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Abstract

A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting-
state fMRI to identify alterations of functional connectivity, with the hope of identifying
clinical biomarkers or underlying neural mechanisms. However, results have been largely
inconsistent across studies, and there is therefore a pressing need to determine the primary
factors influencing replicability. Here, we used resting-state fMRI data from the Autism
Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and
data site (which differ in terms of sample, data acquisition, etc.). We examined the similarity
of both group-average functional connectomes and group-level differences (ASD vs. control)
across 33 denoising pipelines and four independently-acquired datasets. The group-average
connectomes were highly consistent across pipelines (r = 0.92+0.06) and sites (r = 0.88+0.02).
However, the group differences, while still consistent within site across pipelines (r =
0.76+0.12), were highly inconsistent across sites regardless of choice of denoising strategies
(r = 0.07+0.04), suggesting lack of replication may be strongly influenced by site and/or
cohort differences. Across-site similarity remained low even when considering the data at a
large-scale network level or when considering only the most significant edges. We further
show through an extensive literature survey that the parameters chosen in the current study
(i.e., sample size, age range, preprocessing methods) are quite representative of the published
literature. These results highlight the importance of examining replicability in future studies
of ASD, and, more generally, call for extra caution when interpreting aterations in functional
connectivity across groups of individuals.
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I ntroduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with
heterogeneous etiology and phenotypic expression. Resting-state functional Magnetic
Resonance Imaging (rs-fMRI) -- in which the tempora coupling of spontaneous activity
across the brain, or functional connectivity (FC; Biswal, Yetkin, Haughton, & Hyde, 1995;
Greicius, Krasnow, Reiss, & Menon, 2003), is measured -- has been widely used to study
differences in functional brain organization in ASD, with hopes of revealing underlying
neural mechanisms or identifying FC-based biomarkers (Abraham et al., 2017; Yahata et al.,
2016). However, findings of FC alterations in ASD have been highly variable across studies
(Hull et al., 2016). This variability of findings may reflect the variability across numerous
study-specific factors, including strategies for denoising the data (i.e., preprocessing pipelines)
and a host of differences across sites. Y et, without replicable findings that generalize beyond
asingle study, the utility of rs-fMRI for identifying mechanisms or serving as biomarkers of
ASD isuncertain and remains to be demonstrated.

One potentia source of variability across rs-fMRI studies has been the methods used
for data preprocessing. The blood oxygenation-level dependent (BOLD) signa, while
sensitive to changes related to brain activity, is also highly vulnerable to head motion and
physiological noise, which can spuriously influence measures of functional connectivity and
ultimately affect conclusions from functional connectivity studies (Power, Barnes, Snyder,
Schlaggar, & Petersen, 2012; Power et al., 2014, Satterthwaite et al., 2012; Van Dijk,
Sabuncu, & Buckner, 2012; Yan, Cheung, et a., 2013; Dadi et a., 2019). Idedly, effective
data preprocessing methods would minimize the influence of such nuisance signals and
improve reproducibility. Best practices for denoising methods are still evolving and a
consensus has yet to be reached, in part because our understanding of how such artifacts
influence the BOLD signal remains incomplete (Birn, 2012; Byrge & Kennedy, 2018; Power,
Mitt, Laumann, & Martin, 2017). These differences presumably contribute in part to
inconsistencies across studies -- different strategies have been used both within and across
labs, adding additional uncontrolled and unaccounted for variation in the research literature.
Even when researchers attempt to conduct post hoc analyses to try to understand how
different preprocessing steps could account for study-level differences in ASD, the lack of a
ground truth upon which to evaluate measurement accuracy limits our ability to interpret such
differences (Muller et a., 2011).

Most common denoising approaches rely on linear regression, whereby various
estimates of noise are regressed from the BOLD data. The numerous variations of this
strategy come from different choices of which noise estimates to use as regressors. Those
most commonly used include measures of head displacement along six translational and
rotational dimensions, as well as time series from white matter (WM) and cerebrospinal fluid
(CSF). An especially controversial nuisance regressor is the global fMRI signal; proponents
of global signal regression (GSR) argue for its efficacy in removing physiological noise (Birn,
2012; Byrge & Kennedy, 2018; Power et al., 2017), while the concerns include removal of
real neural signals (Scholvinck, Maier, Ye, Duyn, & Leopold, 2010) and distorting clinical
group comparison (Gotts et al., 2013; Yang et a., 2014). An additional preprocessing step
that can be used in parallel is volume censoring (or "scrubbing”; Power et al., 2012), in which
specific time points associated with excessive amounts of framewise displacement (FD;
corresponding to moments of head movement) and/or changes in global signal are excluded
from analysis. A related choice is caled “spike regression”, which regresses from the data
one or more nuisance regressors labeling time points contaminated with excessive motion
(Lemieux, Salek-Haddadi, Lund, Laufs, & Carmichael, 2007; Satterthwaite et al., 2013).
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Several recent studies have evaluated the performance of different denoising
strategies. Although no relationship between motion and functional connectivity should
remain following an optimal denoising procedure, these studies found that the strength of
residual relationships between FC and artifacts varied widely across commonly-used
pipelines (Byrge & Kennedy, 2018; Ciric et al., 2017; Parkes, Fulcher, Yucel, & Fornito,
2018). Given that greater in-scanner head movement is commonly observed in ASD and
other clinical populations, differences in preprocessing choices and particularly how those
choices deal with artifacts arisng from head movement could be a potential source of
inconsistent results across rs-fMRI studies. For example, Gotts and colleagues (2013)
compared the effects of pipelines with and without GSR on group comparisons of functional
connectivity between ASD and controls. They found that group differences varied across
pipelines and demonstrated that GSR affected group comparison results. Jones et a. (2010)
also found that the use of GSR influenced findings of group differences in connectivity in
ASD. Parker and colleagues (2018) systematically evaluated the influence of numerous
denoising pipelines on group differences in functional connectivity in schizophrenia. They
found that significant group differences were only found in some pipelines (including GSR
and aCompCor) and that the overlap between functional connections (i.e., edges) identified in
different pipelines was generally low. These findings demonstrate clearly that the choice of
denoising pipeline can affect the results of clinical comparisons, including both the presence
or absence of group differences and their specific details (e.g., specific edges affected).

