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SUMMARY 57 

 58 

Breast cancer (BC) is a heterogeneous disease where each OncoOmics approach needs to be 59 

fully understood as a part of a complex network. Therefore, the main objective of this study was 60 

to analyze genetic alterations, signaling pathways, protein-protein interaction networks, protein 61 

expression, dependency maps and enrichment maps in 230 previously prioritized genes by the 62 

Consensus Strategy, the Pan-Cancer Atlas, the Pharmacogenomics Knowledgebase and the 63 

Cancer Genome Interpreter, in order to reveal essential genes to accelerate the development of 64 

precision medicine in BC. The OncoOmics essential genes were rationally filtered to 144, 48 65 

(33%) of which were hallmarks of cancer and 20 (14%) were significant in at least three 66 

OncoOmics approaches: RAC1, AKT1 CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53, 67 

MAPK1, SRC, RAC3, PLCG1, GRB2, MED1, TOP2A, GATA3, BCL2, CTNNB1, EGFR and 68 

CDK2. According to the Open Targets Platform, there are 111 drugs that are currently being 69 

analyzed in 3151 clinical trials in 39 genes. Lastly, there are more than 800 clinical annotations 70 

associated with 94 genes in BC pharmacogenomics.  71 

 72 

 73 
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INTRODUCTION  85 

 86 

Breast cancer (BC) is a heterogeneous disease characterized by an intricate interplay between 87 

different biological aspects such as ethnicity, genomic alterations, gene expression deregulation, 88 

hormone disruption, signaling pathway alterations and environmental determinants1,2. Over the 89 

last years, prevention, treatment and survival strategies have evolved favorably; however, there 90 

are BC profiles that remain incurable3. Nowadays, BC is the leading cause of cancer-related 91 

death among women (626,679; 15% cases) and the most commonly diagnosed cancer 92 

(2,088,849; 24% cases) worldwide4. 93 

 94 

The development of large-scale DNA sequencing, gene expression, proteomics, large-scale 95 

RNA interference (RNAi) screens and large-scale CRISPR-Cas9 screens has allowed us to 96 

better understand the molecular landscape of oncogenesis. Significant progress has been made 97 

in discovering gene coding regions5, cancer driver genes6,7, cancer driver mutations8,9, germline 98 

variants10, driver fusion genes11,12, alternatively spliced transcripts13, expression-based 99 

stratification14, molecular subtyping15, biomarkers16, druggable enzymes17, cancer 100 

dependencies18–21, and drug sensitivity and resistance22. 101 

 102 

Scientific advances made to date mark the era called the “end of the beginning” of cancer 103 

omics. In other words, each approach that was previously mentioned needs to be fully 104 

understood as a part of a complex network, analyzing the mechanistic interplay of signaling 105 

pathways, protein-protein interaction (PPi) networks, enrichment maps, gene ontology (GO), 106 

deep learning, molecular dependencies and genomic alterations per intrinsic molecular subtype: 107 

basal-like (estrogen receptor (ER)-, progesterone receptor (PR)-, human epidermal growth factor 108 

receptor 2 (Her2)-, cytokeratin 5/6+ and/or EGFR+); Her2-enriched (ER-, PR-, Her2+); luminal A 109 

(ER+ and/or PR+, Her2-, low Ki67); luminal B with Her2- (ER+ and/or PR+, Her2-, low Ki67); 110 

luminal B with Her2+ (ER+ and/or PR+, Her2-, any Ki67); and normal like23–29. We will herein 111 

analyze previously prioritized genes/biomarkers by the Consensus Strategy (CS)28, the Pan-112 
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Cancer Atlas (PCA)3,12,30–36, the Pharmacogenomics Knowledgebase (PharmGKB)37 and the 113 

Cancer Genome Interpreter (CGI)38. 114 

  115 

In our previous studies, López-Cortés et al. and Tejera et al., developed a Consensus Strategy 116 

that was proved to be highly efficient in the recognition of gene-disease association28,39. The 117 

main objective was to apply several bioinformatics methods to explore BC pathogenic genes. 118 

The CS identified both well-known pathogenic genes and prioritized genes that will be further 119 

explored through the OncoOmics approaches. On the other hand, The Cancer Genome Atlas 120 

(TCGA) has concluded the most sweeping cross-cancer analysis yet undertaken, namely the 121 

