
DeepFly3D 2019

DeepFly3D: A deep learning-based1

approach for 3D limb and appendage2

tracking in tethered, adult Drosophila3

Semih Günel1,2*, Helge Rhodin1, Daniel Morales2, João Campagnolo2, Pavan4

Ramdya2*†, Pascal Fua1†5

*For correspondence:
semih.gunel@epfl.ch (SG);

pavan.ramdya@epfl.ch (PR)

†These authors contributed equally

to this work

1School of Computer and Communication Sciences, Computer Vision Laboratory, EPFL,6

Lausanne, Switzerland; 2School of Life Sciences, Brain Mind Institute & Interfaculty7

Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland8

9

Abstract Studying how neural circuits orchestrate limbed behaviors requires the precise10

measurement of the positions of each appendage in 3-dimensional (3D) space. Deep neural11

networks can estimate 2-dimensional (2D) pose in freely behaving and tethered animals. However,12

the unique challenges associated with transforming these 2D measurements into reliable and13

precise 3D poses have not been addressed for small animals including the fly, Drosophila14

melanogaster. Here we present DeepFly3D, a software that infers the 3D pose of tethered, adult15

Drosophila—or other animals—using multiple camera images. DeepFly3D does not require manual16

calibration, uses pictorial structures to automatically detect and correct pose estimation errors, and17

uses active learning to iteratively improve performance. We demonstrate more accurate18

unsupervised behavioral embedding using 3D joint angles rather than commonly used 2D pose19

data. Thus, DeepFly3D enables the automated acquisition of behavioral measurements at an20

unprecedented level of resolution for a variety of biological applications.21

22

Introduction23

The precise quantification of movements is critical for understanding how neurons, biomechanics,24

and the environment influence and give rise to animal behaviors. For organisms with skeletons and25

exoskeletons, these measurements are naturally made with reference to 3D joint and appendage26

locations. Paired with modern approaches to simultaneously record the activity of neural popu-27

lations in tethered, behaving animals (Dombeck et al., 2007; Seelig et al., 2010; Chen et al., 2018),28

3D joint and appendage tracking promises to accelerate the dissection of neural control principles,29

particularly in the genetically tractable and numerically simple nervous system of the fly, Drosophila30

melanogaster.31

However, algorithms for reliably estimating 3D pose in such small animals have not yet been32

developed. Instead, multiple alternative approaches have been taken. For example, one can affix33

and use small markers—reflective, colored, or fluorescent particles—to identify and reconstruct34

keypoints from video data (Bender et al., 2010; Kain et al., 2013; Todd et al., 2017). Although this35

approach works well on humans (Moeslund and Granum, 2000), in smaller animals markers likely36

hamper movements, are difficult to mount on sub-millimeter scale limbs, and, most importantly,37

measurements of one or even two markers on each leg (Todd et al., 2017) cannot fully describe38

3D limb kinematics. Another strategy has been to use computer vision techniques that operate39

without markers. However, these measurements have been restricted to 2D pose in freely behaving40

1 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

semih.gunel@epfl.ch
pavan.ramdya@epfl.ch
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

animals. Before the advent of deep learning, this was accomplished by matching the contours of41

animals seen against uniform backgrounds (Mori and Malik, 2006), measuring limb tip positions42

using complex TIRF-based imaging (Mendes et al., 2013), or measuring limb segments using active43

contours (Uhlmann et al., 2017). In addition to being limited to 2D rather than 3D pose, these meth-44

ods are complex, time-consuming, and error-prone in the face of long data sequences, cluttered45

backgrounds, fast motion, and occlusions that naturally occur when animals are observed from a46

single 2D perspective.47

As a result, in recent years the computer vision community has largely forsaken these techniques48

in favor of deep learning-based methods. Consequently, the effectiveness of monocular 3D human49

pose estimation algorithms has improved greatly. This is especially true when capturing human50

movements for which there is enough annotated data to train deep networks effectively. Walking51

and upright poses are prime examples of this, and state-of-the-art algorithms (Pavlakos et al.,52

2017a; Tome et al., 2017; Popa et al., 2017; Moreno-noguer, 2017; Martinez et al., 2017; Mehta53

et al., 2017; Rogez et al., 2017; Pavlakos et al., 2017b; Zhou et al., 2017; Tekin et al., 2017; Sun54

et al., 2017) now deliver impressive real-time results in uncontrolled environments. Increased55

robustness to occlusions can be obtained by using multi-camera setups (Elhayek et al., 2015;56

Rhodin et al., 2016; Simon et al., 2017; Pavlakos et al., 2017b) and triangulating the 2D detections.57

This improves accuracy while making it possible to eliminate false detections.58

These advances in 2D pose estimation have also recently been used to measure behavior in59

laboratory animals. For example, DeepLabCut provides a user-friendly interface to DeepCut, a60

state-of-the-art human pose estimation network (Mathis et al., 2018), and LEAP (Pereira et al.,61

2019) can successfully track limb and appendage landmarks using a shallower network. Still, 2D62

pose provides an incomplete representation of animal behavior: important information can be lost63

due to occlusions, and movement quantification is heavily influenced by perspective. Unfortunately,64

techniques used to translate human 2D pose to 3D pose cannot be easily transferred for the study65

of small animals like Drosophila: adult flies are approximately 2.5 mm long, have many appendages66

and joints, are translucent, and in most laboratory experiments are only illuminated using infrared67

light (to avoid visual stimulation)—precluding the exploitation of color information. Moreover,68

precisely registering multiple camera viewpoints using traditional approaches would require the69

fabrication of a prohibitively small checkerboard pattern, along with the tedious labor of repeatedly70

calibrating using a small, external target.71

To overcome these challenges, we introduce DeepFly3D, a deep learning-based software pipeline72

that achieves comprehensive, rapid, and reliable 3D pose estimation in tethered, behaving adult73

Drosophila (Figure 1, Figure 1–video 1). DeepFly3D is applied to synchronized videos acquired74

from multiple cameras (Figure 12). It first uses a state-of-the-art deep network (Newell et al.,75

2016) and then enforces consistency across views (Figure 8). This makes it possible to eliminate76

spurious detections, achieve high 3D accuracy, and use 3D pose errors to further fine-tune the77

deep network to achieve even better accuracy (Figure 2). To register the cameras, DeepFly3D uses78

a novel calibration mechanism in which the fly itself is the calibration target (Figure 7). Thus, the79

user doesn’t need to manufacture a prohibitively small calibration pattern, or repeat cumbersome80

calibration protocols. We explain how users can modify the codebase to extend DeepFly3D for81

3D pose estimation in other animals (Figure 11 and see Methods). Finally, we demonstrate that82

unsupervised behavioral embedding of 3D joint angle data (Figure 4) is robust against problematic83

artifacts present in embeddings of 2D pose data (Figure 3). In short, DeepFly3D delivers 3D pose84

estimates reliably, accurately, and with minimal manual intervention while also providing a critical85

tool for automated behavioral data analysis.86

2 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Figure 1. Deriving 3D pose from multiple camera views. (A) Raw image inputs to the Stacked Hourglass deep network. (B) Probability maps output
from the trained deep network. For visualization purposes, multiple probability maps have been overlaid for each camera view. (C) 2D pose
estimates from the Stacked Hourglass deep network after applying pictorial structures and multi-view algorithms. (D) 3D pose derived from
combining multiple camera views. For visualization purposes, the 3D pose has been projected onto the original 2D camera perspectives. (E) 3D
pose rendered in 3D coordinates. Immobile thorax-coxa joints and antennal joints have been removed for clarity.

The following video supplement is available for this figure:

Figure 1–video 1. Deriving 3D pose from multiple camera views during backward walking in an optogenetically stimulated MDN>CsChrimson fly.
https://drive.google.com/file/d/15nGQRgrjY4dyGh0GFr5eZrRQuOR6Z4fK/view?usp=sharing.