Further complicating the picture is that data site effects, or variation across different
scanning sites, have been reported in several studies of both task-based and resting-state
fMRI (Brown et al., 2011; Dansereau et al., 2017; Noble et al., 2017; Turner et al., 2013;
Yamashita et al., 2019; Yan, Craddock, Zuo, Zang, & Milham, 2013; Yu et a., 2018).
Different data sites present many potential sources of variation, including differences in
participant (i.e.,, cohort) characteristics, image acquisition parameters, scanners, scan
procedures, and more. Such uncontrolled variation could undermine the generalizability of
results and efforts to uncover underlying mechanisms and clinically useful biomarkers.
Clinical and etiological heterogeneity within the ASD population could also exacerbate these
difficulties. Nair et a. (2018) compared a local measure of functional connectivity (ReHo,
regional homogeneity) between ASD and controls from different samples. They found few
consistent results across samples, even when using the same analysis pipeline and examining
only data collected with eyes open. They suggested that extra caution should be paid to
between-site variability when using multi-site data. King et al. (2019) examined many FC-
related measures on group differences between ASD and the control. They found none of the
measures could wholly reproduce the group differences across sites. However, a recent study
reported reproducible ASD-associated alterations of functional connectivity across four large
ASD cohorts (Holiga et al., 2019).

The Autism Brain Imaging Data Exchange, or ABIDE, provides the idea data in
which to test the influence of some of these factors. ABIDE is a data sharing initiative
wherein researchers across laboratories shared resting-state data from TD and ASD
participants for the flexible use by other researchers, “alow[ing] for replication, secondary
analyses and discovery efforts’ (Di Martino et a., 2014). This flexibility has allowed a
proliferation of research on functional connectivity in ASD, and the data has been used in
various ways, including considering each site separately (Hahamy, Behrmann, & Malach,
2015; Pua, Malpas, Bowden, & Seal, 2018) or using multi-site aggregation (Abraham et al.,
2017; Foris, Lai, Nath, Milham, & Di Martino, 2018; King et al., 2019). Both of these
approaches are widely employed, and while greater statistical power can be achieved from
aggregation, examining multiple individual sites can be used to evaluate replicability. Here,
we used four of the largest ABIDE sites to quantify 1) the similarity/variation of ASD-control
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group differences of FC across denoising pipelines, 2) the similarity/variation of ASD-control
group differences across data sites, 3) and the effect of pipelines on inter-site variation.

Methods

Literature survey

A literature survey was conducted to summarize the usage of denoising methods and sample
characteristics (age range and sample size etc.) from recent resting-state FC-MRI studies of
ASD. We searched the PubMed database using keywords consisted of “resting*”, “autism”,
and “fMRI”, or combining “resting*”, “autism” and “connectivity”, published from the
beginning of 2013 until June 2019 (inclusive of the time when ABIDE data has been
available). In total, 245 studies were identified. To bein line with our study focusing on case-
control comparison of resting-state functional connectivity, 118 studies were excluded for
either not using fMRI, using animals, not analyzing static functional connectivity, no group
comparison, focusing on machine learning to classify, reviews or not accessible.

Participants

To enable an accurate evaluation of factors affecting replication of ASD-related FC
aterations obtained by typical study design, four independent data sites (NYU, SDSU,
UCLA, and UM) from ABIDE | and ABIDE |l were analyzed (Di Martino et al., 2017; Di
Martino et a., 2014). We chose these four sites in consideration of their large sample sizes as
well as maximally overlapping age ranges of participants across al four sites (Table 1 and
Figure S1). For example, athough USM also has large sample size, the number of
participants whose ages overlapped with other sites is limited; therefore, we did not include
this site in our analysis. To reduce variability while maximizing sample size, we included
participants based on following criteria: 1) age ranging from 10 to 20 yearsold; 2) 1Q > 70; 3)
mean FD no larger than 0.3 mm; 4) sufficient quality of anatomical images, assessed by
manual checking. To further control potential head-motion differences between groups, we
matched each single ASD participant with a control participant with the smallest differencein
mean FD within each site, and removed any additional subjects not matched. ASD and
typicaly developing (TD) control participants were not significantly different on mean FD or
mean translation or rotation movement parameters for any site (Table 1).

Image Preprocessing

The rs-fMRI scanning parameters for each site are shown in Table 2. All the images
were preprocessed using Matlab (R2018a) code made available from arecent study (Parkes et
a., 2018) that integrates SPM 12, FSL (FMRIB's Software Library; Smith et al., 2004) and
Advanced Normalization Tools (ANTs; Avants, Epstein, Grossman, & Gee, 2008). The T1
images were preprocessed using the following steps: neck removal; segmentation of white
matter (WM), cerebral spinal fluid (CSF), and grey matter (GM); five times erosion of WM
mask and two times erosion of CSF mask; nonlinear registration of T1 images to MNI space,
and applying the transformation to WM, CSF, and GM masks.

