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Abstract Studying how neural circuits orchestrate limbed behaviors requires the precise
measurement of the positions of each appendage in 3-dimensional (3D) space. Deep neural
networks can estimate 2-dimensional (2D) pose in freely behaving and tethered animals. However,
the unique challenges associated with transforming these 2D measurements into reliable and
precise 3D poses have not been addressed for small animals including the fly, Drosophila
melanogaster. Here we present DeepFly3D, a software that infers the 3D pose of tethered, adult
Drosophila—or other animals—using multiple camera images. DeepFly3D does not require manual
calibration, uses pictorial structures to automatically detect and correct pose estimation errors, and
uses active learning to iteratively improve performance. We demonstrate more accurate
unsupervised behavioral embedding using 3D joint angles rather than commonly used 2D pose
data. Thus, DeepFly3D enables the automated acquisition of behavioral measurements at an
unprecedented level of resolution for a variety of biological applications.

Introduction

The precise quantification of movements is critical for understanding how neurons, biomechanics,
and the environment influence and give rise to animal behaviors. For organisms with skeletons and
exoskeletons, these measurements are naturally made with reference to 3D joint and appendage
locations. Paired with modern approaches to simultaneously record the activity of neural popu-
lations in tethered, behaving animals (Dombeck et al., 2007; Seelig et al., 2010; Chen et al., 2018),
3D joint and appendage tracking promises to accelerate the dissection of neural control principles,
particularly in the genetically tractable and numerically simple nervous system of the fly, Drosophila
melanogaster.

However, algorithms for reliably estimating 3D pose in such small animals have not yet been
developed. Instead, multiple alternative approaches have been taken. For example, one can affix
and use small markers—reflective, colored, or fluorescent particles—to identify and reconstruct
keypoints from video data (Bender et al., 2010; Kain et al., 2013; Todd et al., 2017). Although this
approach works well on humans (Moeslund and Granum, 2000), in smaller animals markers likely
hamper movements, are difficult to mount on sub-millimeter scale limbs, and, most importantly,
measurements of one or even two markers on each leg (Todd et al., 2017) cannot fully describe
3D limb kinematics. Another strategy has been to use computer vision techniques that operate
without markers. However, these measurements have been restricted to 2D pose in freely behaving
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animals. Before the advent of deep learning, this was accomplished by matching the contours of
animals seen against uniform backgrounds (Mori and Malik, 2006), measuring limb tip positions
using complex TIRF-based imaging (Mendes et al., 2013), or measuring limb segments using active
contours (Uhlmann et al., 2017). In addition to being limited to 2D rather than 3D pose, these meth-
ods are complex, time-consuming, and error-prone in the face of long data sequences, cluttered
backgrounds, fast motion, and occlusions that naturally occur when animals are observed from a
single 2D perspective.

As a result, in recent years the computer vision community has largely forsaken these techniques
in favor of deep learning-based methods. Consequently, the effectiveness of monocular 3D human
pose estimation algorithms has improved greatly. This is especially true when capturing human
movements for which there is enough annotated data to train deep networks effectively. Walking
and upright poses are prime examples of this, and state-of-the-art algorithms (Paviakos et al.,
2017a; Tome et al., 2017; Popa et al., 2017; Moreno-noguer, 2017, Martinez et al., 2017; Mehta
et al., 2017; Rogez et al., 2017; Pavlakos et al., 2017b; Zhou et al., 2017; Tekin et al., 2017; Sun
et al., 2017) now deliver impressive real-time results in uncontrolled environments. Increased
robustness to occlusions can be obtained by using multi-camera setups (Elhayek et al., 2015;
Rhodin et al., 2016; Simon et al., 2017; Pavlakos et al., 2017b) and triangulating the 2D detections.
This improves accuracy while making it possible to eliminate false detections.

These advances in 2D pose estimation have also recently been used to measure behavior in
laboratory animals. For example, DeeplLabCut provides a user-friendly interface to DeepCut, a
state-of-the-art human pose estimation network (Mathis et al., 2018), and LEAP (Pereira et al.,
2019) can successfully track limb and appendage landmarks using a shallower network. Still, 2D
pose provides an incomplete representation of animal behavior: important information can be lost
due to occlusions, and movement quantification is heavily influenced by perspective. Unfortunately,
techniques used to translate human 2D pose to 3D pose cannot be easily transferred for the study
of small animals like Drosophila: adult flies are approximately 2.5 mm long, have many appendages
and joints, are translucent, and in most laboratory experiments are only illuminated using infrared
light (to avoid visual stimulation)—precluding the exploitation of color information. Moreover,
precisely registering multiple camera viewpoints using traditional approaches would require the
fabrication of a prohibitively small checkerboard pattern, along with the tedious labor of repeatedly
calibrating using a small, external target.

To overcome these challenges, we introduce DeepFly3D, a deep learning-based software pipeline
that achieves comprehensive, rapid, and reliable 3D pose estimation in tethered, behaving adult
Drosophila (Figure 1, Figure 1-video 7). DeepFly3D is applied to synchronized videos acquired
from multiple cameras (Figure 12). It first uses a state-of-the-art deep network (Newell et al.,
2016) and then enforces consistency across views (Figure 8). This makes it possible to eliminate
spurious detections, achieve high 3D accuracy, and use 3D pose errors to further fine-tune the
deep network to achieve even better accuracy (Figure 2). To register the cameras, DeepFly3D uses
a novel calibration mechanism in which the fly itself is the calibration target (Figure 7). Thus, the
user doesn't need to manufacture a prohibitively small calibration pattern, or repeat cumbersome
calibration protocols. We explain how users can modify the codebase to extend DeepFly3D for
3D pose estimation in other animals (Figure 11 and see Methods). Finally, we demonstrate that
unsupervised behavioral embedding of 3D joint angle data (Figure 4) is robust against problematic
artifacts present in embeddings of 2D pose data (Figure 3). In short, DeepFly3D delivers 3D pose
estimates reliably, accurately, and with minimal manual intervention while also providing a critical
tool for automated behavioral data analysis.
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Figure 1. Deriving 3D pose from multiple camera views. (A) Raw image inputs to the Stacked Hourglass deep network. (B) Probability maps output
from the trained deep network. For visualization purposes, multiple probability maps have been overlaid for each camera view. (C) 2D pose
estimates from the Stacked Hourglass deep network after applying pictorial structures and multi-view algorithms. (D) 3D pose derived from
combining multiple camera views. For visualization purposes, the 3D pose has been projected onto the original 2D camera perspectives. (E) 3D
pose rendered in 3D coordinates. Immobile thorax-coxa joints and antennal joints have been removed for clarity.

