either k-means clustering algorithm, hierarchical clustering or 
Louvain method to obtain cell type labels, where the number of cell types in the 
clustering was set to be the known truth. Afterwards, we supplied the 
low-dimensional components and cell type labels to the Slingshot to infer the 
lineage. Monocle3 is a clustering free trajectory inference method, which only 
requires low-dimensional components and trajectory starting state as inputs. We 
set the trajectory starting state as the known truth for Monocle3. Following [51], 
we evaluated the performance of DR methods by Kendall correlation coefficient 
(details in Methods and Materials) that compares the true lineage and inferred 
lineage obtained based on the low-dimensional components. In this comparison, 
we also excluded one DR method, scScope, which is not compatible with 
Slingshot. The lineage inference results for the remaining DR methods are 
summarized in Figures 3 and S37-S54.  

Trajectory inference by Slingshot 
We first focused on the comparison results obtained from Slingshot. Different from 
the clustering results where accuracy generally increases with increasing number 
of included low-dimensional components, the lineage tracing results from 
Slingshot do not show a clear increasing pattern with respect to the number of 
low-dimensional components, especially when we used k-means clustering as the 
initial step (Figures 3 and S39A). For example, the average Kendall correlation 
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across all data sets and across all methods are 0.35, 0.36, 0.37 and 0.37 for 
increasingly large number of components, respectively. When we used 
hierarchical clustering algorithm as the initial step, the lineage tracing results in 
the case of a small number of low-dimensional components are slightly inferior as 
compared to the results obtained using a large number of low-dimensional 
components (Figures S37 and S39B). However, we do note that the lineage 
tracing results obtained using k-means are better than that obtained using 
hierarchical clustering as the initial step. In addition, perhaps somewhat 
surprisingly, the lineage tracing results obtained using Louvain clustering method 
are slightly better that the results obtained using k-means clustering (Figures S38 
and S39C) – even though the clustering results from k-means are generally better 
than that from Louvain. For example, the average Kendall correlation obtained 
using Louvain method across all data sets and across all methods are 0.36, 0.38, 
0.40 and 0.40 for increasingly large number of components, respectively. 
Therefore, Louvain method is recommended as the initial step for lineage 
inference and a small number of low-dimensional components there is often 
sufficient for accurate results. When conducting lineage inference based on a low 
number of components with Louvain method, we found that four DR methods, 
PCA, FA, ZINB-WaVE and UMAP, all perform well for lineage inference across 
varying number of low-dimension components (Figure S39C). For example, with 
the lowest number of components, the average Kendall correlation across data 
sets for PCA, FA, UMAP, and ZINB-WaVE are 0.44, 0.43, 0.40, and 0.43, 
respectively. Their performance is followed by ICA (0.37), ZIFA (0.36), tSNE (0.33) 
and Diffusion Map (0.38). While pCMF (0.26), Poisson NMF (0.26) and LTSA 
(0.12) do not fare well.  

Trajectory inference by Monocle3 
We next examined the comparison results based on Monocle3 (Figures S40-S41). 
Similar to Slingshot, we found that the lineage tracing results from Monocle3 also 
do not show a clear increasing pattern with respect to the number of 
low-dimensional components (Figure S41). For example, the average Kendall 
correlation across all data sets and across all methods are 0.37, 0.37, 0.38 and 
0.37 for increasingly large number of components, respectively. Therefore, similar 
with Slingshot, we also recommend the use of a small number of low-dimensional 
components with Monocle3. In terms of DR method performance, we found that 
five DR methods, FA, MDS, GLMPCA, ZINB-WaVE and UMAP, all perform well 
for lineage inference. Their performance is often followed by NMF and DCA. 
While Poisson NMF, pCMF, LLE and LTSA do not fare well. The DR comparison 
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results based on Monocle3 are in line with those recommendation by Monocle3 
software, which uses UMAP as the default DR method [28]. In addition, the set of 
five top DR methods for Monocle3 are largely consistent with the set of top five 
DR methods for Slingshot, with only one method difference between the two 
(GLMPCA in place of PCA). The similarity of top DR methods based on different 
lineage inference methods suggests that a similar set of DR methods are likely 
suitable for lineage inference in general.  

Visualization of inferred lineages 

We visualized the reduced low-dimensional components from different DR 
methods in one trajectory data set, the ZhangBeta data. The ZhangBeta data 

consists of expression measurements on mouse pancreatic � cells collected at 

seven different developmental stages. These seven different cell stages include 
E17.5, P0, P3, P9, P15, P18 and P60. We applied different DR methods to the 
data to extract the first two dimensional components. Afterwards, we performed 
lineage inference and visualization using Monocle3. The inferred tracking paths 
are shown in Figure S42. Consistent with Kendall correlation (Figure 3), all top DR 
methods are able to infer the correct lineage path. For example, the trajectory 
from GLMPCA and UMAP completely matches the truth. The trajectory inferred 
from FA, NMF, or ZINB-WaVE largely matches the truth with small bifurcations. In 
contrast, the trajectory inferred from either Poisson NMF or LTSA displays 
unexpected radical patterns (Figure S42), again consistent with the poor 
performance of these two methods in lineage inference.  