Preprocessing of functional images included several steps shared across different
denoising pipelines, including the following: removing the first four volumes; slice-timing
correction; head motion correction by volume realignment; co-registration to the native
structural image using rigid-body registration, and then to the MNI template using nonlinear
transformations derived from T1 registration; removing linear trends; normalization of global
mean intensity to 1000 units; conducting different denoising strategies (detailed in the next
section); bandpass filtering (0.008 - 0.08 Hz); and spatial smoothing with a 6 mm full-width
at half-maximum filter.
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Denoising Pipelines

We analyzed imaging data using several commonly-used denoising methods, together
with various combinations of different nuisance regressors and volume censoring approaches,
resulting in atotal of 33 denoising pipelines (Table 3).

Regression of head motion parameters

Head motion parameters are based on six time series reflecting in-scanner head
movements along three translational axes and three rotational axes. We examined three
variants. 6H (just these original 6 motion parameters), 12H (including the original 6H, plus
the first derivative of each as computed by backward differences), and 24H (including 12H,
plus the squares of each of the 12 parameters) (Satterthwaite et al., 2013).

Regression of signals from white matter and cerebrospinal fluid

We used two methods to estimate WM and CSF signals: (8) mean WM/CSF, the
average time series across voxels within WM and CSF masks, with three variants: mean WM
and CSF aone (2W), or adding their temporal derivatives (4W), or adding squares of 4W
(8W), and (b) aCompCor, which applies principal component analysis to the time series from
WM and CSF voxels separately, and uses the top five principal components for each tissue
compartment (Muschelli et al., 2014).

Regression of global mean signal
Globa mean signal was calculated by averaging voxel-wise time series across the
whole brain (GSR) or extended with squares of it and their temporal derivatives (AGSR).

Volume Censoring

Volume censoring involves censoring specific time points in BOLD data that have
excessive head motion, which was evaluated using framewise displacement (FD). We
adopted two different censoring strategies. spike regression and scrubbing. To keep
consistent with previous work, we calculated FD differently for spike regression and
scrubbing and used different thresholds. For spike regression, FD was calculated as the root
mean square of framewise changes of six head motion parameters (Jenkinson, Bannister,
Brady, & Smith, 2002; Satterthwaite et al., 2013). This FD trace was then used as an
additional nuisance regressor in which volumes with FD above 0.25 mm were marked as 1
and otherwise as 0, which was then regressed (together with other regressors) from the
BOLD time series. For scrubbing, FD was calculated as the sum of absolute framewise
changes of six head motion parameters (Power et al., 2012). Volumes with FD above 0.2mm
were excluded from analysis at the end of preprocessing. We excluded subjects with less than
4 minutes of valid BOLD data following spike regression or scrubbing.

ICA-AROMA

ICA-AROMA uses independent component analysis (ICA) to decompose the BOLD
signal into spatial independent components and then automatically identify motion-related
components based on assessing high-frequency content, correlation with head realignment
parameters, edge fraction and CSF fraction of each component (Pruim et a., 2015). ICA-
AROMA is performed for each participant separately and the number of motion-related
components can vary for different participants. Spatial smoothing was performed before
noise regression when using ICA-AROMA.

Functional Connectome Construction
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We used a parcellation template containing 200 cortical ROIs to construct the
functional connectome for each subject (Schaefer et al., 2018). Specifically, after
preprocessing we weight-averaged the time series of al voxels within each ROI based on
their grey matter probability. Then we computed the Pearson's correlation between time
series of each pair of 200 ROIs to construct a 200 by 200 functional connectivity matrix of
each pipeline for each subject, and Fisher-z transformed correlation coefficients for the
purpose of normalization. The group-average functional connectome was obtained by
averaging functional connectomes across participants of each group for further analysis.

Group Differences between ASD and Controls

We compared the ASD to the control group on each edge in the functiona
connectome matrix for each dataset, using the non-parametric Wilcoxon rank sum tests to
reduce the influence of extreme data. Age and mean FD were first regressed out as covariates.
A 200 x 200 statistic z-value map (z-map) representing group differences for all edges was
obtained for each pipelinein each dataset.

Assessing Replicability of Whole Functional Connectomes

A schematic is shown in Figure 1 to illustrate our approach. We first averaged
functional connectomes across participants with ASD and across typical controls, separately
for each pipeline and for each site. Next, to assess the similarity of functional connectomes
across denoising methods, we calculated the Spearman’s correlation of group-average
functional connectomes between each pair of pipelines to derive a similarity matrix,
separately within each data site. To better visualize the distance between pipelines, we used
multi-dimensional scaling (MDS) to transform each pipeline-similarity matrix into a
representation in two-dimensional space. Each point corresponds to a different pipeline and
the distance between points corresponds to their degree of dissimilarity. We used Procrustes
analysis (without scaling) to best align the plots across sites, using NY U as the reference plot.

To assess the across-site similarity of functional connectomes, we calculated the
Spearman’ s correlation between each pair of four datasets under each pipeline.

Assessing Replicability of Group Differences between ASD and Controls

To evauate the similarity of ASD-control group differences across denoising methods
or sites, we calculated the Spearman’s correlation between whole brain group difference (z-
map) matrices across pipelines within each site, as well as across sites.

