

1

Nociception testing during fixed-wing ambulance flights.

4

5 An interventional pilot study on the effects of flight-related
6 environmental changes on the nociception of healthy volunteers.

7

8 Short title: In-flight nociception testing.

9

10 Johannes Prottengeier^{1,2*}, Stefan Elsner², Andreas Wehrfritz^{1,2},
11 Andreas Moritz^{1,2}, Joachim Schmidt^{1,2}, Michael Meyer^{1,2}

12

13

14

15

16 ¹Department of Anesthesiology, University Hospital Erlangen, Erlangen,
17 Germany.

18 ²Faculty of Medicine, Friedrich-Alexander University Erlangen-Nuremberg,
19 Erlangen, Germany.

20

21

22

23 * Corresponding author

24

25 E-mail: johannes.prottengeier@kfa.imed.uni-erlangen.de (JP)

26 **Abstract**

27
28 **Background:** The effects of environmental changes on the somato-
29 sensory system during long-distance air ambulance flights need to be
30 further investigated. Changes in nociceptive capacity are conceivable in
31 light of previous studies performed under related environmental settings.
32 We used standardized somato-sensory testing to investigate nociception
33 in healthy volunteers during air-ambulance flights.

34 **Methods:** Twenty-five healthy individuals were submitted to a test
35 compilation analogous to the quantitative sensory testing battery –
36 performed during actual air-ambulance flights. Measurements were paired
37 around the major changes of external factors during take-off/climb and
38 descent/landing. Bland-Altman-Plots were calculated to identify possible
39 systemic effects.

40 **Results:** Bland-Altman-analyses suggest that the thresholds of stimulus
41 detection and pain as well as above-threshold pain along critical waypoints
42 of travel are not subject to systemic effects but instead demonstrate
43 random variations.

44 **Conclusions:** We provide a novel description of a real-life experimental
45 setup and demonstrate the general feasibility of performing somato-
46 sensory testing during ambulance flights. No systematic effects on the
47 nociception of healthy individuals were apparent from our data. Our
48 findings open up the possibility of future investigations into potential
49 effects of ambulance flights on patients suffering acute or chronic pain.

50

51 **Introduction**

52 Inter-hospital transfers are common medical procedures, that are
53 sometimes carried out using fixed-wing air-ambulances. The number of
54 such long-distance transfers is steadily rising due to the ongoing
55 internationalization of specialized medical care and, much more
56 importantly, due to increases in individual international mobility [1]. The
57 latter results in growing numbers of aeromedical retrievals of travelers
58 back to their home countries [2].

59 Long distance air ambulance flights can be considered a medical field of
60 pre-requisites that truly distinguish it from intra-hospital care. While
61 vibrations, noise, and restricted patient access must also be considered in
62 other means of transportation, such as ground-ambulances and mobile
63 ICUs, the rapid alterations in atmospheric pressure, oxygen partial
64 pressure and air humidity that occur during airplane flights are
65 environmental changes that are actually unique to this mode of transfer.
66 Despite this distinctiveness, most in-flight medical measures are simply
67 extrapolated from what we know and do when on solid ground. For
68 example, during transfers, analgesia is typically applied as if the patient
69 were in a hospital – regardless of any of the possible effects, the profound
70 environmental changes caused by flying in an airplane might have on
71 human nociception.

72 Data from several studies have called this business-as-usual approach into
73 question. For example, Sato and colleagues found that neuropathic pain
74 was significantly aggravated in guinea pigs that were exposed to small

75 alterations in atmospheric pressure similar to weather changes [3].
76 Additionally, healthy mountaineers in the Himalayas have been found to
77 have lower pain detection thresholds when at high altitudes than when in
78 low lying areas [4]. Thus, it seems that distinct environmental factors can
79 influence nociception. And airplane travel in particular may affect other
80 sensory functions as well. During simulated flights, healthy volunteers
81 experienced changes in their gustatory detection thresholds [5]. As a
82 consequence, commercial airlines have refined their in-flight meals to
83 compensate for these flight-related sensory alterations.

84 In summary, it seems conceivable that airplane travel could impact
85 nociception, but no data are available to evaluate its influence. In this
86 prospective interventional study, we investigated the possible effects of
87 air-ambulance flights on human nociception. Instead of artificially altering
88 single environmental variables in a laboratory setting (such as
89 atmospheric pressure), we decided to test pain perception in a real-life in-
90 flight setting. This approach was used to provide external conditions
91 identical to those encountered during medical transfers and to thus
92 encompass the entirety of all possible influencing factors - even those,
93 that can only be poorly simulated in a laboratory setting such as cabin
94 noise, vibration etc..

95

96
97
98

99 **Materials and Methods**

100
101 **Participants and setting**

102 This study was approved of by the University of Erlangen-Nuremberg's
103 ethics council in advance under decision number 81_13 B.

104 The Department of Anesthesiology at Erlangen University Hospital is
105 involved in international aeromedical retrievals as part of its cooperation
106 with the ADAC, the German motorists club, which is one of the major
107 insurance providers for Germans traveling abroad. The ADAC's two
108 Dornier 328 mid-range ambulance jets provided the setting for our
109 experiments.

110 Healthy male volunteers were recruited from the pool of flight nurses and
111 flight doctors engaged in transports on behalf of the ADAC. Informed
112 written consent was obtained from each participant well before testing. All
113 participants were required to undergo a concise health examination before
114 they were included in our study. Exclusion criteria included, amongst
115 others, any acute or chronic pain disorders, current or recent use of
116 analgesics and any significant neurological, cardio-vascular, pulmonary or
117 metabolic comorbidities.

118

119 **Test sequence**

120 Nociception was tested at 4 distinct waypoints along the flight path. First,
121 baseline values were obtained at ground level before take-off (Waypoint
122 1). Measurements for waypoint 2 were acquired after reaching cruising
123 altitude. Waypoint 3 was set at a later time, right before leaving cruising

124 altitude. Finally, a fourth and final set of measurements was obtained
125 after touchdown, once the plane had reached its parking position
126 (Waypoint 4). Picture 1 shows a schematic of the 4 waypoints along a
127 flight.

128
129 Environmental factors such as atmospheric pressure, temperature and
130 humidity were documented and were considered as possible influencing
131 factors on nociception.