Normalization does not influence the performance of DR methods 
For DR methods that require normalized data, we further examined the influence 
of different data transformation approaches on their performance (Figures 
S43-S53). Like in the clustering comparison, we found that different 
transformations do not influence the performance results for most DR methods in 
lineage inference. For example, in Slingshot with the k-means clustering algorithm 
as the initial step, when the number of low-dimensional components is small, 
UMAP achieves a Kendall correlation of 0.42, 0.43 and 0.40, for log2 count 
transformation, log2 CPM transformation, and z-score transformation, 
respectively (Figures S39A, S46A, and S50A). Similar results hold for the 
hierarchical clustering algorithm (Figures S39B, S46B, and S50B) and Louvain 
method (Figures S39B, S46B, and S50B). However, some notable exceptions 
exist. For example, with log2 CPM transformation but not the other 
transformations, the performance of Diffusion Map increases with increasing 
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number of included components when k-means clustering was used as the initial 
step: the average Kendall correlation across different low-dimensional 
components are 0.37, 0.42, 0.44, and 0.47, respectively (Figures S43 and S46A). 
As another example, with z-score transformation but not with the other 
transformations, FA achieves the highest performance among all DR methods 
across different number of low-dimensional components (Figure S50A). Similarly, 
in Monocle3, different transformations (log2 count transformation, log2 CPM 
transformation and z-score transformation) do not influence the performance of 
DR methods. For example, with the lowest number of low-dimensional 
components, UMAP achieves a Kendall correlation of 0.49, 0.47 and 0.47, for 
log2 count transformation, log2 CPM transformation, and z-score transformation, 
respectively (Figures S41, S53A and S53B). 

Stability analysis across data splits 
We also investigated the stability and robustness of different DR methods by data 
split in the Hayashi data. We applied each DR method to the two subsets and 
measured the lineage inference performance in the two subsets separately. We 
again visualize the clustering performance of different DR methods in the two 
subsets, separately. Such visualization allows us to check the effectiveness of DR 
methods with respective to reduced sample size in the subset, as well as the 
stability/variability of DR methods across different split replicates (Figure S54). 
The results show that four of the DR methods, FA, Diffusion Map, ZINB-WaVE, 
and MDS often achieve both accurate performance and highly stable and 
consistent results across the subsets. The accurate and stable performance of 
these is notable even with a relatively small number of low-dimensional 
components. For example, with very small number of low-dimensional 
components, FA, Diffusion Map, ZINB-WaVE and MDS achieve Kendall 
correlation of 0.75, 0.77, 0.77, and 0.78 averaged across the two subsets, 
respectively, and again with virtually no performance variability across data splits 
(Figure S54). 

Overall, the results suggest that, in terms of downstream lineage inference 
accuracy and stability, the scRNAseq non-specific DR method FA, PCA, and NMF 
are preferable across a range of data sets examined here. The scRNAseq 
specific DR methods ZINB-WaVE as well as the scRNAseq non-specific DR 
method NMF are also preferable if one is interested in extracting a small number 
of low-dimensional components for lineage inference. In addition, the scRNAseq 
specific DR method Diffusion Map and scRNAseq non-specific DR method MDS 
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may also be preferable if one is interested in extracting a large number of 
low-dimensional components for lineage inference. 

Large-scale scRNAseq data applications  
Finally, we evaluated the performance of different DR methods in two large-scale 
scRNAseq data sets. The first data is Guo et al. [53], which consists of 12,346 
single cells collected through a non-UMI based sequencing technique. Guo et al. 
data contains known cell cluster information and is thus used for DR method 
comparison based on cell clustering analysis. The second data is Cao et al. [28], 
which consists of approximately 2 million single cells collected through a 
UMI-based sequencing technique. Cao et al. data contains known lineage 
information and is thus used for DR method comparison based on trajectory 
inference. Since many DR methods are not scalable to these large-scale data 
sets, in addition to applying DR methods to the two data directly, we also coupled 
them with a recently developed sub-sampling procedure dropClust to make all DR 
methods applicable to large data [54] (details in Methods and Materials). We 
focus our comparison in the large-scale data using the k-means clustering method. 
We also used log2 count transformation for DR methods that require normalized 
data.  

The comparison results when we directly applied DR methods to the Guo et al. 
data are shown in Figure S55. Among the methods that are directly applicable to 
large-scale data sets, we found that UMAP consistently outperforms the 
remaining DR methods across a range of low-dimensional components by a large 
margin. For example, the average NMI of UMAP across different number of 
low-dimensional components (0.5%, 1%, 2%, and 3%) are in the range between 
0.60 and 0.61 (Figure S55A). In contrast, the average NMI for the other methods 
are in the range of 0.15-0.51. In the case of a small number of low-dimensional 
components, we found that the performance of both FA and NMF are reasonable 
and follow right after UMAP. With the subsampling procedure, we can scale all 
DR methods relatively easily to this large-scale data (Figure S56). As a result, 
several DR methods, most notably FA, can achieve similar or better performance 
as compared to UMAP. However, we do notice an appreciable performance loss 
for many DR methods through the subsampling procedure. For example, the NMI 
of UMAP in the sub-sampling based procedure is only 0.26, representing an 
approximately 56% performance loss compared to the direct application of UMAP 
without sub-sampling (Figure S56 vs Figure S55). Therefore, we caution the use 
of sub-sampling procedure and recommend users to careful examine the 
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performance of DR methods before and after sub-sampling to decide whether 
sub-sampling procedure is acceptable for their own applications.  

For lineage inference in the Cao et al. data, due to computational constraint, we 
randomly obtained 10,000 cells from each of the five different developmental 
stages (i.e., E9.5, E10.5, E11.5, E12.5 and E13.5) and applied different DR 
methods to analyze the final set of 50,000 cells. Because most DR methods are 
not scalable even to these 50,000 cells, we only examined the performance of DR 
methods when paired with the sub-sampling procedure (Figure S57). With the 
small number of low-dimensional components, three DR methods, GLMPCA, 
DCA and Isomap, all achieve better performance than the other DR methods. For 
example, with the lowest number of low-dimensional components, the average 
absolute Kendall correlation of GLMPCA, DCA and Isomap are 0.13, 0.28, and 
0.17, respectively. In contrast, the average absolute Kendall correlation of the 
other DR methods are in the range of 0.01-0.12. With a higher number of 
low-dimensional components, Isomap and UMAP show better performance. For 
example, with 3% low-dimensional components, the average absolute Kendall 
correlation of Isomap and UMAP increase to 0.17 and 0.30, respectively. Their 
performance is followed by Diffusion Map (0.15), ZINB-WaVE (0.14), and LLE 
(0.12); while the remaining methods are in the range of 0.04-0.07.  