In addition to comparing whole brain z-map matrices, we further focused on those
edges showing the greatest difference between the ASD and control groups for across sites
comparisons. First, we sort all edges based on their z values for each pipeline in each data site,
and obtained top 500 (positive, ASD > control) and bottom 500 (negative, ASD < control)
edges (approximately 5% of total edges) for each map. Then we calculated how many those
edges overlapped between each two maps (pipeline/site) separately for positive and negative
z values. Permutation tests were used to examine whether the numbers of overlapping edges
were above chance. First, we shuffled the diagnostic labels (ASD/control) of al the subjects
within each site, keeping original sample sizes for each group. Then we compared these two
new groups to derive a null z-map for each pipeline within each site, and then calculated the
overlapping edges between sites using the same method as above. This procedure was
repeated 1000 times for each pipeline to generate a null distribution of chance levels of
overlapping edges across sites. So as to not be overly conservative, results are not corrected
across the 33 pipelines examined, but are corrected for the six pairwise site comparisons (e.g.,
FDR correction, g <= .05; Benjamini & Hochberg, 1995).
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We aso examined the similarity of group differences between data sites at a large-
scale network level. We mapped the whole functional connectome to a 17 functional
networks template (Yeo et a., 2011) and obtained a17 x 17 connectivity matrix by averaging
connectivity of edges in each cell. Using the same statistical method to compare each cell
between the ASD and control groups, we obtained a z-map for each pipeline in each site and
calculated Spearman’s correlation across sites under each pipeline as described above.

Data and code availability
All data is available from the ABIDE repository, preprocessing code was available
from Parkes et al. (2018), and our code is available upon reasonabl e request.

Results
Literaturesurvey

We sought to provide descriptive information regarding common preprocessing approaches
of case-control studies of ASD, with the intent of contextualizing the parameters of the
current study relative to the published literature. Figure 2 demonstrates the highly varied
preprocessing methodologies applied in previous studies. Regresson of head motion
parameters is an extremely common step but varies in terms of its precise implementation
(relatively equally split across 6, 12, or 24 parameters). Regression of average CSF and white
matter signals is used more often than aCompCor (~55% vs ~28%). Just over half of studies
used scrubbing (~49%) or spike regression (~8%) to remove the effects of motion-outlier
volumes. Less than one third of studies used GSR (28%). ICA-AROMA is a recently
developed method, and as such has only been used by afew studies to date (~4%).

Group-average functional connectomer eplicated across pipelines and acr oss sites

We first assessed the similarity of group-average functional connectomes of ASD
group across denoising pipelines separately within each data site. Generaly, functional
connectomes were highly similar across pipelines and this similarity pattern is consistent
across sites (Figure 3A; NYU, r = 0.92+0.06; SDSU, r = 0.92+0.06; UCLA, r = 0.92+0.06;
UM, r = 0.90£0.08). Results were similar for the control group (NYU, r = 0.91+0.07; SDSU,
r = 0.93+0.06; UCLA, r = 0.93+0.05; UM, r = 0.90+£0.08). As is apparent from the quadrant
structure of Figure 3, GSR was a mgor influence on similarity of average functional
connectomes across pipelines, such that similarity was extremely high with the same GSR
status but reduced when pipelines differed in their use of GSR. We used multi-dimensional
scaling to represent this graphically (Figure 3B), which demonstrates that the use of GSR is a
primary dimension upon which results are either similar or different from one another.

We examined the replicability of functional connectomes across sites under each
pipeline. Figure 3C shows that group-average connectome of ASD is also similar across data
sites within each pipeline (for al pipelines, r = 0.88+0.02). Pipelines with GSR increased
between-site similarity compared to pipelines without GSR (rank sum, z = 3.88, p = 0.001).
Note that first three minimally-preprocessed pipelines were excluded for this analysis
because these tended to be quite different from all other approaches (as seen in Figure 3B).

In summary, group averaged functional connectomes were similar across pipelines
and could be replicated across data sites — thus, even using different scanners and scanning
protocols did not affect replicability of the group averaged functional connectome.

Group-differencesreplicated across pipelines but not across sites
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Next, we assessed similarity of ASD-control comparisons of functional connectomes
across pipelines, within each site. The results were consistent across pipelines within each
sitefor al four sites (NYU, r = 0.78+0.10; SDSU, r = 0.78+£0.10; UCLA, r = 0.75+0.10; UM,
r = 0.71+0.14). As in Fgure 3, Figure 4 shows that GSR was aso a dominant factor in
similarity of group differences across pipelines — highly similar results with concordant use
or non-use of GSR (i.e., either both present or absent), but reduced similarity when pipelines
were discordant in their use of GSR (concordant: r = 0.84+0.09; discordant: r = 0.70+0.07,
averaged across four sites), suggesting that the same data analyzed with or without GSR may
yield different results. In addition, pipelines with ICA-AROMA were generally different
from others (Figure 4 A and B).

The pattern of group differences was not replicable across data sites, regardless of
which pipeline was used (Figure 4 and Figure 5). The correlations of group-difference z-
maps between sites were consistently low (r = 0.07+0.04, Figure 4C). Pipelines without GSR
resulted in slightly higher between-site similarity (mean with GSR: r = 0.061; mean without
GSR: r= 0.074; z = 2.22, p = 0.03). Even the most different edges between groups within
each site rarely overlapped with another site (ASD > control, n = 19.08 £ 11.05; ASD <
control, n = 16.66 + 7.62). Permutation tests indicated that the total number of edges
overlapping between two sites was not reliably higher than chance for most pairwise
comparisons, with the exception of many pipelines from SDSU-UCLA (ps <= 0.05, FDR
corrected for six comparisons; note that this analysis did not correct for number of pipelines
tested; see Figure 5A). Figure 5B shows the overlap of the 500 most different positive (ASD >
control) and negative (control > ASD) edges across the four sites from several representative
pipelines. A very small number of edges overlapped between three sites, but these edges
varied across pipelines, and no edges overlapped across more than three out of the four sites,
in any pipeline.

In addition to the fine ROI edge-level resolution, we also examined the consistency of
group differences at a larger-scale network level. The pairwise correlation analysis showed
the ASD-control group differences at the 17-network level were still inconsistent across data
sites (r = 0.05+0.27). Figure 6 shows that most of the correlation coefficients between z-maps
of each pair of sites were not significant after multiple comparison correction for six pairwise
comparisons (no correction for the 33 pipelines to avoid being overly conservative). The
between-site similarity varied across pipelines, without significant differences between
pipelines with GSR and without GSR (z= 0.88; p = 0.38).