132
133 **SPACER Figure 1: Schematic of test sequence.**

134
135 *Legend Figure 1: The 4 sets of measurements were distributed strategically at distinct*
136 *waypoints during each flight. Measurement 1 = before take-off, 2 = after reaching*
137 *cruising altitude, 3 = before leaving cruising altitude, and 4 =after landing. The type of*
138 *aircraft used for the experiments is shown in the background. The planes right and*
139 *second to right are both identical Do 328s, in service as air ambulances [6].*

140
141 **Quantitative sensory testing battery**

142 Nociception measurements comprised a variety of modalities derived from
143 the “quantitative sensory testing” (QST) battery. The QST has been
144 developed by the German Research Network on Neuropathic Pain and has
145 found widespread use worldwide since its introduction in 2002.
146 Standardized testing allows the representative investigation of an
147 individual’s somatosensory system, comprising both peripheral and central
148 pathways [7-9]. The test procedures apply increasing, calibrated, non-

149 invasive stimuli to detect the three distinct hallmarks of the sensory
150 system for the different neurobiological sub-modalities of pain:

151
152 1. Perception thresholds,
153 2. Pain thresholds, and the
154 3. Quantification of sensations above threshold

155
156 Predefined techniques are provided by the QST manual to calculate
157 validated threshold values from the obtained measurements. Briefly, QST
158 measures through a set of tests (1.) when you first feel the stimulus, (2.)
159 when the stimulus causes pain for the first time and (3.) how much a
160 specific stimulus hurts.

161
162 **Thermal testing**
163 Warm and cold thermal perception and pain thresholds were investigated
164 using the TSA II NeuroSensory Analyzer (Medoc Advanced Medical
165 Systems, Ramat Yishai, Israel). A thermode with a circulating water
166 system was placed on the volunteer's skin and a series of changes in
167 water temperature were repeatedly applied. Technical limitations of
168 thermode temperature were implemented to avoid skin lesions. When
169 participants perceived that the temperature had changed and when they
170 later felt pain derived from cold or heat, they pushed a button and the
171 threshold temperatures were registered electronically.

172

173 **Mechanical testing**

174 Mechanical pain thresholds were examined by means of pin-prick needle
175 stimulators of increasing contact weights, resulting in stimulation
176 intensities ranging from 8 Nm to 512 Nm against the intact skin surface of
177 the participants. (Instruments were custom made by the expert mechanic
178 workshop at the Department of Physiology, University of Erlangen-
179 Nuremberg, Germany). Pain thresholds were derived from subjective oral
180 ratings reported by the participants after repeated runs of stimulations. To
181 detect the windup phenomenon, both single and series of above-pain-
182 threshold stimuli were applied and rated on the numerical rating scale
183 (NRS) for pain.

184

185 **Pressure algometer**

186 The indenter-like pressure algometer FDN 200 (Wagner Instruments,
187 Greenwich, USA) was pushed against the participant's skin with increasing
188 effort to determine the pressure pain threshold. The device was equipped
189 with a pressure scale and readings were obtained when the volunteers
190 verbally stated they perceived pain.

191

192 **Pain-Matcher**

193 The pain matcher is not part of the QST test battery. It is a hand-held
194 device that emits rectangular pulses of direct current between the
195 participant's first and second digitae [10, 11]. The transferred energy
196 increases stepwise through automatic pulse elongation (60 steps from 0 to

197 450 msec.), resulting in an electrical sensation that becomes painful over
198 time. The test subjects were instructed to loosen their grip on the device
199 when thresholds were met. The intensity levels for perception and pain
200 thresholds as well as for the individual's maximum pain tolerance were
201 displayed on the device and documented.

202

203 Table 1 provides a comprehensive overview of all test modalities.
204 Abbreviations are later used in tables 3 and 4 of the results section.

205

206 *Table 1. Synopsis of all test modalities and their abbreviations.*

Test modality	Abbreviation
Cold detection threshold	CDT
Heat detection threshold	HDT
Cold pain threshold	CPT
Heat pain threshold	HPT
Mechanical pain threshold	MPT
Wind up single stimulus	WUsS
Wind up multiple stimuli	WUMsS
Pressure pain threshold	PPT
Pain matcher detection threshold	PMDT
Pain matcher pain threshold	PMPT
Pain matcher abort threshold	PMAT

207

208 **Statistical analysis**

209 To assess the influence of the environmental changes that occur between
210 different flight phases on nociception, we performed Bland-Altman-
211 analyses and prepared plots for every sensory test modality. Comparisons
212 were paired around the phases of major changes in external conditions:
213 take-off/climb and descent/landing. For this analysis, we matched
214 waypoint 1 against waypoint 2 and waypoint 3 against waypoint 4. The
215 solid black lines in the Bland-Altman-Plots represent the mean of the

216 differences. The confidence intervals for means of differences are depicted
217 as dashed black lines. The red upper (lower) lines show the upper (lower)
218 limits of agreement equal to the mean $\pm 1.96\text{SD}$. Usually, a total of 95%
219 of observations lie within these limits. Confidence intervals for the limits of
220 agreements were calculated and are presented in tables 3 and 4.
221 However, for reasons of clarity, they were not included in the Bland-
222 Altman-Plots. The blue lines represent a margin of $\pm 20\%$ around the
223 means of the measurements obtained for each modality and serve as a
224 possible indicator of clinical relevance.

225

226 Statistical analysis was performed using SPSS Statistics 21 (IBM Corp.
227 Armonk, NY, USA). Values are presented as means with standard
228 deviations and 95% confidence intervals, where appropriate.

229

230

231 **Results**

232 Descriptive statistics

233 25 male participants completed our experiments. 14 were flight nurses,
234 and 11 were flight physicians. Their ages ranged from 24 to 56 years
235 (Mean: 43.64; SD: 8.71).

236

237 Environmental changes

238 The environmental conditions present on board the Dornier Do-328
239 Ambulance Jets were recorded for each test subject and waypoint. Means

240 are displayed in table 2. Ambient cabin pressure was measured at mean
241 75.43 kPa (SD:1.38) when cruising altitude was reached and 75.94 kPa
242 (SD:2.63) before descend, against normobaric conditions on ground levels
243 (p< 0.001). To obtain a better understanding of these pressure values: 75
244 kPa correspond to an altitude of 2465 m above sea level. The subsequent
245 reduction in partial oxygen pressure led to mild hypoxia in the test
246 subjects. Mean oxygen saturations of the participants were measured at
247 92.92% (SD:2.00) after reaching cruising altitude and 93.6% (SD:1.93)
248 before leaving cruising altitude – compared to a mean baseline saturation
249 of 97.6% (SD:1.93, p< 0.001).