Computation time 
We recorded and compared computing time for different DR methods on 
simulated data sets. Here, we also examined how computation time for different 
DR methods varies with respect to the number of low-dimensional components 
extracted (Figure 4A) as well as with respect to the number of cells contained in 
the data (Figure 4B). Overall, the computational cost of three methods, 
ZINB-WaVE, ZIFA, and pCMF, is substantially heavier than the remaining 
methods. Their computation time increase substantially with both increasingly 
large number of low-dimensional components and increasingly large number of 
cells in the data. Specifically, when the sample size equals 500 and the desired 
number of low dimensional components equals 22, the computing time for 
ZINB-WaVE, ZIFA, and pCMF to analyze 10,000 genes are 2.15, 1.33, and 1.95 
hours, respectively (Figure 4A). When the sample size increases to 10,000, the 
computing time for ZINB-WaVE, ZIFA, and pCMF increases to 12.49, 20.50, and 
15.95 hours, respectively (Figure 4B). Similarly, when the number of 
low-dimensional components increases to 52, the computing time for ZINB-WaVE, 
ZIFA, and pCMF increases to 4.56, 4.27, and 4.62 hours, respectively. Besides 
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these three methods, the computing cost of ICA, GLMPCA, and Poisson NMF can 
also increase noticeably with increasingly large number of low-dimensional 
components. The computing cost of ICA, but to a lesser extent of GLMPCA, LLE, 
LTSA and Poisson NMF, also increases substantially with increasingly large 
number of cells. In contrast, PCA, FA, Diffusion Map, UMAP, and the two deep 
learning-based methods (DCA and scScope) are computationally efficient. In 
particular, the computation time for these six methods are stable and do not show 
substantial dependence on the sample size or the number of low-dimensional 
components. Certainly, we expect that the computation time of all DR methods 
will further increase as the sample size of the scRNAseq data sets increases in 
magnitude. Overall, in terms of computing time, PCA, FA, Diffusion Map, UMAP, 
DCA, and scScope are preferable.   

Practical guidelines 
In summary, our comparison analysis shows that different DR methods can have 
different merits for different tasks. Subsequently, it is not straightforward to 
identify a single DR method that strives the best in all data sets and for all 
downstream analyses. Instead, we provide a relatively comprehensive practical 
guideline for choosing DR methods in scRNAseq analysis in Figure 5. Our 
guideline is based on the accuracy and effectiveness of DR methods in terms of 
the downstream analysis, the robustness and stability of DR methods in terms of 
replicability and consistency across data splits, as well as their performance in 
large-scale data applications, data visualization, as well as computational 
scalability for large scRNAseq data sets. Briefly, for cell clustering analysis, PCA, 
ICA, FA, NMF, and ZINB-WaVE are recommended for small data where 
computation is not a concern. PCA, ICA, FA, NMF are also recommended for 
large data where computation is a concern. For lineage inference analysis, FA, 
PCA, NMF, UMAP and ZINB-WaVE are all recommended for small data. A subset 
of these methods, FA, PCA, NMF and UMAP are also recommended for large 
scRNAseq data. In addition, for very large scRNAseq data sets (e.g. >100,000 
samples), DCA and UMAP perhaps are the only feasible approach for both 
downstream analyses with UMAP being the preferred choice. We also recognize 
that PCA, ICA, FA and NMF can be useful options in very large data sets when 
paired with a sub-sampling procedure [54], though care need to be taken to 
examine the effectiveness of the sub-sampling procedure itself. Finally, besides 
these general recommendations, we note that some methods have additional 
features that are desirable for practitioners. For example, ZINB-WaVE can include 
sample-level and gene-level covariates, thus allowing us to easily control for 
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batch effects or size factors. We provide our detailed recommendations in Figure 
5. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2019. ; https://doi.org/10.1101/641142doi: bioRxiv preprint 

https://doi.org/10.1101/641142
http://creativecommons.org/licenses/by/4.0/


DISCUSSION 
We have presented a comprehensive comparison of different dimensionality 
reduction methods for scRNAseq analysis. We hope the summary of these 
state-of-the-art DR methods, the detailed comparison results, and the 
recommendations and guidelines for choosing DR methods can assist 
researchers in the analysis of their own scRNAseq data. 

In the present study, we have primarily focused on three clustering methods 
(k-means, hierarchical clustering, and Louvain method) to evaluate the 
performance of different DR methods for downstream clustering analysis. We 
have also primarily focused on two lineage inference methods (Slingshot and 
Monocle3) to evaluate the performance of different DR methods for downstream 
lineage inference. In our analysis, we found that the performance of DR methods 
measured based on different clustering methods are often consistent with each 
other. Similarly, the performance of DR methods measured based on different 
lineage inference methods are also consistent with each other. However, it is 
possible that some DR methods may work well with certain clustering approaches 
and/or with certain lineage inference approaches. Subsequently, future 
comparative analysis using other clustering methods and other lineage inference 
methods as comparison criteria may have added benefits. In addition, besides cell 
clustering and trajectory inference, we note that DR methods are also used for 
many other analytic tasks in scRNAseq studies. For example, factor models for 
DR is an important modeling part for multiple scRNAseq data sets alignment [16], 
for integrative analysis of multiple omics data sets [55, 56], as well as for 
deconvoluting bulk RNAseq data using cell type specific gene expression 
measurements from scRNAseq [57, 58]. In addition, cell classification in 
scRNAseq also relies on a low-dimensional structure inferred from original 
scRNAseq through DR [59, 60]. Therefore, the comparative results obtained from 
the present study can provide important insights into these different scRNAseq 
analytic tasks. In addition, investigating the performance of DR methods in these 
different scRNAseq downstream analyses is an important future research 
direction.  