PCA project31. PCA reveals how genetic alterations, such as putative mutations, fusion genes, 122 

mRNA expression, copy number variants (CNVs) and protein expression collaborate in BC 123 

progression, providing insights to prioritize the development of new treatments and 124 

immunotherapies3,12,30–36. The CGI flags genomic biomarkers of drug response with different 125 

levels of clinical relevance38. Lastly, PharmGKB is a comprehensive resource that curates and 126 

spreads knowledge of the impact of clinical annotations on BC drug response37,40. PharmGKB 127 

collects the precise guidelines for the application of pharmacogenomics in clinical practice 128 

published by the European Society for Medical Oncology (ESMO), the National 129 

Comprehensive Cancer Network (NCCN), the Royal Dutch Association for the Advancement of 130 

Pharmacy (DPWG), the Canadian Pharmacogenomics Network for Drug Safety (CPNDS) and 131 

the Clinical Pharmacogenetics Implementation Consortium (CPIC)41–44. Hence, the aim of this 132 

study was to implement OncoOmics approaches to analyze genetic alterations, signaling 133 

pathways, PPi networks, protein expression, BC dependencies and enrichment maps in order to 134 

reveal essential genes/biomarkers to accelerate the development of precision medicine in BC.  135 

 136 

 137 

RESULTS 138 

 139 
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OncoPrint of genetic alterations according to the Pan-Cancer Atlas. PCA has reported the 140 

clinical data of 1084 individuals with BC and it can be visualized in the Genomic Data 141 

Commons of the National Cancer Institute and in the cBioPortal45,46. In regard to molecular 142 

subtypes and tumor stages, 46% were lumina A, 18% luminal B, 7% Her2-enriched, 16% basal-143 

like and 3% normal-like, whereas 17% were stage T1, 58% stage T2, 23% stage T3 and 2% 144 

stage T4 (Table S1). 145 

 146 

Figure 1A shows the average frequency of genetic alterations per gene set. The average 147 

frequency of the PCA gene set was 1.3, followed by CS gene set (1.2), PharmGKB/CGI gene 148 

set (1.1), BC driver genes (0.8) and non-cancer genes (0.4) (Table S2). Significant p-values (p < 149 

0.001) were found among all gene sets. Therefore, the fact that gene sets of interest (CS, PCA 150 

and PharmGKB/CGI) presented an average frequency of genetic alterations greater than the 151 

non-cancer gene set and the BC driver gene set indicates that we are analyzing potential 152 

essential genes in BC. Figure 1B shows the percentage of genetic alterations per type. The most 153 

common genetic alterations were mRNA upregulation (55.8%), CNV amplification (17.1%) and 154 

missense mutations (8.4%). Figure 1C shows the ratio of genetic alterations in the 230 genes per 155 

sample and molecular subtype. Basal-like had the highest ratio (n = 33), followed by Her2-156 

enriched (29), luminal B (24), normal-like (17) and luminal A (15). The ratio of all BC samples 157 

was 19.6. Figure 1D shows the ratio of genetic alterations in the 230 genes per sample and 158 

tumor stage. Stage T2 had the highest ratio (23), followed by T3 (22), T1 (17) and T4 (8). 159 

Figures 1E and 1F show the percentage of genetic alterations per subtype and tumor stage, 160 

respectively. mRNA upregulation and CNV amplification were the most common alterations in 161 

all molecular subtypes and tumor stages.  162 

 163 

Figure 2 shows the ranking of genes with the greatest number of genetic alterations per 164 

molecular subtype and tumor stage. Regarding molecular subtypes, PIK3CA was the most 165 

altered gene in luminal A, CCND1 in luminal B, TP53 in basal-like and normal-like, and 166 

ERBB2 in Her2-enriched, with significant p-values < 0.001 (Figure 2A). On the other hand, the 167 
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most altered genes per tumor stage were PIK3CA in stage T1, TP53 in stages T2 and T3, and 168 

ERBB2 in stage T4, with significant p-value < 0.001 (Figure 2B). Figures 2C, 2E, 2G, 2I and 169 

2K show the top mutated genes, CNV amplified genes, CNV deep deleted genes, mRNA 170 

upregulated genes and mRNA downregulated genes per molecular subtype, respectively (Tables 171 

