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57 SUMMARY

58

59  Breadst cancer (BC) is a heterogeneous disease where each OncoOmics approach needs to be
60  fully understood as a part of a complex network. Therefore, the main objective of this study was
61 to analyze genetic dterations, signaling pathways, protein-protein interaction networks, protein
62  expression, dependency maps and enrichment maps in 230 previously prioritized genes by the
63  Consensus Strategy, the Pan-Cancer Atlas, the Pharmacogenomics Knowledgebase and the
64  Cancer Genome Interpreter, in order to reveal essential genes to accelerate the development of
65  precision medicine in BC. The OncoOmics essential genes were rationally filtered to 144, 48
66  (33%) of which were hallmarks of cancer and 20 (14%) were significant in at least three
67  OncoOmics approaches. RAC1, AKT1 CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53,
68 MAPKL, SRC, RAC3, PLCG1, GRB2, MED1, TOP2A, GATA3, BCL2, CTNNB1, EGFR and
69 CDK2. According to the Open Targets Platform, there are 111 drugs that are currently being
70  analyzed in 3151 clinical trialsin 39 genes. Lastly, there are more than 800 clinical annotations
71  associated with 94 genesin BC pharmacogenomics.
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85 INTRODUCTION

86

87  Breadt cancer (BC) is a heterogeneous disease characterized by an intricate interplay between

88  different biological aspects such as ethnicity, genomic alterations, gene expression deregulation,

89  hormone disruption, signaling pathway alterations and environmental determinants™?. Over the

90 last years, prevention, treatment and survival strategies have evolved favorably; however, there

91  are BC profiles that remain incurable®. Nowadays, BC is the leading cause of cancer-related

92  death among women (626,679; 15% cases) and the most commonly diagnosed cancer

93  (2,088,849; 24% cases) worldwide®.

94

95  The development of large-scale DNA sequencing, gene expression, proteomics, large-scale

96 RNA interference (RNAI) screens and large-scale CRISPR-Cas9 screens has allowed us to

97  better understand the molecular landscape of oncogenesis. Significant progress has been made

98 in discovering gene coding regions’, cancer driver genes®’, cancer driver mutations®®, germline

99  variants’®, driver fusion genes™? dternatively spliced transcripts”, expression-based
100  ratification, molecular subtyping™, biomarkers'®, druggable enzymes', cancer
101  dependencies®?, and drug sensitivity and resistance®.
102
103  Scientific advances made to date mark the era called the “end of the beginning” of cancer
104  omics. In other words, each approach that was previously mentioned needs to be fully
105  understood as a part of a complex network, analyzing the mechanistic interplay of signaling
106  pathways, protein-protein interaction (PPi) networks, enrichment maps, gene ontology (GO),
107  deep learning, molecular dependencies and genomic alterations per intrinsic molecular subtype:
108  basal-like (estrogen receptor (ER)", progesterone receptor (PR)’, human epidermal growth factor
109  receptor 2 (Her2), cytokeratin 5/6" and/or EGFR"); Her2-enriched (ER’, PR’, Her2"); luminal A
110 (ER' and/or PR", Her2', low Ki67); luminal B with Her2 (ER" and/or PR", Her2', low Ki67);
111  lumina B with Her2" (ER" and/or PR, Her2, any Ki67); and normal like”2°. We will herein

112  analyze previously prioritized genes/biomarkers by the Consensus Strategy (CS)%, the Pan-
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113  Cancer Atlas (PCA)**?**% the Pharmacogenomics Knowledgebase (PharmGKB)* and the
114  Cancer Genome Interpreter (CGI)*.

115

116  Inour previous studies, Lopez-Cortés et al. and Tejera et al., developed a Consensus Strategy
117  that was proved to be highly efficient in the recognition of gene-disease association®®*. The
118 main objective was to apply several bioinformatics methods to explore BC pathogenic genes.
119  The CS identified both well-known pathogenic genes and prioritized genes that will be further
120  explored through the OncoOmics approaches. On the other hand, The Cancer Genome Atlas
121 (TCGA) has concluded the most sweeping cross-cancer analysis yet undertaken, namely the
122 PCA project®™. PCA reveas how genetic alterations, such as putative mutations, fusion genes,
123  mRNA expression, copy number variants (CNVs) and protein expression collaborate in BC
124  progression, providing insights to prioritize the development of new treatments and
125  immunotherapies®?**, The CGI flags genomic biomarkers of drug response with different
126  levelsof clinical relevance®. Lastly, PharmGKB is a comprehensive resource that curates and
127  spreads knowledge of the impact of clinical annotations on BC drug response®” . PharmGKB
128  collects the precise guidelines for the application of pharmacogenomics in clinical practice
129  published by the European Society for Medica Oncology (ESMO), the National
130  Comprehensive Cancer Network (NCCN), the Royal Dutch Association for the Advancement of
131  Pharmacy (DPWG), the Canadian Pharmacogenomics Network for Drug Safety (CPNDS) and
132  the Clinical Pharmacogenetics Implementation Consortium (CPIC)*™. Hence, the aim of this
133  sudy was to implement OncoOmics approaches to analyze genetic alterations, signaling
134  pathways, PPi networks, protein expression, BC dependencies and enrichment maps in order to
135  reveal essential genes/biomarkers to accelerate the development of precision medicinein BC.
136

137

138 RESULTS
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140  OncoPrint of genetic alterations according to the Pan-Cancer Atlas. PCA has reported the
141  clinical data of 1084 individuals with BC and it can be visualized in the Genomic Data
142  Commons of the National Cancer Institute and in the cBioPortal*“. In regard to molecular
143  subtypes and tumor stages, 46% were lumina A, 18% luminal B, 7% Her2-enriched, 16% basal -
144  like and 3% normal-like, whereas 17% were stage T1, 58% stage T2, 23% stage T3 and 2%
145  stage T4 (Table S1).

146

147  Figure 1A shows the average frequency of genetic aterations per gene set. The average
148  frequency of the PCA gene set was 1.3, followed by CS gene set (1.2), PharmGKB/CGI gene
149  set(1.1), BC driver genes (0.8) and non-cancer genes (0.4) (Table S2). Significant p-values (p <
150  0.001) were found among all gene sets. Therefore, the fact that gene sets of interest (CS, PCA
151 and PharmGKB/CGI) presented an average frequency of genetic alterations greater than the
152  non-cancer gene set and the BC driver gene set indicates that we are analyzing potential
153  essential genesin BC. Figure 1B shows the percentage of genetic alterations per type. The most
154  common genetic alterations were mRNA upregulation (55.8%), CNV amplification (17.1%) and
155  missense mutations (8.4%). Figure 1C shows the ratio of genetic alterations in the 230 genes per
156  sample and molecular subtype. Basal-like had the highest ratio (n = 33), followed by Her2-
157  enriched (29), luminal B (24), normal-like (17) and luminal A (15). Theratio of all BC samples
158 was 19.6. Figure 1D shows the ratio of genetic alterations in the 230 genes per sample and
159  tumor stage. Stage T2 had the highest ratio (23), followed by T3 (22), T1 (17) and T4 (8).
160  Figures 1E and 1F show the percentage of genetic alterations per subtype and tumor stage,
161  respectively. mRNA upregulation and CNV amplification were the most common alterationsin
162  dl molecular subtypes and tumor stages.

163

164  Figure 2 shows the ranking of genes with the greatest number of genetic alterations per
165  molecular subtype and tumor stage. Regarding molecular subtypes, PIK3CA was the most
166  dtered gene in luminal A, CCND1 in luminal B, TP53 in basal-like and normal-like, and

167  ERBB2 in Her2-enriched, with significant p-values < 0.001 (Figure 2A). On the other hand, the
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168 most altered genes per tumor stage were PIK3CA in stage T1, TP53 in stages T2 and T3, and
169 ERBB2 in stage T4, with significant p-value < 0.001 (Figure 2B). Figures 2C, 2E, 2G, 2l and
170 2K show the top mutated genes, CNV amplified genes, CNV deep deleted genes, mRNA
171  upregulated genes and mRNA downregulated genes per molecular subtype, respectively (Tables
172  S3-S7). On the other hand, Figures 2D, 2F, 2H, 2J and 2L show the top mutated genes, CNV
173  amplified genes, CNV deep deleted genes, mRNA upregulated genes and mRNA
174  downregulated genes per tumor stage, respectively (Tables S8-S13).

175

176  Regarding the first OncoOmics approach, Figure 3A shows an OncoPrint of 73 genes with a
177  number of genetic alterations greater than the average (> 86). For this analysis driver mutations
178  were taken into account, discarding passenger mutations (Figure S1 and Table S14). Figure 3B
179  shows acircos plot of interactions between molecular subtypes and genetic alterations of the 73
180 most atered genes. mRNA downregulated plus CNV deep deleted genes and mRNA
181  upregulated plus CNV amplified genes were more related with basal-like, whereas fusion genes,
182  and driver mutations were more related with Her2-enriched. Finally, Figure 3C shows a circos
183  plot of interactions between tumor stages and genetic alterations of the 73 most altered genes.
184  Fusion genes, mMRNA downregulated plus CNV deep deleted genes, and mRNA upregulated
185  plus CNV amplified genes were more related with stage T4, whereas driver mutations were
186  morerelated with stage T3.

