

1 ***De novo phased assembly of the *Vitis riparia* grape genome***

2

3 Nabil Girollet¹, Bernadette Rubio^{1,2} and Pierre-François Bert¹

4

5 **Affiliations**

6 ¹EGFV, Bordeaux Sciences Agro – INRA – Université de Bordeaux, ISVV, 210 chemin de
7 Leysotte, 33882 Villenave d'Ornon, France

8 ²IFV, Institut Français de la Vigne et du Vin, Domaine de l'Espiguette, 30240 Le Grau du Roi,
9 France

10 Corresponding Author: Pierre-François Bert (pierre-francois.bert@u-bordeaux.fr)

11

12 **Abstract**

13 Grapevine is one of the most important fruit species in the world. In order to better
14 understand genetic basis of traits variation and facilitate the breeding of new genotypes, we
15 sequenced, assembled, and annotated the genome of the American native *Vitis riparia*, one
16 of the main species used worldwide for rootstock and scion breeding. A total of 164 Gb raw
17 DNA reads were obtained from *Vitis riparia* resulting in a 225X depth of coverage. We
18 generated a genome assembly of the *V. riparia* grape *de novo* using the PacBio long-reads
19 that was phased with the 10x Genomics Chromium linked-reads. At the chromosome level, a
20 500 Mb genome was generated with a scaffold N50 size of 1 Mb. More than 34% of the
21 whole genome were identified as repeat sequences, and 37,207 protein-coding genes were
22 predicted. This genome assembly sets the stage for comparative genomic analysis of the
23 diversification and adaptation of grapevine and will provide a solid resource for further
24 genetic analysis and breeding of this economically important species.

25

26 **Background & summary**

27 Since few decades and the development of sequencing technologies, the number of species
28 whose genome has been totally sequenced has increased exponentially. There is a large

29 variability for the quality of all the sequences assemblies. In 2017, 72 plant reference quality
30 genome assemblies were reported in NCBI¹. For plant breeding, the availability of a
31 contiguous genome sequence provides a tool to better identify genes underlying traits and
32 how they may be regulated by various environmental parameters in different genetic
33 backgrounds. At the simplest, it allows for association of genetic markers for selection and
34 introgression of traits across germplasm to enable the development of novel products for
35 consumers^{2 3}.

36 As an important crop, *Vitis vinifera* was one of the first higher plant species whose genome
37 was sequenced by a French-Italian consortium⁴. The consortium decided to sequence a near
38 homozygous *V. vinifera* cultivar related to Pinot Noir (PN40024) in order to facilitate the
39 sequence assembly by limiting sequence variability. To date, this genome still stands as the
40 reference for the grapevine community, but grapevine intra species and interspecies diversity
41 makes using a single reference genome inadequate for studying the function of other
42 genotypes. In order to address the variations in a cultivated *V. vinifera* variety, the Pinot Noir
43 genome was sequenced using Sanger sequencing providing a high quality draft of the
44 genome with about 10X coverage⁵. Next Generation Sequencing reads are too short to
45 resolve abundant repeats in particular in plants genome, leading to incomplete or ambiguous
46 assemblies⁶. Few attempts to produce high quality grapevine genomes were undertaken in
47 grapevine and produced valuable data to study the genetic variations of *V. vinifera* cv.
48 Tannat⁷ and cv. Thompson seedless⁸ through comparison with the reference genomes.

49 The last few years have seen rapid innovations in sequencing technologies and improvement
50 in assembly algorithms that enabled the creation of highly contiguous genomes. The
51 development of third generation sequencing technologies that deliver long reads from single
52 molecules and carry the necessary information to phase haplotypes over several kilobases
53 have greatly improved the feasibility of *de novo* assemblies^{9 10 11}. Sequences of *V. vinifera* cv.
54 Cabernet Sauvignon were first released¹² using PacBio sequencing and FALCON, and
55 FALCON-Unzip pipeline¹². This generated a 591 Mbp haplotype genome from a set of 718

56 primary contigs, and a set of correlated 2,037 haplotigs spanning 367 Mbp. The total p-contig
57 size was larger than the estimated genome size of *V. vinifera* (~500 Mbp) suggesting that in
58 some cases FALCON-Unzip underestimated the alternative haplotype sequences because of
59 high heterozygosity between homologous regions, which is common in grapevine^{13 14}. Later,
60 the PacBio assembly and annotation of *V. vinifera* cv Chardonnay variety provided after
61 curation of artefactual contig assignment, 854 p-tigs and 1883 h-tigs, totaling 490 Mb and
62 378 Mb¹⁵. More recently, another version of the Chardonnay genome was proposed with a
63 different level of curation at 605 Mb¹⁶.

64 An evaluation of genetic diversity based on a panel of 783 *V. vinifera* varieties using 10K
65 SNPs revealed a high level of diversity ($He = 0.32$) and confirmed the close pedigree
66 relationship within the cultivated grapevine due to the wide use of the most interesting
67 parents during domestication and early selection by humans¹⁷. Considering that grape
68 cultivation currently faces severe pathogen pressures and climate change, we assume that
69 the exploitation of the natural genetic diversity may ensure the long-term sustainability of the
70 grape and wine industries¹⁸. Grapes belong to the genus *Vitis*, which includes over 60 inter-
71 fertile species. The most common grape cultivars derive their entire ancestry from the
72 species *V. vinifera*, but wild relatives have also been exploited to create hybrid cultivars,
73 often with increased disease resistances¹⁹.

74 To date, no wild *Vitis* genomes have been released so far and the only whole genome
75 sequences for grape are from *V. vinifera* varieties and yet there is a clear need for genetic
76 resources²⁰. Here, we report the first *de novo* assembly and genome annotation of the North
77 American native grape *V. riparia*. Using the latest sequencing technologies, we show that
78 10x Genomics Chromium data can be combined with long read PacBio sequencing to
79 effectively determine genome phasing. The phased haplotypes of *V. riparia* genome will
80 greatly contribute to give more insight into the functional consequences of genetic variants.

81 **Methods**

82 **Sample collection, library construction and whole genome sequencing**

83 The *Vitis riparia* Gloire de Montpellier (RGM) selection was obtained in 1880 by L. Vialla and
84 R. Michel from North American collections and is the only commercially available pure *V.*
85 *riparia* stock. RGM clone #1030 and the European native *Vitis vinifera* Cabernet sauvignon
86 (CS) clone #15 were grown at INRA, Bordeaux (France). A F1 segregating population of 114
87 individuals named CSxRGM1995-1 was derived from the cross between CS and RGM²¹.
88 This population was genotyped using the GBS approach²² to create a high resolution genetic
89 map to assist in anchoring and orienting the assembled *V. riparia* genome scaffolds.

