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Abstract 
A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting-
state fMRI to identify alterations of functional connectivity, with the hope of identifying 
clinical biomarkers or underlying neural mechanisms. However, results have been largely 
inconsistent across studies, and there is therefore a pressing need to determine the primary 
factors influencing replicability. Here, we used resting-state fMRI data from the Autism 
Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and 
data site (which differ in terms of sample, data acquisition, etc.). We examined the similarity 
of both group-average functional connectomes and group-level differences (ASD vs. control) 
across 33 denoising pipelines and four independently-acquired datasets. The group-average 
connectomes were highly consistent across pipelines (r = 0.92±0.06) and sites (r = 0.88±0.02). 
However, the group differences, while still consistent within site across pipelines (r = 
0.76±0.12), were highly inconsistent across sites regardless of choice of denoising strategies 
(r = 0.07±0.04), suggesting lack of replication may be strongly influenced by site and/or 
cohort differences. Across-site similarity remained low even when considering the data at a 
large-scale network level or when considering only the most significant edges. We further 
show through an extensive literature survey that the parameters chosen in the current study 
(i.e., sample size, age range, preprocessing methods) are quite representative of the published 
literature. These results highlight the importance of examining replicability in future studies 
of ASD, and, more generally, call for extra caution when interpreting alterations in functional 
connectivity across groups of individuals. 
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Introduction 
 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with 
heterogeneous etiology and phenotypic expression. Resting-state functional Magnetic 
Resonance Imaging (rs-fMRI) -- in which the temporal coupling of spontaneous activity 
across the brain, or functional connectivity (FC; Biswal, Yetkin, Haughton, & Hyde, 1995; 
Greicius, Krasnow, Reiss, & Menon, 2003), is measured -- has been widely used to study 
differences in functional brain organization in ASD, with hopes of revealing underlying 
neural mechanisms or identifying FC-based biomarkers (Abraham et al., 2017; Yahata et al., 
2016). However, findings of FC alterations in ASD have been highly variable across studies 
(Hull et al., 2016). This variability of findings may reflect the variability across numerous 
study-specific factors, including strategies for denoising the data (i.e., preprocessing pipelines) 
and a host of differences across sites. Yet, without replicable findings that generalize beyond 
a single study, the utility of rs-fMRI for identifying mechanisms or serving as biomarkers of 
ASD is uncertain and remains to be demonstrated. 

One potential source of variability across rs-fMRI studies has been the methods used 
for data preprocessing. The blood oxygenation-level dependent (BOLD) signal, while 
sensitive to changes related to brain activity, is also highly vulnerable to head motion and 
physiological noise, which can spuriously influence measures of functional connectivity and 
ultimately affect conclusions from functional connectivity studies (Power, Barnes, Snyder, 
Schlaggar, & Petersen, 2012; Power et al., 2014; Satterthwaite et al., 2012; Van Dijk, 
Sabuncu, & Buckner, 2012; Yan, Cheung, et al., 2013; Dadi et al., 2019). Ideally, effective 
data preprocessing methods would minimize the influence of such nuisance signals and 
improve reproducibility. Best practices for denoising methods are still evolving and a 
consensus has yet to be reached, in part because our understanding of how such artifacts 
influence the BOLD signal remains incomplete (Birn, 2012; Byrge & Kennedy, 2018; Power, 
Plitt, Laumann, & Martin, 2017). These differences presumably contribute in part to 
inconsistencies across studies -- different strategies have been used both within and across 
labs, adding additional uncontrolled and unaccounted for variation in the research literature. 
Even when researchers attempt to conduct post hoc analyses to try to understand how 
different preprocessing steps could account for study-level differences in ASD, the lack of a 
ground truth upon which to evaluate measurement accuracy limits our ability to interpret such 
differences (Müller et al., 2011).  

Most common denoising approaches rely on linear regression, whereby various 
estimates of noise are regressed from the BOLD data. The numerous variations of this 
strategy come from different choices of which noise estimates to use as regressors. Those 
most commonly used include measures of head displacement along six translational and 
rotational dimensions, as well as time series from white matter (WM) and cerebrospinal fluid 
(CSF). An especially controversial nuisance regressor is the global fMRI signal; proponents 
of global signal regression (GSR) argue for its efficacy in removing physiological noise (Birn, 
2012; Byrge & Kennedy, 2018; Power et al., 2017), while the concerns include removal of 
real neural signals (Scholvinck, Maier, Ye, Duyn, & Leopold, 2010) and distorting clinical 
group comparison (Gotts et al., 2013; Yang et al., 2014). An additional preprocessing step 
that can be used in parallel is volume censoring (or "scrubbing"; Power et al., 2012), in which 
specific time points associated with excessive amounts of framewise displacement (FD; 
corresponding to moments of head movement) and/or changes in global signal are excluded 
from analysis. A related choice is called “spike regression”, which regresses from the data 
one or more nuisance regressors labeling time points contaminated with excessive motion 
(Lemieux, Salek-Haddadi, Lund, Laufs, & Carmichael, 2007; Satterthwaite et al., 2013).  
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Several recent studies have evaluated the performance of different denoising 
strategies. Although no relationship between motion and functional connectivity should 
remain following an optimal denoising procedure, these studies found that the strength of 
residual relationships between FC and artifacts varied widely across commonly-used 
pipelines (Byrge & Kennedy, 2018; Ciric et al., 2017; Parkes, Fulcher, Yucel, & Fornito, 
2018). Given that greater in-scanner head movement is commonly observed in ASD and 
other clinical populations, differences in preprocessing choices and particularly how those 
choices deal with artifacts arising from head movement could be a potential source of 
inconsistent results across rs-fMRI studies. For example, Gotts and colleagues (2013) 
compared the effects of pipelines with and without GSR on group comparisons of functional 
connectivity between ASD and controls. They found that group differences varied across 
pipelines and demonstrated that GSR affected group comparison results. Jones et al. (2010) 
also found that the use of GSR influenced findings of group differences in connectivity in 
ASD. Parker and colleagues (2018) systematically evaluated the influence of numerous 
denoising pipelines on group differences in functional connectivity in schizophrenia. They 
found that significant group differences were only found in some pipelines (including GSR 
and aCompCor) and that the overlap between functional connections (i.e., edges) identified in 
different pipelines was generally low. These findings demonstrate clearly that the choice of 
denoising pipeline can affect the results of clinical comparisons, including both the presence 
or absence of group differences and their specific details (e.g., specific edges affected). 