The following video supplement is available for this figure:

Figure 1-video 1. Deriving 3D pose from multiple camera views during backward walking in an optogenetically stimulated MDN>CsChrimson fly.
https://drive.google.com/file/d/15nGQRgrjY4dyGhOGFr5eZrRQuOR6Z4fK/view?usp=sharing.

&7 Results

88 DeepFIy3D

89 The input to DeepFly3D is video data from seven cameras (Figure 12). These images are used
%0 to identify the 3D positions of 38 landmarks per animal: (i) five on each limb - the thorax-coxa,
91 coxa-femur, femur-tibia, and tibia-tarsus joints as well as the pretarsus, (ii) six on the abdomen
%2 - three on each side, and (iii) one on each antenna - useful for measuring head rotations. Our
93 software incorporates a number of innovations designed to ensure automated, high-fidelity, and
94 reliable 3D pose estimation:

95 + Calibration without external targets: Estimating 3D pose from multiple images requires
9% calibrating the cameras to achieve a level of accuracy that is commensurate with the tar-
97 get size—a difficult challenge when measuring leg movements for an animal as small as
98 Drosophila. Therefore, instead of using a typical external calibration grid, DeepFly3D uses
99 the fly itself as a calibration target. It detects arbitrary points on the fly’s body and relies on
100 bundle-adjustment (Chavdarova et al., 2018) to simultaneously assign 3D locations to these
101 points and to estimate the positions and orientations of each camera (Figure 7). To increase
102 robustness, it enforces geometric constraints that apply to tethered flies with respect to limb
103 segment lengths and ranges of motion.

104 + Geometrically consistent reconstructions: Starting with a state-of-the-art deep network
105 for 2D keypoint detection in individual images (Newell et al., 2016), DeepFly3D enforces
106 geometric consistency constraints across multiple synchronized camera views. When triangu-
107 lating 2D detections to produce 3D joint locations, it relies on pictorial structures and belief
108 propagation message passing (Felzenszwalb and Huttenlocher, 2005) to detect and further
109 correct erroneous pose estimates (Figure 8).
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+ Self-supervision and active learning: We also use multiple view geometry as a basis for
active learning. Thanks to the redundancy inherent in obtaining multiple views of the same
animal, we can detect erroneous 2D predictions for correction (Figure 10) that would most
efficiently train the 2D pose deep network. This approach greatly reduces the need for time-
consuming manual labeling (Simon et al., 2017). We also use pictorial structure corrections to
fine-tune the 2D pose deep network. Self-supervision constitutes 85% of our training data.

Improving 2D pose using pictorial structures and active learning

We validated our approach using a challenging dataset of 2063 frames manually annotated using
the DeepFly3D annotation tool (Figure 6) and sampled uniformly from each camera. Images for
testing and training are 480 x 960 pixels. The test dataset included challenging frames and occasional
motion blur to increase the difficulty of pose estimation. For training, we used a final training
dataset of 37,000 frames, an overwhelming majority of which were first automatically corrected
using pictorial structures. On test data, we achieved a Root Mean Square Error (RMSE) of 13.9
pixels. Setting a 50 pixel threshold for PCK (percentage of correct keypoints) computation, we
observed a 98.2% general accuracy before applying pictorial structures. We found that application
of pictorial structures corrected 59% of erroneous predictions, increasing the final accuracy to
99.2%. These improvements are illustrated in Figure 2. Pictorial structure failures were often due
to pose ambiguities resulting from heavy motion blur. These remaining errors were automatically
detected with multi-view redundacy using Equation 6, and earmarked for manual correction using
the DeepFly3D GUI (Figure 9).

A Before pictorial structures B After pictorial structures
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Figure 2. Pose estimation accuracy before and after using pictorial structures. Shown are pixel-wise 2D pose
errors/residuals (top) and their respective distributions (bottom) (A) before, or (B) after applying pictorial
structures. Residuals larger than 35 pixels (red circles) represent incorrect keypoint detections. Those below this
threshold (blue circles) represent correct keypoint detections.

3D pose permits robust unsupervised behavioral classification

Unsupervised behavioral classification approaches enable the unbiased quantification of animal
behavior by processing data features—image pixel intensities (Berman et al., 2014; Cande et al.,
2018), limb markers (Todd et al., 2017), or 2D pose (Pereira et al., 2019)—to cluster similar behav-
ioral epochs without user intervention and to automatically distinguish between otherwise similar
actions. However, with this sensitivity may come a susceptibility to features unrelated to behavior.
These may include changes in image size or perspective resulting from differences in camera angle
across experimental systems, variable mounting of tethered animals, and inter-animal morpho-
logical variability. In theory, each of these issues can be overcome—providing scale and rotational
invariance—by using 3D joint angles rather than 2D pose for unsupervised embedding.
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To test this possibility, we performed unsupervised behavioral classification on video data
taken during optogenetic stimulation experiments that repeatedly and reliably drove specific ac-
tions. Specifically, we optically activated CsChrimson (Chen et al., 2013) to elicit backward walking
in MDN>CsChrimson animals (Figure 4-video 1) (Bidaye et al., 2014), or antennal grooming in
aDN>CsChrimson animals (Figure 4-video 2) (Hampel et al., 2015). We also stimulated control
animals lacking the UAS-CsChrimson transgene (Figure 4-video 3)(MDN-GAL4/+ and aDN-GAL4/+).
First, we performed unsupervised behavioral classification using 2D pose data from three adja-
cent cameras containing keypoints for three limbs on one side of the body. Using these data, we
generated a behavioral map (Figure 3A). In this map each individual cluster would ideally repre-
sent a single behavior (e.g., backward walking, or grooming) and be populated by nearly equal
amounts of data from each of the three cameras. This was not the case: data from each camera
covered non-overlapping regions and clusters (Figure 3B-D). This effect was most pronounced
when comparing regions populated by cameras 1 and 2 versus camera 3. Therefore, because the
underlying behaviors were otherwise identical (data across cameras were from the same animals
and experimental time points), we concluded that unsupervised behavioral classification of 2D pose
data is highly sensitive to corruption by viewing angle differences.