90 Total DNA was isolated and extracted using QIAGEN Genomic-tips 100/G kit (Cat No./ID:
91 10243) following the tissue protocol extraction. Briefly, 1g of young leaf material was ground
92 in liquid nitrogen with mortar and pestle. After 3h of lysis and one centrifugation step, the
93 DNA was immobilized on the column. After several washing steps, DNA is eluted from the
94 column, then desalting and concentrated by alcohol precipitation. The pellet is resuspended
95 in TE buffer.

96 Three PacBio libraries with a 20-kb insert size were also constructed and sequenced on RSII
97 platforms (97.71 Gb data; ~118-fold covering), following the standard PacBio protocol of
98 Sequencing Kit 1.2.1 (Pacific Biosciences, USA). Four 10x Chromium Genomics libraries
99 were constructed using the ChromiumTM Genome Solution (10X Genomics, USA), and 2x150
100 bp sequenced on Illumina HiSeq3000, producing ~350 million paired-end linked-reads (~
101 107-fold covering). Finally, 2 libraries for 2x100 bp sequencing were built with different insert
102 sizes: 500 bp for paired-end (PE) and 6 kb for mate-pair (MP), based on the standard
103 Illumina protocol and sequenced on the Illumina HiSeq 2500. The raw reads were trimmed
104 before being used for subsequent genome assembly. For Illumina HiSeq sequencing, the
105 adaptor sequences, the reads containing more than 10% ambiguous nucleotides, as well as
106 the reads containing more than 20% low-quality nucleotides (quality score less than 5), were
107 all removed. After data cleaning and data preprocessing, we obtained a total of 164 Gb of
108 clean data (52 Gb PacBio data, 59 Gb 10X Genomics, 33 Gb PE reads and 20 Gb MP
109 reads,), representing 331X coverage of the *V. riparia* genome (Table 1).

110

111 **Genome size and heterozygosity estimation**

112 Lodhi and Reisch³⁵ estimated the genome size in grape to be approximately 475 Mb based
113 on measurements using flow cytometry for 19 species including wild *Vitis* species, *V.vinifera*
114 and *V. labrusca* cultivars. The measurements showed intraspecific variation in genome size
115 between different varieties of *Vitis vinifera* ranging from 1C = 415 to 511 Mb, and between
116 different North America *Vitis* species ranging from 1C = 411 to 541 Mb, with *V. riparia* around
117 470 Mb. Genome sequencing of different *V. vinifera* varieties gave values in the same range
118 or greater depending on the methods of sequencing and assembly. In order to verify these
119 values, we estimated genome size of *V. riparia* by the k-mer method^{36 37} using data from pair-
120 end and mate-pair Illumina sequencing. By analyzing the 21-mers depth distribution, a total
121 of ~50 billion k-mers were estimated with a peak frequency of 100, corresponding to a
122 genome size of 494 Mb and the estimated repeat sequencing ratio was 33.74%. In this
123 study, *V. riparia* heterozygosity was estimated to be 0.46% (mean distance 1 SNP each 217
124 bp between heterozygous SNPs) from 10x Chromium Genomics data processing.

125

126 ***De novo* Genome assembly and scaffolding of the *Vitis riparia* genome**

127 We employed a hybrid *de novo* whole-genome assembly strategy, combining both short
128 linked-reads and PacBio long reads data. Genome assembly was first performed on full
129 PacBio cleaned reads using FALCON v0.3.0³⁸. Error correction and pre-assembly were
130 carried out with the FALCON/FALCON Unzip pipeline after evaluating the outcomes of using
131 different parameters in FALCON during the pre-assembly process. Based on the contig N50
132 results, a *length_cutoff* of 5kb and a *length_cutoff_pr* of 8kb for the assembly step were
133 ultimately chosen. The draft assembly was polished using Quiver³⁹, which mapped the
134 PacBio reads to the assembled genome with the BLASER pipeline⁴⁰. Haplotypes were
135 separated during assembly using FALCON-Unzip and the preliminary genome assembly was
136 approximately 530 Mb (1,964 primary-contigs) and 317 Mb (3,344 haplotigs). A summary of
137 the assembly statistics can be found in Table 1. Assembly was then processed with Purge

138 Haplotigs¹³ to investigate the proper assignment of contigs, followed by 2 rounds of polishing
139 to correct residual SNP and INDELs errors with Pilon v1.22 software⁴¹ using high-coverage
140 (~106X) Illumina paired-end and mate pair data.
141 The 10x Chromium Genomics linked-reads were used to produce a separate *V. riparia*
142 assembly using the Supernova assembler option `--style=pseudohap2` and created two
143 parallel pseudohaplotypes⁴². The mean input DNA molecule length reported by the
144 Supernova assembler was 45kb and the assembled genome size was 424Mb with a N50
145 scaffold of 711kb.
146 Subsequently, the PacBio assembly was scaffolded with the 10x Chromium Genomics one
147 using the hybrid assembler LINKS⁴³ with 7 iterations, producing 870 scaffolds spanning 500
148 Mb with N50 = 964 kb and L50 = 255 (Table 2). Finally, genome phasing was reconstituted
149 using Long Ranger analysis pipeline that processes Chromium sequencing output to align
150 reads and call and phase SNPs, indels, and structural variants on the basis of molecular
151 barcodes information.
152

153 **Genotyping by Sequencing and genetic mapping**

154 Two 96-plex GBS libraries (Keygene N.V. owns patents and patent applications protecting its
155 Sequence Based Genotyping technologies) were constructed for the two parents (two
156 replicates for each) and the 114 F1 plants of the cross CS × RGM. Raw reads were
157 checked with FastQC²³, demultiplexed with a custom script and cleaned with CutAdapt²⁴.
158 Cleaned reads were then mapped to the *V. riparia* RGM scaffolds previously obtained, the *V.*
159 *vinifera* Cabernet Sauvignon contigs¹² and *V. vinifera* PN40024 genome assemblies⁴ for SNP
160 calling. Aligned on these genomes were performed using BWA²⁵, SAMtools²⁶ and Picard
161 tools²⁷ and SNP genotypes were detected with GATK²⁸ using the *hardfilter* parameters²⁹. In
162 the variant call format (VCF) output file only sites with less than 20 % missing data and a
163 minimum allele frequency (MAF) ≥ 0.2 were retained. The SNP set was parsed into two
164 data sets based on a pseudo-test cross mapping strategy³⁰ using *major_minor* and
165 *get_pseudo_test_cross* scripts from Hetmapps³¹. The segregation ratios of markers in the

166 population were examined by Chi-square analysis. Markers with segregation ratios that
167 differed from expected 1:1 at $P<0.05$ were classified as segregation distortion markers and
168 discarded. The RGM and CS sets contain 1591 and 2359 SNPs respectively. Linkage groups
169 (LGs) were determined using software JoinMap® 4.1^{32 33} and RqtL³⁴. LGs were formed with a
170 logarithm of odds (LOD) threshold of 6 and a maximum recombination frequency of 0.45.
171 The 19 LGs that corresponded to the 19 chromosomes of grapevine were reconstructed and
172 leaded to a total genetic map length of 2,268 cM and 2,514 cM for RGM and CS respectively.