Results87

DeepFly3D88

The input to DeepFly3D is video data from seven cameras (Figure 12). These images are used89

to identify the 3D positions of 38 landmarks per animal: (i) five on each limb – the thorax-coxa,90

coxa-femur, femur-tibia, and tibia-tarsus joints as well as the pretarsus, (ii) six on the abdomen91

- three on each side, and (iii) one on each antenna - useful for measuring head rotations. Our92

software incorporates a number of innovations designed to ensure automated, high-fidelity, and93

reliable 3D pose estimation:94

• Calibration without external targets: Estimating 3D pose from multiple images requires95

calibrating the cameras to achieve a level of accuracy that is commensurate with the tar-96

get size—a difficult challenge when measuring leg movements for an animal as small as97

Drosophila. Therefore, instead of using a typical external calibration grid, DeepFly3D uses98

the fly itself as a calibration target. It detects arbitrary points on the fly’s body and relies on99

bundle-adjustment (Chavdarova et al., 2018) to simultaneously assign 3D locations to these100

points and to estimate the positions and orientations of each camera (Figure 7). To increase101

robustness, it enforces geometric constraints that apply to tethered flies with respect to limb102

segment lengths and ranges of motion.103

• Geometrically consistent reconstructions: Starting with a state-of-the-art deep network104

for 2D keypoint detection in individual images (Newell et al., 2016), DeepFly3D enforces105

geometric consistency constraints across multiple synchronized camera views. When triangu-106

lating 2D detections to produce 3D joint locations, it relies on pictorial structures and belief107

propagation message passing (Felzenszwalb and Huttenlocher, 2005) to detect and further108

correct erroneous pose estimates (Figure 8).109

3 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://drive.google.com/file/d/15nGQRgrjY4dyGh0GFr5eZrRQuOR6Z4fK/view?usp=sharing.
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

• Self-supervision and active learning: We also use multiple view geometry as a basis for110

active learning. Thanks to the redundancy inherent in obtaining multiple views of the same111

animal, we can detect erroneous 2D predictions for correction (Figure 10) that would most112

efficiently train the 2D pose deep network. This approach greatly reduces the need for time-113

consuming manual labeling (Simon et al., 2017). We also use pictorial structure corrections to114

fine-tune the 2D pose deep network. Self-supervision constitutes 85% of our training data.115

Improving 2D pose using pictorial structures and active learning116

We validated our approach using a challenging dataset of 2063 frames manually annotated using117

the DeepFly3D annotation tool (Figure 6) and sampled uniformly from each camera. Images for118

testing and training are 480×960 pixels. The test dataset included challenging frames and occasional119

motion blur to increase the difficulty of pose estimation. For training, we used a final training120

dataset of 37,000 frames, an overwhelming majority of which were first automatically corrected121

using pictorial structures. On test data, we achieved a Root Mean Square Error (RMSE) of 13.9122

pixels. Setting a 50 pixel threshold for PCK (percentage of correct keypoints) computation, we123

observed a 98.2% general accuracy before applying pictorial structures. We found that application124

of pictorial structures corrected 59% of erroneous predictions, increasing the final accuracy to125

99.2%. These improvements are illustrated in Figure 2. Pictorial structure failures were often due126

to pose ambiguities resulting from heavy motion blur. These remaining errors were automatically127

detected with multi-view redundacy using Equation 6, and earmarked for manual correction using128

the DeepFly3D GUI (Figure 9).129

Figure 2. Pose estimation accuracy before and after using pictorial structures. Shown are pixel-wise 2D pose
errors/residuals (top) and their respective distributions (bottom) (A) before, or (B) after applying pictorial
structures. Residuals larger than 35 pixels (red circles) represent incorrect keypoint detections. Those below this

threshold (blue circles) represent correct keypoint detections.

3D pose permits robust unsupervised behavioral classification130

Unsupervised behavioral classification approaches enable the unbiased quantification of animal131

behavior by processing data features—image pixel intensities (Berman et al., 2014; Cande et al.,132

2018), limb markers (Todd et al., 2017), or 2D pose (Pereira et al., 2019)—to cluster similar behav-133

ioral epochs without user intervention and to automatically distinguish between otherwise similar134

actions. However, with this sensitivity may come a susceptibility to features unrelated to behavior.135

These may include changes in image size or perspective resulting from differences in camera angle136

across experimental systems, variable mounting of tethered animals, and inter-animal morpho-137

logical variability. In theory, each of these issues can be overcome—providing scale and rotational138

invariance—by using 3D joint angles rather than 2D pose for unsupervised embedding.139

4 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

To test this possibility, we performed unsupervised behavioral classification on video data140

taken during optogenetic stimulation experiments that repeatedly and reliably drove specific ac-141

tions. Specifically, we optically activated CsChrimson (Chen et al., 2013) to elicit backward walking142

in MDN>CsChrimson animals (Figure 4–video 1) (Bidaye et al., 2014), or antennal grooming in143

aDN>CsChrimson animals (Figure 4–video 2) (Hampel et al., 2015). We also stimulated control144

animals lacking the UAS-CsChrimson transgene (Figure 4–video 3)(MDN-GAL4/+ and aDN-GAL4/+).145

First, we performed unsupervised behavioral classification using 2D pose data from three adja-146

cent cameras containing keypoints for three limbs on one side of the body. Using these data, we147

generated a behavioral map (Figure 3A). In this map each individual cluster would ideally repre-148

sent a single behavior (e.g., backward walking, or grooming) and be populated by nearly equal149

amounts of data from each of the three cameras. This was not the case: data from each camera150

covered non-overlapping regions and clusters (Figure 3B-D). This effect was most pronounced151

when comparing regions populated by cameras 1 and 2 versus camera 3. Therefore, because the152

underlying behaviors were otherwise identical (data across cameras were from the same animals153

and experimental time points), we concluded that unsupervised behavioral classification of 2D pose154

data is highly sensitive to corruption by viewing angle differences.155

Figure 3. Unsupervised behavioral classification of 2D pose data is sensitive to viewing angle. (A) Behavioral
map derived using 2D pose data from three adjacent cameras (Cameras 1, 2, and 3) but the same animals and

experimental time points. Shown are clusters (black outlines) with enriched (yellow), or sparsely (blue)

populated data. Different clusters are enriched for data from either (B) camera 1, (C) camera 2, or (D) camera 3.
Behavioral embeddings were derived using 1 million frames during 4 s of optogenetic stimulation of

MDN>CsChrimson (n=6 flies, n=29 trials), aDN>CsChrimson (n=6 flies, n=30 trials), and wild-type control animals

(MDN-GAL4/+: n=4 flies, n=20 trials. aDN-GAL4/+: n=4 flies, n=23 trials).

By contrast, performing unsupervised behavioral classification using DeepFly3D-derived 3D156

joint angles resulted in a map (Figure 4) with a clear segregation and enrichment of clusters for157

different GAL4 drivers lines and their associated behaviors (i.e., backward walking (Figure 4–video 4),158

grooming (Figure 4–video 5), and forward walking (Figure 4–video 6)). Thus, 3D pose overcomes159

serious issues arising from unsupervised embedding of 2D pose data, enabling more reliable and160

robust behavioral data analysis.161

Discussion162

We have developed DeepFly3D, a deep learning-based 3D pose estimation system that is optimized163

for quantifying limb and appendage movements in tethered, behaving Drosophila. By using multiple164

synchronized cameras and exploiting multi-view redundancy, our software delivers robust and accu-165

rate pose estimation at the sub-millimeter scale. Our approach relies on supervised deep learning166

to train a neural network that detects 2D joint locations in individual camera images. Importantly,167

our network becomes increasingly competent as it runs: By leveraging the redundancy inherent168

to a multiple-camera setup, we iteratively reproject 3D pose to automatically detect and correct169

2D errors, and then use these corrections to further train the network without user intervention.170

Ultimately, we may work solely with monocular images by lifting the 2D detections (Pavlakos et al.,171

2017b) to 3D or by directly regressing to 3D (Tekin et al., 2017) as has been achieved in human pose172

5 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Figure 4. Unsupervised behavioral classification of 3D joint angle data. Behavioral embeddings were calculated
using 3D joint angles from the same 1 million frames used in Figure 3. (A) Behavioral map combining all data
during 4 s of optogenetic stimulation of MDN>CsChrimson (n=6 flies, n=29 trials), aDN>CsChrimson (n=6 flies,

n=30 trials), and wild-type control animals (For MDN-Gal4/+, n=4 flies, n=20 trials. For aDN-Gal4/+ n=4 flies,

n=23 trials). The same behavioral map is shown with only the data from (B)MDN>CsChrimson stimulation, (C)
aDN>CsChrimson stimulation, or (D) control animal stimulation. Associated videos reveal that these distinct
map regions are enriched for backward walking, antennal grooming, and forward walking, respectively.