We mostly focused on evaluating feature extraction methods for DR. Another 
important category of DR method is the feature selection method, which aims to 
select a subset of features/genes directly from the original feature space. The 
feature section methods rely on different criteria to select important genes and are 
also commonly used in the preprocessing step of scRNAseq data analysis [61]. 
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For example, M3Drop relies on dropout events in scRNAseq data to identify 
informative genes [62]. Seurat uses gene expression variance to select highly 
variable genes [16]. Evaluating the benefits of different methods and criteria for 
selecting informative genes for different downstream tasks is another important 
future direction. 

With the advance of scRNAseq technologies and with the increase collaborations 
across scientific groups, new consortium projects such as the Human Cell Atlas 
(HCA) will generate scRNAseq data sets that contain millions of cells [34]. The 
large data at this scale poses critical computational and statistical challenges to 
many current DR methods. Many existing DR methods, in particular those that 
require the computation and memory storage of a covariance or distance matrix 
among cells, will no longer be applicable there. We have examined a particular 
sub-sampling strategy to scale all DR methods to large data sets. However, while 
the sub-sampling strategy is computationally efficient, it unfortunately reduces the 
performance of many DR methods by a substantial margin. Therefore, new 
algorithmic innovations and new efficient computational approximations will likely 
be needed to effectively scale many of the existing DR methods to millions of 
cells.  
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METHODS AND MATERIALS 

ScRNAseq data sets 
We obtained a total of 30 scRNAseq data sets from public domains for 
benchmarking DR methods. All data sets were retrieved from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) or the 
10X genomics website 
(https://support.10xgenomics.com/single-cell-gene-expression/datasets). These 
data sets cover a wide variety of sequencing techniques that include Smart-Seq2 
(8 data sets), 10X genomics (6 data sets), Smart-Seq (5 data sets), inDrop (1 data 
set), RamDA-seq (1 data set), sci-RNA-seq3 (1 data set), SMARTer (5 data sets) 
and others (3 data sets). In addition, these data cover a range of sample sizes 
from a couple hundred cells to tens of thousands of cells measured in either 
human (19 data sets) or mouse (11 data sets). In each data set, we evaluated the 
effectiveness of different DR methods for one of the two important downstream 
analysis tasks: cell clustering and lineage inference. In particular, 15 data sets 
were used for cell clustering evaluation while another 15 data sets were used for 
lineage inference evaluation. For cell clustering, we followed the same criteria 
listed in [12, 41] to select these datasets. In particular, the selected data sets need 
to contain true cell clustering information which is to be treated as the ground truth 
in the comparative analysis. In our case, 11 of the 15 data sets were obtained by 
mixing cells from different cell types either pre-determined by fluorescence 
activated cell sorting (FACS) or cultured on different conditions. Therefore, these 
11 studies contain the true cell type labels for all cells. The remaining 4 data sets 
contain cell labels that were determined in the original study and we simply 
treated them as truth though we do acknowledge that such “true” clustering 
information may not be accurate. For lineage inference, we followed the same 
criteria listed in [14] to select these datasets. In particular, the selected data sets 
need to contain true linear lineage information which is to be treated as the 
ground truth in the comparative analysis. In our case, 4 of the 15 data sets were 
obtained by mixing cells from different cell types pre-determined by FACS. These 
different cell types are at different developmental stages of a single linear lineage; 
thus these 4 studies contain the true lineage information for all cells. The 
remaining 11 data sets contain cells that were collected at multiple time points 
during the development process. For these data, we simply treated cells at these 
different time points as part of a single linear lineage, though we do acknowledge 
that different cells collected at the same time point may represent different 
developmental trajectories from an early time point if the cells at the early time are 
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heterogeneous. In either case, the true lineage in all these 15 data sets are 
treated as linear, without any bifurcation or multifurcation patterns.  

A detailed list of the selected scRNAseq datasets with corresponding data 
features is provided in Tables S1-S2. In each of the above 30 data sets, we 
removed genes that are expressed in less than five cells. For methods modeling 
normalized data, we transformed the raw counts data into continuous data with 
the normalize function implemented in scater (R package v1.12.0). We then 
applied log2 transformation on the normalized counts by adding one to avoid log 
transforming zero values. We simply term this normalization as log2 count 
transformation, though we do acknowledge that such transformation does take 
into account of cell size factor etc. through the scater software. In addition to log2 
count transformation, we also explored the utility of two additional data 
transformation: log2 CPM transformation and z-score transformation. In the log2 
CPM transformation, we first computed counts per million reads (CPM) and then 
performed log2 transformation on the resulted CPM value by adding a constant of 
one to avoid log transformation of zero quantities. In the z-score transformation, 
for each gene in turn, we standardized CPM values to achieve a mean of zero and 
variance of one across cells using Seurat package (v2.3).  

Besides the above 30 real scRNAseq data sets, we also simulated 2 additional 
scRNAseq data sets for cell clustering evaluation. In the simulations, we used all 
94 cells from one cell type (v6.5 mouse 2i+LIF) in the Kumar data as input. We 
simulated scRNAseq data with 500 cells and a known number of cell types, which 
were set to be either 4 or 8, using the Splatter package v1.2.0. All parameters 
used in the Splatter (e.g., mean rate, shape, dropout rate, etc.) were set to be 
approximately those estimated from the real data. In the case of 4 cell types, we 
set the group parameter in Splatter as 4. We set the percentage of cells in each 
group as 0.1, 0.15, 0.5 and 0.25, respectively. We set the proportion of the 
differentially expressed genes in each group as 0.02, 0.03, 0.05 and 0.1, 
respectively. In the case of 8 cell types, we set group/cell type parameter as 8. We 
set the percentage of cells in each group as 0.12, 0.08, 0.1, 0.05, 0.3, 0.1, 0.2 and 
0.05, respectively. We set the proportion of the differentially expressed genes in 
each group as 0.03, 0.03, 0.03, 0.1, 0.05, 0.07, 0.08, and 0.1, respectively. 