187

188  Pathway enrichment analysis. The pathway enrichment analysis was performed using David
189  Bioinformatics Resource to obtain integrated information from the Kyoto Encyclopedia of
190  Genes and Genomes (KEGG)*. The enrichment analysis of signaling pathways was carried
191 onin the 230 genes, obtaining more than 50 terms with a false discovery rate (FDR) < 0.01
192  (Table S15). Subsequently, genetic alterations of genes that make up each signaling pathway
193  were analyzed according to the molecular subtype and tumor stage. Figure 4A shows a circos
194  plot correlating molecular subtypes with signaling pathways (Table S16). NF-kappa 3, NOD-

195  like receptor, adipocytokine, GnRH, RIG-like receptor, TNF, TGFR, FOXO, glucagon, MAPK,

7


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

196  prolactin, cAMP, PI3K-AKT, neurotrophin, VEGF, notch, p53, sphingolipid and Wnt signaling
197  pathways were more atered in basal-like; estrogen, HIF1, toll-like receptor, ras, insulin, T-cell
198  receptor, rapl, ERBB, AMPK, chemokine, B-cell receptor, mTOR, Fc-epsilon RI, Jak-STAT,
199  phosphatidylinositol and thyroid hormone signaling pathways were more altered in Her2-
200  enriched; and Hippo signaling pathway in normal-like. On the other hand, Figure 4B shows the
201  ranking of the most altered signaling pathways per molecular subtype. Jak-STAT signaling
202  pathway was more dtered in luminal A; Wnt signaling pathway in luminal B; p53 signaling
203  pathway in basal-like; ERBB signaling pathway in Her2-enriched; and Hippo signaling pathway
204  innormal-like (Table S17).

205

206  Figure 4C showsacircos plot correlating tumor stages with signaling pathways according to the
207  frequency of genetic alterations (Table S16). NOD-like receptor, adipocytokine, GhRH, TNF,
208  estrogen, prolactin, FOXO, glucagon, ras, MAPK, T-cell receptor, cCAMP, rapl, PI3K-AKT, B-
209  cdl receptor, VEGF, mTOR, Fc epsilon RI, NOTCH, p53, sphingolipid and Wnt signaling
210  pathways were more altered in stage T2; NF-kappa 3, Hippo and phosphatidylinositol signaling
211  pathways were more altered in stage T3; and RIG-like receptor, HIF1, TGFR, toll-like receptor,
212  insulin, AMPK, ERBB, chemokine, neurotrophin, mTOR, jak-STAT and thyroid hormone
213  signaling pathways were more atered in stage T4. On the other hand, Figure 4D shows the
214  ranking of the most altered signaling pathways per tumor stage. Wnt signaling pathway was
215 morealtered in stages T1, T2 and T3; and thyroid hormone signaling pathway was more altered
216 insage T4 (Table S18).

217

218  Protein-protein interaction network. Regarding the second OncoOmics approach, the PPi
219 network was performed to better understand BC behavior using the String Database and
220  Cytoscape’™. With the indicated cutoff of 0.9, the final interaction network had 258 nodes
221  conformed by 198 (86%) genes from the CS, PCA and PharmGKB/CGI gene sets, and enriched
222  with 60 previously known BC driver genes. Regarding the OncoPrint genes, 65 (89%) nodes

223  integrated this network (Figure 5A). On the other hand, out of the 258 genes that make up our
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224 String PPi network, 16 (6%) genes and 18 edges were part of the OncoPPi BC network®**. The
225  degree centrality made it possible to establish a significant correlation (Spearman p < 0.05)
226  between our String PPi network and the OncoPPi BC network (Figure 5B).

227

228  Considering the degree centrality and the consensus score of our previous study®, there was
229  enrichment among sub-networks (Figures 5A and 5B). The average of degree centrality of the
230 258 nodes network was 48.8; out of the 198 nodes network was 52.7; out of the 65 nodes
231  network was 61.7; and out of the OncoPPi BC network was 124.4. Meanwhile, the average of
232 consensus score of the 258 nodes network was 0.803, out of the 198 nodes network was 0.812,
233 out of the 65 nodes network was 0.833, and out of the OncoPPi BC network was 0.885.
234  Additionally, the second OncoOmics approach was made up of genes with the highest degree
235 centrality (> 52.7) such as TP53, AKT1, SRC, CREBBP, EP300, JUN, CTNNB1, PIK3CA,
236 RAC1 and EGFR, genes with the highest consensus score such as TP53, ESR1, CCND1,
237 BRCA2, BRCAL, ERBB2, CHEK2, AR, MYC and PTEN, and genes with both of them such as
238  TP53, ESR1, CCND1, ERBB2, PTEN, CDKN1B, ATM, AKT1, STAT3, CDH1 and EGFR (Table
239  S19).

240

241  Protein expression analysis. The third OncoOmics approach was related to the expression
242  analysis of the 230 proteins. Figure 6A shows 43 proteins with significant high expression (Z-
243  scores > 2) and low expression (Z-scores < -2) analyzed with the reverse-phase protein array
244  (RPPA) and mass spectrometry, according to TCGA. The top ten proteins with the highest
245 expression levels in a cohort of 994 individuals were ERBB2, SERPINE2, CDH2, CCND1,
246 EGFR, ERCC1, IRSL, NOTCH1, ERBB3 and INPP4B, and the ones with the lowest expression
247 levels were CDH1, ATM, JAK2, MAPK1, AKT1, AKT3, MAPK14, ABL1, CTNNB1 and IRF1
248  (Table S20). On the other hand, the Human Protein Atlas (HPA) presented a map of the human
249  tissue proteome based on tissue microarray-based immunohistochemistry. HPA has analyzed
250 202 (88%) of the 230 proteins of our study, classifying the protein expression in high, medium,

251  low and non-detected. As a result, RAC1, GJB2, MED1, PIK3CA, PIK3R3, FGFR2, HCFC2,
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252  MAP2K4, NQO2 and RAC3 were proteins with high and medium expression in normal tissue,
253 and low and non-detected expression in BC tissue, acting as tumor Suppressor genes.
254  Meanwhile, CDK2, CYP2D6, NCOR1, RRM1, FOXA1 and TOP2A were proteins with high and
255  medium expressions in BC tissue, and low and non-detected expressions in normal tissue,
256  acting asoncogenes (Figure 6B and Table S21). Lastly, according to the HPA, Figure 6C shows
257  theoveradl survival analysis of RAD51, PERP and MORC4 as BC biomarkers with unfavorable
258  prognosis and p < 0.001 (Table S22)*%*. All these atered proteins made up the third
259  OncoOmics approach.

260

261 Breast cancer dependency map. The fourth OncoOmics approach consisted in identifying
262  genesthat are essential for cancer cell proliferation and survival performing systematic loss-of -
263  function screens in a large number of well-annotated cancer cell lines and BC cell lines
264  representing the tumor heterogeneity’®?!. Figure 7A shows the distribution of dependency
265  scores of 227/230 genes through DEMETER?2, an analytical framework for analyzing genome-
266  scale RNAI loss-of-function screens in 73 BC cell lines (Table S23). Our results showed 563
267  dependencies with at least one score < -1 in 57 (25%) essential genes. The top 10 genes with the
268  greatest number of significant dependency scores in BC cell lines were RPL5 (68; 93%), SF3B1
269  (67; 92%), RPAL (61; 84%), RRM1 (53; 73%), BUB1B (26; 36%), RPA3 (25; 34%), RAD51
270  (23; 32%), PPP2RIA (21; 29%), CHD4 (19; 26%) and POLE (13, 18%). At the same time,
271  Figure 7A shows the distribution of dependency scores of 217/230 genes through CERES, an
272  analytica framework for analyzing genome-scale CRISPR-Cas9 loss-of-function screens in 28
273  BCcdl lines (Table S24). Our results showed 310 dependencies with at least one score < -1 in
274 34 (16%) essential genes. The top 10 genes with the greatest number of significant dependency
275  scorein BC cell lines were RPAL (27; 96%), RRM1 (27; 96%), TOP2A (26; 93%), BUB1B (24;
276  86%) CTCF (24; 86%), POLE (23; 82%), SF3B1 (19; 68%), RPL5 (17; 61%), CCND1 (13;
277  46%) and SOD2 (13; 46%). Figure 7B shows the distribution of dependency scores of
278 DEMETER2 and CERES per molecular subtype. The genome-scale RNAI loss-of-function

279  screensdetected 165 (29%) dependenciesin 19 Her2-enriched cell lines (ratio = 8.7), 110 (20%)
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280  in 13 luminal A cell lines (8.5), 57 (10%) in 7 luminal B cell lines (8.1), and 231 (41%) in 34
281  basal-like cell lines (6.8), whereas the genome-scale CRISPR-Cas9 loss-of-function screens
282  detected 85 (27%) dependenciesin 7 luminal A cell lines (ratio = 12.1), 176 (15%) in 16 basal-
283  like cell lines (11), and 49 (16%) in 5 Her2-enriched cell lines (9.8). Figure 7C shows violin
284  plots of dependencies per molecular subtype. DEMETER?2 has detected a greatest number of
285  dignificant dependencies in basal-like, followed by Her2-enriched, luminal A and luminal B,
286  whereas CERES has detected a greatest number of significant dependencies in basal-like,
287  followed by luminal A and Her2-enriched. Figure 7D shows a Venn diagram of 66 essential
288  genes with at least one significant dependency in different molecular subtypes, where 22 were
289  drongly selective genes, 26 were common essential genes, and 5 were both of them in all cancer
290  cdl lines (Figure 7E).