The following video supplements are available:

Figure 4–video 1. Representative MDN CsChrimson optogenetically activated backward walking.
https://drive.google.com/file/d/1YY98bo2ZbjLotyiTHdViey5zfhKow4Jx/view?usp=sharing

Figure 4–video 2. Representative aDN>CsChrimson optogenetically activated antennal grooming.
https://drive.google.com/file/d/1_QBgt7P6DhR9hHkNArQIOyNaZALTQumk/view?usp=sharing

Figure 4–video 3. Representative control animal behavior during illumination.
https://drive.google.com/file/d/1OoIwMCSyZFyJ6TQ6sTlcJIaMCT69JKH2/view?usp=sharing

Figure 4–video 4. Sample behaviors from 3D pose cluster enriched in backward walking.
https://drive.google.com/file/d/1H-R1PmcusV55Yw7c_4dKVFaGtJM-FG9M/view?usp=sharing

Figure 4–video 5. Sample behaviors from 3D pose cluster enriched in antennal grooming.
https://drive.google.com/file/d/1f7TaF8FTWNwuvpdK9hV0IX7tt6f2QjXo/view?usp=sharing

Figure 4–video 6. Sample behaviors from 3D pose cluster enriched in forward walking.
https://drive.google.com/file/d/1Q6ONxGLMIg2O2glwP0uw1mzP8lkAwOgk/view?usp=sharing

estimation studies. In the Methods section, we explain in detail how organism-specific features of173

DeepFly3D—bone segment length, number of legs, and camera focal distance—can be modified to174

study, for example, humans (Figure 11), primates, rodents, or other insects.175

As in the past, we anticipate that the development of new technologies for quantifying behavior176

will open new avenues and enhance existing lines of investigation. For example, deriving 3D177

pose using DeepFly3D can improve the resolution of studies examining how neuronal stimulation178

influences animal behavior (Cande et al., 2018;McKellar et al., 2019), the precision and predictive179

power of efforts to define natural action sequences (Seeds et al., 2014;McKellar et al., 2019), the180

assessment of interventions that target models of human disease (Feany and Bender, 2000; Hewitt181

and Whitworth, 2017), and the linking of neural activity with animal behavior—when coupled with182

recording technologies like 2-photon microscopy (Seelig et al., 2010; Chen et al., 2018). Importantly,183

3D pose dramatically improves the robustness of unsupervised behavioral classification approaches.184

Therefore, DeepFly3D is a critical step toward the ultimate goal of achieving fully-automated, high-185

fidelity behavioral data analysis.186

Materials and Methods187

With synchronized Drosophila video sequences from seven cameras in hand, the first task for188

DeepFly3D is to detect the 2D location of 38 landmarks. These 2D locations of the same landmarks189

seen across multiple views are then triangulated to produce 3D pose estimates. This pipeline is190

depicted in Figure 5. First, we will describe our deep learning-based approach to detect landmarks191

in images. Then, we will explain the triangulation process that yields full 3D trajectories. Finally, we192

6 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://drive.google.com/file/d/1YY98bo2ZbjLotyiTHdViey5zfhKow4Jx/view?usp=sharing
https://drive.google.com/file/d/1_QBgt7P6DhR9hHkNArQIOyNaZALTQumk/view?usp=sharing
https://drive.google.com/file/d/1OoIwMCSyZFyJ6TQ6sTlcJIaMCT69JKH2/view?usp=sharing
https://drive.google.com/file/d/1H-R1PmcusV55Yw7c_4dKVFaGtJM-FG9M/view?usp=sharing
https://drive.google.com/file/d/1f7TaF8FTWNwuvpdK9hV0IX7tt6f2QjXo/view?usp=sharing
https://drive.google.com/file/d/1Q6ONxGLMIg2O2glwP0uw1mzP8lkAwOgk/view?usp=sharing
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

will describe how we identify and correct erroneous 2D detections automatically.193

Figure 5. The DeepFly3D pose estimation pipeline. (A) Data acquisition from the multi-camera system. (B)
Training and retraining of 2D pose. (C) 3D pose estimation.

Deep Network Architecture. We aim to detect five joints on each limb, six on the abdomen,194

and one on each antenna, giving a total of 38 keypoints per time instance. To achieve this, we195

adapted a state-of-the-art Stacked Hourglass human pose estimation network (Newell et al., 2016)196

by changing the input and output layers to accommodate a new input image resolution and a197

different number of tracked points. A single hourglass stack consists of residual bottleneck modules198

with max pooling, followed by up-sampling layers and skip connections. The first hourglass network199

begins with a convolutional layer and a pooling layer to reduce the input image size from 256 × 512200

to 64 × 128 pixels. The remaining hourglass input and output tensors are 64 × 128. We used 8 stacks201

of hourglasses in our final implementation. The output of the network is a stack of probability202

maps, also known as heatmaps or confidence maps. Each probability map encodes the location203

of one keypoint, as the belief of the network that a given pixel contains that particular tracked204

point. However, probability maps do not formally define a probability distribution: their sum over205

all pixels does not equal 1.206

2D pose training dataset. We trained our network for 19 keypoints, resulting in the tracking207

of 38 points when both sides of the fly are accounted for. Determining which images to use for208

training purposes is critical. The intuitively simple approach—training with randomly selected209

images—may lead to only marginal improvements in overall network performance. This is because210

images for which network predictions can already be correctly made give rise to only small gradients211

during training. On the other hand, manually identifying images that may lead to incorrect network212

predictions is highly laborious. Therefore, to identify such challenging images, we exploited the213

redundancy of having multiple camera views (see section 3D pose correction). Outliers in individual214

camera images were corrected automatically using images from other cameras, and frames that still215

exhibited large reprojection errors on multiple camera views were selected for manual annotation216

and network retraining. This combination of self supervision and active learning permits faster217

training using a smaller manually annotated dataset (Simon et al., 2017). The full annotation218

and iterative training pipeline is illustrated in Figure 5. In total, 40,063 images were annotated:219

7 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

5,063 were labeled manually in the first iteration, 29,000 by automatic correction, and 6,000 by220

manually correcting those proposed by the active learning strategy.221

Deep network training procedure. We trained our Stacked Hourglass network to regress from222

256 × 512 pixel grayscale video images to multiple 64 × 128 probability maps. Specifically, during223

training and testing, networks output a 19 × 64 × 128 tensor; one 64 × 128 probability map per224

tracked point. During training, we created probability maps by embedding a 2D Gaussian with225

mean at the ground-truth point and 1px symmetrical extent, i.e., with � = 1px on the diagonal of226

the covariance matrix. We calculated the loss as the L2 distance between the ground-truth and227

predicted probability maps. During testing, the final network prediction for a given point was the228

probability map pixel with maximum probability. We started with a learning rate of 0.0001 and229

then multiplied the learning rate by a factor of 0.1 once the loss function plateaued for more than230

5 epochs. We used an RMSPROP optimizer for gradient descent, following the original Stacked231