S3-S7). On the other hand, Figures 2D, 2F, 2H, 2J and 2L show the top mutated genes, CNV 172 

amplified genes, CNV deep deleted genes, mRNA upregulated genes and mRNA 173 

downregulated genes per tumor stage, respectively (Tables S8-S13).  174 

 175 

Regarding the first OncoOmics approach, Figure 3A shows an OncoPrint of 73 genes with a 176 

number of genetic alterations greater than the average (> 86). For this analysis driver mutations 177 

were taken into account, discarding passenger mutations (Figure S1 and Table S14). Figure 3B 178 

shows a circos plot of interactions between molecular subtypes and genetic alterations of the 73 179 

most altered genes. mRNA downregulated plus CNV deep deleted genes and mRNA 180 

upregulated plus CNV amplified genes were more related with basal-like, whereas fusion genes, 181 

and driver mutations were more related with Her2-enriched. Finally, Figure 3C shows a circos 182 

plot of interactions between tumor stages and genetic alterations of the 73 most altered genes. 183 

Fusion genes, mRNA downregulated plus CNV deep deleted genes, and mRNA upregulated 184 

plus CNV amplified genes were more related with stage T4, whereas driver mutations were 185 

more related with stage T3. 186 

 187 

Pathway enrichment analysis. The pathway enrichment analysis was performed using David 188 

Bioinformatics Resource to obtain integrated information from the Kyoto Encyclopedia of 189 

Genes and Genomes (KEGG)47–50. The enrichment analysis of signaling pathways was carried 190 

on in the 230 genes, obtaining more than 50 terms with a false discovery rate (FDR) < 0.01 191 

(Table S15). Subsequently, genetic alterations of genes that make up each signaling pathway 192 

were analyzed according to the molecular subtype and tumor stage. Figure 4A shows a circos 193 

plot correlating molecular subtypes with signaling pathways (Table S16). NF-kappa ß, NOD-194 

like receptor, adipocytokine, GnRH, RIG-like receptor, TNF, TGFß, FOXO, glucagon, MAPK, 195 
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prolactin, cAMP, PI3K-AKT, neurotrophin, VEGF, notch, p53, sphingolipid and Wnt signaling 196 

pathways were more altered in basal-like; estrogen, HIF1, toll-like receptor, ras, insulin, T-cell 197 

receptor, rap1, ERBB, AMPK, chemokine, B-cell receptor, mTOR, Fc-epsilon RI, Jak-STAT, 198 

phosphatidylinositol and thyroid hormone signaling pathways were more altered in Her2-199 

enriched; and Hippo signaling pathway in normal-like. On the other hand, Figure 4B shows the 200 

ranking of the most altered signaling pathways per molecular subtype. Jak-STAT signaling 201 

pathway was more altered in luminal A; Wnt signaling pathway in luminal B; p53 signaling 202 

pathway in basal-like; ERBB signaling pathway in Her2-enriched; and Hippo signaling pathway 203 

in normal-like (Table S17).  204 

 205 

Figure 4C shows a circos plot correlating tumor stages with signaling pathways according to the 206 

frequency of genetic alterations (Table S16). NOD-like receptor, adipocytokine, GnRH, TNF, 207 

estrogen, prolactin, FOXO, glucagon, ras, MAPK, T-cell receptor, cAMP, rap1, PI3K-AKT, B-208 

cell receptor, VEGF, mTOR, Fc epsilon RI, NOTCH, p53, sphingolipid and Wnt signaling 209 

pathways were more altered in stage T2; NF-kappa ß, Hippo and phosphatidylinositol signaling 210 

pathways were more altered in stage T3; and RIG-like receptor, HIF1, TGFß, toll-like receptor, 211 

insulin, AMPK, ERBB, chemokine, neurotrophin, mTOR, jak-STAT and thyroid hormone 212 

signaling pathways were more altered in stage T4. On the other hand, Figure 4D shows the 213 

ranking of the most altered signaling pathways per tumor stage. Wnt signaling pathway was 214 

more altered in stages T1, T2 and T3; and thyroid hormone signaling pathway was more altered 215 

in stage T4 (Table S18). 216 

 217 

Protein-protein interaction network. Regarding the second OncoOmics approach, the PPi 218 

network was performed to better understand BC behavior using the String Database and 219 

Cytoscape51,52. With the indicated cutoff of 0.9, the final interaction network had 258 nodes 220 

conformed by 198 (86%) genes from the CS, PCA and PharmGKB/CGI gene sets, and enriched 221 

with 60 previously known BC driver genes. Regarding the OncoPrint genes, 65 (89%) nodes 222 

integrated this network (Figure 5A). On the other hand, out of the 258 genes that make up our 223 
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String PPi network, 16 (6%) genes and 18 edges were part of the OncoPPi BC network53,54. The 224 

degree centrality made it possible to establish a significant correlation (Spearman p < 0.05) 225 

between our String PPi network and the OncoPPi BC network (Figure 5B).  226 

 227 

Considering the degree centrality and the consensus score of our previous study28, there was  228 

enrichment among sub-networks (Figures 5A and 5B). The average of degree centrality of the 229 