291

292  OncoOmics approaches to reveal essential genesin BC. Figure 8A shows a Venn diagram
293  integrated by the OncoOmics essential genes, the most relevant genes of the CS, PCA and
294  PharmGKB/CGI gene sets per approach. RAC1, AKT1, CCND1, PIK3CA and ERBB2 were
295  relevant genesin all OncoOmics approaches; CDH1, MAPK14, TP53, MAPK1, SRC and RAC3
296  wererelevant genes in the OncoPrint, networking and protein expression analyses; PLCG1 and
297  GJIB2 were relevant genes in the OncoPrint, networking and DepMap analyses; MED1, TOP2A
298  and GATA3 were relevant genes in the DepMap, OncoPrint and protein expression analyses;
299 BCL2, CTNNB1, EGFR and CDK2 were relevant in the DepMap, networking and protein
300  expression analyses, EP300 and CREBBP were relevant in the networking and the OncoPrint
301 analyses; PTEN, MRE11, CDKN2A, WWNTR1, ABL1, BRCA2, NF2, AKT3, ARDID1A and RB1
302  wererelevant in the OncoPrint and protein expression analyses; RPAL, TOP3A, FGFR1, SF3B1,
303 ATR, KRAS, PDPK1, RELA, SMARCE1, SPOP, CCNK and MDM4 were relevant in the
304 DepMap and OncoPrint analyses; CDKN1B, LCK and NOTCH1 were relevant in the
305  networking and protein expression analyses, CDK4 and ESR1 were relevant in the DepMap and
306  networking analyses, and RAD5S1, IRSL, FGFR2, JAK2, RRM1, PIK3R3, FOXAl and ERBB3

307  wererelevant in the DepMap and protein expression analyses (Table S25).
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308

309  Out of the 144 OncoOmics essential genes, 21% were oncogenes, 24% were tumor suppressor
310  genes, 50% were tier 1, according to the Cancer Gene Census (COSMIC)®, and 59% were
311  driver genesin other types of cancer, according to The Network of Cancer Genes™ (Figure 8B).
312 On the other hand, FGF4, INPP4B, WWNTR1, MAPKS8, PIGB, RRM1, CASP8, FCGR2A,
313 SMARCBI, SF3B1 and CTCF were cancer immunotherapy genes®; LCK, MAP3K1, EGFR,
314  SRC, FGFR1, MAP2K4, ABL1, ERBB3, FGFR2 and ERBB2 were kinome genes®®; CDKN1B,
315 BLM, BUB1B and BARD1 were cell cycle genes®; XRCC1, RAD51, ERCC1, NBN, ERCC2,
316 MLHL1, BRCA2, PMS2, RPAL and PALB2 were DNA repair genes®™; lastly, YAP1, CDKN2A,
317  GNL3, ZC3H13, JUN, LARP7, KMT2C, HMGB1, GSTP1 and GRB2 were RNA-binding
318  proteins (RBPs) (Figure 8C and Table S26)%°.

319

320  Figure 8D showsacircos plot of the 48 (33%) OncoOmics essential genes that are hallmarks of
321  cancer. The top 10 genes with the greatest number of interactions with the hallmarks of cancer
322  were TP53, CTNNB1, PTEN, KRAS AKT1, RAC1, EGFR, ABL1l, RB1 and NOTCHI.
323  Suppression of growth was promoted by AKT1, CTNNB1, PTEN, RB1 and TP53; escaping
324  immune response to cancer was promoted by CTNNB1, EGFR and RAC1, and suppressed by
325  ABLI, PTEN and TP53; cell replicative immortality was promoted by CTNNB1, KRAS and
326 NOTCH1, suppressed by PTEN, and promoted/suppressed by TP53; tumor promoting
327  inflammation was promoted by KRAS and suppressed by TP53; metastasis was promoted by
328 ABL1, CTNNB1, EGFR, KRAS, RAC1 and RB1, suppressed by PTEN and TP53, and
329  promoted/suppressed by AKT1; angiogenesis was promoted by ABL1, CTNNB1, EGFR, KRAS,
330 NOTCH1 and RAC1, suppressed by TP53 and promoted/suppressed by AKT1; genome
331 ingability was promoted by ABL1 and RB1, and suppressed by AKT1, CTNNB1, PTEN, RAC1
332 and TP53; escaping programmed cell death was promoted by AKT1, CTNNB1l, EGFR,
333 NOTCH1 and RACL, suppressed by PTEN, and promoted/suppressed by KRAS, RB1 and TP53;

334 change of cellular energetics was promoted by ABL1, AKT1, CTNNB1, EGFR, KRAS,
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335 NOTCH1, PTEN, RB1 and TP53; finally, proliferative signaling was promoted by ABL1, AKT1,
336 CTNNBL, EGFR, KRAS NOTCH and RACL (Table S27).

337

338 Enrichment map of the OncoOmics essential genesin BC. Figure 8E shows the enrichment
339  map of the 144 OncoOmics essential genes in BC. g:Profiler searches for a collection of gene
340  setsrepresenting pathways, networks, GO terms and disease phenotypes®”. The most significant
341 GO: biological process with a FDR < 0.001 was positive regulation of macromolecule
342  metabolic process (Table S28); the most significant GO: molecular function was
343  phosphatidylinositol 3-kinase activity (Table S29); the most significant Reactome pathway was
344  generic transcriptor pathway (Table S30)%®; additionally, the most significant disease, according
345  the Human Phenotype Ontology, was breast carcinoma (Table S31)*°. Subsequently, g:Profiler
346  annotations were analyzed with the EnrichmentMap software and visualized using Cytoscape,
347  inorder to generate network interactions of the most relevant GO: biological processes (Figure
348 S2) and Reactome pathways (Figure 9) related to immune system, tyrosine kinase, cell cycle
349  and DNA repair pathways>®’.

350

351  Precison medicine. Figure 10 shows the current status of clinical trials for BC, according to
352  the Open Targets Platform™. There are 111 drugs that are being analyzed in 3151 clinical trials
353  in 39/230 genes. The top 10 genes with the highest number of clinical trials in process or
354 completed were TUBB1, ERBB2, ESR1, TOP2A, EGFR, ESR2, VEGFA, CDK4, POLE and
355 RRML. The greatest number of clinical trials was in phase 2. Small molecules were the most
356  analyzed type of drug, followed by antibodies and proteins. Lagtly, the target classes with the
357  greatest number of clinical trials were tyrosine kinases, structural proteins and nuclear hormone
358  receptors (Table S32).

359

360 Regarding precise guidelines for the application of BC pharmacogenomics in clinical practice,

361  PharmGKB details 154 clinical annotations in 70/230 (30%) genes (Table S33)**: the CGI
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362  details 76 clinical annotations in 26/230 (11%) genes (Table S34)*; and PCA details 648
363  clinical annotations in 14/230 (6%) genes (Table S35)"%

364

365  Additionally, Figure S3 shows a drug-gene interaction matrix conformed by 109 clinical
366  annotations in phase 4, according to the OTP; 9 clinical annotations in levels 1A, 2A and 2B,
367 according to PharmGKB; 9 clinical annotations approved by the US Food and Drug
368  Administration (FDA), according to CGI; and 648 clinical annotations, according to PCA.

369

370

371 DISCUSSION

372

373 In this study we proposed a compendium of OncoOmics approaches that analyze genetic
374  dterations, protein expression, signaling pathways, PPi networks, enrichment maps, gene
375 ontology and dependency maps in three gene sets. The first gene set was taken from our
376  previous study where we developed a Consensus Strategy that was proved to be highly efficient
377  inthe recognition of BC pathogenic genes®. The second gene set was taken from several studies
378  of PCA, which provides a panoramic view of the oncogenic processes that contributes to BC
379  progression®******, The third gene set was taken from the CGI and PharmGKB. On the one
380 hand, the CGI flags genomic biomarkers of drug response with different levels of clinical
381  relevance®. On the other hand, PharmGKB collects clinical annotations applied in BC patients
382  and taken from the NCCN, ESMO, CPNDS, DPWG and CPIC guidelines™. Finally, the
383  compendium of these 230 potential essential genes in BC was analyzed through four different
384  OncoOmics approaches.

385

386  The first OncoOmics approach consisted in the analysis of genetic alterations using the PCA
387  daa®®. The frequency of genetic aterations in the CS (average = 1.2), PCA (1.3) and
388 PhamGKB/CGI (1.1) gene sets were higher than the non-cancer gene set (0.4) and the

389  previously known BC driver genes (0.8). This means that these 230 genes had a greater number
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390  of genetic alterations and might be strongly associated with BC (Figure 1A). The most common
391  genetic dterations in a cohort of 994 individuals were mMRNA upregulation, CNV amplification
392  and missense mutations. Molecular subtypes with the greatest number of genetic alterations
393  were basal-like, Her2-enriched, luminal B, normal-like and luminal A, whereas tumor stages
394  with the greatest number of genetic alterations were T2, T3, T1 and T4 (Figures 1B-F). Genes
395  withthe greatest number of genetic alterations per subtype were PIK3CA in lumina A, CCND1
396 inluminal B, TP53 in basal-like and normal-like, and ERBB2 in Her2-enriched (Figure 2A),
397  whereas PIK3CA was the most altered gene in stage T1, TP53 in stages T2 and T3, and ERBB2
398 insage T4 (Figure 2B).