Further complicating the picture is that data site effects, or variation across different 
scanning sites, have been reported in several studies of both task-based and resting-state 
fMRI (Brown et al., 2011; Dansereau et al., 2017; Noble et al., 2017; Turner et al., 2013; 
Yamashita et al., 2019; Yan, Craddock, Zuo, Zang, & Milham, 2013; Yu et al., 2018). 
Different data sites present many potential sources of variation, including differences in 
participant (i.e., cohort) characteristics, image acquisition parameters, scanners, scan 
procedures, and more. Such uncontrolled variation could undermine the generalizability of 
results and efforts to uncover underlying mechanisms and clinically useful biomarkers. 
Clinical and etiological heterogeneity within the ASD population could also exacerbate these 
difficulties. Nair et al. (2018) compared a local measure of functional connectivity (ReHo, 
regional homogeneity) between ASD and controls from different samples. They found few 
consistent results across samples, even when using the same analysis pipeline and examining 
only data collected with eyes open. They suggested that extra caution should be paid to 
between-site variability when using multi-site data. King et al. (2019) examined many FC-
related measures on group differences between ASD and the control. They found none of the 
measures could wholly reproduce the group differences across sites. However, a recent study 
reported reproducible ASD-associated alterations of functional connectivity across four large 
ASD cohorts (Holiga et al., 2019).  

The Autism Brain Imaging Data Exchange, or ABIDE, provides the ideal data in 
which to test the influence of some of these factors. ABIDE is a data sharing initiative 
wherein researchers across laboratories shared resting-state data from TD and ASD 
participants for the flexible use by other researchers, “allow[ing] for replication, secondary 
analyses and discovery efforts” (Di Martino et al., 2014). This flexibility has allowed a 
proliferation of research on functional connectivity in ASD, and the data has been used in 
various ways, including considering each site separately (Hahamy, Behrmann, & Malach, 
2015; Pua, Malpas, Bowden, & Seal, 2018) or using multi-site aggregation (Abraham et al., 
2017; Floris, Lai, Nath, Milham, & Di Martino, 2018; King et al., 2019). Both of these 
approaches are widely employed, and while greater statistical power can be achieved from 
aggregation, examining multiple individual sites can be used to evaluate replicability. Here, 
we used four of the largest ABIDE sites to quantify 1) the similarity/variation of ASD-control 
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group differences of FC across denoising pipelines, 2) the similarity/variation of ASD-control 
group differences across data sites, 3) and the effect of pipelines on inter-site variation.  

 
Methods 
Literature survey 
A literature survey was conducted to summarize the usage of denoising methods and sample 
characteristics (age range and sample size etc.) from recent resting-state FC-MRI studies of 
ASD. We searched the PubMed database using keywords consisted of “resting*”, “autism”, 
and “fMRI”, or combining “resting*”, “autism” and “connectivity”, published from the 
beginning of 2013 until June 2019 (inclusive of the time when ABIDE data has been 
available). In total, 245 studies were identified. To be in line with our study focusing on case-
control comparison of resting-state functional connectivity, 118 studies were excluded for 
either not using fMRI, using animals, not analyzing static functional connectivity, no group 
comparison, focusing on machine learning to classify, reviews or not accessible.  
 
Participants 

To enable an accurate evaluation of factors affecting replication of ASD-related FC 
alterations obtained by typical study design, four independent data sites (NYU, SDSU, 
UCLA, and UM) from ABIDE I and ABIDE II were analyzed (Di Martino et al., 2017; Di 
Martino et al., 2014). We chose these four sites in consideration of their large sample sizes as 
well as maximally overlapping age ranges of participants across all four sites (Table 1 and 
Figure S1). For example, although USM also has large sample size, the number of 
participants whose ages overlapped with other sites is limited; therefore, we did not include 
this site in our analysis. To reduce variability while maximizing sample size, we included 
participants based on following criteria: 1) age ranging from 10 to 20 years old; 2) IQ > 70; 3) 
mean FD no larger than 0.3 mm; 4) sufficient quality of anatomical images, assessed by 
manual checking. To further control potential head-motion differences between groups, we 
matched each single ASD participant with a control participant with the smallest difference in 
mean FD within each site, and removed any additional subjects not matched. ASD and 
typically developing (TD) control participants were not significantly different on mean FD or 
mean translation or rotation movement parameters for any site (Table 1). 

 
Image Preprocessing 

The rs-fMRI scanning parameters for each site are shown in Table 2. All the images 
were preprocessed using Matlab (R2018a) code made available from a recent study (Parkes et 
al., 2018) that integrates SPM 12, FSL (FMRIB's Software Library; Smith et al., 2004) and 
Advanced Normalization Tools (ANTs; Avants, Epstein, Grossman, & Gee, 2008). The T1 
images were preprocessed using the following steps: neck removal; segmentation of white 
matter (WM), cerebral spinal fluid (CSF), and grey matter (GM); five times erosion of WM 
mask and two times erosion of CSF mask; nonlinear registration of T1 images to MNI space, 
and applying the transformation to WM, CSF, and GM masks. 

Preprocessing of functional images included several steps shared across different 
denoising pipelines, including the following: removing the first four volumes; slice-timing 
correction; head motion correction by volume realignment; co-registration to the native 
structural image using rigid-body registration, and then to the MNI template using nonlinear 
transformations derived from T1 registration; removing linear trends; normalization of global 
mean intensity to 1000 units; conducting different denoising strategies (detailed in the next 
section); bandpass filtering (0.008 - 0.08 Hz); and spatial smoothing with a 6 mm full-width 
at half-maximum filter. 
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Denoising Pipelines 
We analyzed imaging data using several commonly-used denoising methods, together 

with various combinations of different nuisance regressors and volume censoring approaches, 
resulting in a total of 33 denoising pipelines (Table 3). 
 