Camera 1 Camera 2 Camera 3

00060

Figure 3. Unsupervised behavioral classification of 2D pose data is sensitive to viewing angle. (A) Behavioral
map derived using 2D pose data from three adjacent cameras (Cameras 1, 2, and 3) but the same animals and
experimental time points. Shown are clusters (black outlines) with enriched (yellow), or sparsely (blue)
populated data. Different clusters are enriched for data from either (B) camera 1, (C) camera 2, or (D) camera 3.
Behavioral embeddings were derived using 1 million frames during 4 s of optogenetic stimulation of
MDN>CsChrimson (n=6 flies, n=29 trials), aDN>CsChrimson (n=6 flies, n=30 trials), and wild-type control animals
(MDN-GAL4/+; n=4 flies, n=20 trials. aDN-GAL4/+: n=4 flies, n=23 trials).

—_
o

o N B O @
PDF (x 10°%)

By contrast, performing unsupervised behavioral classification using DeepFly3D-derived 3D
joint angles resulted in a map (Figure 4) with a clear segregation and enrichment of clusters for
different GAL4 drivers lines and their associated behaviors (i.e., backward walking (Figure 4-video 4),
grooming (Figure 4-video 5), and forward walking (Figure 4-video 6)). Thus, 3D pose overcomes
serious issues arising from unsupervised embedding of 2D pose data, enabling more reliable and
robust behavioral data analysis.

Discussion

We have developed DeepFly3D, a deep learning-based 3D pose estimation system that is optimized
for quantifying limb and appendage movements in tethered, behaving Drosophila. By using multiple
synchronized cameras and exploiting multi-view redundancy, our software delivers robust and accu-
rate pose estimation at the sub-millimeter scale. Our approach relies on supervised deep learning
to train a neural network that detects 2D joint locations in individual camera images. Importantly,
our network becomes increasingly competent as it runs: By leveraging the redundancy inherent
to a multiple-camera setup, we iteratively reproject 3D pose to automatically detect and correct
2D errors, and then use these corrections to further train the network without user intervention.
Ultimately, we may work solely with monocular images by lifting the 2D detections (Pavlakos et al.,
2017b) to 3D or by directly regressing to 3D (Tekin et al., 2017) as has been achieved in human pose
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Figure 4. Unsupervised behavioral classification of 3D joint angle data. Behavioral embeddings were calculated
using 3D joint angles from the same 1 million frames used in Figure 3. (A) Behavioral map combining all data
during 4 s of optogenetic stimulation of MDN>CsChrimson (n=6 flies, n=29 trials), aDN>CsChrimson (n=6 flies,
n=30 trials), and wild-type control animals (For MDN-Gal4/+, n=4 flies, n=20 trials. For aDN-Gal4/+ n=4 flies,
n=23 trials). The same behavioral map is shown with only the data from (B) MDN>CsChrimson stimulation, (C)
aDN>CsChrimson stimulation, or (D) control animal stimulation. Associated videos reveal that these distinct
map regions are enriched for backward walking, antennal grooming, and forward walking, respectively.

The following video supplements are available:

o
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Figure 4-video 1. Representative MDN CsChrimson optogenetically activated backward walking.
https://drive.google.com/file/d/1YY98bo2ZbjLotyiTHdViey5zfhKow4]x/view?usp=sharing

Figure 4-video 2. Representative aDN>CsChrimson optogenetically activated antennal grooming.
https://drive.google.com/file/d/1_QBgt7P6DhRINHKNArQIOyNaZALTQumk/view?usp=sharing
Figure 4-video 3. Representative control animal behavior during illumination.
https://drive.google.com/file/d/100lwMCSyZFy)6TQ6sTIc)laMCT69)KH2/view?usp=sharing

Figure 4-video 4. Sample behaviors from 3D pose cluster enriched in backward walking.
https://drive.google.com/file/d/TH-R1PmcusV55Yw7c_4dKVFaGt)M-FGOM/view?usp=sharing
Figure 4-video 5. Sample behaviors from 3D pose cluster enriched in antennal grooming.
https://drive.google.com/file/d/1f7TaF8FTWNwuvpdK9hVO0IX7tt6f2QjXo/view?usp=sharing
Figure 4-video 6. Sample behaviors from 3D pose cluster enriched in forward walking.
https://drive.google.com/file/d/1Q60NxGLMIg202glwPOuw1mzP8lkAwOgk/view?usp=sharing

estimation studies. In the Methods section, we explain in detail how organism-specific features of
DeepFly3D—bone segment length, number of legs, and camera focal distance—can be modified to
study, for example, humans (Figure 11), primates, rodents, or other insects.

As in the past, we anticipate that the development of new technologies for quantifying behavior
will open new avenues and enhance existing lines of investigation. For example, deriving 3D
pose using DeepFly3D can improve the resolution of studies examining how neuronal stimulation
influences animal behavior (Cande et al., 2018; McKellar et al., 2019), the precision and predictive
power of efforts to define natural action sequences (Seeds et al., 2014; McKellar et al., 2019), the
assessment of interventions that target models of human disease (Feany and Bender, 2000; Hewitt
and Whitworth, 2017), and the linking of neural activity with animal behavior—when coupled with
recording technologies like 2-photon microscopy (Seelig et al., 2010; Chen et al., 2018). Importantly,
3D pose dramatically improves the robustness of unsupervised behavioral classification approaches.
Therefore, DeepFly3D is a critical step toward the ultimate goal of achieving fully-automated, high-
fidelity behavioral data analysis.

Materials and Methods

With synchronized Drosophila video sequences from seven cameras in hand, the first task for
DeepFly3D is to detect the 2D location of 38 landmarks. These 2D locations of the same landmarks
seen across multiple views are then triangulated to produce 3D pose estimates. This pipeline is
depicted in Figure 5. First, we will describe our deep learning-based approach to detect landmarks
in images. Then, we will explain the triangulation process that yields full 3D trajectories. Finally, we
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will describe how we identify and correct erroneous 2D detections automatically.

A Data acquisition
chuire synchronized images from 7 cameras )

B 2D pose training +
mmotate randomly selected images with tool \

Train a deep network with annotated images
Calibrate cameras using 2D pose estimates

Automatically correct 2D pose with pictorial structure

Qanually correct remaining errors with GUI /

C 3D pose estimation *

Triangulate 2D pose estimates using calibration
Apply 1€ filter to smooth 3D pose
Convert 3D pose to joint angles

Figure 5. The DeepFly3D pose estimation pipeline. (A) Data acquisition from the multi-camera system. (B)
Training and retraining of 2D pose. (C) 3D pose estimation.