Compared dimensionality reduction methods 
DR methods aim to transform an originally high-dimensional feature space into a 
low-dimensional representation with a much-reduced number of components. 
These components are in the form of a linear or non-linear combination of the 
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original features (known as feature extraction DR methods) [63] and in the 
extreme case are themselves a subset of the original features (known as feature 
selection DR methods) [64]. In the present study, we have collected and compiled 
a list of 18 popular and widely used DR methods in the field of scRNAseq analysis. 
These DR methods include factor analysis (FA; R package psych, v1.8.12), 
principal component analysis (PCA; R package stats, v3.6.0), independent 
component analysis (ICA; R package ica, v1.0.2), Diffusion Map (Diffusion Map; R 
package destiny, v2.14.0), nonnegative matrix factorization (NMF; R package 
NNLM, v1.0.0), Kullback-Leibler divergence-based NMF (Poisson NMF; R 
package NNLM, v1.0.0), zero-inflated factor analysis (ZIFA; Python package 
ZIFA), zero-inflated negative binomial based wanted variation extraction 
(ZINB-WaVE; R package zinbwave, v1.6.0), probabilistic count matrix 
factorization (pCMF; R package pCMF, v1.0.0), deep count autoencoder network 
(DCA; Python package dca), a scalable deep-learning-based approach (scScope; 
Python package scscope), generalized linear model principal component analysis 
(GLMPCA; R package on github), multidimensional scaling (MDS; Rdimtools R 
package v.0.4.2), locally linear embedding (LLE; Rdimtools R packge v.0.4.2), 
local tangent space alignment (LTSA; Rdimtools R package v.0.4.2), Isomap 
(Rdimtools R package v.0.4.2), t-distributed stochastic neighbor embedding 
(tSNE; FIt-SNE, fftRtnse R function), and uniform manifold approximation and 
projection (UMAP; Python package). One of these methods, tSNE, can only 
extract a maximum of two or three low-dimensional components [42-44]. 
Therefore, we only included tSNE results based on two low-dimensional 
components extracted from the recently developed fast FIt-SNE R package [44] in 
all figures. An overview of these 18 DR methods with their corresponding 
modeling characteristics is provided in Table 1.  

Assess the performance of dimensionality reduction methods 
We first evaluated the performance of DR methods by neighborhood preserving 
that aims to access whether the reduced dimensional space resembles the 
original gene expression matrix. To do so, we first identified the k-nearest 
neighbors for each single cell in the original space (denoted as a set A) and in the 
reduced space (denoted as a set B). We set k = 10, 20, or 30 in our study. We 
then computed the Jaccard index (JI) [45] to measure the neighborhood similarity 

between the original space and the reduced space: �� � |���|
|���|, where |·| denotes 

the cardinality of a set. We finally obtained the averaged Jaccard index (AJI) 
across all cells to serve as the measurement for neighborhood preserving. We 
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note, however, that neighborhood preserving is primarily used to measure the 
effectiveness of pure dimensionality reduction in terms of preserving the original 
space and may not be relevant for single cell analytic tasks that are the main 
focus of the present study: a DR method that preserve the original gene 
expression matrix effectively may not be effective in extracting useful biological 
information from the expression matrix that are essential for key downstream 
single cell applications. Preserving the original gene expression matrix is rarely 
the purpose of DR methods for single cell applications: indeed, the original gene 
expression matrix (which is the best-preserved matrix of itself) is rarely, if ever, 
used directly in any downstream single cell applications including cell clustering 
and lineage inference, even though it is computationally easy to do so. 

Therefore, more importantly, we also evaluated the performance of DR methods 
by evaluating how effective the low-dimensional components extracted from DR 
methods are for downstream single cell analysis. We evaluated either of the two 
commonly applied downstream analysis, clustering analysis and lineage 
reconstruction analysis, in the 32 data sets described above. In the analysis, we 
varied the number of low-dimensional components extracted from these DR 
methods. Specifically, for cell clustering data sets, in a data with less than or 
equal to 300 cells, we varied the number of low dimensional components to be 
either 2, 6, 14, or 20. In a data with more than 300 cells, we varied the number of 
low dimensional components to be either 0.5%, 1%, 2%, or 3% of the total 
number of cells. For lineage inference data sets, we varied the number of low 
dimensional components to be either 2, 6, 14, or 20 for all data sets, since 
common lineage inference methods prefer a relatively small number of 
components.  

For clustering analysis, after DR with these DR methods, we used three different 
clustering methods, the hierarchical clustering (R function hclust; stats v3.5.3), 
k-means clustering (R function kmeans; stats v3.6.0), or Louvain method (R 
function clusterCells; monocle v2.12.0) to perform clustering on the reduced 
feature space. The k-means clustering is a key ingredient of commonly applied 
scRNAseq clustering methods such as SC3 [18] and Waterfall [25]. The 
hierarchical clustering is a key ingredient of commonly applied scRNAseq 
clustering methods such as CIDR [17] and CHETAH [65]. The Louvain method is 
also a commonly used clustering method for common single cell analysis software 
such as Seurat [16] and Monocle [27, 66]. In all these clustering methods, we set 
the number of clusters k to be the known number of cell types in the data. We 
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compared the cell clusters inferred using the low dimensional components to the 
true cell cluster and evaluated clustering accuracy by two criteria: the adjusted 
rand index (ARI) [67] and the normalized mutual information (NMI) [68]. The ARI 
and NMI are defined as: 
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� � ∑ ����
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where � � 
��, �	, � , ����  denotes the inferred cell type cluster labels from 

clustering analysis while 
 � 
��, �	, � , ����  denotes the known true cell type 

labels for �  samples in the data;  �  and �  enumerate the clusters, with 

� � 1, � , � and � � 1, � , � where � and � are the number of inferred cell type 

clusters and the number of true cell type clusters, respectively; ��� � ∑ �
�� �� 