Hourglass implementation, with a batch-size of 8 images. Using 37,000 training images, the Stacked232

Hourglass network usually converges to a local minimum after 100 epochs (20 hours on a single233

GPU).234

Network training details. Variations in each fly’s position across experiments are handled235

by the translational invariance of the convolution operation. In addition, we artificially augment236

training images to improve network generalization for further image variables. These variables237

include (i) illumination conditions – we randomly changed the brightness of images using a gamma238

transformation, (ii) scale – we randomly rescaled images between 0.80x - 1.20x, and (iii) rotation – we239

randomly rotated images and corresponding probability maps ±15◦. This augmentation was enough240

to compensate for real differences in the size and orientation of tethered flies across experiments.241

Furthermore, as per general practice, the mean channel intensity was subtracted from each input242

image to distribute annotations symmetrically around zero. We began network training using243

pretrained weights from the MPII human pose dataset (Andriluka et al., 2014). This dataset consists244

of more than 25,000 images with 40,000 annotations, possibly with multiple ground-truth human245

pose labels per image. Starting with a pretrained network results in faster convergence. However, in246

our experience, this does not affect final network accuracy in cases with a large amount of training247

data. We split the dataset into 37,000 training images, 2,063 testing images, and 1,000 validation248

images. None of these subsets shared common images or common animals, to ensure that249

the network could generalize across animals, and experimental setups. 5,063 of our training250

images were manually annotated, and the remaining data were automatically collected using belief251

propagation, graphical models, and active learning, (see section 3D pose correction). Deep neural252

network parameters need to be trained on a dataset with manually annotated ground-truth key253

point positions. To initialize the network, we collected annotations using a custom multicamera254

annotation tool that we implemented in JavaScript using Google Firebase (Figure 6). The DeepFly3D255

annotation tool operates on a simple web-server, easing the distribution of annotations across256

users and making these annotations much easier to inspect and control. We provide a GUI to257

inspect the raw annotated data and to visualize the network’s 2D pose estimation (Figure 9).258

Computing hardware and software. We trained our model on a desktop computing work-259

station running on an Intel Core i9-7900X CPU, 32 GB of DDR4 RAM, and a GeForce GTX 1080.260

With 37,000 manually and automatically labeled images, training takes nearly 20 hours on a single261

GeForce GTX 1080 GPU. Our code is implemented with Python 3.6, Pytorch 0.4 and CUDA 9.2.262

Accuracy analysis. Consistent with the human pose estimation literature, we report accuracy263

as Percentage of Correct Keypoints (PCK) and Root Mean Squared Error (RMSE). PCK refers to264

the percentage of detected points lying within a specific radius from the ground-truth label. We265

set this threshold as 50 pixels, which is roughly one third of the femur-tibia segment. The final266

estimated position of each keypoint was obtained by selecting the pixel with the largest probability267

value on the relevant probability map. We compared DeepFly3D’s annotations with manually268

annotated ground-truth labels to test our model’s accuracy. For RMSE, we report the square root269

of average pixel distance between the prediction and the ground-truth location of the tracked270

8 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Figure 6. The DeepFly3D annotation tool. This GUI allows the user to manually annotate joint positions on
images from each of 7 cameras. Because this tool can be accessed from a web browser, annotations can be

performed in a distributed manner across multiple users more easily. A full description of the annotation tool

can be found in the online documentation: https://github.com/NeLy-EPFL/DeepFly3D

point. We remove trivial points such as the body-coxa and coxa-femur—which remain relatively271

stationary—to fairly evaluate our algorithms and to prevent these points from dominating our272

accuracy measurements.273

From 2D landmarks to 3D trajectories274

In the previous section, we described our approach to detect 38 2D landmarks. Let xc,j ∈ ℝ2 denote275

the 2D position of landmark j and the image acquired by camera c. For each landmark, our task is276

now to estimate the corresponding 3D position, Xj ∈ ℝ3. To accomplish this, we used triangulation277

and bundle-adjustment (Hartley and Zisserman, 2000) to compute 3D locations, and we used278

pictorial structures (Felzenszwalb and Huttenlocher, 2005) to enforce geometric consistency and279

to eliminate potential errors caused by misdetections. We present these steps below.280

Pinhole camera model. The first step is to model the projection operation that relates a281

specific Xj to its seven projections in each camera view xc,j . To make this easier, we follow standard282

practice and convert all Cartesian coordinates

[

xc , yc , zc
]

to homogeneous ones

[

xℎ, yℎ, zℎ, s
]

such283

that xc = xℎ∕s, yc = yℎ∕s, zc = zℎ∕s. From now on, we will assume that all points are expressed284

in homogeneous coordinates and omit the ℎ subscript. Assuming that these coordinates are285

expressed in a coordinate system whose origin is in the optical center of the camera and whose286

z-axis is its optical axis, the 2D image projection

[

u, v
]

of a 3D homogeneous point

[

x, y, z, 1
]

can be287

9 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://github.com/NeLy-EPFL/DeepFly3D
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

written as288

u = U∕W ,

v = V ∕W ,

⎡

⎢

⎢

⎢

⎣

U
V
W

⎤

⎥

⎥

⎥

⎦

= K

⎡

⎢

⎢

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎥

⎥

⎦

, with K =

⎡

⎢

⎢

⎢

⎣

fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤

⎥

⎥

⎥

⎦

, (1)

where the 3 × 4 matrix K is known as the intrinsic parameters matrix—scaling in the x and y289

direction and image coordinates of the principal point cx and cy—that characterizes the camera290

settings.291

In practice, the 3D points are not expressed in a coordinate system tied to the camera, especially292

in our application where we use seven different cameras. Therefore, we use a world coordinate293

system that is common to all cameras. For each camera, we must therefore convert 3D coordinates294

expressed in this world coordinate system to camera coordinates. This requires rotating and trans-295

lating the coordinates to account for the position of the camera’s optical center and its orientation.296

When using homogeneous coordinates, this is accomplished by multiplying the coordinate vector297

by a 4 × 4 extrinsic parameters matrix298

M =

[

R T
0 1

]

, (2)

where R is a 3 × 3 rotation matrix and T a 3 × 1 translation vector. Combining Equation 1 and299

Equation 2 yields300

u = U∕W ,

v = V ∕W ,

⎡

⎢

⎢

⎢

⎣

U
V
W

⎤

⎥

⎥

⎥

⎦

= P

⎡

⎢

⎢

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎥

⎥

⎦

, where P = MK is a 3 × 4matrix. (3)

Camera distortion. The pinhole camera model described above is an idealized one. The301

projections of real cameras deviate from it and these deviations are referred to as distortions and302

need to be accounted for. The most significant one is known as radial distortion because the error303

grows with the distance to the image center. For the cameras we use, radial distortion can be304

expressed as305

u
pinhole

= u
(

1 + kx1 r
2 + kx2 r

4) , (4)

v
pinhole

= v
(

1 + ky1 r
2 + ky2 r

4) ,

where

[

u, v
]

is the actual projection of a 3D point and

[

u
pinhole

, v
pinhole

]

is the one the pinhole model306

predicts. In other words, the four parameters {kx1 , k
x
2 , k

y
1, k

y
2} characterize the distortion. From now307

on, we will therefore write the full projection as308

X = �(x) = fd(fp(x)) , (5)

X =
[

x, y, z
]

,

x =
[

u, v
]

,

where fp denotes the ideal pinhole projection of Equation 3 and fd the correction of Equation 4.309