173

174 **Pseudo-molecule construction**

175 The PacBio / 10x Chromium Genomics hybrid scaffolding was organized into pseudo-
176 molecules using GBS markers information from the CS x RGM genetic map. Scaffolds were
177 anchored and oriented SNP using AllMaps⁴⁴ with the *unequal weights2* parameters for a
178 single run for the entire genome. Final pseudo-molecules were named according to *Vitis*
179 *vinifera* PN40024 reference genome using SNP identification through SNP calling on this
180 reference. Since PN40024 genome is the only one available who has been scaffolded into
181 pseudo-molecules, collinearity with *V. riparia* was evaluated using D-GENIES⁴⁵ and showed
182 extremely high conservation along the 19 chromosomes of the species (Figure 1) even if the
183 North American and Eurasian *Vitis* species diverged approximately 46.9 million years ago⁴⁶.

184

185 **Genome annotation and gene prediction**

186 Consistent with observations that long reads sequencing technologies are a better solution
187 for resolving repeat sequences, we found that known repetitive elements accounted for 170
188 Mb (33.94%) of the genome in *V. riparia*. This is a lower proportion among grape genomes
189 when comparing published values to date. However, when comparisons are performed with
190 the same analysis workflow and tools^{47 48}, the percentages obtained between the two
191 genotypes were in the same range (Online-only Table 1). Similar to other grape genomes,
192 long terminal repeat (LTR) elements constituted the highest proportion of all repeated
193 elements in *V. riparia*, (21.44%) with Copia and Gypsy families accounting for 8.33% and

194 12.66% respectively. The Long Interspersed Nuclear Elements (LINEs) and Miniature
195 Inverted-repeat Transposable Elements (MITEs) represented 3.61% and 6.02% of the whole
196 genome respectively.

197 After repeat masking, the genome was *ab initio* annotated using MAKER-P pipeline^{49 50},
198 SNAP⁵¹ and Augustus⁵² gene finder with 3 rounds of Maker and an Augustus prediction.
199 Structural annotation was then followed with an Interproscan functional annotation and
200 putative gene function assignation using BLAST on UniProtKB. MAKER-P quality metrics
201 with a threshold of AED<0.5 were chosen to retain the set of predicted genes. We finally
202 generated a gene set of 37,207 protein-coding genes (11,434_AED<0.1;
203 8,638_0.1≤AED<0.2; 5,748_0.2≤AED<0.3; 5,418_0.3≤AED<0.4; 5,969_0.4≤AED<0.5) with
204 31,240 of them coupled with an evidence of protein function.

205

206 To facilitate genomic investigations for the community, a JBrowse Genome Browser⁵³ was
207 set up for *V. riparia* pseudo-molecules and is available from <https://www6.bordeaux->
208 aquitaine.inra.fr/egfv/.

209

210 **Code Availability**

211 1. GBS demultiplexing

212 <https://github.com/timflutre>

213 2. Filters FASTQ files with CASAVA 2.20

214 `fastq_illumina_filter --keep N -v -v -o good_reads.fq raw_reads.fastq`

215 3. Cutadapt (regular 3' adapter)

216 <https://cutadapt.readthedocs.io/en/stable/guide.html>

217 `cutadapt -a AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG`

218 `-A AGATCGGAAGAGCGTCGTAGGGAAAGAGTGT`

219 `-G CTCGGCATTCCCTGCTGAACCGCTCTCCGATCT`

220 `-g ACACTCTTCCCTACACGACGCTCTCCGATCT -u7 -U7 -m10`

221 4. Burrows-Wheeler Alignment – BWA-MEM
222 <http://bio-bwa.sourceforge.net/bwa.shtml>
223 bwa mem ref.fa read1.fastq.gz read2.fastq.gz > aligned.reads.sam with these options :
224 -M Mark shorter split hits as secondary (for Picard compatibility)
225 -R Complete read group header line with ‘t’ used in STR to be converted to a TEB in the
226 output SAM. An example is ‘@RG\tID:\tSM:\tPL:\tLB:’
227 5. Picard tools
228 <https://broadinstitute.github.io/picard/>
229 SortSam : java –jar picard.jar SortSam with these options: INPUT (BAM file), OUTPUT (BAM
230 file), SORT_ORDER
231 MarkDuplicates : java –jar picard.jar MarkDuplicates with these options: INPUT (BAM file),
232 OUTPUT (BAM file), METRIC_FILE (file)
233 BuildBamIndex : java –jar picard.jar BuildBamIndex with these options: INPUT (BAM file)
234 6. GATK tools
235 HaplotypeCaller : java –jar GenomeAnalysisTK.jar –T HaplotypeCaller –R ref.fasta –I
236 file.bam –genotyping_mode DISCOVERY –drf DuplicateRead –emitRefConfidence GVCF –o
237 file.g.vcf
238 https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php
239 CombineGVCFs : java –jar GenomeAnalysisTK.jar –T CombineGVCFs –R ref.fasta –drf
240 DuplicateRead –G Standard –G AS_Standard --variant sample1 to sample‘n’.g.vcf –o
241 cohort_file.g.vcf
242 https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_variantutils_CombineGVCFs.php
243 GenotypeGVCFs : java –jar GenomeAnalysisTK.jar –T GenotypeGVCFs –R ref.fasta –drf
244 DuplicateRead –G Standard –G AS_Standard --variant cohort_file.g.vcf –o final_file.vcf
245 https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_variantutils_GenotypeGVCFs.php