����� � �� is the number of times where the i’th cell belongs to the cluster � in 

the inferred cluster labeling and j’th cell belongs to the cluster � in the true cluster 

labeling; note that ��� is an entry of contingency table which effectively measures 

the number of cells that are in common between � and 
, with �
·� being an 

indicator function; �� � ∑ ����  is the sum of the �th column of the contingency 

table; and �� � ∑ ����  is the sum of the �th row of the contingency table;�··  

denotes a binomial coefficient; ��
�, 
� � ∑ ∑ ���
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$�  is the mutual 

information between two cluster labels; %
�� � & ∑ 
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�� �!" �
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�   is the entropy 

function for inferred cell type labeling; and %

� � & ∑ ��
�� �!" ���

�   is the entropy 

function for true cell type labeling. We used the compare function in the igraph R 
package (v1.0.0) to compute both ARI and NMI criteria. For rare cell type 
identification, we used the '-measure, that is commonly used for quantifying rare 

cell type identification performance [49, 50]. The F-measure is the harmonic mean 
of the clustering’s precision and recall, and is formulated as: 

' & measure � 2 �!"
��". 

where �  represents the precision for identifying the rare cluster, with � �
�#$% �'��(�)%

�#$% �'��(�)%�*
��% �'��(�)% ; while 	  represents the recall for identifying the rare 

cluster, with 	 � �#$% �'��(�)%
�#$% �'��(�)%�*
��% +%,
(�)%. For each data set, we repeated the 

above procedure five times and report the averaged results to avoid the influence 
of the stochasticity embedded in some DR methods and/or the clustering 
algorithm.  
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While it is straightforward to apply different DR methods to most scRNAseq data 
sets, we found that many DR methods are not computationally scalable and 
cannot be directly applied for clustering analysis in two large-scale scRNAseq 
data sets we examined in the present study. For these non-scalable DR methods, 
we made use of a recently developed subsampling procedure described in 
dropClust to scale them to large data [54]. In particular, we first applied dropClust 
to the original large-scale data to infer rare cell populations. We then created a 
small data by combining all cells in the rare cell populations along with a subset 
set of cells in the remaining cell populations. The subset of cells in the non-rare 
populations are obtained through subsampling using the structure preserving 
sampling procedure (details in [54]). Afterwards, we applied different DR methods 
to the small data and performed clustering analysis there. The cells in the small 
data are then directly assigned with their clustering label after clustering analysis. 
For each cell that is not in the small data, we computed the Pearson correlation 
between the cell and each of the cluster centers inferred in the small data. We 
assigned the cell to the cluster with the closest cluster center in the small data as 
the cluster assignment.  

For trajectory inference, after DR with these DR methods, we used Slingshot [51] 
(R package, v1.2.0) and Monocle3 [28] (R package, v0.1.2). The Slingshot 
software is the recommended lineage inference method based on a recent 
comparative study [14]. Monocle3 is one of the most recent lineage inference 
methods. Slingshot takes two input data: the low-dimensional components 
extracted from DR methods and a vector of cluster labels predicted by clustering 
algorithms. Monocle3 also takes two input data: the low-dimensional components 
extracted by DR methods and starting state which is to the beginning of the 
lineage. For the cluster labels, we used either k-means, hierarchical clustering 
algorithm or Louvain method on the extracted low-dimensional components to 
obtain cluster labels. For the starting state, we supplied with the true beginning 
state of the lineage in the data. After obtaining the two types of input through the 
slingshot function, we used the getLineages function to fit a minimum spanning 
tree (MST) to identify lineage. The final output from Slingshot is an object of class 
SlingshotDataSet that contains the inferred lineage information. We follow the 
original Slingshot paper [51] to evaluate the accuracy of the inferred lineage using 
the Kendall rank correlation coefficient. To do so, for each data, we first ranked 
genes based on their position on the true lineage. We ordered all m genes based 
on this rank order and denoted the corresponding rank in ascending order for 

these genes as /0�, � , 0-1, where 0� 2 0���. Note that the true lineage is linear 
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without any bifurcation or multifurcation patterns, while the inferred lineage may 
contain multiple ending points in addition to the single starting point. Therefore, for 
each inferred lineage, we examined one trajectory at a time, where each 
trajectory consists of the starting point and one of the ending points. In each 
trajectory, we ranked genes in order based on their position in the trajectory. We 
denote the corresponding rank order in the inferred trajectory for all m genes as 
/3�, � , 3-1, where we set 3� as missing if l’th gene is not included in the inferred 

trajectory. For each pair of non-missing genes, we labeled the gene pair (i, j) as a 
concordant pair if their relative rank in the inferred lineage are consistent with their 

relative rank in the true lineage; that is, either 
0� 4 0  & 3� 4 3 �  or 
0� 6
0  & 3� 6 3 �. Otherwise, we labeled the gene pair (i, j) as discordant. We denoted 

7 as the number of concordant pairs, 8 as the number of discordant pairs, and 

9 as the total number of non-missing genes. The Kendell correlation coefficient is 

then computed as   

: �  7 & 8
9
9 & 1� 2⁄ . 

Afterwards, we obtained the maximum absolute : over all these trajectories as 

the final Kendall correlation score to evaluate the similarity between the inferred 
lineage and the true lineage. For each data set, we repeated the above procedure 
five times and report the averaged results to avoid the influence of the 
stochasticity embedded in some DR methods and/or the lineage inference 
algorithm. For the large-scale data application to Cao et al., we also applied the 
sub-sampling approach dropClust to scale different DR methods for lineage 
inference. 