10 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Triangulation. We can associate to each of the seven cameras a projection function �c like the310

one in Equation 5, where c is the camera number. Given a 3D point and its projections xc in the311

images, its 3D coordinates can be estimated by minimizing the reprojection error312

argmin
X∈ℝ4

7
∑

c=1
ec‖�c(X) − xc‖22 , (6)

where ec is one if the point was visible in image c and zero otherwise. In the absence of camera313

distortion, that is, when the projection � is a purely linear operation in homogeneous coordinates,314

this can be done for any number of cameras by solving a Singular Value Decomposition (SVD)315

problem (Hartley and Zisserman, 2000). In the presence of distortions, we replace the observed u316

and v coordinates of the projections by the corresponding u
pinhole

and u
pinhole

values of Equation 5317

before performing the SVD.318

Camera calibration. Triangulating as described above requires knowing the projection ma-319

trices Pc of Equation 3 for each camera c, corresponding distortion parameters {kx1 , kx2 , ky1, ky2} of320

Equation 4, together with the intrinsic parameters of focal length and principal point offset. In321

practice, we use the focal length and principal point offset provided by the manufacturer and esti-322

mate the remaining parameters automatically: the three translations and three rotations for each323

camera that define the corresponding matrixM of extrinsic parameters along with the distortion324

parameters.325

To avoid having to design the exceedingly small calibration pattern that more traditional methods326

use to estimate these parameters, we use the fly itself as calibration pattern and minimize the327

reprojection error of Equation 6 for all joints simultaneously while allowing the camera parameters328

to also change. In other words we look for329

argmin
�c1≤c≤7
Xj1≤j≤n

7
∑

c=1

m
∑

j=1
ec,j�(�c(Xj) − xc,j), (7)

where Xj and xc,j are the 3D locations and 2D projections of the landmarks introduced above and �330

denotes the Huber loss. Equation 7 is known as bundle-adjustment (Hartley and Zisserman, 2000).331

Huber loss is defined as332

��(a) =

{ 1
2
a2 for |a| ≤ �

�
(

|a| − 1
2
�
)

otherwise
.

Replacing the squared loss by the Huber loss makes our approach more robust to erroneous333

detections xc,j . We empirically set � to 20 pixels. Note that we perform this minimization with respect334

to ten degrees-of-freedom per camera: three translations, three rotations, and four distortions.335

For this optimization to work properly, we need to initialize these ten parameters and we need to336

reduce the number of outliers. To achieve this, the initial distortion parameters are set to zero. We337

also produce initial estimates for the three rotation and three translation parameters by measuring338

the distances between adjacent cameras and their relative orientations. To initialize the rotation339

and translation vectors, we measure the distance and the angle between adjacent cameras, from340

which we infer rough initial estimates. Finally, we rely on epipolar geometry (Hartley and Zisserman,341

2000) to automate outlier rejection. Because the cameras form a rough circle and look inward, the342

epipolar lines are close to being horizontal. Thus, corresponding 2D projections must belong to the343

same image rows, or at most a few pixels higher or lower. In practice, this means checking if all 2D344

predictions lie in nearly the same rows and discarding a priori those that do not.345

3D pose correction346

The triangulation procedure described above can produce erroneous results where the 2D estimates347

of landmarks are wrong. Additionally, it may result in implausible 3D poses for the entire animal348

because it treats each joint independently. To enforce more global geometric constraints, we rely349

11 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Figure 7. Camera calibration. (A) Correcting erroneous 2D pose estimations by using epipolar relationships.
Only 2D pose estimates without large epipolar errors are used for calibration. x2 represents a 2D pose estimate
from the middle camera. Epipolar lines are indicated as blue and red lines on the image plane. (B) The
triangulated point, XT , uses the initial camera parameters. However, due to the coarse initialization of each

camera’s extrinsic properties, observations from each camera do not agree with one another and do not yield a

reasonable 3D position estimate. (C) The camera locations are corrected, generating an accurate 3D position
estimate by optimizing Equation 7 using only the pruned 2D points.

on pictorial structures (Felzenszwalb and Huttenlocher, 2005) as described in Figure 8. Pictorial350

structures encode the relationship between a set of variables (in this case the 3D location of351

separate tracked points) in a probabilistic setting using a graphical model. This makes it possible352

to consider multiple 2D locations xc,j for each landmark Xc instead of only one. This increases the353

likelihood of finding the true 3D pose.354

Generating multiple candidates. Instead of selecting landmarks as the locations with the355

maximum probability in maps output by our Stacked Hourglass network, we generate multiple356

candidate 2D landmark locations xc,j . From each probability map, we select ten local probability357

maxima that are at least one pixel apart from one another. Then, we generate 3D candidates by358

triangulating 2D candidates in every tuple of cameras. Because a single point is visible from at most359

four cameras, this results in at most
(4
2

)

× 102 candidates for each tracked point.360

Choosing the best candidates. To identify the best subset of resulting 3D locations, we intro-361

duce the probability distribution P (L|I, �) that assigns a probability to each solution L, consisting362

of 38 sets of 2D points observed from each camera. Our goal is then to find the most likely one.363

More formally, P represents the likelihood of a set of tracked points L, given the images, model364

12 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Figure 8. 3D pose correction for one leg using the MAP solution and pictorial structures. (A) Candidate 3D pose
estimates for each keypoint are created by triangulating local maxima from probability maps generated by the

Stacked Hourglass deep network. (B) For a selection of these candidate estimates, we can assign a probability
using Equation 8. However, calculating this probability for each pair of points is computationally intractable. (C)
By exploiting the chain structure of Equation 8, we can instead pass a probability distribution across layers
using a belief propagation algorithm. Messages are passed between layers as a function of parent nodes,

describing the belief of the child nodes on each parent node. Grayscale colors represent the calculated belief of

each node where darker colors indicate higher belief. (D) Corrected pose estimates are obtained during the
second backward iteration, by selecting the nodes with largest belief. We discard nodes (x’s) that have

non-maximal belief during backwards message passing. Note that beliefs have been adjusted after forward

message passing.

Figure 9. DeepFly3D graphical user interface (GUI). The top-left buttons enable operations like 2D pose estimation, camera calibration, and saving
the final results. The top-right buttons can be used to visualize the data in different ways: as raw images, probability maps, 2D pose, or the

corrected pose following pictorial structures. The bottom-left buttons permit frame-by-frame navigation. A full description of the GUI can be found

in the online documentation: https://github.com/NeLy-EPFL/DeepFly3D

parameters, camera calibration, and geometric constraints. In our formulation, I denotes the seven365

camera images I = {Ic}1≤c≤7 and � represents the set of projection functions �c for camera c along366

with a set of length distributions Si,j between each pair of points i and j that are connected by a367

limb. L consists of a set of tracked points {Li}1≤i≤n, where each Li describes a set of 2D observations368

li,c from multiple camera views. These are used to triangulate the corresponding 3D point locations369

li. If the set of 2D observations is incomplete, as some points are totally occluded in some camera370

views, we triangulate the 3D point li using the available ones and replace the missing observations371

by projecting the recovered 3D positions into the images, �c(li) in Equation 3. In the end, we aim to372

find the solution L̂ = argmaxL P (L|I, �). This is known as Maximum a Posteriori (MAP) estimation.373

Using Bayes rule, we write374

P (L|I, �) ∝ P (I|L, �)P (L|�) , (8)

where the two terms can be computed separately. We compute P (I|J , �) using the probability375

mapsHj,c generated by the Stacked Hourglass network for the tracked point j for camera c. For a376

single joint j seen by camera c, we model the likelihood of observing that particular point using377

P (Hj,c|lj,c), which can be directly read from the probability maps as the pixel intensity. Ignoring the378

dependency between the cameras, we write the overall likelihood as the product of the individual379