249 SelectVariants : java -jar GenomeAnalysisTK.jar -T SelectVariants -R ref.fasta -V
250 final_file.vcf --selectType SNP -o file_snps.vcf
251 https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_variantutils_SelectVariants.php
252 VariantFiltration : java -jar GenomeAnalysisTK -T VariantFiltration -R ref.fasta -V
253 file_snps.vcf --filterExpression « QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 ||
254 ReadPosRankSum < -8.0 » --filteredName «FILTER» -o filtered_snps.vcf
255 https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_filters_VariantFiltration.php
256 7. VCF filtering
257 vcftools --vcf filtered_snps.vcf --remove-filtered-all --recode --out filteredFinal_snps.vcf
258 8. Falcon and Falcon_Unzip Assembly for SMRT sequencing
259 <https://github.com/PacificBiosciences/FALCON/wiki>
260 https://github.com/PacificBiosciences/FALCON_unzip/wiki
261 Main parameters: length_cutoff = 5000, length_cutoff_pr = 5000
262 pa_HPCdaligner_option = -v -dal128 -e0.70 -M40 -I2500 -k17 -h500 -w7 -s100
263 ovlp_HPCdaligner_option = -v -dal128 -M40 -k19 -h500 -e.96 -I1500 -s100
264 pa_DBsplit_option = -a -x500 -s200
265 ovlp_DBsplit_option = -s200
266 falcon_sense_option = --output_multi --output_dformat --min_idt 0.80 --min_cov 4
267 max_n_read 400 --n_core 16
268 falcon_sense_skip_contained = False
269 overlap_filtering_setting = --max_diff 120 --max_cov 120 --min_cov 4 --n_core 24
270 9. Purge Haplontigs
271 https://bitbucket.org/mroachawri/purge_haplontigs/src/master/
272 purge_haplontigs readhist -b aligned.bam -g genome.fasta
273 10. Supernova Assembly for 10x Chromium sequencing
274 <https://support.10xgenomics.com/de-novo-assembly/software/overview/latest/welcome>

277 Option *pseudohap2* style output
278 11. Scaffolding Falcon assembly with LINKS using Supernova outputs Assembly
279 <https://github.com/bcgsc/LINKS>
280 LINKS -f.fa -s fileofname.fofn -b cns1-linked_draft -d 5000 -t 100 -k 19 -l 5 -a 0.3
281 LINKS -f.fa -s fileofname.fofn -b cns2-linked_draft -d 6000 -t 80 -k 19 -l 15 -a 0.3
282 LINKS -f.fa -s fileofname.fofn -b cns3-linked_draft -d 7000 -t 60 -k 19 -l 20 -a 0.3
283 LINKS -f.fa -s fileofname.fofn -b cns4-linked_draft -d 10000 -t 30 -k 19 -l 20 -a 0.3
284 LINKS -f.fa -s fileofname.fofn -b cns5-linked_draft -d 15000 -t 30 -k 19 -l 20 -a 0.3
285 LINKS -f.fa -s fileofname.fofn -b cns6-linked_draft -d 50000 -t 30 -k 19 -l 30 -a 0.3
286 LINKS -f.fa -s fileofname,fofn -b cns7-linked_draft -d 75000 -t 30 -k 19 -l 40 -a 0.3
287 12. Improving quality with PILON and Illumina sequencing
288 <https://github.com/broadinstitute/pilon/wiki/Requirements-&-Usage>
289 13. Allmaps pseudomolecules scaffolding
290 <https://github.com/tanghaibao/jcvi/wiki/ALLMAPS>
291 14. Assembly evaluation with BUSCO v3
292 <https://busco.ezlab.org/>
293 15. Vitis TE(s) Identification using RepeatMasker
294 <http://www.repeatmasker.org/>
295 16. Annotation with MAKER_P pipeline, SNAP and Augustus gene finder
296 http://www.yandell-lab.org/publications/pdf/maker_current_protocols.pdf
297 <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-5-59>
298 <https://github.com/Gaius-Augustus/Augustus>
299 DB (vitis) AND "Vitis"[porgn] from <https://www.ncbi.nlm.nih.gov>
300 EST DB (vitis) AND "Vitis"[porgn] from <https://www.ncbi.nlm.nih.gov>
301 - First run: rm_pass=0, est2genome=1 and protein2genome=1
302 gff3_merge -d master_datastore_index.log
303 maker2zff -c 0 -e 0 -o 0 -x 0.05 maker1.gff
304 fathom -categorize 1000 genome.ann genome.dna

```
305 fathom -export 1000 -plus uni.ann uni.dna
306 forge export.ann export.dna
307 hmm-assembler.pl RGM . > snap1.hmm
308 - Second run: rm_pass=1, est2genome=0, protein2genome=0, maker_gff=maker1.gff ,
309 snap hmm=snap1.hmm leading to a maker2.gff3 and a snap2.hmm files.
310 gff3_merge -d master_datastore_index.log
311 maker2zff -c 0 -e 0 -o 0 -x 0.05 maker2.gff
312 fathom -categorize 1000 genome.ann genome.dna
313 fathom -export 1000 -plus uni.ann uni.dna
314 forge export.ann export.dna
315 hmm-assembler.pl RGM . > snap2.hmm
316 Run Augustus:
317 zff2gff3.pl genome.ann | perl -plne 's/\t(\S+)\$/\t.\t$1/' > genome.gff3
318 autoAug.pl --genome=../pilon2.fasta --species=RGM18 --cdna=sequence_est_ncbi.fasta --
319 trainingset=genome.gff3 --singleCPU -v --useexisting
320 - Third run: rm_pass=1, est2genome=0, protein2genome=0, maker_gff=maker2.gff ,
321 snap hmm=snap2.hmm, augustus_species=RGM18 leading to a maker3.gff3,
322 maker3.transcripts.fasta and maker3.proteins.fasta structural prediction.
323 gff3_merge -d master_datastore_index.log
324 fasta_merge -d master_datastore_index.log
325 17. Interproscan functional annotation and putative gene function assignation
326 Download protein DB from http://www.uniprot.org
327 makeblastdb -in protein_db.fasta -input_type fasta -dbtype prot
328 blastp -db protein_db.fasta -query maker3.proteins.fasta -out maker3.proteins.blastp -evaluate
329 0.000001 -outfmt 6 -max_hsps 1
330 maker_functional_gff protein_db.fasta maker3.proteins.blastp maker3.gff3 >>
331 maker3.putative.gff3
```

```
332 maker_functional_fasta protein_db.fasta maker3.proteins.blastp maker3.proteins.fasta >>
333 maker3.putative.proteins.fa
334 maker_functional_fasta protein_db.fasta maker3.proteins.blastp maker3.transcripts.fasta >>
335 maker3.putative.transcripts.fa
336 Run Interproscan
337 interproscan.sh --iprlookup --goterms -f tsv -i maker3.putative.proteins.fa -pa -b
338 RGM.annotated.proteins
339 18. Assembly validation using WBA mem
340 bwa mem -M -t 20 VitRiparia.fasta reads_pe.R1.fastq reads_pe.R2.fastq >
341 aln_pe_reads.sam
342 samtools view -bS aln_pe_reads.sam -o aln_pe_reads.bam #| samtools sort -
343 aln_reads.sorted.bam
344 samtools sort -o aln_pe_reads.sorted.bam aln_pe_reads.bam
345 bamtools stats -in aln_pe_reads.sorted.bam > bamstat_pe.reads
346
```