Deep Network Architecture. We aim to detect five joints on each limb, six on the abdomen,
and one on each antenna, giving a total of 38 keypoints per time instance. To achieve this, we
adapted a state-of-the-art Stacked Hourglass human pose estimation network (Newell et al., 2016)
by changing the input and output layers to accommodate a new input image resolution and a
different number of tracked points. A single hourglass stack consists of residual bottleneck modules
with max pooling, followed by up-sampling layers and skip connections. The first hourglass network
begins with a convolutional layer and a pooling layer to reduce the input image size from 256 x 512
to 64 x 128 pixels. The remaining hourglass input and output tensors are 64 x 128. We used 8 stacks
of hourglasses in our final implementation. The output of the network is a stack of probability
maps, also known as heatmaps or confidence maps. Each probability map encodes the location
of one keypoint, as the belief of the network that a given pixel contains that particular tracked
point. However, probability maps do not formally define a probability distribution: their sum over
all pixels does not equal 1.

2D pose training dataset. We trained our network for 19 keypoints, resulting in the tracking
of 38 points when both sides of the fly are accounted for. Determining which images to use for
training purposes is critical. The intuitively simple approach—training with randomly selected
images—may lead to only marginal improvements in overall network performance. This is because
images for which network predictions can already be correctly made give rise to only small gradients
during training. On the other hand, manually identifying images that may lead to incorrect network
predictions is highly laborious. Therefore, to identify such challenging images, we exploited the
redundancy of having multiple camera views (see section 3D pose correction). Outliers in individual
camera images were corrected automatically using images from other cameras, and frames that still
exhibited large reprojection errors on multiple camera views were selected for manual annotation
and network retraining. This combination of self supervision and active learning permits faster
training using a smaller manually annotated dataset (Simon et al., 2017). The full annotation
and iterative training pipeline is illustrated in Figure 5. In total, 40,063 images were annotated:
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5,063 were labeled manually in the first iteration, 29,000 by automatic correction, and 6,000 by
manually correcting those proposed by the active learning strategy.

Deep network training procedure. We trained our Stacked Hourglass network to regress from
256 x 512 pixel grayscale video images to multiple 64 x 128 probability maps. Specifically, during
training and testing, networks output a 19 x 64 x 128 tensor; one 64 x 128 probability map per
tracked point. During training, we created probability maps by embedding a 2D Gaussian with
mean at the ground-truth point and 1px symmetrical extent, i.e., with ¢ = 1px on the diagonal of
the covariance matrix. We calculated the loss as the L, distance between the ground-truth and
predicted probability maps. During testing, the final network prediction for a given point was the
probability map pixel with maximum probability. We started with a learning rate of 0.0001 and
then multiplied the learning rate by a factor of 0.1 once the loss function plateaued for more than
5 epochs. We used an RMSPROP optimizer for gradient descent, following the original Stacked
Hourglass implementation, with a batch-size of 8 images. Using 37,000 training images, the Stacked
Hourglass network usually converges to a local minimum after 100 epochs (20 hours on a single
GPU).

Network training details. Variations in each fly’s position across experiments are handled
by the translational invariance of the convolution operation. In addition, we artificially augment
training images to improve network generalization for further image variables. These variables
include (i) ilumination conditions - we randomly changed the brightness of images using a gamma
transformation, (ii) scale - we randomly rescaled images between 0.80x - 1.20x, and (iii) rotation - we
randomly rotated images and corresponding probability maps +15°. This augmentation was enough
to compensate for real differences in the size and orientation of tethered flies across experiments.
Furthermore, as per general practice, the mean channel intensity was subtracted from each input
image to distribute annotations symmetrically around zero. We began network training using
pretrained weights from the MPIl human pose dataset (Andriluka et al., 2014). This dataset consists
of more than 25,000 images with 40,000 annotations, possibly with multiple ground-truth human
pose labels per image. Starting with a pretrained network results in faster convergence. However, in
our experience, this does not affect final network accuracy in cases with a large amount of training
data. We split the dataset into 37,000 training images, 2,063 testing images, and 1,000 validation
images. None of these subsets shared common images or common animals, to ensure that
the network could generalize across animals, and experimental setups. 5,063 of our training
images were manually annotated, and the remaining data were automatically collected using belief
propagation, graphical models, and active learning, (see section 3D pose correction). Deep neural
network parameters need to be trained on a dataset with manually annotated ground-truth key
point positions. To initialize the network, we collected annotations using a custom multicamera
annotation tool that we implemented in JavaScript using Google Firebase (Figure 6). The DeepFly3D
annotation tool operates on a simple web-server, easing the distribution of annotations across
users and making these annotations much easier to inspect and control. We provide a GUI to
inspect the raw annotated data and to visualize the network’s 2D pose estimation (Figure 9).

Computing hardware and software. We trained our model on a desktop computing work-
station running on an Intel Core i9-7900X CPU, 32 GB of DDR4 RAM, and a GeForce GTX 1080.
With 37,000 manually and automatically labeled images, training takes nearly 20 hours on a single
GeForce GTX 1080 GPU. Our code is implemented with Python 3.6, Pytorch 0.4 and CUDA 9.2.

Accuracy analysis. Consistent with the human pose estimation literature, we report accuracy
as Percentage of Correct Keypoints (PCK) and Root Mean Squared Error (RMSE). PCK refers to
the percentage of detected points lying within a specific radius from the ground-truth label. We
set this threshold as 50 pixels, which is roughly one third of the femur-tibia segment. The final
estimated position of each keypoint was obtained by selecting the pixel with the largest probability
value on the relevant probability map. We compared DeepFly3D's annotations with manually
annotated ground-truth labels to test our model's accuracy. For RMSE, we report the square root
of average pixel distance between the prediction and the ground-truth location of the tracked
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DeepFly Image Annotation Tool
Please provide your user name: roberto (Full name or identificaton id)
Frames can be annotated sequentially, by clicking the location of the selected
joint in the image below. The next joint and frame will be selected

automatically after each click. To refine your annotation, use the buttons or
respective keyboard keys. Annotation examples are provided below.