250
251 *Table 2. Environmental elements in effect during pain testing. Differences of statistical*
252 *significance*

Environmental factors:	Waypoint 1	Waypoint 2	Waypoint 3	Waypoint 4
Temperature	21.88 °C (SD 1.93)	23.07 °C (SD 1.42)	23.32 °C (SD 1.58)	22.81 °C (SD 1.91)
Relative Humidity	44.84% (SD 8.34)	26.56% (SD 1.88)	24.96% (SD 1.99)	39.92% (SD 9.77)
Ambient Pressure	97.05 kPa (SD 8.34)	75.43 kPa (SD 1.38)	75.94 kPa (SD 2.63)	99.14 kPa (SD 1.80)

253
254 Somato-sensory testing – Nociception
255 The effects of environmental changes on perception and nociception are
256 demonstrated by the Bland-Altman plots prepared for each test modality
257 [12]. In this manuscript, we only display a short and exemplary collection
258 of plots for the cold and heat pain thresholds (CPT and HPT) in Figures 2-

259 5. Plots for all other analyzed modalities can be found as supplementary
260 online content (Figures 6 - 23).

261

262 SPACER FIGURES 2-5

263

264 *Figure 2 Bland Altman Plot - Cold Pain Threshold – Waypoints 1 against 2*

265 *Figure 3 Bland Altman Plot - Cold Pain Threshold – Waypoints 3 against 4*

266 *Figure 4 Bland Altman Plot - Heat Pain Threshold – Waypoints 1 against 2*

267 *Figure 5 Bland Altman Plot - Heat Pain Threshold – Waypoints 3 against 4*

268

269 *Legend Figures 2-5:*

270 *The solid black lines in the Bland-Altman-Plots represent the mean of the differences.*

271 *The confidence intervals for the means of differences are depicted as dashed black lines.*

272 *The red upper (lower) lines show the upper (lower) limits of agreement equal to mean \pm*

273 *1.96 SD. The blue lines represent a margin of $\pm 20\%$ around the means of measurements*

274 *from each modality and serve as a possible indicator of clinical relevance.*

275

276 Table 3 provides a comprehensive overview of each test and lists the
277 means of the differences, their 95% confidence intervals and the limits of
278 agreements ($\pm 2SD$) between measurements taken at waypoints 1 and 2.

279 The estimated means of the differences were usually close to zero with
280 some single differences demonstrating large nonsystematic fluctuations
281 around this mean. This implies that environmental changes along the
282 flight did not produce systematic bias but instead produced only random
283 variations. Table 4 provides the same data for the comparison of
284 waypoints 3 against 4.

285

286 *Table 3: Means of differences, limits of agreement (LoA) and confidence intervals (CI)*
287 *between pairs of measurements around changes in environmental conditions are shown*
288 *for all analyzed sensory modalities. In this table between waypoints 1 and 2 (around*
289 *take-off and climb).*

290

Test modality	Unit	Mean of differences	CI mean	95% Upper LoA	CI upper limit of agreement	95% Lower LoA	CI lower limit of agreement
CDT12	°C	-0.67	-1.51 ; 0.16	3.29	1.61 ; 4.98	-4.64	-6.32 ; -2.95
HDT12	°C	0.16	-0.56 ; 0.87	3.55	2.11 ; 5.00	-3.24	-4.68 ; -1.80
CPT12	°C	-1.62	-4.32 ; 1.07	11.18	5.74 ; 16.63	-14.43	-19.87 ; -8.99
HPT12	°C	-0.09	-0.98 ; 0.81	4.19	2.37 ; 6.00	-4.36	-6.17 ; -2.54
MPT12	Nm	16.51	-0.47 ; 33.48	97.09	62.86 ; 131.33	-64.08	-98.31 ; -29.85
WUsS12	NRS	3.02	-0.84 ; 6.89	21.38	13.58 ; 29.17	-15.33	-23.12 ; -7.53
WUmS12	NRS	1.01	-1.96 ; 3.98	15.11	9.12 ; 21.10	-13.09	-19.08 ; -7.10
PPT12	kg/cm ²	0.14	-0.07 ; 0.34	1.12	0.70 ; 1.53	-0.84	-1.26 ; -0.43
PMDT12	Intensity level	0.40	-0.22 ; 1.02	3.34	2.09 ; 4.59	-2.54	-3.79 ; -1.29
PMPT12	Intensity level	0.00	-2.71 ; 2.71	12.89	7.41 ; 18.37	-12.89	-18.37 ; -7.41
PMAT12	Intensity level	-0.98	-4.36 ; 2.40	15.05	8.24 ; 21.86	-10.20	-23.82 ; -10.20

291

292

293

294

295

296

297

298

299

300

301

302 *Table 4: Means of differences, limits of agreement (LoA) and confidence intervals (CI)*
303 *between pairs of measurements around changes in environmental conditions are shown*
304 *for all analyzed sensory modalities. In this table between waypoints 3 and 4 (around*
305 *descent and landing).*

306

Test modality	Unit	Mean	CI Mean	95% upper LoA	CI upper LoA	95% lower LoA	CI lower LoA
CDT34	°C	0.08	-0.53 ; 0.68	2.93	1.72 ; 4.15	-2.78	-3.99 ; -1.57
HDT34	°C	0.11	-0.14 ; 0.35	1.29	0.78 ; 1.79	-1.08	-1.58 ; -0.57
CPT34	°C	0.24	-1.54 ; 2.02	8.68	5.10 ; 12.27	-8.20	-11.79 ; -4.62
HPT34	°C	-0.45	-1.24 ; 0.33	3.27	1.69 ; 4.85	-4.17	-5.76 ; -2.59
MPT34	Nm	-8.82	-27.29 ; 9.64	78.86	41.61 ; 116.10	-96.50	-133.75 ; -59.26
WUsS34	NRS	0.73	-1.70 ; 3.15	12.25	7.36 ; 17.14	-10.79	-15.69 ; -5.90
WUmS34	NRS	1.29	-1.26 ; 3.84	13.39	8.25 ; 18.53	-10.81	-15.95 ; -5.67
PPT34	kg/cm ²	-0.09	-0.22 ; 0.04	0.54	0.27 ; 0.80	-0.71	-0.98 ; -0.45
PMDT34	Intensity level	-0.40	-0.81 ; 0.01	1.56	0.73 ; 2.39	-2.36	-3.19 ; -1.53
PMPT34	Intensity level	-0.38	-1.13 ; 0.37	3.17	1.66 ; 4.68	-3.93	-5.44 ; -2.42
PMAT34	Intensity level	0.86	-1.00 ; 3.72	14.43	8.67 ; 20.20	-12.71	-18.48 ; -6.95