Discussion

This study examined whether replicable group-level differences between ASD and control
groups can be obtained across independently acquired datasets, and how such replicability
may vary as a function of preprocessing pipelines. Although basic connectome architecture
was highly similar across acquisition sites, regardless of preprocessing pipelines, evidence for
replicable group-level ASD-control differences was largely absent. While concerning, it is
not altogether surprising as this result is largely consistent with the varied and often
conflicting published literature in ASD when taken as a whole — for example, even the basic
directionality of effects is still debated (i.e., systematic overconnectivity, underconnectivity,
both, or neither).

Here, we show that the lack of replicable ASD-control differences cannot be
attributed to the choice of denoising strategy. First, within each site, the pattern of group
differences remained largely similar regardless of which denoising strategy was used, as long
as the use of GSR was held constant (Figure 3; discussed further below). Second, no
particular denoising strategy led to consistently greater across-site replication — i.e., the
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degree of replication did not improve in any meaningful way with any particular approach
(e.g., GSR vs. not). Importantly, this lack of replication was specific to group-level
differences and did not extend to basic connectome architecture — when comparing average
connectomes across sites, we found a very high degree of similarity, again regardless of
denoising procedure. Based on these results, we conclude that while preprocessing may still
contribute in part to the lack of replication seen across studies (as it certainly adds variability,
and especially with or without GSR), these differences may not be the maor factor
accounting for such inconsistencies and suggest that other site-level factors play a more
significant role.

If differences in denoising strategies cannot adequately explain the lack of across-site
replication, an important question is what other factors may account for it. There are at least
four possibilities: 1) specific scanner/acquisition/procedural differences; 2) subject-level
(cohort) differences; 3) differences in post-processing analysis — e.g., the scale or level
(region-of-interest, whole connectome, or network levels); 4) small, hard to detect, or even
non-existent differences in functional connectivity in ASD. We unpack these possibilities in
the following paragraphs, with each having specific implications for design and analysis of
future studies.

On the data collection side, it is possible that uncontrolled factors (including some
that remain uncontrolled in the present study) contribute to this lack of replication. These
factors include scanner and acquisition parameter differences (e.g., pulse sequence, voxel size,
phase encoding directions, scanner manufacturer, etc; Yamashita et al., 2019), as well as
experimental procedural differences (e.g., eyes open or closed, experiences immediately
preceding the functional scan; Nair et al., 2018). Fortunately, these factors, while they do
contribute to across-site variance, tend to be small in terms of effect size (Brown et al., 2011,
Dansereau et a., 2017; Noble et al., 2017) or result in localized differences (Nair et al., 2018),
consistent with our finding that group-average connectomes were highly reliable across sites.
To further increase chances of replication, either a priori coordination and standardization of
procedures (Glover et al., 2012) or the implementation of post-processing methods designed
to increase multisite data harmonization would both be possibilities (Yamashita et al., 2019;
Yueta., 2018).

Another factor related to data collection that potentially underlies our inability to
replicate across sites could be subject-level (i.e., cohort) differences or biases (Y amashita et
a., 2019). A non-exhaustive list of these factors includes ASD severity, cognitive level, co-
morbidities, treatment history and current treatment status (e.g., medication), basic
demographic factors including age, sex, race, ethnicity, education, socioeconomic status, and
so on. These cohort differences emerge both from practical constraints (e.g., regional biases
in terms of participant demographics in different locations) and from the various choices
made regarding the recruitment process (e.g., the types of recruitment channels such as
clinics vs. communities, and any specific inclusionary and exclusionary criteria). There are
several options to remedy these issues. One could apply tightly specified and standardized
criteria to match participants across a host of these factors, but in doing so the
generalizability of the findings to the broader ASD condition is reduced. A more practical
consideration is that attempting to better match sites on some of these factors would result in
smaller sample sizes -- for example, in our study, we excluded 184 participants (nearly 31%)
from just these four sites in order to better closely match sites on just one of these factors
(age). However, it is not necessarily the case that applying more restrictive criteriais always
better than including more participants (Abraham et a., 2017). Another way to proceed is to
identify the critical factors or grouping of factors that explain significant variance in the data
(Smith et al., 2015), and statistically control for those. Other proposals have suggested
increasing sampling diversity by collecting relatively small numbers of participants at many
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different sites, rather than many participants a one site (Dansereau et al., 2017; Yamashita et
al., 2019). One recent study (Holiga et a., 2019) that reported replicable findings using the
ABIDE dataset combined data across multiple sites as opposed to treating each ABIDE site
separately as in the present work — however, effect sizes were smaller in these aggregated
samples than in data acquired a a single site. Regardless of the approach one uses,
accounting for these subject-level differences is likely an important consideration, as recent
work has highlighted that subject-level factors explain more variance than site-level factors
(Brown et al., 2011; Dansereau et a., 2017; Gountounaet al., 2010; Noble et a., 2017).