13 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://github.com/NeLy-EPFL/DeepFly3D
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

likelihood terms380

P (I|L, �) = P (H|L) ∝
n
∏

i=1

7
∏

c=1
P (Hj,c|li,c) ,

which can be read directly from the probability maps as pixel intensities and represent the network’s381

confidence that a particular keypoint is located at a particular pixel. When a point is not visible from382

a particular camera, we assume the probability map only contains a constant non-zero probability,383

which does not effect the final solution. We express P (L|�) as384

P (L|�) = P (L|�, S) =
∏

(i,j)∈E
P
(

li, lj|Si,j
)

n
∏

j=1

7
∏

c=1
ec,j‖�c(lj) − lc,j‖−12 ,

where pairwise dependencies P
(

li, lj|Si,j
)

between two variables respect the segment length385

constraint when the variables are connected by a limb. The length of segments defined by pairs of386

connected 3D points follows a normal distribution. Specifically, we model P
(

li, lj|Si,j
)

as Si,j(li, lj) =387

 (‖li−lj‖−�i,j , �i,j). Wemodel the reprojection error for a particular point j as
∏7

c=1 ec,j‖�c(lj)−lc,j‖
−1
2388

which is set to zero using the variable ec,j denoting the visibility of the point j from camera c. If a 2D389

observation for a particular camera is manually set by a user with the DeepFly3D GUI, we take it to390

be the only possible candidate for that particular image and we set P (Lj|H) to 1, where j denotes391

the manually assigned pixel location.392

Solving theMAP problemusing theMax-Sumalgorithm. For general graphs, MAP estimation393

with pairwise dependencies is NP-hard and therefore intractable. However, in the specific case of394

non-cyclical graphs, it is possible to solve the inference problem using belief propagation (Bishop,395

2006). Since the fly’s skeleton has a root and contains no loops, we can use a message passing396

approach (Felzenszwalb and Huttenlocher, 2005). It is closely related to Viterbi recurrence and397

propagates the unary probabilities P (Lj|Li) between the edges of the graph starting from the root398

and ending at the leaf nodes. This first propagation ends with the computation of the marginal399

distribution for the leaf node variables. During the subsequent backward iteration, as P (Lj) for400

leaf node is computed, the point Lj with maximum posterior probability is selected in O(k) time,401

where k is the upper bound on the number of proposals for a single tracked point. Next, the402

distribution P (Li|Lj) is calculated, adjacent nodes for the leaf node. Continuing this process on403

all of the remaining points results in a MAP solution for the overall distribution P (L), as shown in404

Figure 8, with overall O(k2) computational complexity.405

Learning the parameters. We learn the parameters for the set of pairwise distributions Si,j406

using a maximum likelihood process and assuming the distributions to be Gaussian. We model407

the segment length Si,j as the euclidean distance between the points lj and lj . We then solve for408

argmaxS P (S|L, �), assuming segments have a Gaussian distribution resulting from the Gaussian409

noise in point observations L. This gives us the mean and variance, defining each distribution Si.j .410

We exclude the same points that we removed from the calibration procedure, that exhibit high411

reprojection error.412

In practice, we observe a large variance for pretarsus values. This is because occlusions oc-413

casionally shorten visible tarsal segments. To eliminate the resulting bias, we treat these limbs414

differently from the others and model the distribution of tibia-tarsus and tarsus-tip points as a Beta415

distribution, with parameters found using a similar Maximum Likelihood Estimator (MLE) formula-416

tion. Assuming the observation errors to be Gaussian and zero-centered, the bundle adjustment417

procedure can also be understood as an MLE of the calibration parameters (Triggs et al., 2000).418

Therefore, the entire set of parameters for the formulation can be learned using MLE.419

The pictorial structure formulation can be further expanded using temporal information, pe-420

nalizing large movements of a single tracked point between two consecutive frames. However, we421

abstained from using temporal information more extensively for several reasons. First, temporal422

dependencies would introduce loops in our pictorial structures, thus making exact inference NP-423

hard as discussed above. This can be handled using loopy belief propagation algorithms (Murphy424

14 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

et al., 1999) but requires multiple message passing rounds, which prevents real-time inference425

without any theoretical guarantee of optimal inference. Second, the rapidity of Drosophila limb426

movements makes it hard to assign temporal constraints, even with fast video recording. Finally, we427

empirically observed that the current formulation, enforcing structured poses in a single temporal428

frame, already eliminates an overwhelming majority of false-positives inferred during the pose429

estimation stage of the algorithm.430

Figure 10. Pose correction using pictorial structures. (A) Raw input data from four cameras, focusing on the
pretarsus of the middle left leg. (B) Probability maps for the pretarsus output from the Stacked Hourglass deep
network. Two maxima (white arrowheads) are present on the probability maps for camera 5. The false-positive

has a larger unary probability. (C) Raw predictions of 2D pose estimation without using pictorial structures. The
pretarsus label is incorrectly applied (white arrowhead) in camera 5. By contrast, cameras 4, 6, and 7 are

correctly labeled. (D) Corrected pose estimation using pictorial structures. The false-positive is removed due to
the high error measured in Equation 8. The newly corrected pretarsus label for camera 5 is shown (white
arrowhead).

Modifying DeepFly3D to study other animals. DeepFly3D can also be applied toward 3D431

pose estimation in other animals (e.g., humans (Figure 11), primates, rodents, and other insects).432

Importantly, DeepFly3D does not assume a circular camera arrangement, or that there is one433

degree of freedom in the camera network. We illustrate this flexibility by using DeepFly3D to434

analyze the Human 3.6M Dataset (http://vision.imar.ro/human3.6m/description.php) generated435

from four synchronized cameras (Ionescu et al., 2014).436

Generally, for any new dataset, the user first needs to provide an initial set of manual annotations.437

Then, in skeleton.py, the user should describe the number of tracked points and their relationships438

to one another (e.g., are they connected). Then, in Config.py, the user should set the number of439

cameras, and the resolutions of input images and output probability maps. DeepFly3D will then use440

these initial manual annotations to (i) train the 2D Stacked Hourglass network, (ii) perform camera441

calibration without an external checkerboard pattern, (iii) learn the epipolar geometry to perform442

outlier detection, and (iv) learn the segment length distributions Si,j . After this initial bootstrapping,443

DeepFly3D can be then used with pictorial structures and active learning to iteratively improve pose444

estimation accuracy.445

The initial manual annotations can be performed using the DeepFly3D Annotation GUI. After-446

wards, these annotations can be downloaded from the Annotation GUI as a CSV file using the Save447

button (Figure 6). Once the CSV file is placed in the images folder, DeepFly3D will automatically448

read and display the annotations. To train the Stacked Hourglass network, use the csv-path flag449

while running pose2d.py (found in deepfly/pose2d). DeepFly3D will then train the Stacked Hourglass450

15 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

http://vision.imar.ro/human3.6m/description.php
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Figure 11. DeepFly3D graphical user interface (GUI) used with the Human3.6M dataset Ionescu et al. (2014). To use the DeepFly3D GUI on any new
dataset (Drosophila or otherwise), users can provide an initial small set of manual annotations. Using these annotations, the software calculates the
epipolar geometry, performs camera calibration, and trains the 2D pose estimation deep network. A description of how to adopt DeepFly3D for

new datasets can be found in the Methods section and, in greater detail, online: https://github.com/NeLy-EPFL/DeepFly3D

network by performing transfer learning using the large MPII dataset and the smaller set of user451

manual annotations.452

To perform camera calibration, the user should select the Calibration button on the GUI Figure 9.453

DeepFly3D will then perform bundle adjustment (Equation 7) and save the camera parameters454

in calibration.pickle (found in the images folder). The path of this file should then be added to455

Config.py to initialize calibration. These initial calibration parameters will then be used in further456

experiments for fast and accurate convergence. If the number of annotations is insufficient for457

accurate calibration, or if bundle adjustment is converging too slowly, an initial rough estimate of458

the camera locations can be set in Config.py. As long as a calibration is set in Config.py, DeepFly3D459

will use it as a projection matrix to calculate the epipolar geometry between cameras. This step is460

necessary to perform outlier detection on further calibration operations.461

DeepFly3D will also learn the distribution Si,j , whose non-zero entries are found in skeleton.py.462