399

400  After athorough analysis of genetic alterations in the 230 genes, the first OncoOmics approach
401  was generated by an OncoPrint conformed by the top 73 genes with the greatest number of
402  genetic alterations and with a frequency of alterations greater than the average (> 86) (Figure
403 3A). The top 10 most altered genes were PIK3CA, TP53, MDM4, CCND1, NBN, MED1,
404  CREBBP, PALB2, ERBB2 and SPOP***%%,

405

406  Subsequently, the enrichment analysis of signaling pathways was carried on taking into account
407 4l genetic alterations in the 230 genes using David Bioinformatics Resource and KEGG*"°.
408 The signaling pathways with the greatest number of genetic alterations per intrinsic molecular
409  subtype were Jak-STAT in luminal A, Wnt in luminal B, p53 in basal-like, ERBB in Her2-
410  enriched and Hippo in normal-like (Figure 4B); and per tumor stage were Wnt in stages T1, T2
411  and T3, and thyroid hormone in stage T4 (Figure 4D).

412

413  Regarding the previously mentioned signaling pathways, Jak-STAT isinvolved in the control of
414  processes, such as stem cell maintenance, hematopoiesis and inflammatory response. However,
415  the mechanism underlying inappropriate Jak-STAT pathway activation is not well-known in
416  BC"™. The Wnt signaling pathway actively functions in embryonic development and helps in

417  homeodtasisin mature tissues by regulating cell survival, migration, proliferation and polarity™.
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418  The p53 tumor suppressor is the most frequently mutated gene in human cancer’, and acting as
419  a transcription factor, the p53 signaling pathway plays a critical role in growth-inhibition,
420  apoptosis, cell migration and angiogenesis’®. The ERBB signaling pathway members form cell-
421  surface receptors with extracellular domains yielding ligand-binding specificity”’. Downstream
422  signaling proceeds via tyrosine phosphorylation mediating signal transduction events that
423  control cell survival, migration and proliferation. However, aberrant ERBB activation can
424  increase transcriptional expression’®. The Hippo pathway plays important roles in immune
425  response, stem cell function and tumor suppression. However, alterations in this pathway are
426 involved in the BC tumorigenesis and metastasis’™. Lastly, the thyroid hormone signaling
427  pathway is an important regulator of growth and metabolism. Nevertheless, deregulation of the
428 T3 hormone levels could promote abnormal responsiveness of mammary epithelial cells
429  developing BC¥®.

430

431  The second OncoOmics approach consisted in the PPi network analysis and its validation with
432  the OncoPPi BC network. According to Li et al. and Ivanov et al.>*®, PPi with therapeutic
433  dignificance can be revealed by the integration of cancer genes into networks. PPi regulates
434  essntial oncogenic signals to cell proliferation and survival, and thus, represents potential
435  targets for drug development and drug discovery. Regarding our networking analysis, the final
436 interaction network consisted in 258 nodes with an average of degree centrality of 48.8 and an
437  average of consensus scoring of 0.803%; the sub-network integrated by 198 of 230 nodes had
438  52.7 of degree centrality and 0.812 of consensus scoring; finally, the sub-network integrated by
439 65 of 73 genes with the greatest number of genetic alterations had 61.7 of degree centrality and
440  0.833 of consensus scoring. Hence, a sub-network of genes with greatest number of genetic
441  dterations presented a greater degree centrality and consensus scoring, suggesting that there is
4472  drong correlation between these genes and BC. Additionally, the oncogenomics validation
443  showed a significant correlation between our String PPi network (Figure 5A) and the OncoPPi
444  BC network (Figure 5B), identifying 16 nodes strongly associated with BC?. The second

445  OncoOmics approach was made up with the top 40 genes with the highest degree centrality and

16


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

446  consensus scoring, such as TP53, ESR1, CCND1, ERBB2, PTEN, CDKN1B, ATM, AKT1,
447  STAT3, CDH1 and EGFR.

448

449  The third OncoOmics approach was related to the BC proteome. More than 500 proteins have
450  been identified as strongly involved in oncogenesis. Loss of expression, overexpression or
451 expression of dysfunctional proteins contribute to uncontrolled tumor growth, causing
452  chromosomal rearrangements, gene amplification and ungoverned methylation®. Regarding our
453 230 proteins, 43 showed significant high and low expression (p < 0.001), according to TCGA.
454  The top ten proteins with the highest expression levels were ERBB2, SERPINE2, CDH2,
455 CCND1, EGFR, ERCC1, IRS1, NOTCH1, ERBB3 and INPP4B, whereas the top ten proteins
456  with the lowest expression levels were CDH1, ATM, JAK2, MAPK1, AKT1, AKT3, MAPK14,
457  ABL1, CTNNB1 and IRF1. On the other hand, the HPA has analyzed 202 of 230 proteins, where
458 FOXA1, TOP2A, CDK2, CYP2D6, NCOR1 and RRM1 were involved in oncogenic processes,
459 and RACL, GJB2, MED1, PIK3CA, PIK3R3, FGFR2, HCFC2, MAP2K4, NQO2 and RAC3
460  wereinvolved in tumor suppression processes. Lastly, genes with unfavorable prognosis in BC
461  were RAD51, PERP and MORC4 (Figure 6)>°°. The compendium of all these 60 proteins with
462  dignificant high and low expression made up the third OncoOmics approach.

463

464  The fourth OncoOmics approach was related to the BC dependency map. According to
465  Tsherniak et al., the mutations that trigger the growth of cancer cells also confer specific
466  vulnerabilities that normal cells lack, and these dependencies are compelling therapeutic
467  targets®™. The cancer dependency map identifies essential genes in proliferation and survival of
468  well-annotated cell lines through systematic loss-of-function screens®?. On the one hand,
469 DETEMER?Z analyzed the genome-scale RNAI loss-of-function screens. The top 10 genes with
470  the greatest number of significant dependency scores in BC cell lines were RPL5, SF3B1,
471 RPA1, RRM1, BUB1B, RPA3, RAD51, PPP2R1A, CHD4 and POLE. On the other hand,
472  CERES analyzed the genome-scale CRISPR-Cas9 loss-of-function screens. The top 10 genes

473  with the greatest number of significant dependencies in BC cell lines were RPAL1, RRM1,
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474  TOP2A, BUB1B, CTCF, POLE, SF3B1, RPL5, CCND1 and SOD2 (Figure 7A). Additionally,
475  thefourth OncoOmics approach was made up of genes with significant dependenciesin BC cell
476 lines and al cancer cell lines. PLCG1, CDK4, KRAS, SPOP, CTNNB1, EGFR, AKT1, JAK2,
477 MDM4, FGFRL, IRSL, BCL2, RELA, GATA3, PIK3CA, PIK3RE, PIK3CB, FOXAl, ERBB3,
478 FGFR2, ESR1 and ERBB2 were strongly selective genes, whereas CDH4, TOP2A, GNL3,
479 RBBPS, TOP3A, SMARCB1, UROD, RPL5, RAD51, PDPK1, CCNK, SF3B1, CDC42, ERCC2,
480 BUB1B, CTCF, MAX, CCND1, BARD1, RAC1, RPA3, SMARCEL, PPP2R1A, POLE, RPA1 and
481 GRB2 were common essential genes, and SOD2, CDK2, ATR, RRM1 and MED1 were both
482  (Figure 7E).

483

484  Subsegquently, the compendium of the most relevant genes per OncoOmics approach reveals the
485 144 OncoOmics essential genesin BC (Figure 8A). RAC1, AKT1, CCND1, PIK3CA and ERBB2
486  were relevant genes in all OncoOmics approaches; CDH1, MAPK14, TP53, MAPK1, SRC and
487 RAC3 were relevant genes in the OncoPrint, networking and protein expression analyses;
488 PLCG1 and GJB2 were relevant genes in the OncoPrint, networking and DepMap analyses;
489 MED1, TOP2A and GATA3 were relevant genes in the DepMap, OncoPrint and protein
490  expression analyses; and BCL2, CTNNB1, EGFR and CDK2 were relevant in the DepMap,
491  networking and protein expression analyses. Lastly, the top 10 genes with the greatest number
492  of interactions with the hallmarks of cancer were TP53, CTNNB1, PTEN, KRAS, AKT1, RAC1,
493  EGFR, ABL1, RB1 and NOTCH1 (Figure 8D).

494

495  According to Reimand et al., g:Profiler lets us know the enrichment map of the 144 OncoOmics
496  essential genesin BC®. The most significant GO: biological process was the positive regulation
497  of macromolecule metabolic process, the GO: molecular function was phosphatidylinositol 3-
498  kinase activity, the Reactome pathway was generic transcriptor pathway, and the most
499  significant Human Phenotype Ontology term was breast carcinoma®. Subsequently, the most

500 relevant network interactions of the GO: biological process and the Reactome pathways were
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501 related to immune system, tyrosine kinase, cell cycle and DNA repair terms (Figures 9 and
502  S2)%¢.