307

308

309 **Discussion**

310 Long-distance inter-hospital transfers performed via fixed-wing air
311 ambulances are frequent and steadily growing in number. Previous data
312 from studies that investigated the impact of changing environmental
313 conditions on neuro-sensory performance and nociception prompted us to
314 suspect that patients undergoing transfers via airplanes could experience
315 similar changes in nociception and that analgesia strategies may

316 consequentially have to be re-evaluated. In this study, we present an
317 elaborate test scenario aimed at assessing flight-related variations in
318 perception and pain thresholds. Regarding the surrounding conditions,
319 airplane travel is associated with large decreases in barometric pressure,
320 partial oxygen pressure, and humidity as well as significant increases in
321 vibration and noise exposure, all of which develop over very short time
322 spans. Our data suggest that despite these significant and systematic
323 environmental changes, the variations in nociception that occur during an
324 ambulance flight are nonsystematic and random – according to our
325 comprehensive scope of sensory modalities. Variations in the detected
326 differences against their means could occur in a larger extent in a number
327 of cases. (I.e., measurements lying outside the blue 20% margin in each
328 plot.) In some of the tested modalities, more than half of the test subjects
329 displayed means of differences exceeding 20%, which is a – certainly
330 debatable – margin of clinical significance. However, these cases occurred
331 without any clear pattern, and no systematic routine allowed us to predict
332 the direction of an individual's change in nociception, or whether he might
333 not be affected at all by the environmental stressor he was exposed to.

334
335 While our study is not a final assessment that should be used to guide
336 analgesia in a systematic way (e.g. more or less dosing), we conclude that
337 flight-related changes in the environment have the potential to erratically
338 influence some individuals' nociception. This finding calls for increased
339 clinical suspicion of altered, whether higher or lower - analgesia

340 requirements during those phases of a transfer we tested, during which
341 external conditions change profoundly. Our data indicate that repeated
342 pain assessments should potentially be carried out at times such as take-
343 off and landing in patients requiring analgesia.

344

345 **Findings in the context of previous data**

346 As described in the introduction section, previous studies have presented
347 data that suggest that the environment can have systemic effects on
348 nociception. At first glance, our findings seem to contradict these studies,
349 but a closer look allows a reconciliation of their conclusions and ours.
350 Regarding the effects of high altitude on mountaineers, it must be
351 acknowledged that the environmental conditions experienced on board
352 airplanes are not as extreme as those experienced in the Himalayans and
353 that the duration of exposure was considerably shorter for our volunteers
354 [4]. In fact, the experiments investigating the aggravating effects of
355 short-term weather changes on neuropathic pain in guinea pigs
356 correspond somewhat more closely to our setting of environmental
357 changes [3]. However, a fundamental difference between our test setting
358 and the one used with the guinea pigs is the pathophysiological condition
359 of the test subjects. In contrast to the test animals, which suffered from
360 neuropathic pain, our volunteers were healthy individuals without any pain
361 other than that caused by the mild stimuli of the QST battery. It is
362 conceivable, that in order to be influenced by external environmental
363 stressors such as those used in our study, pain must be present as an

364 actual and persistent disorder, not just as a brief experimental stimulus.
365 In the end, it seems worth considering whether the effects of
366 environmental changes on a cohort of test subjects who actually
367 experiencing pain should be investigated before we reject the hypothesis
368 that flight-related environmental changes have relevant effects on human
369 nociception. After all, pain can, in itself, have systemic effects on stimulus
370 detection and pain thresholds and can lead to very complex but distinct
371 secondary disorders, such as hyperalgesia and allodynia [13-15].

372

373 **Strengths**

374 In our study we conducted nociception testing in a real-life in-flight setting
375 unparalleled by that used in any previous study. All external factors
376 present during the actual transfers of patients were also present under
377 our experimental conditions. This included factors that are easy to
378 simulate and easy to measure such as barometric pressure as well as
379 factors that are more difficult to replicate under laboratory conditions,
380 such as motion, vibrations, noise, odors, and others - some of which we
381 might not even be aware of as to their existence.

382 We demonstrate the feasibility of using a complex and comprehensive
383 somato-sensory assessment in a unique surrounding area. Our study
384 clears the way for further investigations of nociception in selected,
385 clinically relevant subpopulations submitted to flight conditions. As
386 mentioned above, the fact that our findings do not support the notion of a
387 systematic effect on nociception in healthy volunteers does not exclude

388 the possibility that such effects could occur in individuals actually
389 experiencing pain at the time of transfer.

390

391 **Limitations**

392 Naturally, these strengths stand vis-à-vis with several limitations. First,
393 the small sample-size of our study population is the most relevant
394 limitation. Second, due to the make-up of the work force of the ADAC Air
395 Ambulance, our study population consisted only of men in young
396 adulthood or middle age. This selection bias limits the generalizability of
397 our findings as age and sex are factors that are known to influence
398 nociception [16-18]. Selection may also have been affected by the so-
399 called healthy worker effect [19]. It is conceivable that those individuals
400 who are actually affected the most by flight-related environmental
401 changes would not work in the field of aeromedical retrievals and that we
402 therefor inadvertently tested a subpopulation of (in a manner of speaking)
403 immune individuals.

404

405

406 **Conclusions**

407 Air ambulance flights submit patients to extraordinary and rapidly
408 changing environmental conditions, and providers of care and researchers
409 have aimed to explore the effects of airplane travel on patients. In this
410 study, we investigated the feasibility of somatosensory testing on the
411 basis of QST to identify possible flight-related changes in stimulus
412 perception and pain thresholds. In consideration of the declared

413 limitations, we can present several novel findings. We demonstrate the
414 feasibility of using a complex and comprehensive method of nociceptive
415 testing under real-life in-flight conditions. This opens up the possibility
416 that future investigations could explore nociception among patients who
417 require analgesia, for whom we must strive to optimize our provision of
418 care. However, with regard for our healthy volunteers, perception
419 thresholds, pain thresholds, and above-threshold pain were not subject to
420 systematic effects along the major changes of the environment
421 accompanying the different stages of an ambulance flight. Nociception
422 was considerably altered in a relevant percentage of individuals, but our
423 data do not suggest a methodical way to predict such occurrences.

424

425 **Supporting information**

426 Bland-Altman Plots for tested somato-sensory modalities other than cold
427 and heat pain thresholds are available as supplemental online content.