Regression of head motion parameters 

Head motion parameters are based on six time series reflecting in-scanner head 
movements along three translational axes and three rotational axes. We examined three 
variants: 6H (just these original 6 motion parameters), 12H (including the original 6H, plus 
the first derivative of each as computed by backward differences), and 24H (including 12H, 
plus the squares of each of the 12 parameters) (Satterthwaite et al., 2013). 
 
Regression of signals from white matter and cerebrospinal fluid 

We used two methods to estimate WM and CSF signals: (a) mean WM/CSF, the 
average time series across voxels within WM and CSF masks, with three variants: mean WM 
and CSF alone (2W), or adding their temporal derivatives (4W), or adding squares of 4W 
(8W), and (b) aCompCor, which applies principal component analysis to the time series from 
WM and CSF voxels separately, and uses the top five principal components for each tissue 
compartment (Muschelli et al., 2014).  
 
Regression of global mean signal 

Global mean signal was calculated by averaging voxel-wise time series across the 
whole brain (GSR) or extended with squares of it and their temporal derivatives (4GSR). 
 
Volume Censoring 

Volume censoring involves censoring specific time points in BOLD data that have 
excessive head motion, which was evaluated using framewise displacement (FD). We 
adopted two different censoring strategies: spike regression and scrubbing. To keep 
consistent with previous work, we calculated FD differently for spike regression and 
scrubbing and used different thresholds. For spike regression, FD was calculated as the root 
mean square of framewise changes of six head motion parameters (Jenkinson, Bannister, 
Brady, & Smith, 2002; Satterthwaite et al., 2013). This FD trace was then used as an 
additional nuisance regressor in which volumes with FD above 0.25 mm were marked as 1 
and otherwise as 0, which was then regressed (together with other regressors) from the 
BOLD time series. For scrubbing, FD was calculated as the sum of absolute framewise 
changes of six head motion parameters (Power et al., 2012). Volumes with FD above 0.2mm 
were excluded from analysis at the end of preprocessing. We excluded subjects with less than 
4 minutes of valid BOLD data following spike regression or scrubbing.     

  
ICA-AROMA 

ICA-AROMA uses independent component analysis (ICA) to decompose the BOLD 
signal into spatial independent components and then automatically identify motion-related 
components based on assessing high-frequency content, correlation with head realignment 
parameters, edge fraction and CSF fraction of each component (Pruim et al., 2015). ICA-
AROMA is performed for each participant separately and the number of motion-related 
components can vary for different participants. Spatial smoothing was performed before 
noise regression when using ICA-AROMA. 

 
Functional Connectome Construction 
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We used a parcellation template containing 200 cortical ROIs to construct the 
functional connectome for each subject (Schaefer et al., 2018). Specifically, after 
preprocessing we weight-averaged the time series of all voxels within each ROI based on 
their grey matter probability. Then we computed the Pearson's correlation between time 
series of each pair of 200 ROIs to construct a 200 by 200 functional connectivity matrix of 
each pipeline for each subject, and Fisher-z transformed correlation coefficients for the 
purpose of normalization. The group-average functional connectome was obtained by 
averaging functional connectomes across participants of each group for further analysis. 
 
Group Differences between ASD and Controls  

We compared the ASD to the control group on each edge in the functional 
connectome matrix for each dataset, using the non-parametric Wilcoxon rank sum tests to 
reduce the influence of extreme data. Age and mean FD were first regressed out as covariates. 
A 200 × 200 statistic z-value map (z-map) representing group differences for all edges was 
obtained for each pipeline in each dataset.  
 
Assessing Replicability of Whole Functional Connectomes 

A schematic is shown in Figure 1 to illustrate our approach. We first averaged 
functional connectomes across participants with ASD and across typical controls, separately 
for each pipeline and for each site. Next, to assess the similarity of functional connectomes 
across denoising methods, we calculated the Spearman’s correlation of group-average 
functional connectomes between each pair of pipelines to derive a similarity matrix, 
separately within each data site. To better visualize the distance between pipelines, we used 
multi-dimensional scaling (MDS) to transform each pipeline-similarity matrix into a 
representation in two-dimensional space. Each point corresponds to a different pipeline and 
the distance between points corresponds to their degree of dissimilarity. We used Procrustes 
analysis (without scaling) to best align the plots across sites, using NYU as the reference plot.   

To assess the across-site similarity of functional connectomes, we calculated the 
Spearman’s correlation between each pair of four datasets under each pipeline.  

 
Assessing Replicability of Group Differences between ASD and Controls 

To evaluate the similarity of ASD-control group differences across denoising methods 
or sites, we calculated the Spearman’s correlation between whole brain group difference (z-
map) matrices across pipelines within each site, as well as across sites.  

In addition to comparing whole brain z-map matrices, we further focused on those 
edges showing the greatest difference between the ASD and control groups for across sites 
comparisons. First, we sort all edges based on their z values for each pipeline in each data site, 
and obtained top 500 (positive, ASD > control) and bottom 500 (negative, ASD < control) 
edges (approximately 5% of total edges) for each map. Then we calculated how many those 
edges overlapped between each two maps (pipeline/site) separately for positive and negative 
z values. Permutation tests were used to examine whether the numbers of overlapping edges 
were above chance. First, we shuffled the diagnostic labels (ASD/control) of all the subjects 
within each site, keeping original sample sizes for each group. Then we compared these two 
new groups to derive a null z-map for each pipeline within each site, and then calculated the 
overlapping edges between sites using the same method as above. This procedure was 
repeated 1000 times for each pipeline to generate a null distribution of chance levels of 
overlapping edges across sites. So as to not be overly conservative, results are not corrected 
across the 33 pipelines examined, but are corrected for the six pairwise site comparisons (e.g., 
FDR correction, q <= .05; Benjamini & Hochberg, 1995).    
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We also examined the similarity of group differences between data sites at a large-
scale network level. We mapped the whole functional connectome to a 17 functional 
networks template (Yeo et al., 2011) and obtained a 17 × 17 connectivity matrix by averaging 
connectivity of edges in each cell. Using the same statistical method to compare each cell 
between the ASD and control groups, we obtained a z-map for each pipeline in each site and 
calculated Spearman’s correlation across sites under each pipeline as described above. 