We investigated the stability and robustness of different DR methods in both cell 
clustering and lineage inference applications through data splitting. Here, we 
focused on two representative scRNAseq data sets, the Kumar data set for cell 
clustering and the Hayashi data set for lineage inference. For each data, we 
randomly split the data into two subsets with an equal number of cells in each cell 
type in the two subsets. We repeated the split procedure 10 times to capture the 
potential stochasticity during the data split. In each split replicate, we applied 
different DR methods to analyze each subset separately. We used k-means 
clustering algorithm to infer the clustering labels in each subset. We used NMI to 
measure cell clustering accuracy and used Kendall correlation to measure lineage 
inference accuracy.  
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Finally, to summarize the performance of the evaluated DR methods across the 
range of criteria in Figure 5, we consider either “good”, “intermediate” or “poor” to 
categorize the DR methods for each criterion. For UMI and non-UMI in cell 
clustering, we evaluated the performance of different DR methods based on 0.5% 

low-dimensional components in Figures S31A and S31B: average NMI 4 0.73 

(good); 0.64 2 average NMI < 0.73 (intermediate); average NMI < 0.64 (poor). 

For Trajectory Inference, we evaluated the performance of different DR methods 

based on 2 low-dimensional components in Figure S39A: average Kendall 4 

0.41 (good); 0.35 2 average Kendall < 0.41 (intermediate); average Kendall < 

0.35 (poor). For Rare Cell Detection, we evaluated the performance of different 
DR methods based on 0.5% low-dimensional components in Figure S35A: 

F-measure 4 0.74 (good); 0.69 2 F-measure < 0.74 (intermediate); F-measure 
< 0.69 (poor). For Neighborhood Preserving, we evaluated the performance of 
different DR methods based on 0.5% low-dimensional components in Figure S7A: 

average Jaccard index 4 0.15 (good); 0.12 2 average Jaccard index < 0.15 

(intermediate); average Jaccard index < 0.12 (poor). For Scalability, we evaluated 
the performance of different DR methods when sample size is 10,000 in Figure 4B: 

computation time 2 0.25h (good); 0.25h 2 computation time < 10 (intermediate); 

computation time 4 10h (poor). For Consistency, we evaluated the performance 

of different DR methods based on the absolute mean value of the difference of 
average NMI between two splits from Figures S36 and S54: difference of average 

NMI 2 0.005 (good); 0.005 2 difference of average NMI < 0.01 (intermediate); 

difference of average NMI 4 0.01 (poor). For Success Rate, since both scScope 

and LTSA do not work for most trajectory inference data sets, we set as poor; 
NMF, ICA, tSNE, and GLMPCA do not work for some of data sets, we set as 
intermediate; the rest of DR methods are all good.  
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Figure 1. Overview of the evaluation workflow for dimensionality reduction 
methods. We obtained a total of 30 publicly available scRNAseq data from GEO 
and 10x Genomics website. We also simulated two addition simulation data sets. 
For each of the 32 data sets in turn, we applied 18 dimensionality reduction (DR) 
methods to extract the low-dimensional components. Afterwards, we evaluated 
the performance of DR methods by evaluating how effective the low-dimensional 
components extracted from DR methods are for downstream analysis. We did so 
by evaluating the two commonly applied downstream analysis: clustering analysis 
and lineage reconstruction analysis. In the analysis, we varied the number of 
low-dimensional components extracted from these DR methods. The 
performance of each DR method is qualified by Jaccard index for neighborhood 
preserving, normalized mutual information (NMI) and adjusted rand index (ARI) 
for cell clustering analysis, and Kendall correlation coefficient for trajectory 
inference. We also recorded the stability of each DR method across data splits 
and recorded the computation time for each DR method. Through the 
comprehensive evaluation, we eventually provide practical guidelines for 
practitioners to choose DR methods for scRNAseq data analysis. 
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Figure 2. DR method performance evaluated by k-means clustering based 
on NMI in downstream cell clustering analysis. We compared 18 DR methods 
(columns), including factor analysis (FA), principal component analysis (PCA), 
independent component analysis (ICA), Diffusion Map, nonnegative matrix 
factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), 
zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE), 
probabilistic count matrix factorization (pCMF), deep count autoencoder network 
(DCA), scScope, generalized linear model principal component analysis 
(GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE), local 
tangent space alignment (LTSA), Isomap, uniform manifold approximation and 
projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We 
evaluated their performance on 14 real scRNAseq data sets (UMI-based data are 
labeled as purple; non-UMI based data are labeled as blue) and 2 simulated data 
sets (rows). The simulated data based on Kumar data is labeled with #. The 
performance of each DR method is measured by normalized mutual information 
(NMI). For each data set, we compared the four different number of 
low-dimensional components. The four numbers equal to 0.5%, 1%, 2%, and 3% 
of the total number of cells in big data and equal to 2, 6, 14, and 20 in small data 
(which are labeled with *). For convenience, we only listed 0.5%, 1%, 2%, and 3% 
on x-axis. No results for ICA are shown in the table (grey fills) because ICA cannot 
handle the large number of features in that data. No results for LTSA are shown 
(grey fills) because error occurred when we applied the clustering method on 
LTSA extracted low-dimensional components there. Note that, for tSNE, we only 
extracted two low-dimensional components due to the limitation of the tSNE 
software. 
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Figure 3. DR method performance evaluated by Kendall correlation in the 
downstream trajectory inference analysis. We compared 17 DR methods 
(columns), including factor analysis (FA), principal component analysis (PCA), 
independent component analysis (ICA), Diffusion Map, nonnegative matrix 
factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), 
zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE), 
probabilistic count matrix factorization (pCMF), deep count autoencoder network 
(DCA), generalized linear model principal component analysis (GLMPCA), 
multidimensional scaling (MDS), locally linear embedding (LLE), local tangent 
space alignment (LTSA), Isomap, uniform manifold approximation and projection 
(UMAP), and t-distributed stochastic neighbor embedding (tSNE). We evaluated 
their performance on 14 real scRNAseq data sets (rows) in terms of lineage 
inference accuracy. We used Slingshot with k-means as the initial step for lineage 
inference. The performance of each DR method is measured by Kendall 
correlation. For each data set, we compared four different number of 
low-dimensional components (2, 6, 14, and 20; four sub-columns under each 
column). Grey fills in the table represents missing results where Slingshot gave 
out errors when we supplied the extracted low-dimensional components from the 
corresponding DR method. Note that, for tSNE, we only extracted two 
low-dimensional components due to the limitation of the tSNE software. 
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Figure 4. The computation time (in hours) for different DR methods. We 
recorded computing time for 18 DR methods on simulated data sets with varying 
number of low-dimensional components and varying number of sample sizes. 
Compared DR methods include: factor analysis (FA; light green), principal 
component analysis (PCA; light blue), independent component analysis (ICA; 
blue), Diffusion Map (pink), nonnegative matrix factorization (NMF; green), 
Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), 
zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE; 
orange), probabilistic count matrix factorization (pCMF; light purple), deep count 
autoencoder network (DCA; yellow), scScope (purple), generalized linear model 
principal component analysis (GLMPCA; red), multidimensional scaling (MDS; 
cyan), locally linear embedding (LLE; blue green), local tangent space alignment 
(LTSA; teal blue), Isomap (grey), uniform manifold approximation and projection 
(UMAP; brown), and t-distributed stochastic neighbor embedding (tSNE; dark red).  
(A) Computation time for different DR methods (y-axis) changes with respect to 
an increasing number of low-dimensional components (x-axis). The number of 
cells is fixed to be 500 and the number of genes is fixed to be 10,000 in this set of 
simulations. Three methods (ZINB-WaVE, pCMF, and ZIFA) become noticeably 
computationally more expensive than the remaining methods with increasing 
number of low-dimensional components. (B) Computation time for different DR 
methods (y-axis) changes with respect to an increasing sample size (i.e. the 
number of cells) in the data. Computing time is recorded on a single thread of an 
Intel Xeon E5-2683 2.00 GHz processor. The number of low-dimensional 
components is fixed to be 22 in this set of simulations for most methods, except 
for tSNE which used two low-dimensional components due to the limitation of the 
tSNE software. Note that some methods are implemented with parallelization 
capability (e.g. ZINB-WaVE and pCMF) though we tested them on a single thread 