428

429 **Abbreviations**

430 ADAC = Allgemeiner Deutscher Automobil Club
431 CDT = Cold Detection Threshold
432 CI = Confidence Interval
433 CPT = Cold Pain Threshold
434 DOI = Digital Object Identifier
435 HDT = Heat Detection Threshold
436 HPT = Heat Pain Threshold
437 ICU = Intensive Care Unit
438 LoA = Limit of Agreement

439 MPT = Mechanical Pain Threshold
440 NRS = Numerical Rating Scale
441 PMAT = Pain Matcher Abort Threshold
442 PMDT = Pain Matcher Detection Threshold
443 PMPT = Pain Matcher Pain Threshold
444 PPT = Pressure Pain Threshold
445 QST = Quantitative Sensory Testing
446 SD = Standard Deviation
447 WumS = Wind Up Multiple Stimuli
448 WusS = Wind Up Single Stimulus
449

450 **Declarations**

- 451 • Ethics approval and consent to participate: This study was evaluated
452 and approved by the University of Erlangen-Nuremberg's ethics
453 council beforehand. (Decision number 81_13 B.) Informed written
454 consent was obtained from each participant before testing.
- 455 • Consent for publication: All authors read and approved the final
456 version of the manuscript.
- 457 • Availability of data and material: The datasets generated and
458 analyzed during the current study are available in the Zenodo data
459 repository: 10.5281/zenodo.2563176
- 460 • Authors' contributions: JP conceived of and co-conducted the study,
461 co-performed the statistical analysis and is the main author of the
462 manuscript. SE co-conducted the study, co-performed the statistical
463 analysis and revised the manuscript critically for its intellectual
464 content. AW, AM, JS and MM helped in the execution of the study
465 and revised the manuscript critically for its intellectual content.

466

467

468 Acknowledgments

469 We thank Clemens Forster, Gabriele Göhring-Waldeck and Roland
470 Schiffmann for their excellent assistance in the logistical preparations of
471 our study. Finally, we would like to thank all of the volunteers for their
472 contributions to our study.

473 References

474

- 475 1. IATA Annual Review 2018 [Internet]. Sydney: International Air Transport Association; 476 2018
- 477 2. Deutlich mehr Notrufe im Ausland [Internet]. Munich, Germany: ADAC SE; 2018; 478 08.08.2018
- 479 3. Sato J, Itano Y, Funakubo M, Mizoguchi H, Itoh M, Mori R. Low barometric pressure
480 aggravates neuropathic pain in guinea pigs. *Neuroscience letters*. 2011;503(2):152-6. Epub
481 2011/09/06. doi: 10.1016/j.neulet.2011.08.030. PubMed PMID: 21888946.
- 482 4. Noel-Jorand MC, Bragard D, Plaghki L. Pain perception under chronic high-altitude
483 hypoxia. *The European journal of neuroscience*. 1996;8(10):2075-9. Epub 1996/10/01.
484 PubMed PMID: 8921298.
- 485 5. Burdack-Freitag A, Bullinger D, Mayer F, Breuer K. Odor and taste perception at
486 normal and low atmospheric pressure in a simulated aircraft cabin. *Journal für
487 Verbraucherschutz und Lebensmittelsicherheit* 2010;6(1):95-109. doi: 10.1007/s00003-010-
488 0630-y.
- 489 6. Albrecht-Dürer-Airport Nuremberg G.
- 490 7. Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, et al. Quantitative sensory
491 testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol
492 and reference values. *Pain*. 2006;123(3):231-43. Epub 2006/05/16. doi:
493 10.1016/j.pain.2006.01.041. PubMed PMID: 16697110.
- 494 8. Backonja MM, Attal N, Baron R, Bouhassira D, Drangholt M, Dyck PJ, et al. Value of
495 quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. *Pain*.
496 2013;154(9):1807-19. Epub 2013/06/08. doi: 10.1016/j.pain.2013.05.047. PubMed PMID:
497 23742795.
- 498 9. Mucke M, Cuhls H, Radbruch L, Baron R, Maier C, Tolle T, et al. Quantitative sensory
499 testing (QST). English version. *Schmerz* (Berlin, Germany). 2016. Epub 2016/01/31. doi:
500 10.1007/s00482-015-0093-2. PubMed PMID: 26826097.
- 501 10. Stener-Victorin E, Kowalski J, Lundeberg T. A new highly reliable instrument for the
502 assessment of pre- and postoperative gynecological pain. *Anesthesia and analgesia*.
503 2002;95(1):151-7, table of contents. Epub 2002/06/29. PubMed PMID: 12088960.
- 504 11. Nielsen PR, Norgaard L, Rasmussen LS, Kehlet H. Prediction of post-operative pain by
505 an electrical pain stimulus. *Acta anaesthesiologica Scandinavica*. 2007;51(5):582-6. Epub
506 2007/04/14. doi: 10.1111/j.1399-6576.2007.01271.x. PubMed PMID: 17430320.

507 12. Bland JM, Altman DG. Statistical methods for assessing agreement between two
508 methods of clinical measurement. Lancet (London, England). 1986;1(8476):307-10. Epub
509 1986/02/08. PubMed PMID: 2868172.

510 13. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-Based
511 Neurologic Signature of Physical Pain. New England Journal of Medicine. 2013;368(15):1388-
512 97. doi: 10.1056/NEJMoa1204471. PubMed PMID: 23574118.

513 14. Moore R. Biobehavioral Approaches to Pain. New York: Springer; 2009.

514 15. Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical
515 manifestations and mechanisms. The Lancet Neurology. 2014;13(9):924-35. Epub
516 2014/08/22. doi: 10.1016/s1474-4422(14)70102-4. PubMed PMID: 25142459.

517 16. Averbeck B, Seitz L, Kolb FP, Kutz DF. Sex differences in thermal detection and
518 thermal pain threshold and the thermal grill illusion: a psychophysical study in young
519 volunteers. Biology of sex differences. 2017;8(1):29. Epub 2017/09/02. doi: 10.1186/s13293-
520 017-0147-5. PubMed PMID: 28859684; PubMed Central PMCID: PMCPmc5579939.

521 17. Pfau DB, Krumova EK, Treede RD, Baron R, Toelle T, Birklein F, et al. Quantitative
522 sensory testing in the German Research Network on Neuropathic Pain (DFNS): reference
523 data for the trunk and application in patients with chronic postherpetic neuralgia. Pain.
524 2014;155(5):1002-15. Epub 2014/02/15. doi: 10.1016/j.pain.2014.02.004. PubMed PMID:
525 24525274.