 
Data and code availability 

All data is available from the ABIDE repository, preprocessing code was available 
from Parkes et al. (2018), and our code is available upon reasonable request.  
 
Results 
Literature survey 
 
We sought to provide descriptive information regarding common preprocessing approaches 
of case-control studies of ASD, with the intent of contextualizing the parameters of the 
current study relative to the published literature. Figure 2 demonstrates the highly varied 
preprocessing methodologies applied in previous studies. Regression of head motion 
parameters is an extremely common step but varies in terms of its precise implementation 
(relatively equally split across 6, 12, or 24 parameters). Regression of average CSF and white 
matter signals is used more often than aCompCor (~55% vs ~28%). Just over half of studies 
used scrubbing (~49%) or spike regression (~8%) to remove the effects of motion-outlier 
volumes. Less than one third of studies used GSR (28%). ICA-AROMA is a recently 
developed method, and as such has only been used by a few studies to date (~4%).    
 
Group-average functional connectome replicated across pipelines and across sites  

We first assessed the similarity of group-average functional connectomes of ASD 
group across denoising pipelines separately within each data site. Generally, functional 
connectomes were highly similar across pipelines and this similarity pattern is consistent 
across sites (Figure 3A; NYU, r = 0.92±0.06; SDSU, r = 0.92±0.06; UCLA, r = 0.92±0.06; 
UM, r = 0.90±0.08). Results were similar for the control group (NYU, r = 0.91±0.07; SDSU, 
r = 0.93±0.06; UCLA, r = 0.93±0.05; UM, r = 0.90±0.08). As is apparent from the quadrant 
structure of Figure 3, GSR was a major influence on similarity of average functional 
connectomes across pipelines, such that similarity was extremely high with the same GSR 
status but reduced when pipelines differed in their use of GSR. We used multi-dimensional 
scaling to represent this graphically (Figure 3B), which demonstrates that the use of GSR is a 
primary dimension upon which results are either similar or different from one another. 

We examined the replicability of functional connectomes across sites under each 
pipeline. Figure 3C shows that group-average connectome of ASD is also similar across data 
sites within each pipeline (for all pipelines, r = 0.88±0.02). Pipelines with GSR increased 
between-site similarity compared to pipelines without GSR (rank sum, z = 3.88, p = 0.001). 
Note that first three minimally-preprocessed pipelines were excluded for this analysis 
because these tended to be quite different from all other approaches (as seen in Figure 3B).  

In summary, group averaged functional connectomes were similar across pipelines 
and could be replicated across data sites – thus, even using different scanners and scanning 
protocols did not affect replicability of the group averaged functional connectome.  

 
Group-differences replicated across pipelines but not across sites  
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Next, we assessed similarity of ASD-control comparisons of functional connectomes 
across pipelines, within each site. The results were consistent across pipelines within each 
site for all four sites (NYU, r = 0.78±0.10; SDSU, r = 0.78±0.10; UCLA, r = 0.75±0.10; UM, 
r = 0.71±0.14). As in Figure 3, Figure 4 shows that GSR was also a dominant factor in 
similarity of group differences across pipelines – highly similar results with concordant use 
or non-use of GSR (i.e., either both present or absent), but reduced similarity when pipelines 
were discordant in their use of GSR (concordant: r = 0.84±0.09; discordant: r = 0.70±0.07, 
averaged across four sites), suggesting that the same data analyzed with or without GSR may 
yield different results. In addition, pipelines with ICA-AROMA were generally different 
from others (Figure 4 A and B). 

The pattern of group differences was not replicable across data sites, regardless of 
which pipeline was used (Figure 4 and Figure 5). The correlations of group-difference z-
maps between sites were consistently low (r = 0.07±0.04, Figure 4C). Pipelines without GSR 
resulted in slightly higher between-site similarity (mean with GSR: r = 0.061; mean without 
GSR: r= 0.074; z = 2.22, p = 0.03). Even the most different edges between groups within 
each site rarely overlapped with another site (ASD > control, n = 19.08 ± 11.05; ASD < 
control, n = 16.66 ± 7.62). Permutation tests indicated that the total number of edges 
overlapping between two sites was not reliably higher than chance for most pairwise 
comparisons, with the exception of many pipelines from SDSU-UCLA (ps <= 0.05, FDR 
corrected for six comparisons; note that this analysis did not correct for number of pipelines 
tested; see Figure 5A). Figure 5B shows the overlap of the 500 most different positive (ASD > 
control) and negative (control > ASD) edges across the four sites from several representative 
pipelines. A very small number of edges overlapped between three sites, but these edges 
varied across pipelines, and no edges overlapped across more than three out of the four sites, 
in any pipeline.  

In addition to the fine ROI edge-level resolution, we also examined the consistency of 
group differences at a larger-scale network level. The pairwise correlation analysis showed 
the ASD-control group differences at the 17-network level were still inconsistent across data 
sites (r = 0.05±0.27). Figure 6 shows that most of the correlation coefficients between z-maps 
of each pair of sites were not significant after multiple comparison correction for six pairwise 
comparisons (no correction for the 33 pipelines to avoid being overly conservative). The 
between-site similarity varied across pipelines, without significant differences between 
pipelines with GSR and without GSR (z = 0.88; p = 0.38). 
 
Discussion 
 
This study examined whether replicable group-level differences between ASD and control 
groups can be obtained across independently acquired datasets, and how such replicability 
may vary as a function of preprocessing pipelines. Although basic connectome architecture 
was highly similar across acquisition sites, regardless of preprocessing pipelines, evidence for 
replicable group-level ASD-control differences was largely absent. While concerning, it is 
not altogether surprising as this result is largely consistent with the varied and often 
conflicting published literature in ASD when taken as a whole – for example, even the basic 
directionality of effects is still debated (i.e., systematic overconnectivity, underconnectivity, 
both, or neither).  