258 nodes network was 48.8; out of the 198 nodes network was 52.7; out of the 65 nodes 230 

network was 61.7; and out of the OncoPPi BC network was 124.4. Meanwhile, the average of 231 

consensus score of the 258 nodes network was 0.803, out of the 198 nodes network was 0.812, 232 

out of the 65 nodes network was 0.833, and out of the OncoPPi BC network was 0.885. 233 

Additionally, the second OncoOmics approach was made up of genes with the highest degree 234 

centrality (> 52.7) such as TP53, AKT1, SRC, CREBBP, EP300, JUN, CTNNB1, PIK3CA, 235 

RAC1 and EGFR, genes with the highest consensus score such as TP53, ESR1, CCND1, 236 

BRCA2, BRCA1, ERBB2, CHEK2, AR, MYC and PTEN, and genes with both of them such as 237 

TP53, ESR1, CCND1, ERBB2, PTEN, CDKN1B, ATM, AKT1, STAT3, CDH1 and EGFR (Table 238 

S19).  239 

 240 

Protein expression analysis. The third OncoOmics approach was related to the expression 241 

analysis of the 230 proteins. Figure 6A shows 43 proteins with significant high expression (Z-242 

scores ≥ 2) and low expression (Z-scores ≤ -2) analyzed with the reverse-phase protein array 243 

(RPPA) and mass spectrometry, according to TCGA. The top ten proteins with the highest 244 

expression levels in a cohort of 994 individuals were ERBB2, SERPINE2, CDH2, CCND1, 245 

EGFR, ERCC1, IRS1, NOTCH1, ERBB3 and INPP4B, and the ones with the lowest expression 246 

levels were CDH1, ATM, JAK2, MAPK1, AKT1, AKT3, MAPK14, ABL1, CTNNB1 and IRF1 247 

(Table S20). On the other hand, the Human Protein Atlas (HPA) presented a map of the human 248 

tissue proteome based on tissue microarray-based immunohistochemistry. HPA has analyzed 249 

202 (88%) of the 230 proteins of our study, classifying the protein expression in high, medium, 250 

low and non-detected. As a result, RAC1, GJB2, MED1, PIK3CA, PIK3R3, FGFR2, HCFC2, 251 
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MAP2K4, NQO2 and RAC3 were proteins with high and medium expression in normal tissue, 252 

and low and non-detected expression in BC tissue, acting as tumor suppressor genes. 253 

Meanwhile, CDK2, CYP2D6, NCOR1, RRM1, FOXA1 and TOP2A were proteins with high and 254 

medium expressions in BC tissue, and low and non-detected expressions in normal tissue, 255 

acting as oncogenes (Figure 6B and Table S21). Lastly, according to the HPA, Figure 6C shows 256 

the overall survival analysis of RAD51, PERP and MORC4 as BC biomarkers with unfavorable 257 

prognosis and p < 0.001 (Table S22)55,56. All these altered proteins made up the third 258 

OncoOmics approach.  259 

 260 

Breast cancer dependency map. The fourth OncoOmics approach consisted in identifying 261 

genes that are essential for cancer cell proliferation and survival performing systematic loss-of-262 

function screens in a large number of well-annotated cancer cell lines and BC cell lines 263 

representing the tumor heterogeneity18–21. Figure 7A shows the distribution of dependency 264 

scores of 227/230 genes through DEMETER2, an analytical framework for analyzing genome-265 

scale RNAi loss-of-function screens in 73 BC cell lines (Table S23). Our results showed 563 266 

dependencies with at least one score ≤ -1 in 57 (25%) essential genes. The top 10 genes with the 267 

greatest number of significant dependency scores in BC cell lines were RPL5 (68; 93%), SF3B1 268 

(67; 92%), RPA1 (61; 84%), RRM1 (53; 73%), BUB1B (26; 36%), RPA3 (25; 34%), RAD51 269 

(23; 32%), PPP2R1A (21; 29%), CHD4 (19; 26%) and POLE (13, 18%). At the same time, 270 

Figure 7A shows the distribution of dependency scores of 217/230 genes through CERES, an 271 

analytical framework for analyzing genome-scale CRISPR-Cas9 loss-of-function screens in 28 272 