347 **Data records**

348 The *V. riparia* genome project was deposited at NCBI under BioProject number
349 PRJNA512170 and BioSample SAMN10662253. The DNA sequencing data from Illumina,
350 PacBio and 10x Genomics have been deposited in the Sequence Read Archive (SRA)
351 database under accession numbers SRX5189632 to SRX5189680. This Whole Genome
352 Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession
353 SJAQ00000000. The version described in this paper is version SJAQ01000000. Genetic
354 mapping data and structural and functional annotation file of the *Vitis riparia* assembly are
355 available on figshare (<https://figshare.com/s/0a52d4408214e9f1e280>).

356

357 **Technical validation**

358 To evaluate the accuracy and completeness of the *V. riparia* assembly, genome features
359 were compared to those of *V. vinifera* (Table 2). We found that both contig and scaffold N50

360 lengths of *Vitis riparia* reached considerable continuity. The Guanine-Cytosine content (GC =
361 34.32 %) was similar to those of *V. vinifera* Chardonnay (34.43%).
362 To further assess the accuracy of the *V. riparia* genome assembly, the NGS-based short
363 reads from whole-genome sequencing data were also aligned against the genome assembly
364 using BWA mem⁵⁴. We found that 98.4% of the reads were reliably aligned to the genome
365 assembly, and 95.8% of the reads were properly aligned to the genome with their mates.
366 Paired-end reads data were not used during the contig assembly, thus the high alignment
367 ratio demonstrated the high quality of contig assembly.
368 The assembled genome was also subjected to Benchmarking Universal Single-Copy
369 Orthologs⁵⁵, which quantitatively assesses genome completeness using evolutionarily
370 informed expectations of gene content from near-universal single-copy orthologs, using the
371 genes in the embryophyta release 9 dataset (embryophyta.odb9). The BUSCO results
372 showed that 96.5% of conserved BUSCO proteins were detected in the *V. riparia* assembly,
373 including 1.1% of fragment BUSCO proteins (Table 2). Overall, these metrics compare well
374 with other recently published grape genomes, providing a high quality genome sequences for
375 the following functional investigations.

376

377 **References**

378 1. Peterson, D.G. & Arick, M. *Sequencing Plant Genomes*. (Progress in Botany. Springer,
379 Berlin, Heidelberg 2018).

380 2. Nguyen, K.L., Grondin, A., Courtois, B., & Gantet, P. Next-generation sequencing
381 accelerates crop gene discovery. *Trends Plant Sci* **24**, 263-274 (2018).

382 3. Scheben, A., Yuan, Y. & Edwards, D. Advances in genomics for adapting crops to climate
383 change *Curr. Plant Biol.* **6**, 2-10 (2016).

384 4. Jaillon, O. *et al.* The grapevine genome sequence suggests ancestral hexaploidization in
385 major angiosperm phyla. *Nature* **449**, 463-467 (2007).

386 5. Velasco, R. *et al.* A High Quality Draft Consensus Sequence of the Genome of a
387 Heterozygous Grapevine Variety. *PLoS ONE* **2**:e1326 (2007).

388 6. Alkan, C., Sajadian, S. & Eichler, E.E. Limitations of next-generation genome sequence
389 assembly. *Nat. Methods* **8**, 61-65 (2010).

390 7. Da Silva, C. *et al.* The high polyphenol content of grapevine cultivar Tannat berries is
391 conferred primarily by genes that are not shared with the reference genome. *Plant Cell* **25**,
392 4777-4788 (2013).

393 8. Di Genova, A. *et al.* Whole genome comparison between table and wine grapes reveals a
394 comprehensive catalog of structural variants. *BMC Plant Biol* **14**, 7 (2014).

395 9. Jiao, W.B. & Schneeberger, K. The impact of third generation genomic technologies on
396 plant genome assembly. *Curr. Opin. Plant Biol.* **36**, 64-70 (2017).

397 10. Li, C., Lin, F., An, D., Wang, W. & Huang, R. Genome Sequencing and Assembly by
398 Long Reads in Plants. *Genes* **9**, 6 (2018).

399 11. Treangen, T.J. & Salzberg, S.L. Repetitive DNA and next-generation sequencing:
400 computational challenges and solutions. *Nat. Rev. Genet.* **13**, 36-46 (2012).

401 12. Chin, C.S. *et al.* Phased diploid genome assembly with single-molecule real-time
402 sequencing. *Nat. Methods* **13**, 1050-1054 (2016).

403 13. Roach, M. J., Schmidt, S. A., & Borneman, A. R. Purge Haplotigs: allelic contig
404 reassignment for third-gen diploid genome assemblies. *BMC bioinformatics* **19**, 460 (2018).

405 14. Vinson, J.P. *et al.* Assembly of polymorphic genomes: algorithms and application to
406 *Ciona savignyi*. *Genome Research* **15**, 1127–35 (2005).

407 15. Roach, M.J. *et al.* Population sequencing reveals clonal diversity and ancestral
408 inbreeding in the grapevine cultivar Chardonnay. *PLoS Genet* **14**:e1007807 (2018)

409 16. Zhou, Y.S. *et al.* Structural variants, clonal propagation, and genome evolution in
410 grapevine (*Vitis vinifera*) bioRxiv 508119; doi: <https://doi.org/10.1101/508119> (2018).

411 17. Laucou V. *et al.* Extended diversity analysis of cultivated grapevine *Vitis vinifera* with 10K
412 genome-wide SNPs. *PLoS One* **13**:e0192540 (2018).

413 18. Myles, S. *et al.* Genetic structure and domestication history of the grape. *Proc Natl Acad
414 Sci U S A* **108**, 3530-3535 (2011).

415 19. Migicovsky, Z. *et al.* Genomic ancestry estimation quantifies use of wild species in grape
416 breeding. *BMC Genomics* **17**, 478 (2016).