503

504 There is currently great enthusiasm about immunotherapeutic strategies to treat BC. The first
505  approval of an immune checkpoint blockade agent for treatment of BC came in March 2019
506  when the anti-PD-L1 antibody atezolizumab was approved to be used in combination with nab-
507  paclitaxel for patients with triple-negative BC*. 17 OncoOmics essential genes were associated
508  with immunotherapy®. Kinases have been recognized as highly tractable targets for BC
509 treatment due to their druggability and critica roles they play in regulating cellular migration,
510 differentiation, growth and survival®. 17 OncoOmics essential genes in BC were kinome
511  genes™. The cell cycle comprises a series of tightly controlled eventsthat drive cell division and
512  the DNA replication®. 12 OncoOmics essential genesin BC were involved in cell cycle®*. DNA
513  repair conditutes several signaling pathways working in concert to eliminate DNA lesions and
514  maintain genome stahility. Defective components in DNA repair machinery are an underlying
515  cause for the development of BC¥. 19 OncoOmics essential genes in BC were involved in the
516  DNA repair sysem®. RBPs are key players in post-transcriptional events®®, Three recent
517  reports using high-throughput bioinformatics profiling of thousands of tumors now reveal a
518 consistent pattern of alterations in RBPs expression levels across different cancer types™ .
519 Lastly, 11 OncoOmics essential genes were RBPs (Figure 8C)%°.

520

521 Precision medicine provides BC patients with the most appropriate diagnostics and targeted
522  therapies based on the omics profile and other predictive and prognostic tests. Additionally, it is
523 relevant to know the composition of their breast tissue, tumor microenvironment, comorbid
524  conditionsand lifestyle®.

525

526  The OTPisan available resource for the integration of genetics, omics and chemical datato aid
527  systematic drug target identification and prioritization”. Currently, there are 111 drugs that are

528  being andyzed in 3151 clinical trials in 39 of the 230 genes. Mogt of clinica trials are in phase
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529  2; most of the analyzed drugs are small molecules; and most of target classes belong to tyrosine
530  kinases. Finally, the top ten genes with the greatest number of clinical trials in process or
531 completed are TUBB1, ERBB2, ESR1, TOP2A, EGFR, ESR2, VEGFA, CDK4, POLE and
532  RRM1” (Figure 10).

533

534  PharmGKB collects the precise guidelines for the application of pharmacogenomics in clinical
535  practice” ™. This database details 154 clinical annotations associated with 70 genesin BC. The
536  CGl isaplatform that annotates clinical evidence and tumor variants that constitute state-of-art
537  biomarkers of drug response. The CGI details 76 clinical annotations associated with 26 genes
538  in BC™. According to TCGA, PCA details 648 clinical annotations associated with 14 genesin
539 BC™ Lastly, the drug-gene interaction matrix is a compendium of the most relevant clinical
540  annotations made up of 32 genes and 51 drugs in order to facilitate the treatment of patients
541  with BC (Figure S3).

542

543 In conclusion, since BC is a complex and heterogeneous disease, the study of different
544  OncoOmics approaches is an effective way to reveal essential genes to better understand the
545 molecular landscape of processes behind oncogenesis, and to develop better therapeutic
546 treatments focused on pharmacogenomics and precision medicine.

547

548

549 METHODS

550

551  OncoPrint of genetic alterations according to the Pan-Cancer Atlas. PCA has reported the
552 clinical data of 1084 individuals with BC and it can be visualized in the Genomic Data

553 Commons of the National Cancer Institute (https://gdc.cancer.gov/) and in the cBioPortal

554  (http://www.cbioportal.org/)*>*. The clinical annotations were age, pTNM classification, tumor

555  type, tumor stage and race/ethnicity.

556
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557  Additionally, PCA has reported genetic alterations (MRNA upregulation, mMRNA
558  downregulation, CNV amplification, CVN deep deletion, missense mutation, truncating
559  mutation, inframe mutation and fusion gene) in 994 individuals. Putative mutations were
560 analyzed through exome sequencing, CNV's through the Genomic Identification of Significant
561  Targetsin Cancer (GISTIC 2.0)**%, and mRNA expression through RNA Seq V2. We analyzed
562  five gene setsin order to compare the average frequency of genetic alterations among them. The
563  first gene set (n = 177) was integrated by the non-cancer genes™. We calculated the OncoScore
564  of non-cancer genes, taking out all genes from our study. The second gene set (n = 119) wasthe
565  BC driver genes, according to The Network of Cancer Genes®. The third gene set (n = 84) was
566  taken from our previous study where we developed a Consensus Strategy of prioritized genes
567  related to BC pathogenesis®®. The fourth gene set (n = 85) was made up of genes associated with
568  BC development, according to several PCA studies®®*’. The fifth gene set (n = 91) consisted
569  of BC biomarkersand druggable enzymes taken from PharmGKB and the CGl (Table S2)3"38%,
570  Finaly, the significant differentiation of the average frequency of genetic alterations among
571  gene sets was analyzed (p-value < 0.001).

572

573  The OncoOmics approaches were performed in 230 genes conformed by the CS, PCA and
574  PharmGKB/CGI gene sets. Firstly, we calculated the percentage and ratio of genetic alterations
575  perintrinsic molecular subtype and tumor stage, and we established a ranking of genes with the
576  greatest number of different genetic alterations. Subsequently, we performed an OncoPrint of
577  genes with more genetic alterations than the average. The final list of genes made up the first
578  OncoOmics approach.

579

580  Pathway enrichment analysis. The enrichment analysis of signaling pathways was performed
581 using David Bioinformatics Resource to obtain integrated information from KEGG"™. It was
582  carried on in the 230 genes, taking into account terms with a significant FDR < 0.01. After that,
583  genetic alterations that comprise each signaling pathway were analyzed, taking into account the

584  molecular subtype and tumor stage of individuals from PCA. Circos plots and violin plots were
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585  designed to visualize all data. Lastly, in order to compare the ratio of genetic alterations among
586  subtypes and tumor stages, normalization was carried out dividing the number of genetic
587  dterations by the number of individuals per subtype and tumor stage. Regarding molecular
588  subtypes, 499 individuals were luminal A, 197 were lumina B, 171 were basal-like, 78 were
589  Her2-enriched and 36 were normal-like, and regarding tumor stage, 255 were stage T1, 586
590 were stage T2, 113 were stage T3 and 103 were stage T4.

591

592  Protein-protein interaction network. The PPi network with a highest confidence cutoff of 0.9
593 and zero node addition was created using the String Database, which takes into account
594  predicted and known interactions™. The confidence scoring is the approximate probability that a
595  predicted link exists between two enzymes in the same metabolic map, whereas the degree
596  centrality of a node means the number of edges the node has to other nodes in a network. The
597  centrality indexes calculation and network visualization were analyzed through the Cytoscape
598  software®. Genes with the highest degree centrality, consensus score and sub-networks were
599  differentisted by colors in the PPi network. On the other hand, OncoPPi

600  (http://oncoppi.emory.edu/) reports the development of a cancer-focused PPi  network,

601  identifying more than 260 high-confidence cancer-associated PPi®***. In addition, the OncoPPi
602  BC network consisted of 16 genes and 18 PPi experimentally analyzed in BC cell lines>**. The
603  correlation of the degree centrality by means of Spearman p-value test between our String PPi
604  network and the OncoPPi BC network allowed for the validation of all the high-confidence BC-
605  focused PPi analyzed in cell lines®. Lastly, genes with the highest degree centrality and
606  consensus scoring made up the second OncoOmics approach.

607

608 Protein expresson analysis. TCGA has reported the protein expression data of 994 individuals
609  with BC through RPPA and mass spectrometry by the Clinical Proteomic Tumor Analysis
610  Consortium (CPTAC), and it can be visualized in the cBioPortal*>*. We analyzed the protein
611  expression of 230 genes (CS, PCA and PharmGKB/CGI gene sets) where Z-scores > 2 mean a

612  dgnificant high protein expression and Z-scores < -2 mean a significant low protein expression.
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613  Onthe other hand, the Human Protein Atlas (https.//www.proteinatlas.org/) explains the diverse

614  molecular signatures of proteomes in the human tissues based on an integrated omics approach
615 that involves quantitative transcriptomics and tissue microarray-based
616  immunohistochemistry®®*®>, We compared the protein gene levels (high, medium, low and
617  non-detected) of our 230 genes between normal and BC tissues. Finally, we analyzed the overall
618  arvival curve of our 230 genes and reveled all biomarkers with significant unfavorable
619  prognostic (p < 0.001)>>*. All genes with the altered protein expression made up the third
620  OncoOmics approach.