526 18. Tham SW, Palermo TM, Holley AL, Zhou C, Stubhaug A, Furberg AS, et al. A
527 population-based study of quantitative sensory testing in adolescents with and without
528 chronic pain. Pain. 2016;157(12):2807-15. Epub 2016/10/26. doi:
529 10.1097/j.pain.0000000000000716. PubMed PMID: 27780176.

530 19. McMichael AJ. Standardized mortality ratios and the "healthy worker effect":
531 Scratching beneath the surface. Journal of occupational medicine : official publication of the
532 Industrial Medical Association. 1976;18(3):165-8. Epub 1976/03/01. PubMed PMID:
533 1255276.

534

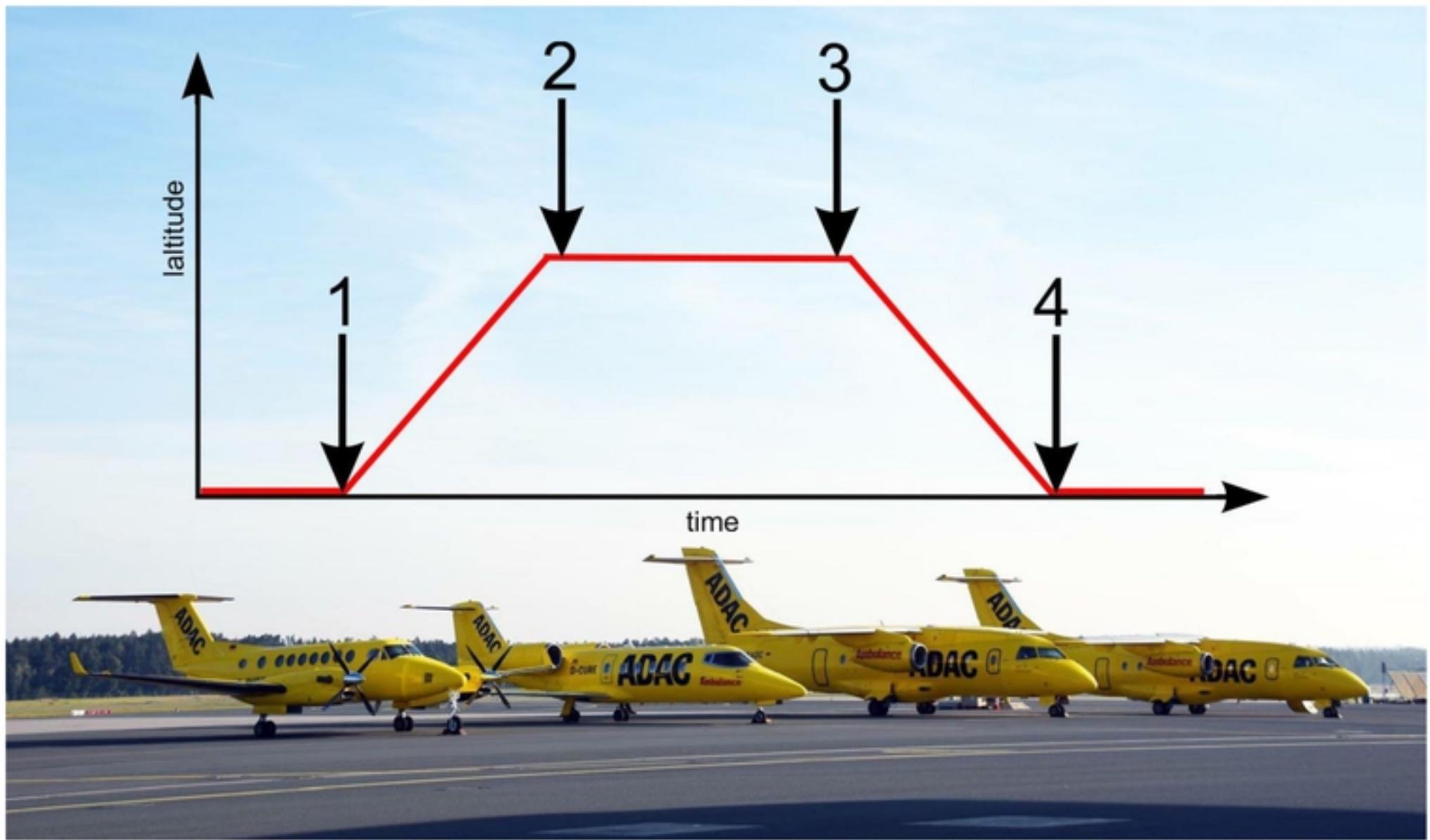
535

536

537

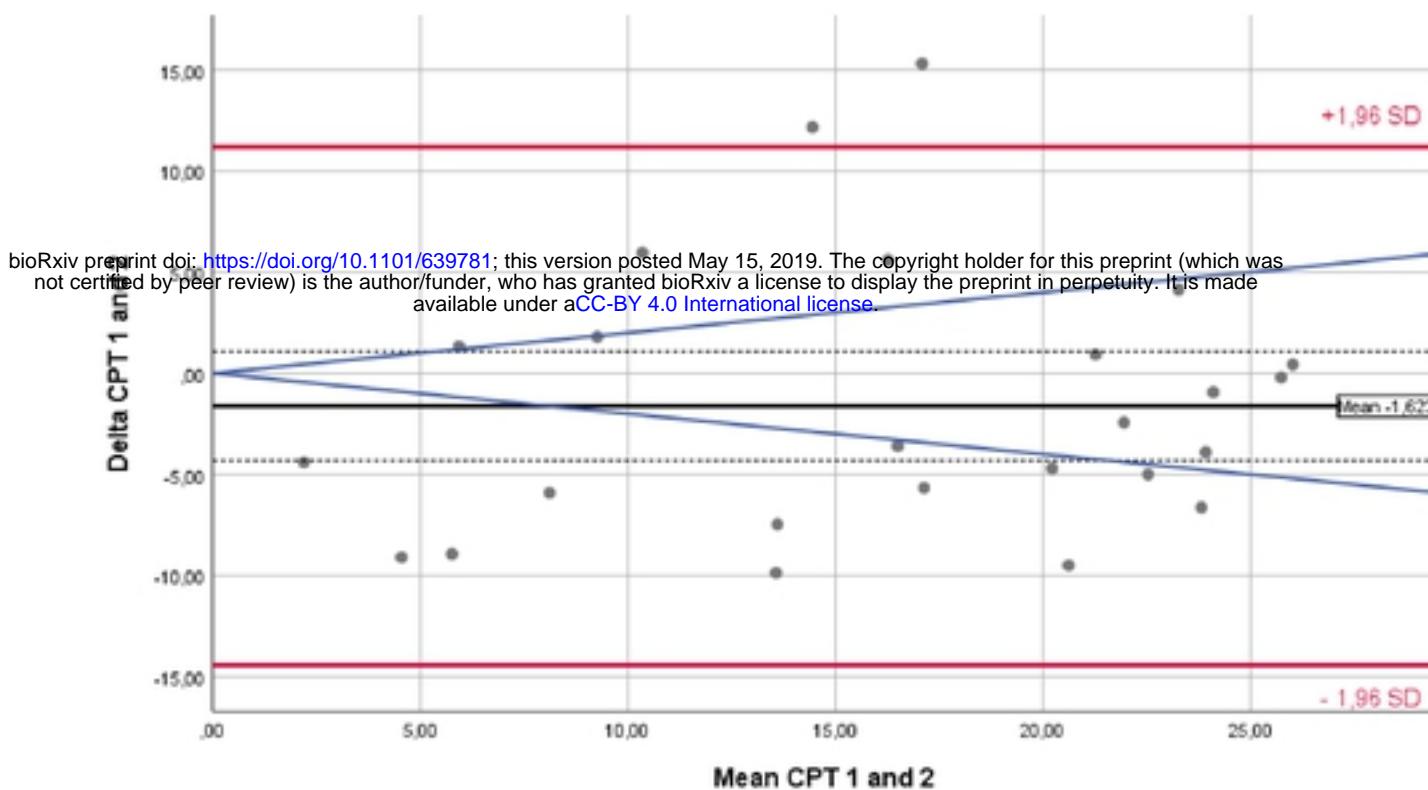
538

539

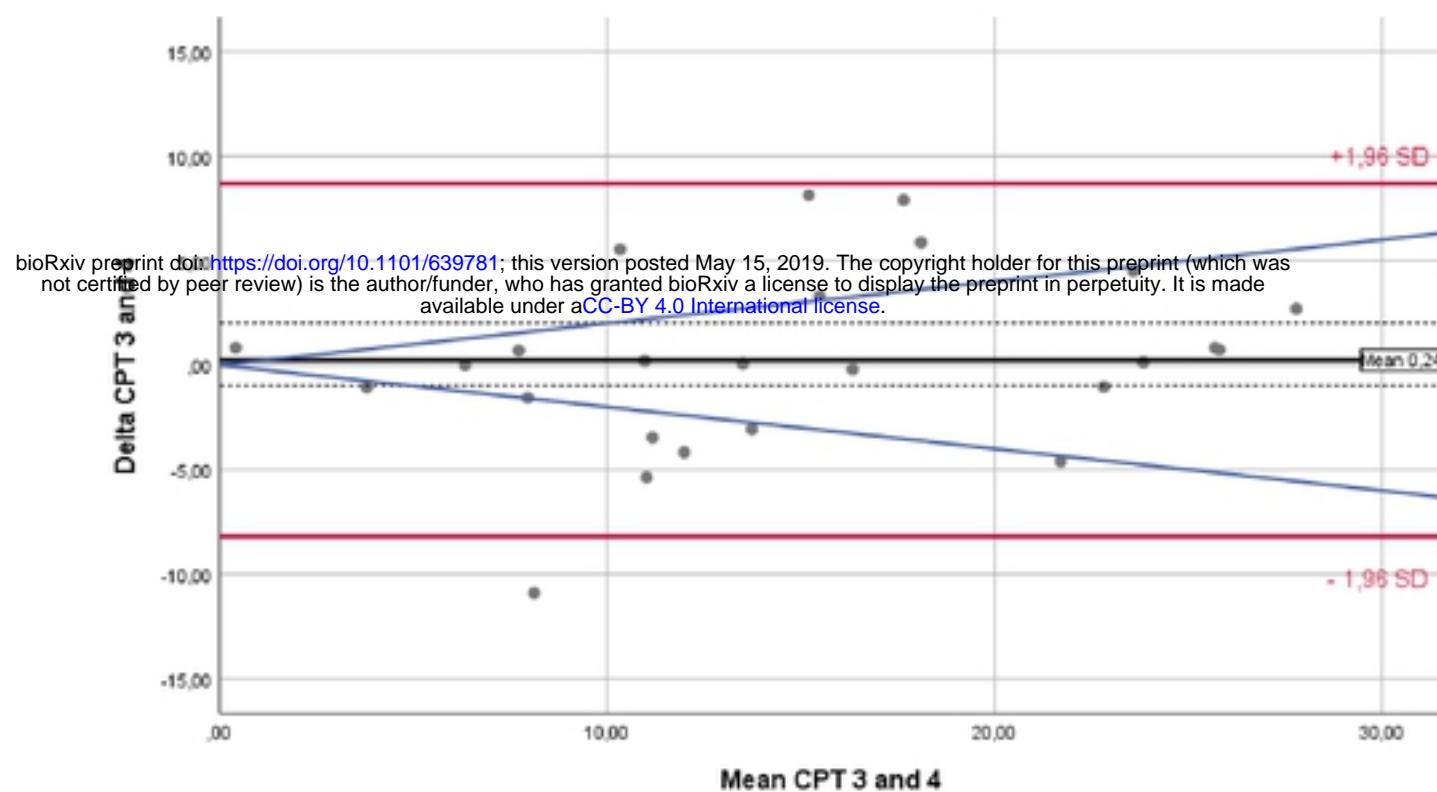

540

541

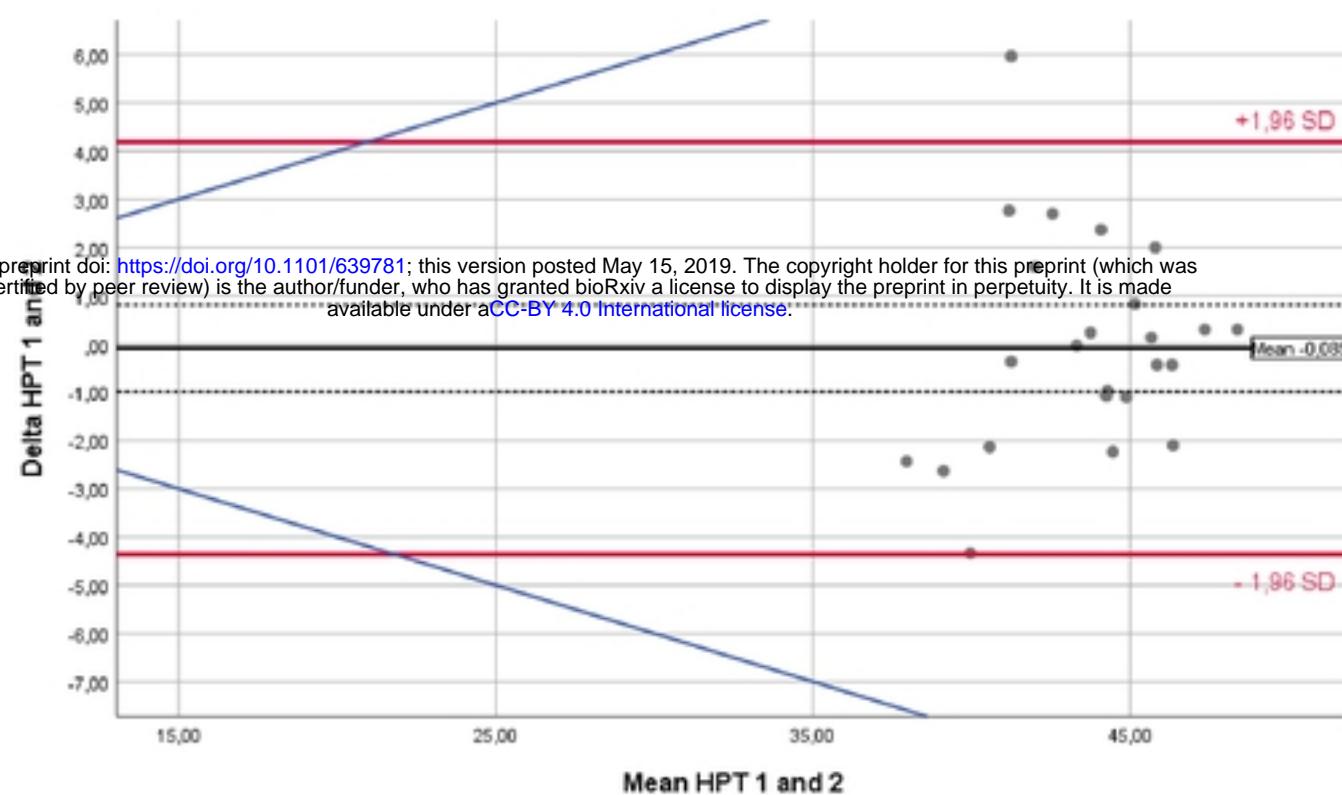
542


543

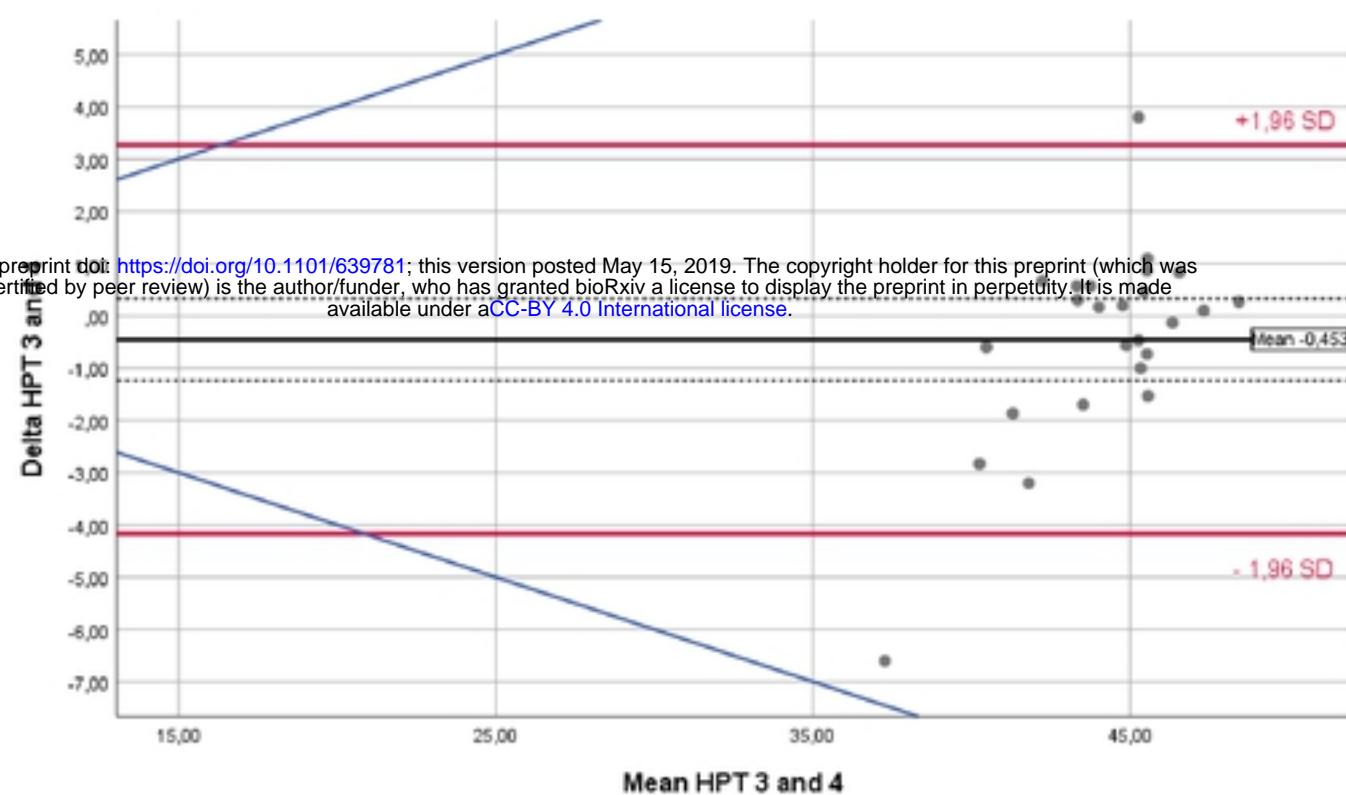
544


Figure

Cold pain threshold on climb


Figure

Cold pain threshold on descent


Heat pain threshold on climb

bioRxiv preprint doi: <https://doi.org/10.1101/639781>; this version posted May 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Heat pain threshold on descent

bioRxiv preprint doi: <https://doi.org/10.1101/639781>; this version posted May 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