417 20. FAO Commission on genetic resources for food and agriculture assessment. *The state of*
418 *the world's biodiversity for food and agriculture* (2019).

419 21. Marguerit, E. *et al.* Genetic dissection of sex determinism, inflorescence morphology and
420 downy mildew resistance in grapevine. *Theor. Appl. Genet.* **118**, 1261-1278 (2009).

421 22. Elshire, R. J. *et al.* A robust, simple genotyping-by-sequencing (GBS) approach for high
422 diversity species. *PLoS ONE* **6**:e19379 (2011).

423 23. Andrews, S. Fastqc: a quality control tool for high throughput sequence data,
424 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc> (2010).

425 24. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
426 reads. *EMBnet.journal* **17**, 10-12 (2011).

427 25. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
428 2078–2079 (2009).

429 26. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler
430 transform. *Bioinformatics* **26**, 589–595 (2010).

431 27. Picard Tools - By Broad Institute. Available from: <http://broadinstitute.github.io/picard>.

432 28. DePristo M.A. *et al.* A framework for variation discovery and genotyping using next-
433 generation DNA sequencing data. *Nat Genet* **43**, 491-498 (2011).

434 29. Van der Auwera, G.A., *et al.* From FastQ Data to High-Confidence Variant Calls: The
435 Genome Analysis Toolkit Best Practices Pipeline. *Current Protocols in Bioinformatics* **43**, 1-
436 11 (2013).

437 30. Grattapaglia, D., Bertolucci, F.L.G & Sederoff, R. Genetic mapping of QTLs controlling
438 vegetative propagation in *Eucalyptus grandis* and *E. urophylla* using a pseudo-testcross
439 mapping strategy and RAPD markers. *Theor. Appl. Genet.* **90**, 933–947 (1995).

440 31. Hyma, K.E. *et al.* Heterozygous mapping strategy (HetMappS) for high resolution
441 Genotyping-By-Sequencing markers: a case study in grapevine. *PLoS One* **10**: e0134880
442 (2015).

443 32. Stam, P. & Van Ooijen J.W. JOINMAP version 2.0: software for the calculation of genetic
444 linkage maps (1995).

445 33. Van Ooijen, J.W. JoinMap® 4.0, Software for the calculation of genetic linkage maps in
446 experimental populations. Kyazma B.V. Wageningen, Netherlands (2006)

447 34. Broman, K.W., Wu, H., Sen, S., & Churchill G.A. R/qtl: QTL mapping in experimental
448 crosses. *Bioinformatics* **19**, 889-890 (2003).

449 35. Lodhi, M.A. & Reisch, B.I. Nuclear DNA content of *Vitis* species, cultivars, and other
450 genera of the Vitaceae. *Theor. Appl. Genet.* **90**, 11-16 (1995).

451 36. Liu, B., Shi, Y., Yuan, Y., Hu, X., Zhang, H., Li, N., Li, Z., Chen, Y., Mu, D., and Fan, W..
452 Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome
453 projects. arXiv preprint arXiv:1308 (2012).

454 37. Marcais, G. & Kingsford, K. A fast, lock-free approach for efficient parallel counting of
455 occurrences of k-mers. *Bioinformatics* **27**, 764-770 (2011).

456 38. PacBio FALCON GitHub page <https://github.com/PacificBiosciences/FALCON>, Accessed
457 18 Mar 2018.

458 39. Pacific Biosciences, SMRT tools. <https://www.pacb.com/wp-content/uploads/SMRT-Tools-Reference-Guide-v4.0.0.pdf>.

460 40. Chaisson, M.J. & Tesler, G. Mapping single molecule sequencing reads using basic local
461 alignment with successive refinement (BLASR): application and theory. *BMC Bioinformatics*
462 **13**, 238 (2012).

463 41. Walker, B.J. *et al.* Pilon: an integrated tool for comprehensive microbial variant detection
464 and genome assembly improvement. *PLoS One* **9**: e112963 (2014).

465 42. Weisenfeld, N.I., Kumar, V., Shah, P., Church, D.M. & Jaffe D.B. Direct determination of
466 diploid genome sequences. *Genome research* **27**, 757-767 (2017).

467 43. Warren, R.L. *et al.* LINKS: Scalable, alignment-free scaffolding of draft genomes with
468 long reads. *Gigascience*. **4**, 35 (2015).

469 44. Tang, H. *et al.* ALLMAPS: robust scaffold ordering based on multiple maps. *Genome
470 Biol.* **16**, 3-10 (2015).

471 45. Cabanettes, F. & Klopp, C. D-GENIES: dot plot large genomes in an interactive, efficient
472 and simple way. *PeerJ* **6**:e4958 (2018).

473 46. Ma, Z.Y. *et al.* Phylogenomics, biogeography, and adaptive radiation of grapes.
474 *Molecular phylogenetics and evolution* **129**, 258-267 (2018).

475 47. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in
476 genomic sequences. *Curr Protoc Bioinformatics* **25**, 4-10 (2009).

477 48. Bao, W., Kojima, K.K. & Kohany, O. Repbase Update, a database of repetitive elements
478 in eukaryotic genomes. *Mobile DNA* **6**:11 (2015).

479 49. Campbell, M.S., Holt, C., Moore, B. & Yandell, M. Genome Annotation and Curation
480 Using MAKER and MAKER-P. *Curr Protoc Bioinformatics* **48**, 1-39 (2014).

481 50. Campbell, M.S. *et al.* MAKER-P: a tool kit for the rapid creation, management, and
482 quality control of plant genome annotations. *Plant Physiol* **164**, 513–24. (2014).

483 51. Korf, I. Gene finding in novel genomes. *BMC Bioinformatics* **5**:59. (2004).

484 52. Stanke, M. *et al.* AUGUSTUS: a web server for gene finding in eukaryotes. *Nucleic Acids*
485 *Research* **32**, 309-312 (2004).

486 53. Buels, R. *et al.* JBrowse: a dynamic web platform for genome visualization and analysis.
487 *Genome Biology* **12**, 17-66 (2016).

488 54. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
489 arXiv:1303.3997v1. (2013)

490 55. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M.
491 BUSCO: assessing genome assembly and annotation completeness with single-copy
492 orthologs. *Bioinformatics* **31**, 3210-3212 (2015).