Here, we show that the lack of replicable ASD-control differences cannot be 
attributed to the choice of denoising strategy. First, within each site, the pattern of group 
differences remained largely similar regardless of which denoising strategy was used, as long 
as the use of GSR was held constant (Figure 3; discussed further below). Second, no 
particular denoising strategy led to consistently greater across-site replication – i.e., the 
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degree of replication did not improve in any meaningful way with any particular approach 
(e.g., GSR vs. not). Importantly, this lack of replication was specific to group-level 
differences and did not extend to basic connectome architecture – when comparing average 
connectomes across sites, we found a very high degree of similarity, again regardless of 
denoising procedure. Based on these results, we conclude that while preprocessing may still 
contribute in part to the lack of replication seen across studies (as it certainly adds variability, 
and especially with or without GSR), these differences may not be the major factor 
accounting for such inconsistencies and suggest that other site-level factors play a more 
significant role.  

If differences in denoising strategies cannot adequately explain the lack of across-site 
replication, an important question is what other factors may account for it. There are at least 
four possibilities: 1) specific scanner/acquisition/procedural differences; 2) subject-level 
(cohort) differences; 3) differences in post-processing analysis – e.g., the scale or level 
(region-of-interest, whole connectome, or network levels); 4) small, hard to detect, or even 
non-existent differences in functional connectivity in ASD. We unpack these possibilities in 
the following paragraphs, with each having specific implications for design and analysis of 
future studies. 

On the data collection side, it is possible that uncontrolled factors (including some 
that remain uncontrolled in the present study) contribute to this lack of replication. These 
factors include scanner and acquisition parameter differences (e.g., pulse sequence, voxel size, 
phase encoding directions, scanner manufacturer, etc; Yamashita et al., 2019), as well as 
experimental procedural differences (e.g., eyes open or closed, experiences immediately 
preceding the functional scan; Nair et al., 2018). Fortunately, these factors, while they do 
contribute to across-site variance, tend to be small in terms of effect size (Brown et al., 2011; 
Dansereau et al., 2017; Noble et al., 2017) or result in localized differences (Nair et al., 2018), 
consistent with our finding that group-average connectomes were highly reliable across sites. 
To further increase chances of replication, either a priori coordination and standardization of 
procedures (Glover et al., 2012) or the implementation of post-processing methods designed 
to increase multisite data harmonization would both be possibilities (Yamashita et al., 2019; 
Yu et al., 2018). 

Another factor related to data collection that potentially underlies our inability to 
replicate across sites could be subject-level (i.e., cohort) differences or biases (Yamashita et 
al., 2019). A non-exhaustive list of these factors includes ASD severity, cognitive level, co-
morbidities, treatment history and current treatment status (e.g., medication), basic 
demographic factors including age, sex, race, ethnicity, education, socioeconomic status, and 
so on. These cohort differences emerge both from practical constraints (e.g., regional biases 
in terms of participant demographics in different locations) and from the various choices 
made regarding the recruitment process (e.g., the types of recruitment channels such as 
clinics vs. communities, and any specific inclusionary and exclusionary criteria). There are 
several options to remedy these issues. One could apply tightly specified and standardized 
criteria to match participants across a host of these factors, but in doing so the 
generalizability of the findings to the broader ASD condition is reduced. A more practical 
consideration is that attempting to better match sites on some of these factors would result in 
smaller sample sizes -- for example, in our study, we excluded 184 participants (nearly 31%) 
from just these four sites in order to better closely match sites on just one of these factors 
(age). However, it is not necessarily the case that applying more restrictive criteria is always 
better than including more participants (Abraham et al., 2017). Another way to proceed is to 
identify the critical factors or grouping of factors that explain significant variance in the data 
(Smith et al., 2015), and statistically control for those. Other proposals have suggested 
increasing sampling diversity by collecting relatively small numbers of participants at many 
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different sites, rather than many participants at one site (Dansereau et al., 2017; Yamashita et 
al., 2019). One recent study (Holiga et al., 2019) that reported replicable findings using the 
ABIDE dataset combined data across multiple sites as opposed to treating each ABIDE site 
separately as in the present work – however, effect sizes were smaller in these aggregated 
samples than in data acquired at a single site. Regardless of the approach one uses, 
accounting for these subject-level differences is likely an important consideration, as recent 
work has highlighted that subject-level factors explain more variance than site-level factors 
(Brown et al., 2011; Dansereau et al., 2017; Gountouna et al., 2010; Noble et al., 2017).  

On the analysis side, it is important to note that our findings of a lack of replication 
are specific to our particular analyses using both whole connectome ROIs-level and a large-
scale network-level organization, and do not rule out the possible existence of any other 
replicable group-level effects in ASD. It is very possible that replicable results could be 
found when considering the very same data at a different scale or resolution, or with that data 
analyzed in a different way. For example, King and colleagues (King et al., 2018) found 
replicable atypical temporal dynamics in rs-fMRI timecourses. Holiga et al. (2019) recently 
found replicable results regarding functional connectivity in ASD across four very large 
datasets that also included ABIDE data. However, another recent study by King and 
colleagues (2019) assessed a number of different measures of functional connectivity in ASD 
and found weak evidence of generalizability across sites. Other studies have used machine 
learning approaches to generalize to independently acquired datasets (e.g., Abraham et al., 
2017; Yahata et al., 2016). In one of these (Abraham et al., 2017), prediction accuracy was 
affected by parcellation method, suggesting that replicability may be sensitive to these sorts 
of analysis choices (e.g., spatial normalization, parcellation; Dadi et al., 2019). Additionally, 
different scales of connectivity analysis exhibit different sensitivities and vulnerabilities to 
site effects (Noble et al., 2017), demonstrating a complex and intertwined relationship 
between many of the factors discussed above. We should mention, however, that although 
there are different ways of dividing and grouping the data, these approaches mostly still 
fundamentally rest on the ability to accurately and reliably measure edge-level differences in 
ASD (e.g., Yahata et al., 2016; see Figure 16a in King et al., 2019). For example, more 
complex statistical constructs that can be used to compare brain organization between groups 
(e.g., graph theoretic network measures; (He et al., 2018; Rubinov & Sporns, 2010) 
fundamentally must build upon reliable and replicable measurement of connectomes. Thus, 
lack of replication as described in the present work should be of concern to researchers.  