Camera: 0/6 Image ID: 6/1428
high low undo redo 1 joint ! joint « frame - frame <« camera — camera

+zoom -zoom [OSave.csv vvalidate

Right Frontal Body-Coxa (Hip)

Figure 6. The DeepFly3D annotation tool. This GUI allows the user to manually annotate joint positions on
images from each of 7 cameras. Because this tool can be accessed from a web browser, annotations can be
performed in a distributed manner across multiple users more easily. A full description of the annotation tool
can be found in the online documentation: https://github.com/NelLy-EPFL/DeepFly3D

point. We remove trivial points such as the body-coxa and coxa-femur—which remain relatively
stationary—to fairly evaluate our algorithms and to prevent these points from dominating our
accuracy measurements.

From 2D landmarks to 3D trajectories

In the previous section, we described our approach to detect 38 2D landmarks. Let x, ; € R* denote
the 2D position of landmark j and the image acquired by camera c. For each landmark, our task is
now to estimate the corresponding 3D position, X; € R*. To accomplish this, we used triangulation
and bundle-adjustment (Hartley and Zisserman, 2000) to compute 3D locations, and we used
pictorial structures (Felzenszwalb and Huttenlocher, 2005) to enforce geometric consistency and
to eliminate potential errors caused by misdetections. We present these steps below.

Pinhole camera model. The first step is to model the projection operation that relates a
specific X; to its seven projections in each camera view x, ;. To make this easier, we follow standard
practice and convert all Cartesian coordinates [xc,yc,zc] to homogeneous ones [xh,yh,zh,s] such
that x, = x,,/s, y. = y,/s, z. = z,/s. From now on, we will assume that all points are expressed
in homogeneous coordinates and omit the & subscript. Assuming that these coordinates are
expressed in a coordinate system whose origin is in the optical center of the camera and whose
z-axis is its optical axis, the 2D image projection [u, u] of a 3D homogeneous point [x,y, z, 1] can be
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written as
u=U/W,
v=V/W,
X
U fi 0 ¢ O
y .
14 =KZ ,WithK=|0 f, ¢ 0], (1)
w | 0 0 1 0

where the 3 x 4 matrix K is known as the intrinsic parameters matrix—scaling in the x and y
direction and image coordinates of the principal point ¢, and ¢,—that characterizes the camera
settings.

In practice, the 3D points are not expressed in a coordinate system tied to the camera, especially
in our application where we use seven different cameras. Therefore, we use a world coordinate
system that is common to all cameras. For each camera, we must therefore convert 3D coordinates
expressed in this world coordinate system to camera coordinates. This requires rotating and trans-
lating the coordinates to account for the position of the camera’s optical center and its orientation.
When using homogeneous coordinates, this is accomplished by multiplying the coordinate vector
by a 4 x 4 extrinsic parameters matrix

Mo [R T], 2

where R is a 3 x 3 rotation matrix and T a 3 x 1 translation vector. Combining Equation 1 and
Equation 2 yields

u=U/W,
v=V/W,
X
U
v |=p|” , where P = MK is a 3 x 4 matrix. 3)
w Z
1

Camera distortion. The pinhole camera model described above is an idealized one. The
projections of real cameras deviate from it and these deviations are referred to as distortions and
need to be accounted for. The most significant one is known as radial distortion because the error
grows with the distance to the image center. For the cameras we use, radial distortion can be
expressed as

=u (14K +K1) | 4
=0o(1+kr* +Kr) |

u pinhole

v pinhole

where |u, v| is the actual projection of a 3D point and |u pinnele » vpinh0|e] is the one the pinhole model
predicts. In other words, the four parameters (&7, k}, k’, k) } characterize the distortion. From now
on, we will therefore write the full projection as

X =zx) = f,(f,x), (5)
X= [x, y, z] ,

v=fur] .

where f, denotes the ideal pinhole projection of Equation 3 and f, the correction of Equation 4.
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Triangulation. We can associate to each of the seven cameras a projection function =, like the
one in Equation 5, where ¢ is the camera number. Given a 3D point and its projections x, in the
images, its 3D coordinates can be estimated by minimizing the reprojection error

7
argmin Z e llz.X) —x, |12, (6)

XeR* =]
where e_ is one if the point was visible in image ¢ and zero otherwise. In the absence of camera
distortion, that is, when the projection z is a purely linear operation in homogeneous coordinates,
this can be done for any number of cameras by solving a Singular Value Decomposition (SVD)
problem (Hartley and Zisserman, 2000). In the presence of distortions, we replace the observed u
and v coordinates of the projections by the corresponding u and u values of Equation 5

before performing the SVD.

Camera calibration. Triangulating as described above requires knowing the projection ma-
trices P, of Equation 3 for each camera ¢, corresponding distortion parameters {k’l‘,k’z‘,k{, kg} of
Equation 4, together with the intrinsic parameters of focal length and principal point offset. In
practice, we use the focal length and principal point offset provided by the manufacturer and esti-
mate the remaining parameters automatically: the three translations and three rotations for each
camera that define the corresponding matrix M of extrinsic parameters along with the distortion
parameters.

To avoid having to design the exceedingly small calibration pattern that more traditional methods
use to estimate these parameters, we use the fly itself as calibration pattern and minimize the
reprojection error of Equation 6 for all joints simultaneously while allowing the camera parameters
to also change. In other words we look for

pinhole pinhole

argmin Z 2 ch(ﬂ' (X ) — ) (7)
ﬂ'-cl<c<7 e=l j=
J1<j<n

where X; and x, ; are the 3D locations and 2D projections of the landmarks introduced above and p
denotes the Huber loss. Equation 7 is known as bundle-adjustment (Hartley and Zisserman, 2000).

Huber loss is defined as
;az for |a] <6
a) =
P5(@) P <|a| - %5) otherwise

Replacing the squared loss by the Huber loss makes our approach more robust to erroneous
detections x, ;. We empirically set 6 to 20 pixels. Note that we perform this minimization with respect
to ten degrees-of-freedom per camera: three translations, three rotations, and four distortions.

For this optimization to work properly, we need to initialize these ten parameters and we need to
reduce the number of outliers. To achieve this, the initial distortion parameters are set to zero. We
also produce initial estimates for the three rotation and three translation parameters by measuring
the distances between adjacent cameras and their relative orientations. To initialize the rotation
and translation vectors, we measure the distance and the angle between adjacent cameras, from
which we infer rough initial estimates. Finally, we rely on epipolar geometry (Hartley and Zisserman,
2000) to automate outlier rejection. Because the cameras form a rough circle and look inward, the
epipolar lines are close to being horizontal. Thus, corresponding 2D projections must belong to the
same image rows, or at most a few pixels higher or lower. In practice, this means checking if all 2D
predictions lie in nearly the same rows and discarding a priori those that do not.