One can easily calculate these segment length distribution parameters using the functions provided463

with DeepFly3D. CameraNetwork class (found under deepfly/GUI/), will then automatically load the464

points and calibration parameters from the images folder. The function CameraNetwork.triangulate465

will convert 2D annotation points into 3D points using the calibration parameters. The Si,j pa-466

rameters can then be saved using the pickle library (the save path can be set in Config.py). The467

calcBoneParamsmethod will then output the segment lengths’ mean and variance. These values468

will then be used with pictorial structures (Equation 8).469

We provide further technical details for how to adapt DeepFly3D to other multi-view datasets470

online 1.471

Experimental setup472

We positioned seven Basler acA1920-155um cameras (FUJIFILM AG, Niederhaslistrasse, Switzerland)473

94 mm away from the tethered fly, resulting in a circular camera network with the animal in the474

center (Figure 12). We acquired 960 × 480 pixel video data at 100 FPS under 850 nm infrared ring475

light illumination (Stemmer Imaging, Pfäffikon Switzerland). Cameras were mounted with 94 mm476

W.D. / 1.00x InfiniStix lenses (Infinity Photo-Optical GmbH, Göttingen). Optogenetic stimulation LED477

light was filtered out using 700 nm longpass optical filters (Edmund Optics, York UK). Each camera’s478

depth of field was increased using 5.8 mm aperture retainers (Infinity Photo-Optical GmbH). To479

automate the timing of optogenetic LED stimulation and camera acquisition triggering, we use an480

1https://github.com/NeLy-EPFL/DeepFly3D

16 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://github.com/NeLy-EPFL/DeepFly3D
https://github.com/NeLy-EPFL/DeepFly3D
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

Arduino (Arduino, Sommerville MA USA) and custom software written using the Basler camera API.481

Figure 12. A schematic of the seven camera spherical treadmill and optogenetic stimulation system that was
used in this study.

Drosophila transgenic lines. UAS-CsChrimson (Klapoetke et al., 2014) animals were obtained482

from the Bloomington Stock Center (Stock #55135). MDN-1-Gal4 (Bidaye et al., 2014) (VT44845-483

DBD; VT50660-AD) was provided by B. Dickson (Janelia Research Campus, Ashburn USA). aDN-Gal4484

(Hampel et al., 2015)(R76F12-AD; R18C11-DBD), was provided by J. Simpson (University of California,485

Santa Barbara USA). Wild-type, PR animals were provided by M. Dickinson (California Institute of486

Technology, Pasadena USA).487

Optogenetic stimulation experiments. Experiments were performed in the late morning or488

early afternoon Zeitgeber time (Z.T.), inside a dark imaging chamber. An adult female animal 2-3489

days-post-eclosion (dpe), was mounted onto a custom stage (Chen et al., 2018) and allowed to490

acclimate for 5 minutes on an air-supported spherical treadmill (Chen et al., 2018). Optogenetic491

stimulation was performed using a 617 nm LED (Thorlabs, Newton, NJ USA) pointed at the dorsal492

thorax through a hole in the stage, and focused with a lens (LA1951, 01” f = 25.4 mm, Thorlabs,493

Newton, NJ USA). Tethered flies were otherwise allowed to behave spontaneously. Data were494

acquired in 9 s epochs: 2 s baseline, 5 s with optogenetic illumination, and 2 s without stimulation.495

Individual flies were recorded for 5 trials each, with one-minute intervals. Data were excluded496

from analysis if flies pushed their abdomens onto the spherical treadmill—interfering with limb497

movements—or if flies struggled during optogenetic stimulation, pushing their forelimbs onto the498

stage for prolonged periods of time.499

Unsupervised behavioral classification500

To create unsupervised embeddings of behavioral data, we mostly followed the approach taken501

by (Todd et al., 2017; Berman et al., 2014). We smoothed 3D pose traces using a 1e Filter. Then502

we converted them into angles to achieve scale and translational invariance (Casiez et al., 2012).503

Angles were calculated by taking the dot product from sets of three connected 3D positions. For504

the antenna, we calculated the angle of the line defined by two antennal points with respect to the505

ground-plane. This way, we generated four angles per leg (two body-coxa, one coxa-femur, and506

one femur-tibia), two angles for the abdomen (top and bottom abdominal stripes), and a single507

angle for the antennae (head tilt with respect to the axis of gravity). In total, we obtained a set of 34508

angles, extracted from 38 3D points.509

17 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

We transformed angular time series using a Continous Wavelet Transform (CWT) to create a510

posture-dynamics space. We used the Morlet Wavelet as the mother wavelet, given its suitability to511

isolate periodic chirps of motion. We chose 25 wavelet scales to match dyadically spaced center512

frequencies between 5Hz and 50Hz. Then, we calculatd spectrograms for each postural time-series513

by taking the magnitudes of the wavelet coefficients. This yields a 34 × 25 = 850-dimensional514

time-series, which was then normalized over all frequency channels to unit length, at each time515

instance. Then, we could treat each feature vector from each time instance as a distribution over all516

frequency channels.517

Later, from the posture-dynamics space, we computed a two-dimensional representation of518

behavior by using the non-linear embedding algorithm, t-SNEMaaten and Hinton (2008). t-SNE em-519

bedded our high-dimensional posture-dynamics space onto a 2D plane, while preserving the high-520

dimensional local structure, while sacrificing larger scale accuracy. We used the Kullback–Leibler521

(KL) divergence as the distance function in our t-SNE algorithm. KL assesses the difference between522

the shapes of two distributions, justifying the normalization step in the preceding step. By analyzing523

a multitude of plots generated with different perplexity values, we empirically found perplexity 35524

to best suit the features of our posture-dynamics space.525

From this generated discrete space, we created a continuous 2D distribution, that we could then526

segment into behavioral clusters. We started by normalizing the 2D t-SNE projected space into527

a 1000 × 1000matrix. Then, we applied a 2D Gaussian convolution with a kernel of size � = 10px.528

Finally, we segmented this space by inverting it and applying a Watershed algorithm that separated529

adjacent basins, yielding a behavioral map.530

Author Contributions531

SG - Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Data532

Curation, Writing - Original Draft Preparation, Writing - Review & Editing, Visualization533

534

HR - Conceptualization, Methodology, Software, Formal Analysis, Writing - Original Draft Preparation,535

Writing - Review & Editing, Supervision, Project Administration536

537

DM - Investigation, Data Curation, Writing - Review & Editing538

539

JC - Software, Data Curation, Writing - Review & Editing540

541

PR - Conceptualization, Methodology, Resources, Writing - Original Draft Preparation, Writing -542

Review & Editing, Supervision, Project Administration, Funding Acquisition543

544

PF - Conceptualization, Methodology, Resources, Writing - Review & Editing, Supervision, Project545

Administration, Funding Acquisition546

Funding547

PF acknowledges partial support from a Microsoft JRC project. PR acknowledges support from548

an SNSF Project grant (175667) and an SNSF Eccellenza grant (181239). PR and PF acknowledge549

support from an EPFL SV iPhD grant.550

Acknowledgments551

We thank Celine Magrini and Fanny Magaud for image annotation assistance, Raphael Laporte and552

Victor Lobato Rios for helping to develop camera acquisition software.553

Competing interests554

The authors declare that no competing interests exist.555

18 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

References556 Andriluka M, Pishchulin L, Gehler P, Schiele B. 2d human pose estimation: New benchmark and state of the art557

analysis. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition; 2014. p. 3686–3693.558

Bender JA, Simpson EM, Ritzmann RE. Computer-assisted 3D kinematic analysis of all leg joints in walking559

insects. PloS one. 2010; 5(10):e13617.560

Berman GJ, Choi DM, Bialek W, Shaevitz JW. Mapping the stereotyped behaviour of freely moving fruit flies.561

Journal of The Royal Society Interface. 2014; 11(99):20140672.562

Bidaye SS, Machacek C, Wu Y, Dickson BJ. Neuronal control of Drosophila walking direction. Science. 2014;563