493

494 **Data Citations**

495 1. NCBI Sequence Read Archive <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA512170>
496 (2018)

497 2. NCBI Assembly https://www.ncbi.nlm.nih.gov/assembly/GCA_004353265.1 (2019)

498 3. Girollet, N., Rubio, B. and Bert P.-F. De novo phased assembly of the *Vitis riparia* grape
499 genome. figshare <https://figshare.com/s/0a52d4408214e9f1e280> (2019)

500

501 **Conflicts of interests**

502 The authors declare that they have no competing interests.

503

504 **Acknowledgements**

505 We thank Dr. Nathalie Ollat and Dr. Gregory Gambetta for critical review of the manuscript.

506 We thank the INRA GeT-PlaGE platform (<http://get.genotoul.fr>) for sequencing the genome,
507 the INRA Genotoul bioinformatics platform (<http://genotoul.toulouse.inra.fr>) for providing
508 computational resources and support.

509 We thank Dr. Timothée Flutre and Amandine Launay for their help in coordinating the
510 FruitSelGen project and in acquiring GBS data.

511 This work was supported by a grant overseen by the French National Research Agency
512 (ANR) as part of the ANR-09-GENM-024 “Vitsec” program and by the University of
513 Bordeaux.

514

515 **Author contributions**

516 Author P.-F. B. conceived the project. N. G. and P.-F. B. assembled the genomes, performed
517 the genome annotation and downstream analyses. B. R. performed GBS analysis and
518 genetic mapping. P.-F. B. wrote the paper. All authors read, edited and approved the final
519 manuscript.

520

521

522 Table 1: Data count and library informations for *Vitis riparia* genome sequencing

523

Sequencing platform	Insert size (bp)	Read length (bp)	Number of sequences (million)	Number of bases (billion)	Sequence depth	Application
PacBio	NA	7054	8.3	59	118X	Genome assembly
10X Chromium	400	2 x 150	350	52	107X	Genome scaffolding and phasing
Illumina	400 (pair end)	2 x 100	331	33	66X	Genome survey and genomic
	6,000 (mate pair)	2 x 100	200	20	40X	base correction
Total				164	331X	

524

525

526

527

528

529

530

531

532

533

534 Table 2: Summary of the *V. riparia* genome assembly and comparison with *V. vinifera*
535 varieties.

536

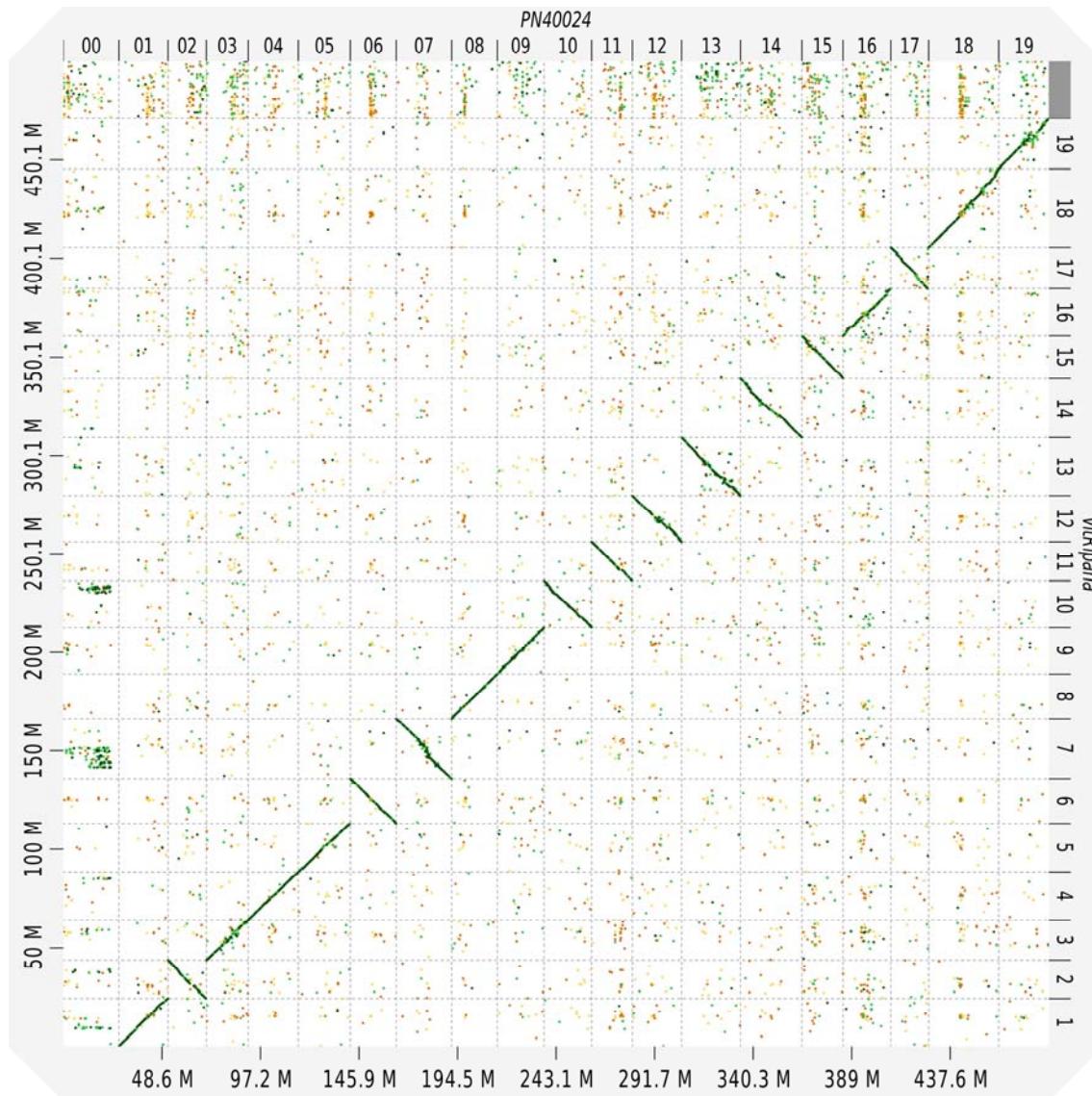
<i>Vitis vinifera</i>			<i>Vitis riparia</i>	
	PN40024	Cabernet	Chardonnay	Riparia Gloire
		sauvignon		de Montpellier
Technology	Sanger	PacBio	PacBio	PacBio / 10X
				Chromium
Genome coverage	12X	140X	115X	225X
Contig length (Mb)	NA	591 p-tigs 368 h-tgs	490 p-tigs 378 h-tgs	530 p-tigs 317 h-tgs
Number of contigs	14,665	718 p-tigs 2,037 h-tgs	854 p-tigs 1,883 h-tgs	1,964 p-tigs 3,344 h-tgs
Number of scaffolds	2,065	NA	NA	870
N50 (kb)	103	2,170	935	964
Total length (Mb)	486	591	490	500
Number of coding genes	42,414 (Cost.v3)	36,687	29,675	37,207
BUSCO	C:95.8% F:1.5% M:2.7%	C:94.0% F:2.0% M:4.0%	C:95.0% F:1.6% M:3.4%	C:95.4% F:1.1% M:3.5%