621

622 Breast cancer dependency map. The DepMap project (https.//depmap.org/portal/) is a

623  collaboration between the Broad Ingtitute and the Welcome Sanger Institute. Multiple genetic or
624  epigenetic changes provide cancer cells with specific vulnerabilities that normal cells lack. Even
625  though the landscape of genetic alterations has been extensively studied to date, we have limited
626  understanding of the biological impact of these alterations in the development of specific tumor
627  vulnerabilities, which triggers a limited use of precision medicine in the clinical practice
628  worldwide. Therefore, the main goal of DepMap is to create a comprehensive preclinical
629 reference map connecting tumor features with tumor dependencies to accelerate the
630  development of precision treatments'®2.

631

632  In order to identify essential genes for BC cell proliferation and survival, DepMap performed
633  systematic loss-of-function screens in a large number of well-annotated BC cell lines
634  representing the tumor heterogeneity and their molecular subtypes. The DEMETER2 algorithm
635  was applied to analyze genome-scale RNAI loss-of-function screens in 73 BC cell lines and 711
636  cancer cell lines, whereas the CERES algorithm was applied to analyze genome-scale CRISPR-
637  Cas9 loss-of-function screens in 28 BC cell lines and 558 cancer cell lines***. In addition to
638  existing cell lines, the Cancer Cell Line Encyclopedia (CCLE) project will greatly expand the
639  collection of characterized cell linesto improve precision treatments”’.

640
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641  Regarding dependency scores, alower score means that a gene is more likely to be dependent in
642  aspecific cancer cell line. A score of 0 means that a gene is not essential, whereas a score of -1
643  corresponds to the median of all common essential genes. A strongly selective gene means that
644  its dependency is at least 100 times more likely to have been sampled from a skewed
645  digribution than a normal digtribution. Lastly, acommon essential gene is when in a pan-cancer
646  screen its gene ranks in the top most depleting genes in at least 90% of cell lines'. All genes
647  with adependency score < -1 made up the fourth OncoOmics approach.

648

649  Enrichment map of the OncoOmics essential genesin BC. The pathway enrichment analysis
650  gives scientists curated interpretation of gene lists generated from genome-scale experiments®”.
651 The OncoOmics essential genes in BC were analyzed by wusing g:Profiler

652  (https://biit.cs.ut.ee/gprofiler/) in order to obtain significant annotations (FDR < 0.001) related

653  to GO terms, pathways, networks and disease phenotypes. Subsequently, g:Profiler annotations
654  were analyzed with the EnrichmentMap software in order to generate network interactions of
655  the most relevant GO: biological processes and Reactome pathways, and these networks were
656  visualized using Cytoscape®®’.

657

658  Precison medicine. We analyzed drug-gene interactions for BC using four selective databases:

659 1) OTP? 2) PharmGKB***, 3) CGI*®*, and 4) PCA%. The Open Targets Platform

660  (https.//www.targetvalidation.org) is comprehensive and robust data integration for access to

661  andvisualization of potential drug targets associated with BC. Additionally, this platform shows
662  dl drugsin clinical trials associated with BC genes, detailing its phase, status, type and target

663  class”. PharmGKB (https.//www.pharmgkb.org/) collects complete guidelines for application of

664  pharmacogenomics in clinical practice, according to several consortiums worldwide™ ™. The

665 CGI (https://www.cancergenomeinterpreter.org/home) flags genomic biomarkers of drug

666  response with different levels of clinical relevance®. Finally, PCA reveals genetic alterations,

667  druggable enzymes and clinical annotations in a cohort of 994 individuals**>%°, The clinical
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668  annotations of these four databases were analyzed in order to create a drug-gene interaction
669  matrix.
670

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

25


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

716 References

717

718 1. Espinal-Enriquez, J., Fresno, C., Anda-Jauregui, G. & Hernandez-Lemus, E.
719 RNA-Seq based genome-wide analysis reveals loss of inter-chromosomal

720 regulation in breast cancer. Sci. Rep. 7, 1760 (2017).

721 2. Guerrero, S. et al. Analysis of Racial / Ethnic Representation in Select Basic and
722 Applied Cancer Research Studies. 1-8 (2018). doi:10.1038/s41598-018-32264-x
723 3. Ding, L. et al. Perspective on Oncogenic Processes at the End of the Beginning
724 of Cancer Genomics. Cell 173, 305-320.€10 (2018).

725 4. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence
726 and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin.
727 (2018). doi:10.3322/caac.21492

728 5. Sjoblom, T. et al. The consensus coding sequences of human breast and

729 colorectal cancers. Science (80-. ). (2006). doi:10.1126/science. 1133427

730 6. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer
731 types. Nature (2013). doi:10.1038/nature12634

732 7. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across
733 21 tumour types. Nature (2014). doi:10.1038/nature12912

734 8. Porta-Pardo, E. et al. Comparison of algorithms for the detection of cancer

735 drivers at subgene resolution. Nat. Methods (2017). doi:10.1038/nmeth.4364
736 9. Tamborero, D. et al. Comprehensive identification of mutational cancer driver
737 genes across 12 tumor types. Sci. Rep. 3, 2650 (2013).

738 10. Lu, C. et al. Patterns and functional implications of rare germline variants across
739 12 cancer types. Nat. Commun. (2015). doi:10.1038/ncomms10086

740 11. Klijn, C. et al. A comprehensive transcriptional portrait of human cancer cell
741 lines. Nat. Biotechnol. (2015). doi:10.1038/nbt.3080

742 12. Gao, Q. et al. Driver Fusions and Their Implications in the Development and
743 Treatment of Human Cancers. Cell Rep. (2018).

744 doi:10.1016/j.celrep.2018.03.050

745 13. Oltean, S. & Bates, D. O. Hallmarks of alternative splicing in cancer. Oncogene
746 (2014). doi:10.1038/0nc.2013.533

747 14. Stricker, T. P. et al. Robust stratification of breast cancer subtypes using

748 differential patterns of transcript isoform expression. PLoS Genet. (2017).

749 doi:10.1371/journal .pgen.1006589

750 15. Lawrence R. T. et al. The Proteomic Landscape of Triple-Negative Breast

751 Cancer. Cell Rep. (2015). doi:10.1016/j.celrep.2015.03.050

752 16. Sogawa K. et al. Identification of a novel serum biomarker for pancreatic cancer,
753 C4b-binding protein a-chain (C4BPA) by quantitative proteomic analysis using
754 tandem mass tags. Br. J. Cancer (2016). doi:10.1038/bjc.2016.295

755 17. Rubio-Perez, C. et al. In Silico Prescription of Anticancer Drugs to Cohorts of 28
756 Tumor Types Reveals Targeting Opportunities. Cancer Cell 27, 382—396 (2015).
757 18. Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell (2017).

758 doi:10.1016/j.cell.2017.06.010

759 19. Meyers, R. M. et al. Computational correction of copy number effect improves
760 specificity of CRISPR-Cas9 essentiality screensin cancer cells. Nat. Genet.

761 (2017). doi:10.1038/ng.3984

762 20. Stransky, N. et al. Pharmacogenomic agreement between two cancer cell line
763 data sets. Nature (2015). doi:10.1038/naturel5736

764 21. McFarland, J. M. et al. Improved estimation of cancer dependencies from large-
765 scale RNAI screens using model-based normalization and data integration. Nat.

26


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

766 Commun. (2018). doi:10.1038/s41467-018-06916-5

767 22. Shah, P. et al. Integrated Proteomic and Glycoproteomic Analyses of Prostate
768 Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and

769 Glycosylation. Mol. Cell. Proteomics (2015). doi:10.1074/mcp.M 115.047928
770 23. Bernard, P. S. et al. Supervised risk predictor of breast cancer based on intrinsic
771 subtypes. J. Clin. Oncol. 27, 1160-1167 (2009).

772  24. Kumar, R., Sharma, A. & Tiwari, R. K. Application of microarray in breast

773 cancer: An overview. J. Pharm. Bioallied Sci. 4, 21-6 (2012).

774 25. Banerji, S. et al. Sequence analysis of mutations and translocations across breast
775 cancer subtypes. Nature 486, 405-409 (2012).

776  26. Lopez-Cortés, A. et al. Breast cancer risk associated with gene expression and
777 genotype polymorphisms of the folate-metabolizing M THFR gene: a case-control
778 study in a high altitude Ecuadorian mestizo population. Tumor Biol. 36, 6451—
779 6461 (2015).

780 27. Prat, A., Ellis,M. J. & Perou, C. M. Practical implications of gene-expression-
781 based assays for breast oncologists. Nature Reviews Clinical Oncology 9, 48-57
782 (2012).

783 28. Lopez-Cortés, A. et al. Gene prioritization, communality analysis, networking
784 and metabolic integrated pathway to better understand breast cancer

785 pathogenesis. ci. Rep. 8, 16679 (2018).

786 29. LOpez-cortés, A. et al. Mutational Analysis of Oncogenic AKT1 Gene

787 Associated with Breast Cancer Risk in the High Altitude Ecuadorian Mestizo
788 Population. 2018, (2018).

789 30. Huang, K. lin et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell
790 355-370 (2018). doi:10.1016/j.cell.2018.03.039

791 31. Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes and
792 Muitations. Cell 173, 371-385.€18 (2018).

793 32, Thorsson, V. et al. The Immune Landscape of Cancer. Immunity 1-19 (2018).
794 doi:10.1016/j.immuni.2018.03.023

795 33. Liu,J etal. Anintegrated TCGA Pan-Cancer Clinical Data Resource to Drive
796 High-Quality Survival Outcome Analytics. Cell (2018).