On the analysis side, it is important to note that our findings of a lack of replication
are specific to our particular analyses using both whole connectome ROIs-level and a large-
scale network-level organization, and do not rule out the possible existence of any other
replicable group-level effects in ASD. It is very possible that replicable results could be
found when considering the very same data at a different scale or resolution, or with that data
analyzed in a different way. For example, King and colleagues (King et a., 2018) found
replicable atypical temporal dynamics in rs-fMRI timecourses. Holiga et al. (2019) recently
found replicable results regarding functional connectivity in ASD across four very large
datasets that also included ABIDE data. However, another recent study by King and
colleagues (2019) assessed a number of different measures of functional connectivity in ASD
and found weak evidence of generalizability across sites. Other studies have used machine
learning approaches to generalize to independently acquired datasets (e.g., Abraham et al.,
2017; Yahata et a., 2016). In one of these (Abraham et al., 2017), prediction accuracy was
affected by parcellation method, suggesting that replicability may be sensitive to these sorts
of analysis choices (e.g., spatial normalization, parcellation; Dadi et al., 2019). Additionally,
different scales of connectivity analysis exhibit different sensitivities and vulnerabilities to
site effects (Noble et al., 2017), demonstrating a complex and intertwined relationship
between many of the factors discussed above. We should mention, however, that although
there are different ways of dividing and grouping the data, these approaches mostly till
fundamentally rest on the ability to accurately and reliably measure edge-level differencesin
ASD (e.g., Yahata et a., 2016; see Figure 16ain King et a., 2019). For example, more
complex statistical constructs that can be used to compare brain organization between groups
(e.g., graph theoretic network measures; (He et al., 2018; Rubinov & Sporns, 2010)
fundamentally must build upon reliable and replicable measurement of connectomes. Thus,
lack of replication as described in the present work should be of concern to researchers.

The final possibility that ought to be considered is that functional connectivity
differences in ASD are very small and difficult or impossible to detect with current
technology. While various functional connectivity differences in ASD have been reported in
previous studies, the overall lack of consensus is concerning. The growing number of studies
that now examine and, in some cases, demonstrate out-of-sample replication provide hope
that such replicable signals do in fact exist (Holiga et a., 2019; Yahata et al., 2016). But,
because of the above factors and in addition to a host of others (e.g., motion), small
differences may be easily obscured (Tyszka, Kennedy, Paul, & Adolphs, 2014). Furthermore,
case-control comparisons can easily obscure non-shared, heterogeneous patterns of
differences in ASD, and might require different and individually-sensitive analytic
approaches (Byrge et al., 2015; Dubois & Adolphs, 2016; Marquand, Rezek, Buitelaar, &
Beckmann, 2016; Marquand et al., 2019). How to reliably detect these differences by using
current neuroimaging methodologies and analytic approaches remains an open question for
future work.

What does this all mean? The pessimistic view would be that researchers should give
up on searching for common group-level effects in ASD. However, we believe that this
conclusion would be very premature for a number of reasons. (1) It is possible that effects are
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heterogeneous across participants, so group-level analysis starting with the assumption of
homogeneous groups may be both largely underpowered and not able to fully account for the
group level variance. (2) It is possible that improvements in detecting signa in the face of the
large amounts of measurement noise that plague resting-state analyses will eventually
unmask important group-level differences. In thiscase, if it is a detection problem, continued
advances in acquisition and analysis methodology may get us closer to detecting reliable
differencesin ASD. (3) Additional experimental procedures can be employed to ensure more
reliable estimates of an individual’s connectome. For example, collecting more data from
each individual participant can reduce measurement noise and ensure greater confidence in
the results via within-sample replication (Anderson, King, & Anderson, 2019; Byrge &
Kennedy, 2019; Finn et al., 2015; King et a., 2019; Nee, 2019), prior to attempting across-
sitereplication.

While our results suggest that lack of replication cannot be solely attributed to
differences in denoising procedures (since using the same preprocessing procedures did not
increase across-site replication), this does not mean that they are entirely inconsequential.
Here, we show that, while there are essentially an unconstrained number of choices for
preprocessing, some of these choices have a more significant impact on the results than
others (though not necessarily in a consistent way). Figure 3 demonstrates that one of the
most significant factors is whether or not GSR is included as a preprocessing step. Its
inclusion resulted in slightly more similar group-averaged connectomes across sites --
however, whether more similar group-averaged connectomes is a good thing or not remains
unclear. The positive interpretation of this finding is that GSR helps to eliminate
measurement noise (Power et al., 2014; Power et a., 2017; Byrge & Kennedy, 2018; Ciric et
al., 2017; Parkes et al., 2018), resulting in more similar connectomes, whereas the less
positive interpretation is that GSR eliminates individual variation that might be of interest or
distorts group-level differences (Gotts et al., 2013; Scholvinck et al., 2010; Uddin, 2017;
Yang et a., 2014). Our results cannot disambiguate these possibilities from one another.
Furthermore, in terms of group differences, we found that the effects of GSR on across-site
replicability were not consistent, and instead depended on which specific sites were
compared to one another (see Figure 4, middle panel, and Figure 6). For some site
comparisons, use of GSR increased similarity between them, whereas for others it decreased
it, and yet others where it was unchanged, suggesting a complex interaction between the use
of GSR and site-level factors.

In addition to the possible factors already discussed above that may limit the detection
of reliable group effects, some additional limitations of this study are worth mentioning. One
criticism is that correlations between whole connectome group difference z-maps are perhaps
a relatively insensitive way to examine this data. For instance, a localized difference in a
small number of edges or nodes would easily be obscured in the present whole-brain analyses.
However, we did also examine only the edges that differed most between groups, and also
examined data aggregated at the network level — both yielded poor replicability of results.
Another limitation of the present study is the relatively small sample sizes. This was a
consequence of both carefully matching groups by age and also applying strict quality control
(i.e., movement thresholds, anatomical image quality requirements). However, we note that
our sample size was sufficiently powered to detect medium-large to large effects within each
dataset, suggesting that possible replicable differences must be smaller than this. As shown in
the literature survey (Supplementary Figure Sl), although there may be a recent growing
trend to use larger datasets (primarily aggregated from ABIDE), many studies still use single
site data with limited sample size. Indeed, the median sample sizes in these published studies
(ASD: n = 35; TD: n = 38) are approximately equal to or smaller than the four sample sizes
used in the present work — studies that form the basis of our understanding of functional
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connectivity abnormalities in ASD. Another limitation is that the present study included a
relatively large age range from 10-20 years, corresponding to a broad neurodevel opmental
period spanning childhood through adolescence and into young adulthood. This age range is
not uncommon among previous studies, as showed in the literature survey (Supplementary
Figure S1). It is possible that more consistent effects would be identified if the age was
constrained even further — however, further restricting the range would have reduced the
number of sites and subjects that we could have included.