3D pose correction

The triangulation procedure described above can produce erroneous results where the 2D estimates
of landmarks are wrong. Additionally, it may result in implausible 3D poses for the entire animal
because it treats each joint independently. To enforce more global geometric constraints, we rely
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Figure 7. Camera calibration. (A) Correcting erroneous 2D pose estimations by using epipolar relationships.
Only 2D pose estimates without large epipolar errors are used for calibration. x, represents a 2D pose estimate
from the middle camera. Epipolar lines are indicated as blue and red lines on the image plane. (B) The
triangulated point, X7, uses the initial camera parameters. However, due to the coarse initialization of each
camera’s extrinsic properties, observations from each camera do not agree with one another and do not yield a
reasonable 3D position estimate. (C) The camera locations are corrected, generating an accurate 3D position
estimate by optimizing Equation 7 using only the pruned 2D points.

on pictorial structures (Felzenszwalb and Huttenlocher, 2005) as described in Figure 8. Pictorial
structures encode the relationship between a set of variables (in this case the 3D location of
separate tracked points) in a probabilistic setting using a graphical model. This makes it possible
to consider multiple 2D locations x, ; for each landmark X, instead of only one. This increases the
likelihood of finding the true 3D pose.

Generating multiple candidates. Instead of selecting landmarks as the locations with the
maximum probability in maps output by our Stacked Hourglass network, we generate multiple
candidate 2D landmark locations x, ;. From each probability map, we select ten local probability
maxima that are at least one pixel apart from one another. Then, we generate 3D candidates by
triangulating 2D candidates in every tuple of cameras. Because a single point is visible from at most
four cameras, this results in at most ( ) x 10? candidates for each tracked point.

Choosing the best candidates. To identify the best subset of resulting 3D locations, we intro-
duce the probability distribution P(L|I, 6) that assigns a probability to each solution L, consisting
of 38 sets of 2D points observed from each camera. Our goal is then to find the most likely one.
More formally, P represents the likelihood of a set of tracked points L, given the images, model
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Figure 8. 3D pose correction for one leg using the MAP solution and pictorial structures. (A) Candidate 3D pose
estimates for each keypoint are created by triangulating local maxima from probability maps generated by the
Stacked Hourglass deep network. (B) For a selection of these candidate estimates, we can assign a probability
using Equation 8. However, calculating this probability for each pair of points is computationally intractable. (C)
By exploiting the chain structure of Equation 8, we can instead pass a probability distribution across layers
using a belief propagation algorithm. Messages are passed between layers as a function of parent nodes,
describing the belief of the child nodes on each parent node. Grayscale colors represent the calculated belief of
each node where darker colors indicate higher belief. (D) Corrected pose estimates are obtained during the
second backward iteration, by selecting the nodes with largest belief. We discard nodes (x's) that have
non-maximal belief during backwards message passing. Note that beliefs have been adjusted after forward
message passing.

2D Pose Estimation|  Save

calibration  Rename Images

Prob. Map || Image | Pose | Correction v!Skip v Correction

< | < | > | > |167 Go

Figure 9. DeepFly3D graphical user interface (GUI). The top-left buttons enable operations like 2D pose estimation, camera calibration, and saving
the final results. The top-right buttons can be used to visualize the data in different ways: as raw images, probability maps, 2D pose, or the
corrected pose following pictorial structures. The bottom-left buttons permit frame-by-frame navigation. A full description of the GUI can be found
in the online documentation: https://github.com/NelLy-EPFL/DeepFly3D

s parameters, camera calibration, and geometric constraints. In our formulation, I denotes the seven
6 cameraimages I = {I,},..., and 6 represents the set of projection functions z, for camera ¢ along
37 With a set of length distributions S, ; between each pair of points i and j that are connected by a
s limb. L consists of a set of tracked points {L;},.,.,, where each L, describes a set of 2D observations
e [, from multiple camera views. These are used to triangulate the corresponding 3D point locations
s0 1, If the set of 2D observations is incomplete, as some points are totally occluded in some camera
s views, we triangulate the 3D point /, using the available ones and replace the missing observations
52 by projecting the recovered 3D positions into the images, z,(/,) in Equation 3. In the end, we aim to
a3 find the solution L = argmax, P(L|I,#). This is known as Maximum a Posteriori (MAP) estimation.
374 Using Bayes rule, we write

P(L|I,0) < P(I|L,0)P(L|6), (8)

s Where the two terms can be computed separately. We compute P(I|J, 6) using the probability
s maps H,, generated by the Stacked Hourglass network for the tracked point j for camera c. For a
377 single joint j seen by camera ¢, we model the likelihood of observing that particular point using
s P(H,|l;,), which can be directly read from the probability maps as the pixel intensity. Ignoring the
79 dependency between the cameras, we write the overall likelihood as the product of the individual
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likelihood terms ;
PU|L,0)= PH|L) « [[[] PCH,. 110 »
i=1 c=1
which can be read directly from the probability maps as pixel intensities and represent the network’s
confidence that a particular keypoint is located at a particular pixel. When a point is not visible from
a particular camera, we assume the probability map only contains a constant non-zero probability,
which does not effect the final solution. We express P(L|9) as

n 7
pwio)= Pz $) = [T P(1.715,) [T T etz - 105"

(i.))EE j=1 ¢=1

where pairwise dependencies P <7,,7j|S,.,j) between two variables respect the segment length
constraint when the variables are connected by a limb. The length of segments defined by pairs of
connected 3D points follows a normal distribution. Specifically, we model P <7i,7j|Sw.) as S, (.1)=
NIT,=T,l1 - ;. ;). We model the reprojection error for a particular point j as [T._, e, llz.( )~ ,II;"
which is set to zero using the variable e, ; denoting the visibility of the point j from camera c. If a 2D
observation for a particular camera is manually set by a user with the DeepFly3D GUI, we take it to
be the only possible candidate for that particular image and we set P(L,;|H) to 1, where j denotes
the manually assigned pixel location.