344(6179):97–101.564

Bishop CM. Pattern Recognition and Machine Learning. Springer; 2006.565

Cande J, Namiki S, Qiu J, Korff W, Card GM, Shaevitz JW, Stern DL, Berman GJ. Optogenetic dissection of566

descending behavioral control in Drosophila. Elife. 2018; 7:e34275.567

Casiez G, Roussel N, Vogel D. 1€ filter: a simple speed-based low-pass filter for noisy input in interactive systems.568

In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems ACM; 2012. p. 2527–2530.569

Chavdarova T, Baqué P, Bouquet S, Maksai A, Jose C, Lettry L, Fua P, Gool LV, Fleuret F. The Wildtrack Multi-570

Camera Person Dataset. In: CVPR; 2018.571

Chen CL, Hermans L, Viswanathan MC, Fortun D, Aymanns F, Unser M, Cammarato A, Dickinson MH, Ramdya P.572

Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nature communications. 2018;573

9(1):4390.574

Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V,575

et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013; 499(7458):295.576

Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW. Imaging large-scale neural activity with cellular577

resolution in awake, mobile mice. Neuron. 2007; 56(1):43–57.578

Elhayek A, Aguiar E, Jain A, Tompson J, Pishchulin L, Andriluka M, Bregler C, Schiele B, Theobalt C. Efficient579

Convnet-Based Marker-Less Motion Capture in General Scenes with a Low Number of Cameras. In: CVPR;580

2015.581

Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 2000; 404(6776):394.582

Felzenszwalb PF, Huttenlocher DP. Pictorial structures for object recognition. International journal of computer583

vision. 2005; 61(1):55–79.584

Hampel S, Franconville R, Simpson JH, Seeds AM. A neural command circuit for grooming movement control.585

Elife. 2015; 4:e08758.586

Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge University Press; 2000.587

Hewitt V, Whitworth A. Mechanisms of Parkinson’s disease: Lessons from Drosophila. In: Current topics in588

developmental biology, vol. 121 Elsevier; 2017.p. 173–200.589

Ionescu C, Papava D, Olaru V, Sminchisescu C. Human3.6M: Large Scale Datasets and Predictive Methods for590

3D Human Sensing in Natural Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence.591

2014 jul; 36(7):1325–1339.592

Kain J, Stokes C, Gaudry Q, Song X, Foley J, Wilson R, De Bivort B. Leg-tracking and automated behavioural593

classification in Drosophila. Nature communications. 2013; 4:1910.594

Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ,595

Tian Z, et al. Independent optical excitation of distinct neural populations. Nature methods. 2014; 11(3):338.596

v d Maaten LJP, Hinton GE. Visualizing High Dimensional Data Using t-SNE. JMLR. 2008; p. 2579–2605.597

Martinez J, Hossain R, Romero J, Little JJ. A Simple Yet Effective Baseline for 3D Human Pose Estimation. In:598

ICCV ; 2017.599

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M. DeepLabCut: markerless pose600

estimation of user-defined body parts with deep learning. Nature Neuroscience. 2018; p. 1281–1289.601

19 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

DeepFly3D 2019

McKellar CE, Lillvis JL, Bath DE, Fitzgerald JE, Cannon JG, Simpson JH, Dickson BJ. Threshold-based ordering of602

sequential actions during Drosophila courtship. Current Biology. 2019; 29(3):426–434.603

Mehta D, Sridhar S, Sotnychenko O, Rhodin H, Shafiei M, Seidel H, Xu W, Casas D, Theobalt C. Vnect: Real-Time604

3D Human Pose Estimation with a Single RGB Camera. In: SIGGRAPH; 2017.605

Mendes CS, Bartos I, Akay T, Márka S, Mann RS. Quantification of gait parameters in freely walking wild type606

and sensory deprived Drosophila melanogaster. elife. 2013; 2:e00231.607

Moeslund TB, Granum E. Multiple cues used in model-based human motion capture. In: Proceedings Fourth608

IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580) IEEE Comput. Soc;609

2000. p. 362–367.610

Moreno-noguer F. 3D Human Pose Estimation from a Single Image via Distance Matrix Regression. In: CVPR;611

2017.612

Mori G, Malik J. Recovering 3D Human Body Configurations Using Shape Contexts. IEEE Transactions on Pattern613

Analysis and Machine Intelligence. 2006; p. 1052–1062.614

Murphy KP, Weiss Y, Jordan MI. Loopy Belief Propagation for Approximate Inference: An Empirical Study. In:615

Onference on Uncertainty in Artificial Intelligence; 1999. p. 467–475.616

Newell A, Yang K, Deng J. Stacked Hourglass Networks for Human Pose Estimation. ECCV. 2016; p. 483–499.617

Pavlakos G, Zhou X, Derpanis K, Konstantinos G, Daniilidis K. Coarse-To-Fine Volumetric Prediction for Single-618

Image 3D Human Pose. In: CVPR; 2017.619

Pavlakos G, Zhou X, Konstantinos KDG, Kostas D. Harvesting Multiple Views for Marker-Less 3D Human Pose620

Annotations. In: CVPR; 2017.621

Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SSH, Murthy M, Shaevitz JW. Fast animal pose estimation622

using deep neural networks. Nature methods. 2019; 16(1):117.623

Popa AI, Zanfir M, Sminchisescu C. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. In:624

CVPR; 2017.625

Rhodin H, Robertini N, Casas D, Richardt C, Seidel HP, Theobalt C. General Automatic Human Shape and Motion626

Capture Using Volumetric Contour Cues. In: ECCV ; 2016.627

Rogez G, Weinzaepfel P, Schmid C. Lcr-Net: Localization-Classification-Regression for Human Pose. In: CVPR;628

2017.629

Seeds AM, Ravbar P, Chung P, Hampel S, Midgley Jr FM, Mensh BD, Simpson JH. A suppression hierarchy among630

competing motor programs drives sequential grooming in Drosophila. Elife. 2014; 3:e02951.631

Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V. Two-photon calcium imaging from632

head-fixed Drosophila during optomotor walking behavior. Nature methods. 2010; 7(7):535.633

Simon T, Joo H, Matthews I, Sheikh Y. Hand Keypoint Detection in Single Images Using Multiview Bootstrapping.634

In: CVPR; 2017.635

Sun X, Shang J, Liang S, Wei Y. Compositional Human Pose Regression. In: ICCV ; 2017.636

Tekin B, Marquez-neila P, Salzmann M, Fua P. Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose637

Estimation. In: ICCV ; 2017.638

Todd JG, Kain JS, de Bivort BL. Systematic exploration of unsupervised methods for mapping behavior. Physical639

biology. 2017; 14(1):015002.640

Tome D, Russell C, Agapito L. Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image. In:641

arXiv preprint, arXiv:1701.00295; 2017.642

Triggs B, Mclauchlan P, Hartley R, Fitzgibbon A. Bundle Adjustment – A Modern Synthesis. In: Vision Algorithms:643

Theory and Practice; 2000. p. 298–372.644

Uhlmann V, Ramdya P, Delgado-Gonzalo R, Benton R, Unser M. FlyLimbTracker: An active contour based645

approach for leg segment tracking in unmarked, freely behaving Drosophila. PLoS One. 2017; 12(4):e0173433.646

Zhou X, Huang Q, Sun X, Xue X, Wei Y. Weakly-supervised transfer for 3d human pose estimation in the wild. In:647

IEEE International Conference on Computer Vision, ICCV, vol. 3; 2017. p. 7.648

20 of 20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/640375doi: bioRxiv preprint

https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	DeepFly3D
	Improving 2D pose using pictorial structures and active learning
	3D pose permits robust unsupervised behavioral classification

	Discussion
	Materials and Methods
	From 2D landmarks to 3D trajectories
	3D pose correction
	Experimental setup
	Unsupervised behavioral classification

	Author Contributions
	Funding
	Acknowledgments
	Competing interests