In sum, the present study demonstrated that the choice of denoising pipeline is not the
main factor underlying the lack of replication of group differences in ASD. Instead, the most
parsimonious explanation is that group-level differences are small or non-existent, and/or
swamped by site and sample effects. However, we reman optimistic that continued
developments toward improving methodology and approaches will help to eventually reved
reliable patterns of functional connectivity alterations in ASD. These results highlight the
need to continue examining reliability of findings going forward, and demonstrate that
approaches that improve sensitivity to detect disorder-related aterations are still needed.
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Table 1. Demographic information

NYU SDSU UCLA UM
ASD TD Stats ASD TD Stats ASD TD Stats ASD TD Stats
(p't) (pft) (pft) (p't)
n a4 14 - 36 36 - 38 38 - 34 34 -
Male/ 38/6 38/6 - 32/4 29/7 - 37/1 317 - 28/6 28/6 -
Age (meant 130+ 137+ 024/ 143+ 142+ 072/ 136+ 133+ 063/ 146+ 147+ 078
SD) .25 24 -1.2 25 21 04 23 1.6 049 19 25 -0.3
1Q 102.0 1131  *0.00/  104.7 104.2 0.87/ 103.4 106.8 0.21 109.3  109.6 0.93/
(meantSD)  +136 +150 -37 +161 +112 02  +130 105 -13 +158 104  -10
Handedness - - - 29/5/2  31/3/2 - 33/5/0 35/3/0 - 25/5/0  29/4/0 -
(RIL/A) R o o
ADI social 199+ - - 183+ - - 208+ - - 195+ - -
(meanx SD, n) 6.2 4.2 4.6 4.7
(41 (34) . (28) (3
ADI verba 15.7 + - - 131+ - - 16.6 + - - 158+ - -
(meant SD, n) 4.7 4.8 4.4 32
(42 (34) o (28) (3
ADI RRB 58+ - - 58+ - - 74+ - - 59+ - -
(meant SD,n) 2.8 23 20 25
(42 (39) o (28) (@
ADOS total 116+ - - 135+ - - 116+ - - 113+ - -
(meant SD, n) 4.0 50 38 4.6
(44 (35) (3 (4
SRS (mean+ 91.3+ 242+  0.07/ 101.7 211+  0.00/ - - - - - -
SD, n) 3238 133 18 +22.8 10.9 138
_____________________ 43 _ (39) (24 (19
N medicated  10(42)  0(44) - 13(36)  0(36) - 20(38)  1(38) - 15(34)  1(33) -
(n reporting)

Mean FD 015+ 014+ 032 012+ 012+ 090/ 016+ 014+ 018 017+ 015% 0.41
(meant SD) 0.05 0.04 1.0 0.06 0.06 1.0 0.06 0.07 14 0.06 0.05 0.8
Mean 016+ 019+ 026/~ 013+ 014+ 069- 015+ 014+ 0710 027+ 022+ 0201

Translation 0.09 0.15 11 0.07 0.10 04 0.08 0.09 A4 0.19 0.11 3
(meantSD) L o
Mean 0.003 0004 020~ 0003 0003 066/~ 0003 0.003 0.76/0 0.005 0.004 0.60/0
Rotation + + 13 + + 04 + + 3 + + 5
(meant SD) 0.002 _ 0.002 0.002 0002 0.001  0.002 0004 0.003
Scrubbed 36.3+ 34.5+ 0. 73/ 25.7+ 24.4+ 0.82/ 201+ 229% 0.12/ 66.9+ 59.6+ 0.48/
Volumes 238 235 0.4 205 24.8 0.2 17.5 16.5 16 47.1 36.5 0.7
(meant SD)

Table 2. rsfMRI scanning parameters. Note that there are several parameters that are
different across these sites. The current study was not meant to control specifically for each
of these (e.g., UCLA has a 3000 msec TR vs. al other sites with 2000 msec) because such
differences are also present in published studies where such factors are not controlled, but
where replication is still implicitly expected. These datasets are also sometimes aggregated
together, again implicitly assuming that such differences will not have major effects on case-
control differences. Note also that the UM site acquired more volumes per participant than
the other sites; we chose not to downsample this data for our main anaylysis because
including more data from each individual participant should yield a better estimate of an
individual’s functional connectivity; in other words, downsampling would produce
artificially noisier data, would not be representative of the actual data available and analyzed
in other published reports, and would bias our results away from finding evidence for across-
site replication. However, we did rerun the primary analyses using a downsampled version of
the UM data and findings remained the same.
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NYU SDSU UCLA UM
Scanner Siemens 3T GE 3T MR750 Siemens 3T GE 3T Signa
Allegra TIM Trio
TRITE 2000/15 2000/30 3000/28 2000/30
FA 90 90 90 90
Resolution 3x3%x4 3.4x3.4x3.4 3x3%x4 3.4x3.4%x3
Volumes 180 180 120 300
Matrix 64x80%33 64x64x42 64x64%34 64x64x40