The final possibility that ought to be considered is that functional connectivity 
differences in ASD are very small and difficult or impossible to detect with current 
technology. While various functional connectivity differences in ASD have been reported in 
previous studies, the overall lack of consensus is concerning. The growing number of studies 
that now examine and, in some cases, demonstrate out-of-sample replication provide hope 
that such replicable signals do in fact exist (Holiga et al., 2019; Yahata et al., 2016). But, 
because of the above factors and in addition to a host of others (e.g., motion), small 
differences may be easily obscured (Tyszka, Kennedy, Paul, & Adolphs, 2014). Furthermore, 
case-control comparisons can easily obscure non-shared, heterogeneous patterns of 
differences in ASD, and might require different and individually-sensitive analytic 
approaches (Byrge et al., 2015; Dubois & Adolphs, 2016; Marquand, Rezek, Buitelaar, & 
Beckmann, 2016; Marquand et al., 2019). How to reliably detect these differences by using 
current neuroimaging methodologies and analytic approaches remains an open question for 
future work. 

What does this all mean? The pessimistic view would be that researchers should give 
up on searching for common group-level effects in ASD. However, we believe that this 
conclusion would be very premature for a number of reasons. (1) It is possible that effects are 
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heterogeneous across participants, so group-level analysis starting with the assumption of 
homogeneous groups may be both largely underpowered and not able to fully account for the 
group level variance. (2) It is possible that improvements in detecting signal in the face of the 
large amounts of measurement noise that plague resting-state analyses will eventually 
unmask important group-level differences. In this case, if it is a detection problem, continued 
advances in acquisition and analysis methodology may get us closer to detecting reliable 
differences in ASD. (3) Additional experimental procedures can be employed to ensure more 
reliable estimates of an individual’s connectome. For example, collecting more data from 
each individual participant can reduce measurement noise and ensure greater confidence in 
the results via within-sample replication (Anderson, King, & Anderson, 2019; Byrge & 
Kennedy, 2019; Finn et al., 2015; King et al., 2019; Nee, 2019), prior to attempting across-
site replication. 

While our results suggest that lack of replication cannot be solely attributed to 
differences in denoising procedures (since using the same preprocessing procedures did not 
increase across-site replication), this does not mean that they are entirely inconsequential. 
Here, we show that, while there are essentially an unconstrained number of choices for 
preprocessing, some of these choices have a more significant impact on the results than 
others (though not necessarily in a consistent way). Figure 3 demonstrates that one of the 
most significant factors is whether or not GSR is included as a preprocessing step. Its 
inclusion resulted in slightly more similar group-averaged connectomes across sites -- 
however, whether more similar group-averaged connectomes is a good thing or not remains 
unclear. The positive interpretation of this finding is that GSR helps to eliminate 
measurement noise (Power et al., 2014; Power et al., 2017; Byrge & Kennedy, 2018; Ciric et 
al., 2017; Parkes et al., 2018), resulting in more similar connectomes, whereas the less 
positive interpretation is that GSR eliminates individual variation that might be of interest or 
distorts group-level differences (Gotts et al., 2013; Scholvinck et al., 2010; Uddin, 2017; 
Yang et al., 2014). Our results cannot disambiguate these possibilities from one another. 
Furthermore, in terms of group differences, we found that the effects of GSR on across-site 
replicability were not consistent, and instead depended on which specific sites were 
compared to one another (see Figure 4, middle panel, and Figure 6). For some site 
comparisons, use of GSR increased similarity between them, whereas for others it decreased 
it, and yet others where it was unchanged, suggesting a complex interaction between the use 
of GSR and site-level factors.  

In addition to the possible factors already discussed above that may limit the detection 
of reliable group effects, some additional limitations of this study are worth mentioning. One 
criticism is that correlations between whole connectome group difference z-maps are perhaps 
a relatively insensitive way to examine this data. For instance, a localized difference in a 
small number of edges or nodes would easily be obscured in the present whole-brain analyses. 
However, we did also examine only the edges that differed most between groups, and also 
examined data aggregated at the network level – both yielded poor replicability of results. 
Another limitation of the present study is the relatively small sample sizes. This was a 
consequence of both carefully matching groups by age and also applying strict quality control 
(i.e., movement thresholds, anatomical image quality requirements). However, we note that 
our sample size was sufficiently powered to detect medium-large to large effects within each 
dataset, suggesting that possible replicable differences must be smaller than this. As shown in 
the literature survey (Supplementary Figure S1), although there may be a recent growing 
trend to use larger datasets (primarily aggregated from ABIDE), many studies still use single 
site data with limited sample size. Indeed, the median sample sizes in these published studies 
(ASD: n = 35; TD: n = 38) are approximately equal to or smaller than the four sample sizes 
used in the present work – studies that form the basis of our understanding of functional 
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connectivity abnormalities in ASD. Another limitation is that the present study included a 
relatively large age range from 10-20 years, corresponding to a broad neurodevelopmental 
period spanning childhood through adolescence and into young adulthood. This age range is 
not uncommon among previous studies, as showed in the literature survey (Supplementary 
Figure S1). It is possible that more consistent effects would be identified if the age was 
constrained even further – however, further restricting the range would have reduced the 
number of sites and subjects that we could have included.  