Solving the MAP problem using the Max-Sum algorithm. For general graphs, MAP estimation
with pairwise dependencies is NP-hard and therefore intractable. However, in the specific case of
non-cyclical graphs, it is possible to solve the inference problem using belief propagation (Bishop,
2006). Since the fly's skeleton has a root and contains no loops, we can use a message passing
approach (Felzenszwalb and Huttenlocher, 2005). It is closely related to Viterbi recurrence and
propagates the unary probabilities P(L,|L,) between the edges of the graph starting from the root
and ending at the leaf nodes. This first propagation ends with the computation of the marginal
distribution for the leaf node variables. During the subsequent backward iteration, as P(L) for
leaf node is computed, the point L; with maximum posterior probability is selected in O(k) time,
where k is the upper bound on the number of proposals for a single tracked point. Next, the
distribution P(L,|L,) is calculated, adjacent nodes for the leaf node. Continuing this process on
all of the remaining points results in a MAP solution for the overall distribution P(L), as shown in
Figure 8, with overall O(k*) computational complexity.

Learning the parameters. We learn the parameters for the set of pairwise distributions S ;
using a maximum likelihood process and assuming the distributions to be Gaussian. We model
the segment length S, ; as the euclidean distance between the points /, 1, and l We then solve for
argmaxg P(S|L,0), assumlng segments have a Gaussian distribution resultlng from the Gaussian
noise in point observations L. This gives us the mean and variance, defining each distribution s, ;.
We exclude the same points that we removed from the calibration procedure, that exhibit high
reprojection error.

In practice, we observe a large variance for pretarsus values. This is because occlusions oc-
casionally shorten visible tarsal segments. To eliminate the resulting bias, we treat these limbs
differently from the others and model the distribution of tibia-tarsus and tarsus-tip points as a Beta
distribution, with parameters found using a similar Maximum Likelihood Estimator (MLE) formula-
tion. Assuming the observation errors to be Gaussian and zero-centered, the bundle adjustment
procedure can also be understood as an MLE of the calibration parameters (Triggs et al., 2000).
Therefore, the entire set of parameters for the formulation can be learned using MLE.

The pictorial structure formulation can be further expanded using temporal information, pe-
nalizing large movements of a single tracked point between two consecutive frames. However, we
abstained from using temporal information more extensively for several reasons. First, temporal
dependencies would introduce loops in our pictorial structures, thus making exact inference NP-
hard as discussed above. This can be handled using loopy belief propagation algorithms (Murphy
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et al., 1999) but requires multiple message passing rounds, which prevents real-time inference
without any theoretical guarantee of optimal inference. Second, the rapidity of Drosophila limb
movements makes it hard to assign temporal constraints, even with fast video recording. Finally, we
empirically observed that the current formulation, enforcing structured poses in a single temporal
frame, already eliminates an overwhelming majority of false-positives inferred during the pose
estimation stage of the algorithm.

Camera 4 Camera 5 Camera 6 Camera 7

e

Probability Raw
maps images

Original
2D pose

Corrected
2D pose

Figure 10. Pose correction using pictorial structures. (A) Raw input data from four cameras, focusing on the
pretarsus of the middle left leg. (B) Probability maps for the pretarsus output from the Stacked Hourglass deep
network. Two maxima (white arrowheads) are present on the probability maps for camera 5. The false-positive
has a larger unary probability. (C) Raw predictions of 2D pose estimation without using pictorial structures. The
pretarsus label is incorrectly applied (white arrowhead) in camera 5. By contrast, cameras 4, 6, and 7 are
correctly labeled. (D) Corrected pose estimation using pictorial structures. The false-positive is removed due to
the high error measured in Equation 8. The newly corrected pretarsus label for camera 5 is shown (white
arrowhead).

Modifying DeepFly3D to study other animals. DeepFly3D can also be applied toward 3D
pose estimation in other animals (e.g., humans (Figure 11), primates, rodents, and other insects).
Importantly, DeepFly3D does not assume a circular camera arrangement, or that there is one
degree of freedom in the camera network. We illustrate this flexibility by using DeepFly3D to
analyze the Human 3.6M Dataset (http://vision.imar.ro/human3.6m/description.php) generated
from four synchronized cameras (lonescu et al., 2014).

Generally, for any new dataset, the user first needs to provide an initial set of manual annotations.
Then, in skeleton.py, the user should describe the number of tracked points and their relationships
to one another (e.g., are they connected). Then, in Config.py, the user should set the number of
cameras, and the resolutions of input images and output probability maps. DeepFly3D will then use
these initial manual annotations to (i) train the 2D Stacked Hourglass network, (ii) perform camera
calibration without an external checkerboard pattern, (iii) learn the epipolar geometry to perform
outlier detection, and (iv) learn the segment length distributions .S, ;. After this initial bootstrapping,
DeepFly3D can be then used with pictorial structures and active learning to iteratively improve pose
estimation accuracy.

The initial manual annotations can be performed using the DeepFly3D Annotation GUI. After-
wards, these annotations can be downloaded from the Annotation GUI as a CSV file using the Save
button (Figure 6). Once the CSV file is placed in the images folder, DeepFly3D will automatically
read and display the annotations. To train the Stacked Hourglass network, use the csv-path flag
while running pose2d.py (found in deepfly/pose2d). DeepFly3D will then train the Stacked Hourglass

15 of 20


http://vision.imar.ro/human3.6m/description.php
https://doi.org/10.1101/640375
http://creativecommons.org/licenses/by-nc-nd/4.0/

2D Pose Estimation Save

C R Al v

bIORXIV preprint d0| https: //d0| org/lO 1101/640375; thls verS|on posted May 31, 2019. The copyrlght holder for this preprint (WhICh was not

Calibration | Rename Images

Prob. Map || Image Pose | Correction v|Skip v Correction

Go

Figure 11. DeepFly3D graphical user interface (GUI) used with the Human3.6M dataset lonescu et al. (2014). To use the DeepFly3D GUI on any new
dataset (Drosophila or otherwise), users can provide an initial small set of manual annotations. Using these annotations, the software calculates the
epipolar geometry, performs camera calibration, and trains the 2D pose estimation deep network. A description of how to adopt DeepFly3D for

new datasets can be found in the Methods section and, in greater detail, online: https://github.com/NeLy-EPFL/DeepFly3D
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network by performing transfer learning using the large MPII dataset and the smaller set of user
manual annotations.

To perform camera calibration, the user should select the Calibration button on the GUI Figure 9.