Table 3. Compositions of Denoising Pipelines

Denoising Pipelines Head motion | Tissue-based | GSR | Censoring
parameters Regressors
6H 6 - - -
12H 12 - - -
24H 24 - - -
6H+2W 6 mean WM/CSF | - -
12H+2W 12 mean WM/CSF | - -
24H+2W 24 mean WM/CSF | - -
24H+4W 24 4 mean - -
WM/CSF
24H+8W 24 8 mean - -
WM/CSF
6H+aCC 6 aCompCor - -
12H+aCC 12 aCompCor - -
24H+aCC 24 aCompCor - -
6H+2W+Spike 6 mean WM/CSF | - Spike
6H+2W+Scrub 6 mean WM/CSF | - Scrub
12H+2W+Spike 12 mean WM/CSF | - Spike
12H+2W+Scrub 12 mean WM/CSF | - Scrub
24H+2W+Spike 24 mean WM/CSF | - Spike
24H+2W+Scrub 24 mean WM/CSF | - Scrub
6H+2W+GSR 6 mean WM/CSF | 1 -
12H+2W+GSR 12 mean WM/CSF | 1 -
24H+2W+GSR 24 mean WM/CSF | 1 -
24H+4W+GSR 24 4 mean 1 -
WM/CSF
24H+8W+4GSR 24 8 mean 4 -
WM/CSF
6H+aCC+GSR 6 aCompCor 1 -
12H+aCC+GSR 12 aCompCor 1 -
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24H+aCC+GSR 24 aCompCor 1 -
6H+2W+GSR+Spike 6 mean WM/CSF | 1 Spike
6H+2W+GSR+Scrub 6 mean WM/CSF | 1 Scrub
12H+2W+GSR+Spike 12 mean WM/CSF | 1 Spike
12H+2W+GSR+Scrub 12 mean WM/CSF | 1 Scrub
24H+2W+GSR+Spike 24 mean WM/CSF | 1 Spike
24H+2W+GSR+Scrub 24 mean WM/CSF | 1 Scrub

ICA-AROMA+2W - mean WM/CSF - -

ICA-AROMA+2W+GSR - mean WM/CSF 1 -
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Figurelegends

Figure 1. Schematic plot for post-processing analysis. We used a total of 33 denoising
pipelines, with different combinations of regresson of head motion parameters
(6H/12H/24H), ICA-AROMA, signas of white matter/cerebral spinal fluid (WM/CSF),
globa mean signal (GSR), and volume censoring (spike/scrubbing). Functional connectomes
were separately constructed with 33 pipelines for each subject. We averaged functional
connectomes across each subject group as well as compared each cell in the connectome
between two groups to derive group-difference z-maps. Then we calculated the Spearman’s
correlation between group-average functional connectomes, as well as between z-maps (a)
across pipelines and (b) across datasets.

Figure 2. Usage proportion of different denoising preprocessing strategies in previous
resting-state fMRI case-control studies on functional connectivity in ASD.

Figure 3. Consistency of group-average functional connectome across pipelines and sites. (A)
Spearman’s correlation coefficients of group-average functional connectomes across
pipelines. It indicates high similarity across pipelines, though pipelines with different GSR
status were less similar, as is seen in quadrant structure. (B) It provides a different
visualization of relative distance among different pipelines based on multi-dimensional
scaling. Each data point represents a pipeline (note that not all points are visible because
there is a high degree of overlap between some of them). It directly shows the major factor
differentiating pipelines is based on the usage of GSR. The triangle shape corresponds to the
basic pipelines (which only regress out 6H/12H/24H), the circle shape corresponds to the
pipelines adding WM/CSF regression, the diamond shape corresponds to pipelines using
aCompCor, the sguare shape corresponds to volume censoring (scrubbing and spiking) and
the asterisk corresponds to ICA-AROMA. (C) Spearman’s correlation coefficients between
group-average connectomes were inconsistently high across sites for al pipelines.

Figure 4. Consistency of group differences in functional connectivity across pipelines and
across sites. (A) Spearman’s correlation coefficients between group-difference z-maps across
pipelines, and (B) MDS showing relative distance between pipelines, indicate that GSR and
ICA-AROMA were different from other strategies. (C) Spearman’s correlation coefficients
between group-difference z-maps were consistently low across sites for al pipelines.

Figure 5. Edge-level overlap between sites. This analysis includes only those edges showing
the greatest difference between the ASD and control groups (500 ASD>Control and 500
Control > ASD for each site). (A) The total number of edges that overlapped between sites
for each pairwise comparison, represented by a colored dot. The gray distribution is the
combined null distribution derived from permutation testing. Dots outlined in black are those
identified as significantly higher than chance (q < 0.05, FDR corrected for the six pairwise
comparisons within each pipeline). (B) The circular plots show overlapping edges for several
different representative pipelines (24H+2W, 24H+aCC, 24H+2W+Spike, 24H+2W+Scrub,
24H+2W+GSR, 24H+aCC+GSR, 24H+2W+GSR+Spike, and 24P+2P+GSR+Scrub, 1CA-
AROMA+2W, ICA-AROMA+2W+GSR). Line color indicates the number of overlapping
sites: grey = 1; yellow = 2; red =3. Note no edge appeared in all sites (four times) across any
of the 33 pipelines. VIS: visual network; SOM: somatomotor network; DAN: dorsal attention
network; VAN: ventral attention network; LIM: limbic network; CON: control network;
DMN: default mode network.
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Figure 6. Inconsistency of group differences at the network level across data sites. Note that
here, compared to Figure 4C, the results are more variable. *p <= 0.05, FDR corrected for six
pairwise comparisons. Note also that even where significant differences were identified (e.g.,
6H+aCC+GSR), the directionality of the correlation coefficients were inconsistent across
pairwise site comparisons (i.e., within columns).
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