In sum, the present study demonstrated that the choice of denoising pipeline is not the 
main factor underlying the lack of replication of group differences in ASD. Instead, the most 
parsimonious explanation is that group-level differences are small or non-existent, and/or 
swamped by site and sample effects. However, we remain optimistic that continued 
developments toward improving methodology and approaches will help to eventually reveal 
reliable patterns of functional connectivity alterations in ASD. These results highlight the 
need to continue examining reliability of findings going forward, and demonstrate that 
approaches that improve sensitivity to detect disorder-related alterations are still needed. 
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Table 1. Demographic information  
 NYU SDSU UCLA UM 
 ASD TD Stats 

(p/t) 
ASD TD Stats 

(p/t) 
ASD TD Stats 

(p/t) 
ASD TD Stats 

(p/t) 
n 44 44 - 36 36 - 38 38 - 34 34 - 

Male/ 
Female 

38/6 38/6 - 32/4 29/7 - 37/1 31/7 - 28/6 28/6 - 

Age (mean± 
SD) 

13.0 ± 
2.5 

13.7 ± 
2.4 

0.24/ 
-1.2 

14.3± 
2.5 

14.2 ± 
2.1 

0.72/ 
0.4 

13.6 ± 
2.3 

13.3 ± 
1.6 

0.63/ 
0.49 

14.6 ± 
1.9 

14.7 ± 
2.5 

0.78/ 
-0.3 

IQ 
(mean±SD) 

102.0
± 13.6 

113.1
± 15.0 

*0.00/
-3.7 

104.7
± 16.1 

104.2
± 11.2 

0.87/ 
0.2 

103.4
± 13.0 

106.8
± 10.5 

0.21/ 
-1.3 

109.3
± 15.8 

109.6
± 10.4 

0.93/ 
-1.0 

Handedness 
(R/L/A)  

- - - 29/5/2 31/3/2 - 33/5/0 35/3/0 - 25/5/0 29/4/0 - 

ADI social 
(mean± SD, n) 

19.9 ± 
6.2 
(41) 

- - 18.3 ± 
4.2 
(34) 

- - 20.8 ± 
4.6 
(28) 

- - 19.5 ± 
4.7 
(34) 

- - 

ADI verbal 
(mean± SD, n) 

15.7 ± 
4.7 
(42) 

- - 13.1 ± 
4.8 
(34) 

- - 16.6 ± 
4.4 
(28) 

- - 15.8 ± 
3.2 
(34) 

- - 

ADI RRB 
(mean± SD, n) 

5.8 ± 
2.8 
(42) 

- - 5.8 ± 
2.3 
(34) 

- - 7.4 ± 
2.0 
(28) 

- - 5.9 ± 
2.5 
(34) 

- - 

ADOS total 
(mean± SD, n) 

11.6 ± 
4.0 
(44) 

- - 13.5 ± 
5.0 
(35) 

- - 11.6 ± 
3.8 
(36) 

- - 11.3 ± 
4.6 
(41) 

- - 

SRS (mean± 
SD, n) 

91.3 ± 
32.8 
(43) 

24.2 ± 
13.3 
(39) 

0.07/ 
1.8 

101.7
± 22.8 
(24) 

21.1 ± 
10.9 
(18) 

0.00/ 
13.8 

- - - - - - 

N medicated 
(n reporting) 

10(42) 0(44) - 13(36) 0(36) - 20(38) 1(38) - 15(34) 1(33) - 

Mean FD 
(mean± SD) 

0.15 ± 
0.05 

0.14 ± 
0.04 

0.32/ 
1.0 

0.12 ± 
0.06 

0.12 ± 
0.06 

0.90/  
1.0 

0.16 ± 
0.06 

0.14 ± 
0.07 

0.18/ 
1.4 

0.17 ± 
0.06 

0.15 ± 
0.05 

0.41/ 
0.8 

Mean 
Translation 
(mean± SD) 

0.16 ± 
0.09 

0.19 ± 
0.15 

0.26/-
1.1 

0.13 ± 
0.07 

0.14 ± 
0.10 

0.69/-
0.4 

0.15 ± 
0.08 

0.14 ± 
0.09 

0.71/0
.4 

0.27 ± 
0.19 

0.22 ± 
0.11 

0.20/1
.3 

Mean 
Rotation 

(mean± SD) 

0.003
± 

0.002 

0.004
± 

0.002 

0.20/-
1.3 

0.003
± 

0.002 

0.003
± 

0.002 

0.66/-
0.4 

0.003
± 

0.001 

0.003
± 

0.002 

0.76/0
.3 

0.005
± 

0.004 

0.004
± 

0.003 

0.60/0
.5 

Scrubbed 
Volumes 

(mean± SD) 

36.3± 
23.8 

34.5± 
23.5 

0. 73/  
0.4 

25.7± 
20.5 

24.4± 
24.8 

0.82/ 
0.2 

29.1 ± 
17.5 

22.9 ± 
16.5 

0.12/ 
1.6 

66.9± 
47.1 

59.6± 
36.5 

0.48/ 
0.7 

 
 
 
 
 
Table 2. rs-fMRI scanning parameters. Note that there are several parameters that are 
different across these sites. The current study was not meant to control specifically for each 
of these (e.g., UCLA has a 3000 msec TR vs. all other sites with 2000 msec) because such 
differences are also present in published studies where such factors are not controlled, but 
where replication is still implicitly expected. These datasets are also sometimes aggregated 
together, again implicitly assuming that such differences will not have major effects on case-
control differences. Note also that the UM site acquired more volumes per participant than 
the other sites; we chose not to downsample this data for our main anaylysis because 
including more data from each individual participant should yield a better estimate of an 
individual’s functional connectivity; in other words, downsampling would produce 
artificially noisier data, would not be representative of the actual data available and analyzed 
in other published reports, and would bias our results away from finding evidence for across-
site replication. However, we did rerun the primary analyses using a downsampled version of 
the UM data and findings remained the same.  
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 NYU SDSU UCLA UM 

Scanner Siemens 3T 
Allegra 

GE 3T MR750 Siemens 3T  
TIM Trio 

GE 3T Signa 

TR/TE 2000/15 2000/30 3000/28 2000/30 

FA 90 90 90 90 

Resolution 3×3×4 3.4×3.4×3.4 3×3×4 3.4×3.4×3 

Volumes 180 180 120 300 

Matrix 64×80×33 64×64×42 64×64×34 64×64×40 

 
 