537

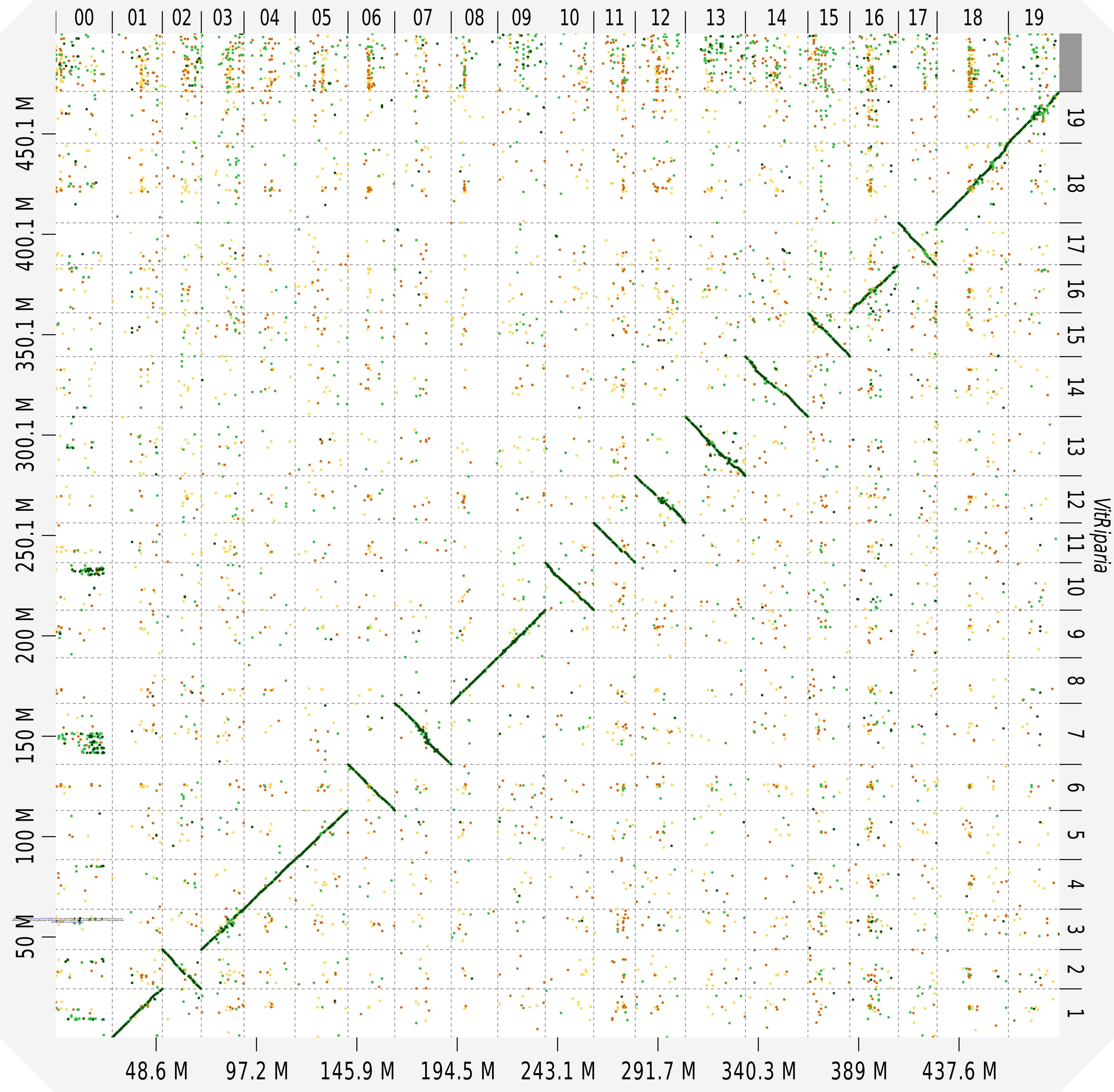
538

539 Table 3: Repeated elements present in the *Vitis riparia* genome.

540


	number of elements	length occupied (base pairs)	percentage of sequence
Retroelements	95,441	125,292,108	25.05%
SINEs	0	0	0.00%
Penelope	0	0	0.00%
LINEs:	17,557	18,048,495	3.61%
CRE/SLACS	0	0	0.00%
L2/CR1/Rex	0	0	0.00%
R1/LOA/Jockey	0	0	0.00%
R2/R4/NeSL	0	0	0.00%
RTE/Bov-B	0	0	0.00%
L1/CIN4	17,557	180,48,495	3.61%
LTR elements:	77,884	107,243,613	21.44%
BEL/Pao	0	0	0.00%
Ty1/Copia	27,636	41,679,808	8.33%
Gypsy/DIRS1	48,176	63,337,662	12.66%
Retroviral	0	0	0.00%
DNA transposons	80,801	30,107,834	6.02%
hobo-Activator	14,757	6,431,569	1.29%
Tc1-IS630-Pogo	0	0	0.00%
En-Spm	436	1,086,471	0.22%
MuDR-IS905	0	0	0.00%
PiggyBac	0	0	0.00%
Tourist/Harbinger	34,070	82,90 ,818	1.66%
Other (Mirage, P-element,	0	0	0.00%
Rolling-circles	0	0	0.00%
Unclassified	53	67,393	0.01%
Total interspersed repeats		155,467,335	31.09%
Small RNA	202	43,383	0.01%
Satellites	1,282	1,975,618	0.40%
Simple repeats	222,322	9,483,835	1.90%
Low complexity	54,205	2,848,156	0.57%

541


542

543

544 Fig. 1: Comparison of *Vitis riparia* hybrid scaffolds with the reference PN40024 assembly.
545 Hybrid scaffolds (Y-axis) were aligned to all 19 PN40024 chromosomes (X-axis) using D-
546 GENIES and alignments were subsequently filtered for 1-on-1 alignments and
547 rearrangements with a 20 Kbps length cutoff.

PN40024