797 doi:10.1016/j.cell.2018.02.052

798 34. Sanchez-Vega, F. et al. Oncogenic Signaling Pathways in The Cancer Genome
799 Atlas. Cell 173, 321-337.€10 (2018).

800 35. Hoadley, K. A. et al. Cell-of-Origin Patterns Dominate the Molecular

801 Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304.e6
802 (2018).

803 36. Ellrott, K. et al. Scalable Open Science Approach for Mutation Calling of Tumor
804 Exomes Using Multiple Genomic Pipelines. Cell Syst. (2018).

805 doi:10.1016/j.cels.2018.03.002

806 37. Thorn, C.F., Klein, T. E. & Altman, R. B. PharmGKB: The pharmacogenomics
807 knowledge base. Methods Mal. Biol. 1015, 311-320 (2013).

808 38. Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and
809 clinical relevance of tumor alterations. 1-8 (2018). doi:10.1186/s13073-018-
810 0531-8

811 39. Tegera E. et al. Consensus strategy in genes prioritization and combined

812 bioinformatics analysis for preeclampsia pathogenesis. BMC Med. Genomics 10,
813 50 (2017).

814 40. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A
815 worldwide resource for pharmacogenomic information. Wiley Interdisciplinary

27


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

816 Reviews: Systems Biology and Medicine (2018). doi:10.1002/wsbm.1417

817 41. Ross, C.J. D.etal. The Canadian Pharmacogenomics Network for Drug Safety:
818 amodel for safety pharmacology. Thyroid 20, 6817 (2010).

819 42. Saito, Y. etal. CPIC: Clinical Pharmacogenetics Implementation Consortium of
820 the Pharmacogenomics Research Network. Clinical Pharmacology and

821 Therapeutics 99, 36-37 (2016).

822 43. Swen, J. J. et al. Pharmacogenetics: From bench to byte an update of guidelines.
823 Clin. Pharmacol. Ther. 89, 662—673 (2011).

824 44. European Society for Medicinal Oncology. Breast Cancer: A guide for patients.
825 European Society for Medical Oncology (2018).

826 45. Cerami, E. et al. The cBio cancer genomics portal: an open platform for

827 exploring multidimensional cancer genomics data. Cancer Discov. (2012).

828 doi:10.1158/2159-8290.CD-12-0095

829 46. Gao,J. et al. Integrative analysis of complex cancer genomics and clinical

830 profiles using the cBioPortal. Sci. Signal. (2013). doi:10.1126/scisignal.2004088
831 47. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative
832 analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.
833 4, 44-57 (2009).

834 48. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment
835 tools: paths toward the comprehensive functional analysis of large gene lists.
836 Nucleic Acids Res. 37, 1-13 (2009).

837 49. Antonov, A.V, Schmidt, E. E., Dietmann, S., Krestyaninova, M. & Hermjakob,
838 H. R spider: a network-based analysis of gene lists by combining signaling and
839 metabolic pathways from Reactome and KEGG databases. Nucleic Acids Res. 38,
840 W78-83 (2010).

841 50. Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic

842 Acids Research 27, 29-34 (1999).

843 51. Szklarczyk, D. et al. STRING Vv10: protein-protein interaction networks,

844 integrated over the tree of life. Nucleic Acids Res. 43, D447-52 (2015).

845 52. Shannon, P. et al. Cytoscape: a software environment for integrated models of
846 biomolecular interaction networks. Genome Res. 13, 2498-504 (2003).

847 53. Ivanov, A. A. et al. The OncoPPi Portal: an integrative resource to explore and
848 prioritize protei n—protein interactions for cancer target discovery. Bioinformatics
849 1-9 (2017). doi:10.1093/bi oi nformatics/btx 743

850 54. Li, Z. etal. The OncoPPi network of cancer-focused protein-protein interactions
851 to inform biological insights and therapeutic strategies. Nat. Commun. 8, (2017).
852 55. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science
853 (80-.). (2017). doi:10.1126/science.aan2507

854 56. Uhlén, M. et al. Tissue-based map of the human proteome. Science (80-. ).

855 (2015). doi:10.1126/science.1260419

856 57. Berger, A.C.etal. A Comprehensive Pan-Cancer Molecular Study of

857 Gynecologic and Breast Cancers. Cancer Cell 1-16 (2018).

858 doi:10.1016/j.ccell.2018.03.014

859 58. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat.

860 Biotechnol. (2010). doi:10.1038/nbt1210-1248

861 59. Uhlén, M. et al. A Human Protein Atlas for Normal and Cancer Tissues Based on
862 Antibody Proteomics. Mol. Cell. Proteomics (2005). doi:10.1074/mcp.M500279-
863 MCP200

864 60. Sondka, Z.etal. The COSMIC Cancer Gene Census: describing genetic

865 dysfunction across all human cancers. Nat. Rev. Cancer 1 (2018).

28


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

866 doi:10.1038/s41568-018-0060-1

867 61. Repana, D. et al. The Network of Cancer Genes (NCG): acomprehensive

868 catalogue of known and candidate cancer genes from cancer sequencing screens.
869 Genome Biol. (2019). doi:10.1186/s13059-018-1612-0

870 62. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy.

871 Nature (2017). doi:10.1038/nature23477

872 63. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The
873 protein kinase complement of the human genome. Science (2002).

874 doi:10.1126/science.1075762

875 64. Bar-Joseph, Z. et al. Genome-wide transcriptional analysis of the human cell
876 cycle identifies genes differentially regulated in normal and cancer cells. Proc.
877 Natl. Acad. ci. (2008). doi:10.1073/pnas.0704723105

878 65. Chae, Y. K. et al. Genomic landscape of DNA repair genes in cancer. Oncotarget
879 (2016). doi:10.18632/oncotarget.8196

880 66. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of
881 RNA-binding proteins. Nature Reviews Molecular Cell Biology (2018).

882 doi:10.1038/nrm.2017.130

883 67. Reimand, J. et al. Pathway enrichment analysis and visualization of omics data
884 using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. (2019).
885 doi:10.1038/s41596-018-0103-9

886 68. Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res.
887 (2018). doi:10.1093/nar/gkx1132

888 69. Posey, J. E. etal. Resolution of Disease Phenotypes Resulting from Multilocus
889 Genomic Variation. N. Engl. J. Med. (2016). doi:10.1056/nejmoal516767

890 70. Carvaho-Silva, D. et al. Open Targets Platform: New developments and updates
891 two years on. Nucleic Acids Res. (2019). doi:10.1093/nar/gky1133

892 71. Tamborero, D. et al. Cancer Genome Interpreter Annotates The Biological And
893 Clinical Relevance Of Tumor Alterations. bioRxiv (2017). doi:10.1101/140475
894 72. The Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-
895 Cancer Analysis project. Nat. Genet. 45, 1113-8 (2013).

896 73. Thomas, S. J., Snowden, J. A., Zeidler, M. P. & Danson, S. J. The role of

897 JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid

898 tumours. Br. J. Cancer (2015). doi:10.1038/bjc.2015.233

899 74. Kazi, M., Trivedi, T., Kobawala, T. & Ghosh, N. The Potential of Wnt Signaling
900 Pathway in Cancer: A Focus on Breast Cancer. Cancer Transl. Med. (2016).
901 doi:10.4103/2395-3977.181437

902 75. Murphy, M. E. et al. A functionally significant SNPin TP53 and breast cancer
903 risk in African-American women. npj Breast Cancer 3, 5 (2017).

904 76. Xie, B. et al. Benzyl Isothiocyanate potentiates p53 signaling and antitumor

905 effects against breast cancer through activation of p53-LKB1 and p73-LKB1
906 axes. Sci. Rep. 7, (2017).

907 77. Paz-y-Mifo, C. et al. Incidence of the L858R and G719S mutations of the

908 epidermal growth factor receptor oncogene in an Ecuadorian population with
909 lung cancer. Cancer Genet. Cytogenet. 196, (2010).

910 78. Ali, R. & Wendt, M. K. The paradoxical functions of EGFR during breast cancer
911 progression. Sgnal Transduct. Target. Ther. 2, 16042 (2017).

912 79. Wu, L. & Yang, X. Targeting the Hippo Pathway for Breast Cancer Therapy.
913 Cancers (Basdl). (2018). doi:10.3390/cancers10110422

914 80. Uzair,|.D., Conte Grand, J., Flamini, M. |. & Sanchez, A. M. Molecular Actions
915 of Thyroid Hormone on Breast Cancer Cell Migration and Invasion via

29


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

916 Cortactin/N-WASP. Front. Endocrinol. (Lausanne). (2019).

917 doi:10.3389/fendo.2019.00139

918 81. lvanov, A. A. et al. The OncoPPi Portal: An integrative resource to explore and
919 prioritize protein-protein interactions for cancer target discovery. Bioinfor matics
920 (2018). doi:10.1093/bioinformatics/btx 743

921 82. Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell 170, 564-576.e16
922 (2017).