Table 3. Compositions of Denoising Pipelines 

Denoising Pipelines Head motion 
parameters 

Tissue-based 
Regressors 

GSR Censoring 

6H 6 - - - 
12H 12 - - - 
24H 24 - - - 

6H+2W 6 mean WM/CSF - - 
12H+2W 12 mean WM/CSF - - 
24H+2W 24 mean WM/CSF - - 
24H+4W 24 4 mean 

WM/CSF 
- - 

24H+8W 24 8 mean 
WM/CSF 

- - 

6H+aCC 6 aCompCor - - 
12H+aCC 12 aCompCor - - 
24H+aCC 24 aCompCor - - 

6H+2W+Spike 6 mean WM/CSF - Spike 
6H+2W+Scrub 6 mean WM/CSF - Scrub 
12H+2W+Spike 12 mean WM/CSF - Spike 
12H+2W+Scrub 12 mean WM/CSF - Scrub 
24H+2W+Spike 24 mean WM/CSF - Spike 
24H+2W+Scrub 24 mean WM/CSF - Scrub 
6H+2W+GSR 6 mean WM/CSF 1 - 

12H+2W+GSR 12 mean WM/CSF 1 - 
24H+2W+GSR 24 mean WM/CSF 1 - 
24H+4W+GSR 24 4 mean 

WM/CSF 
1 - 

24H+8W+4GSR 24 8 mean 
WM/CSF 

4 - 

6H+aCC+GSR 6 aCompCor 1 - 
12H+aCC+GSR 12 aCompCor 1 - 
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24H+aCC+GSR 24 aCompCor 1 - 
6H+2W+GSR+Spike 6 mean WM/CSF 1 Spike 
6H+2W+GSR+Scrub 6 mean WM/CSF 1 Scrub 
12H+2W+GSR+Spike 12 mean WM/CSF 1 Spike 
12H+2W+GSR+Scrub 12 mean WM/CSF 1 Scrub 
24H+2W+GSR+Spike 24 mean WM/CSF 1 Spike 
24H+2W+GSR+Scrub 24 mean WM/CSF 1 Scrub 

ICA-AROMA+2W - mean WM/CSF - - 

ICA-AROMA+2W+GSR - mean WM/CSF 1 - 
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Figure legends 
 
Figure 1. Schematic plot for post-processing analysis. We used a total of 33 denoising 
pipelines, with different combinations of regression of head motion parameters 
(6H/12H/24H), ICA-AROMA, signals of white matter/cerebral spinal fluid (WM/CSF), 
global mean signal (GSR), and volume censoring (spike/scrubbing). Functional connectomes 
were separately constructed with 33 pipelines for each subject. We averaged functional 
connectomes across each subject group as well as compared each cell in the connectome 
between two groups to derive group-difference z-maps. Then we calculated the Spearman’s 
correlation between group-average functional connectomes, as well as between z-maps (a) 
across pipelines and (b) across datasets. 
 
Figure 2. Usage proportion of different denoising preprocessing strategies in previous 
resting-state fMRI case-control studies on functional connectivity in ASD.      
 
Figure 3. Consistency of group-average functional connectome across pipelines and sites. (A)  
Spearman’s correlation coefficients of group-average functional connectomes across 
pipelines. It indicates high similarity across pipelines, though pipelines with different GSR 
status were less similar, as is seen in quadrant structure. (B) It provides a different 
visualization of relative distance among different pipelines based on multi-dimensional 
scaling. Each data point represents a pipeline (note that not all points are visible because 
there is a high degree of overlap between some of them). It directly shows the major factor 
differentiating pipelines is based on the usage of GSR. The triangle shape corresponds to the 
basic pipelines (which only regress out 6H/12H/24H), the circle shape corresponds to the 
pipelines adding WM/CSF regression, the diamond shape corresponds to pipelines using 
aCompCor, the square shape corresponds to volume censoring (scrubbing and spiking) and 
the asterisk corresponds to ICA-AROMA. (C) Spearman’s correlation coefficients between 
group-average connectomes were inconsistently high across sites for all pipelines. 
 
Figure 4. Consistency of group differences in functional connectivity across pipelines and 
across sites. (A) Spearman’s correlation coefficients between group-difference z-maps across 
pipelines, and (B) MDS showing relative distance between pipelines, indicate that GSR and 
ICA-AROMA were different from other strategies. (C) Spearman’s correlation coefficients 
between group-difference z-maps were consistently low across sites for all pipelines. 
 
 
Figure 5. Edge-level overlap between sites. This analysis includes only those edges showing 
the greatest difference between the ASD and control groups (500 ASD>Control and 500 
Control > ASD for each site). (A) The total number of edges that overlapped between sites 
for each pairwise comparison, represented by a colored dot. The gray distribution is the 
combined null distribution derived from permutation testing. Dots outlined in black are those 
identified as significantly higher than chance (q < 0.05, FDR corrected for the six pairwise 
comparisons within each pipeline). (B) The circular plots show overlapping edges for several 
different representative pipelines (24H+2W, 24H+aCC, 24H+2W+Spike, 24H+2W+Scrub, 
24H+2W+GSR, 24H+aCC+GSR, 24H+2W+GSR+Spike, and 24P+2P+GSR+Scrub, ICA-
AROMA+2W, ICA-AROMA+2W+GSR). Line color indicates the number of overlapping 
sites: grey = 1; yellow = 2; red =3. Note no edge appeared in all sites (four times) across any 
of the 33 pipelines. VIS: visual network; SOM: somatomotor network; DAN: dorsal attention 
network; VAN: ventral attention network; LIM: limbic network; CON: control network; 
DMN: default mode network.  
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Figure 6. Inconsistency of group differences at the network level across data sites. Note that 
here, compared to Figure 4C, the results are more variable. *p <= 0.05, FDR corrected for six 
pairwise comparisons. Note also that even where significant differences were identified (e.g., 
6H+aCC+GSR), the directionality of the correlation coefficients were inconsistent across 
pairwise site comparisons (i.e., within columns).  
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