for fair comparison across methods. Note that PCA is similar to ICA in (A) and 
scScope is similar to several other efficient methods in (B); thus their lines may 
appear to be missing. Overall, three methods (ZIFA, pCMF, and ZINB-WaVE) 
become noticeably computationally more expensive than the remaining methods 
with increasing number of cells in the data. 
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Figure 5. Practical guideline for choosing DR methods in scRNAseq 
analysis. Compared DR methods include: factor analysis (FA), principal 
component analysis (PCA), independent component analysis (ICA), Diffusion 
Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated factor 
analysis (ZIFA), zero-inflated negative binomial based wanted variation extraction 
(ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count 
autoencoder network (DCA), scScope, generalized linear model principal 
component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 
embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 
manifold approximation and projection (UMAP), and t-distributed stochastic 
neighbor embedding (tSNE). The count-based methods are colored in purple 
while non count-based methods are colored in blue. Methods are ranked by their 
average performance across the criteria from left to right. The performance is 
colored and numerically coded: good performance = 2 (sky-blue), intermediate 
performance = 1 (orange), and poor performance = 0 (grey).  
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Table 1. List of compared dimensionality reduction methods. We list standard modeling properties for each of 
compared dimensionality reduction methods. These properties include whether it models count data (3rd column), whether 
it accounts for zero inflation (4th column), whether it is a linear DR method (5th column), its computation efficiency (6th 
column), implementation language (7th column), year of publication (8th column), and reference (9th column). FA: factor 
analysis; PCA: principal component analysis; ICA: independent component analysis; NMF: nonnegative matrix 
factorization; Poisson NMF: Kullback-Leibler divergence-based NMF; ZIFA: zero-inflated factor analysis; ZINB-WaVE: 
zero-inflated negative binomial based wanted variation extraction; pCMF: probabilistic count matrix factorization; DCA: 
deep count autoencoder network; GLMPCA: generalized linear model principal component analysis; Diffusion Map; MDS: 
multidimensional scaling; LLE: locally linear embedding, LTSA: local tangent space alignment; Isomap; UMAP: uniform 
manifold approximation and projection; tSNE: t-distributed stochastic neighbor embedding. 
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No. Methods Modeling 

Counts 

Modeling 

Zero Inflation 

Non-Linear 

Projection 

Computation 

Efficiency 

Implementation 

Language 

Year of 

Publication 

Reference 

1 PCA No No No Yes R 1901 [69] 

2 ICA No No No No R 1994 [70] 

3 FA No No No Yes R 1952 [71] 

4 NMF No No No Yes R 1999 [72] 

5 Poisson NMF Yes No No Yes R 1999 [72] 

6 Diffusion Map No No Yes Yes R 2005 [73] 

7 ZIFA No Yes No No Python 2016 [30] 

8 ZINB-WaVE Yes Yes No No R 2018 [32] 

9 GLMPCA Yes No No No R 2019 [74] 

10 pCMF Yes Yes No No R 2019 [31] 

11 scScope No Yes Yes Yes Python 2019 [37] 

12 DCA Yes Yes Yes Yes Python 2018 [40] 

13 tSNE No No Yes No R 2008 [44] 

14 MDS No No No Yes R 1958 [75] 

15 LLE No No Yes Yes R 2000 [76] 

16 LTSA No No Yes No R 2004 [77] 

17 Isomap No No Yes Yes R 2000 [11] 

18 UMAP No No Yes Yes Python 2019 [78] 
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