923 83. Reimand, J. et al. Pathway enrichment analysis and visualization of omics data
924 using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. (2019).
925 doi:10.1038/s41596-018-0103-9

926 84. Adams, S. et al. Current Landscape of Immunotherapy in Breast Cancer. JAMA
927 Oncol. 1-10 (2019). doi:10.1001/jamaoncol .2018.7147

928 85. Miller, S. M., Goulet, D. R. & Johnson, G. L. Targeting the Breast Cancer

929 Kinome. J. Cell. Physiol. (2017). doi:10.1002/jcp.25427

930 86. Cddon,C.E., Daly, R.J., Sutherland, R. L. & Musgrove, E. A. Cell cycle

931 control in breast cancer cells. Journal of Cellular Biochemistry (2006).

932 doi:10.1002/jch.20690

933 87. Mgjidinia, M. & Yousefi, B. DNA repair and damage pathways in breast cancer
934 development and therapy. DNA Repair (2017). doi:10.1016/j.dnarep.2017.03.009
935 88. Pereira B., Billaud, M. & Almeida, R. RNA-Binding Proteinsin Cancer: Old
936 Players and New Actors. Trends in Cancer (2017).

937 doi:10.1016/j.trecan.2017.05.003

938 89. Waurth, L. et al. UNR/CSDEL1 Drives a Post-transcriptional Program to Promote
939 Melanoma Invasion and Metastasis. Cancer Cell 30, 694—707 (2016).

940 90. Kechavarzi, B. & Janga, S. C. Dissecting the expression landscape of RNA-

941 binding proteins in human cancers. Genome Biol. (2014). doi:10.1186/gb-2014-
942 15-1-r14

943 91. Wang, J, Liu, Q. & Shyr, Y. Dysregulated transcription across diverse cancer
944 types reveals the importance of RNA-binding protein in carcinogenesis. BMC
945 Genomics (2015). doi:10.1186/1471-2164-16-S7-S5

946 92. Sebestyén, E. et al. Large-scale analysis of genome and transcriptome alterations
947 in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res.
948 (2016). doi:10.1101/gr.199935.115

949 93. Harris, E. E. R. Precision Medicine for Breast Cancer: The Pathsto Truly

950 Individualized Diagnosis and Treatment. Int. J. Breast Cancer (2018).

951 doi:10.1155/2018/4809183

952 94. Beroukhim, R. et al. The landscape of somatic copy-number alteration across
953 human cancers. Nature (2010). doi:10.1038/nature08822

954 95, Merme, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of
955 the targets of focal somatic copy-number alteration in human cancers. Genome
956 Biol. (2011). doi:10.1186/gb-2011-12-4-r41

957 96. Rocco, P. et al. OncoScore: A novel, Internet-based tool to assess the oncogenic
958 potential of genes. Sci. Rep. (2017). doi:10.1038/srepd6290

959 97. Barreting, J. et al. The Cancer Cell Line Encyclopedia enables predictive

960 modelling of anticancer drug sensitivity. Nature 483, 603—7 (2012).

961 98. Ding, L. et al. Perspective on Oncogenic Processes at the End of the Beginning
962 of Cancer Genomics. Cell (2018). doi:10.1016/j.cell.2018.03.033

963

964

965

30


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

966  Acknowledgments

967  Thiswork was supported by Universidad UTE (Quito, Ecuador), Universidad de Las Américas
968  (Quito, Ecuador), University of Coruna (Corufia, Spain), University of the Basgue Country
969  (Bilbao, Spain), and McGill University (Montreal, Canada). Additionally, this work was
970  supported by “Collaborative Project in Genomic Data Integration (CICLOGEN) " PI17/01826
971  funded by the Carlos Il Health Ingtitute from the Spanish National plan for Scientific and
972  Technica Research and Innovation 2013-2016 and the European Regional Development Funds
973  (FEDER).

974

975  Author Contributions

976 ALC and ET conceived the subject and the conceptualization of the study. ALC wrote the
977  manuscript. ET, SIB, CRM, HGD and CPyM supervised the project. ALC and CPyM did
978  founding acquisition. ALC, SG and ACA did data curation and supplementary data. ET, SG,
979 ACA, SIB, CRM, HGD, AP, YPC and CPyM gave conceptual advice and valuable scientific
980 input. Finally, all authors reviewed the manuscript.

981

982  Competing interests

983  Theauthorsdeclare no competing interests.

984

985 Dataavailability satement

986  All data generated or analysed during this study are included in this published article (and its
987  Supplementary Information files).

988

989

990

991

992

993

31


https://doi.org/10.1101/638866
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638866; this version posted May 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

994  Figurelegends

995

996  Figure 1. Genetic alterations of the breast cancer cohort according to PCA. (A) Frequency

997  of genetic alterations per gene set (non-cancer genes, BC driver genes according to the Network

998  of Cancer Genes, Consensus Strategy, BC genes according to PCA, BC biomarkers according to

999  the PharmGKB and CGI). (B) Percentage of genetic alterations per type. (C) Ratio of genetic
1000  dterations per intrinsic molecular subtype. (D) Ratio of genetic alterations per tumor stage. (E)
1001  Percentage of genetic alterations per type and per molecular subtype. (F) Percentage of genetic
1002  dterations per type and per tumor stage.
1003
1004  Figure 2. Ranking of genes with the highest number of genetic alterations per molecular
1005  subtype and tumor stage. (A) Frequency of genetic alterations (punctual mutations, copy
1006  number variants and mMRNA expression) per molecular subtype. (B) Frequency of genetic
1007  dterations per tumor stage. (C) Frequency of punctual mutations per molecular subtype. (D)
1008  Freguency of punctual mutations per tumor stage. (E) Frequency of CNV amplifications per
1009  molecular subtype. (F) Frequency of CNV amplifications per tumor stage. (G) Frequency of
1010  CNV deep deletions per molecular subtype. (H) Frequency of CNV deep deletions per tumor
1011  sage. (1) Frequency of mRNA upregulation per molecular subtype. (J) Frequency of mRNA
1012  upregulation per tumor stage. (K) Frequency of mRNA downregulation per molecular subtype.
1013 (L) Frequency of mRNA downregulation per tumor stage.
1014
1015 Figure 3. OncoPrint of genetic alterations according to the Pan-Cancer Atlas. (A)
1016  OncoPrint of genes with more genetic alterations than the average (>86) per molecular subtype.
1017  (B) Circos plot between molecular subtypes and the highest number of genetic alterations
1018  (fusion genes, mMRNA downregulation plus CNV deep deletion, mRNA upregulation plus CNV
1019  amplification and driver mutations). (C) Circos plot between tumor stages and the highest
1020  number of genetic alterations.
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1022  Figure4. Pathway enrichment analysis per molecular subtype and tumor stage. (A) Circos
1023  plot between molecular subtypes and the most altered genetic pathways. (B) Violin plots
1024  showing the frequency of the most altered signaling pathways per molecular subtype. (C) Circos
1025  plot between tumor stages and the most altered genetic pathways. (D) Violin plots showing the
1026  frequency of the most altered signaling pathways per tumor stage.

1027

1028 Figure 5. Breas cancer integrated network. (A) Network composed of BC driver genes and
1029  genes of our study (PCA gene set, consensus strategy gene set and PharmGKB gene set. (B)
1030  Significant correlation (p < 0.05) of degree centrality and consensus score between the OncoPPi
1031  BC network and or BC integrated network.

1032

1033  Figure 6. Analysis of protein expression. (A) Ranking of genes with the highest number of
1034  protein alterations (high and low expression with Z-score > 2) according to The Cancer Genome
1035 Atlas. (B) Comparison of protein expression levels between BC tissue and normal tissue
1036  according to The Human Protein Atlas. (C) Overall survival of genes with prognosis
1037  unfavorable (p < 0.001) in BC according to The Human Protein Atlas.

1038

1039  Figure7. Analyss of dependenciesin BC cell lines. (A) Dependency score of BC gene sets
1040 using RNAi DIMETER2 and CRISPR-Cas9 CERES algorithms in BC cell lines. (B)
1041  Dependency score of BC gene sets per molecular subtypes. (C) Violin plots of dependencies per
1042  molecular subtypes. All significant dependencies < -1 are in black. (D) Venn diagram of genes
1043  with at least one dependency < -1 in cell lines belonging to each molecular subtype. (E) Venn
1044  diagram of strongly selective and common essential genesin all cancer cell lines.

1045

1046  Figure 8. The OncoOmics essential genes of breast cancer. (A) Venn diagram of the most
1047  relevant genes per genomics approach (PCA genetic alterations, networking, protein expression
1048 and DepMap). (B) Percentage of oncogenes, tumor suppressor genes, tier 1 genes, BC driver

1049  genes and driver genes in other cancer types. (C) Venn diagram of the most relevant genes
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related with cancer immunotherapy, kinome, cell cycle, DNA repair and RNA-binding proteins.
(D) Circos plot of the hallmarks of cancer genes. (E) Mog significant g:Profiler features of the
most relevant genes according to the gene ontology biological processes, Reactome pathways,

wikipathways and the human phenotype ontology.

Figure 9. Pathway enrichment analysis of the most relevant genes using g:Profiler and

EnrichmentMap. Most significant Reactome pathways related to immune system, tyrosine

kinases, cell cycle, DNA repair and genetic transcription.

Figure 10. A panoramic view of clinical trial featuresin breast cancer.
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Genes with highest number of clinical trials
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