DeepFly3D will then perform bundle adjustment (Equation 7) and save the camera parameters
in calibration.pickle (found in the images folder). The path of this file should then be added to
Config.py to initialize calibration. These initial calibration parameters will then be used in further
experiments for fast and accurate convergence. If the number of annotations is insufficient for
accurate calibration, or if bundle adjustment is converging too slowly, an initial rough estimate of
the camera locations can be set in Config.py. As long as a calibration is set in Config.py, DeepFly3D
will use it as a projection matrix to calculate the epipolar geometry between cameras. This step is
necessary to perform outlier detection on further calibration operations.
DeepFly3D will also learn the distribution S, ;, whose non-zero entries are found in skeleton.py.
One can easily calculate these segment length distribution parameters using the functions provided
with DeepFly3D. CameraNetwork class (found under deepfly/GUI/), will then automatically load the
points and calibration parameters from the images folder. The function CameraNetwork.triangulate
will convert 2D annotation points into 3D points using the calibration parameters. The S, ; pa-
rameters can then be saved using the pickle library (the save path can be set in Config.py). The
calcBoneParams method will then output the segment lengths’ mean and variance. These values
will then be used with pictorial structures (Equation 8).

We provide further technical details for how to adapt DeepFly3D to other multi-view datasets
online .

Experimental setup

We positioned seven Basler acA1920-155um cameras (FUJIFILM AG, Niederhaslistrasse, Switzerland)
94 mm away from the tethered fly, resulting in a circular camera network with the animal in the
center (Figure 12). We acquired 960 x 480 pixel video data at 100 FPS under 850 nm infrared ring
light illumination (Stemmer Imaging, Pfaffikon Switzerland). Cameras were mounted with 94 mm
W.D. / 1.00x InfiniStix lenses (Infinity Photo-Optical GmbH, Géttingen). Optogenetic stimulation LED
light was filtered out using 700 nm longpass optical filters (Edmund Optics, York UK). Each camera’s
depth of field was increased using 5.8 mm aperture retainers (Infinity Photo-Optical GmbH). To
automate the timing of optogenetic LED stimulation and camera acquisition triggering, we use an

Thttps://github.com/NeLy-EPFL/DeepFly3D
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Arduino (Arduino, Sommerville MA USA) and custom software written using the Basler camera API.

Optogenetic
stimulation

(617 nm light)
Camera 1 Camera 7

Spherlcal
treadmill Ilg ht

Camera 2 Camera 6

Camera 3 Camera 5

Camera 4

Figure 12. A schematic of the seven camera spherical treadmill and optogenetic stimulation system that was
used in this study.

Drosophila transgenic lines. UAS-CsChrimson (Klapoetke et al., 2014) animals were obtained
from the Bloomington Stock Center (Stock #55135). MDN-1-Gal4 (Bidaye et al., 2014) (VT44845-
DBD; VT50660-AD) was provided by B. Dickson (Janelia Research Campus, Ashburn USA). aDN-Gal4
(Hampel et al., 2015)(R76F12-AD; R18C11-DBD), was provided by J. Simpson (University of California,
Santa Barbara USA). Wild-type, PR animals were provided by M. Dickinson (California Institute of
Technology, Pasadena USA).

Optogenetic stimulation experiments. Experiments were performed in the late morning or
early afternoon Zeitgeber time (Z.T.), inside a dark imaging chamber. An adult female animal 2-3
days-post-eclosion (dpe), was mounted onto a custom stage (Chen et al., 2018) and allowed to
acclimate for 5 minutes on an air-supported spherical treadmill (Chen et al., 2018). Optogenetic
stimulation was performed using a 617 nm LED (Thorlabs, Newton, NJ USA) pointed at the dorsal
thorax through a hole in the stage, and focused with a lens (LA1951, 01" f = 25.4 mm, Thorlabs,
Newton, NJ USA). Tethered flies were otherwise allowed to behave spontaneously. Data were
acquired in 9 s epochs: 2 s baseline, 5 s with optogenetic illumination, and 2 s without stimulation.
Individual flies were recorded for 5 trials each, with one-minute intervals. Data were excluded
from analysis if flies pushed their abdomens onto the spherical treadmill—interfering with limb
movements—or if flies struggled during optogenetic stimulation, pushing their forelimbs onto the
stage for prolonged periods of time.

Unsupervised behavioral classification

To create unsupervised embeddings of behavioral data, we mostly followed the approach taken
by (Todd et al., 2017; Berman et al., 2014). We smoothed 3D pose traces using a 1€ Filter. Then
we converted them into angles to achieve scale and translational invariance (Casiez et al., 2012).
Angles were calculated by taking the dot product from sets of three connected 3D positions. For
the antenna, we calculated the angle of the line defined by two antennal points with respect to the
ground-plane. This way, we generated four angles per leg (two body-coxa, one coxa-femur, and
one femur-tibia), two angles for the abdomen (top and bottom abdominal stripes), and a single
angle for the antennae (head tilt with respect to the axis of gravity). In total, we obtained a set of 34
angles, extracted from 38 3D points.
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We transformed angular time series using a Continous Wavelet Transform (CWT) to create a
posture-dynamics space. We used the Morlet Wavelet as the mother wavelet, given its suitability to
isolate periodic chirps of motion. We chose 25 wavelet scales to match dyadically spaced center
frequencies between 5Hz and 50Hz. Then, we calculatd spectrograms for each postural time-series
by taking the magnitudes of the wavelet coefficients. This yields a 34 x 25 = 850-dimensional
time-series, which was then normalized over all frequency channels to unit length, at each time
instance. Then, we could treat each feature vector from each time instance as a distribution over all
frequency channels.

Later, from the posture-dynamics space, we computed a two-dimensional representation of
behavior by using the non-linear embedding algorithm, t-SNE Maaten and Hinton (2008). t-SNE em-
bedded our high-dimensional posture-dynamics space onto a 2D plane, while preserving the high-
dimensional local structure, while sacrificing larger scale accuracy. We used the Kullback-Leibler
(KL) divergence as the distance function in our t-SNE algorithm. KL assesses the difference between
the shapes of two distributions, justifying the normalization step in the preceding step. By analyzing
a multitude of plots generated with different perplexity values, we empirically found perplexity 35
to best suit the features of our posture-dynamics space.

From this generated discrete space, we created a continuous 2D distribution, that we could then
segment into behavioral clusters. We started by normalizing the 2D t-SNE projected space into
a 1000 x 1000 matrix. Then, we applied a 2D Gaussian convolution with a kernel of size ¢ = 10px.
Finally, we segmented this space by inverting it and applying a Watershed algorithm that separated
adjacent basins, yielding a behavioral map.
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