BC cell lines (Table S24). Our results showed 310 dependencies with at least one score ≤ -1 in 273 

34 (16%) essential genes. The top 10 genes with the greatest number of significant dependency 274 

score in BC cell lines were RPA1 (27; 96%), RRM1 (27; 96%), TOP2A (26; 93%), BUB1B (24; 275 

86%) CTCF (24; 86%), POLE (23; 82%), SF3B1 (19; 68%), RPL5 (17; 61%), CCND1 (13; 276 

46%) and SOD2 (13; 46%). Figure 7B shows the distribution of dependency scores of 277 

DEMETER2 and CERES per molecular subtype. The genome-scale RNAi loss-of-function 278 

screens detected 165 (29%) dependencies in 19 Her2-enriched cell lines (ratio = 8.7), 110 (20%) 279 
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in 13 luminal A cell lines (8.5), 57 (10%) in 7 luminal B cell lines (8.1), and 231 (41%) in 34 280 

basal-like cell lines (6.8), whereas the genome-scale CRISPR-Cas9 loss-of-function screens 281 

detected 85 (27%) dependencies in 7 luminal A cell lines (ratio = 12.1), 176 (15%) in 16 basal-282 

like cell lines (11), and 49 (16%) in 5 Her2-enriched cell lines (9.8). Figure 7C shows violin 283 

plots of dependencies per molecular subtype. DEMETER2 has detected a greatest number of 284 

significant dependencies in basal-like, followed by Her2-enriched, luminal A and luminal B, 285 

whereas CERES has detected a greatest number of significant dependencies in basal-like, 286 

followed by luminal A and Her2-enriched. Figure 7D shows a Venn diagram of 66 essential 287 

genes with at least one significant dependency in different molecular subtypes, where 22 were 288 

strongly selective genes, 26 were common essential genes, and 5 were both of them in all cancer 289 

cell lines (Figure 7E). 290 

 291 

OncoOmics approaches to reveal essential genes in BC. Figure 8A shows a Venn diagram 292 

integrated by the OncoOmics essential genes, the most relevant genes of the CS, PCA and 293 

PharmGKB/CGI gene sets per approach. RAC1, AKT1, CCND1, PIK3CA and ERBB2 were 294 

relevant genes in all OncoOmics approaches; CDH1, MAPK14, TP53, MAPK1, SRC and RAC3 295 

were relevant genes in the OncoPrint, networking and protein expression analyses; PLCG1 and 296 

GJB2 were relevant genes in the OncoPrint, networking and DepMap analyses; MED1, TOP2A 297 

and GATA3 were relevant genes in the DepMap, OncoPrint and protein expression analyses; 298 

BCL2, CTNNB1, EGFR and CDK2 were relevant in the DepMap, networking and protein 299 

expression analyses; EP300 and CREBBP were relevant in the networking and the OncoPrint 300 

analyses; PTEN, MRE11, CDKN2A, WWNTR1, ABL1, BRCA2, NF2, AKT3, ARDID1A and RB1 301 

were relevant in the OncoPrint and protein expression analyses; RPA1, TOP3A, FGFR1, SF3B1, 302 

ATR, KRAS, PDPK1, RELA, SMARCE1, SPOP, CCNK and MDM4 were relevant in the 303 

DepMap and OncoPrint analyses; CDKN1B, LCK and NOTCH1 were relevant in the 304 

networking and protein expression analyses, CDK4 and ESR1 were relevant in the DepMap and 305 

networking analyses; and RAD51, IRS1, FGFR2, JAK2, RRM1, PIK3R3, FOXA1 and ERBB3 306 

were relevant in the DepMap and protein expression analyses (Table S25).  307 
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 308 

Out of the 144 OncoOmics essential genes, 21% were oncogenes, 24% were tumor suppressor 309 

genes, 50% were tier 1, according to the Cancer Gene Census (COSMIC)60, and 59% were 310 

driver genes in other types of cancer, according to The Network of Cancer Genes61 (Figure 8B). 311 

On the other hand, FGF4, INPP4B, WWNTR1, MAPK8, PIGB, RRM1, CASP8, FCGR2A, 312 

SMARCB1, SF3B1 and CTCF were cancer immunotherapy genes62; LCK, MAP3K1, EGFR, 313 

SRC, FGFR1, MAP2K4, ABL1, ERBB3, FGFR2 and ERBB2 were kinome genes63; CDKN1B, 314 

BLM, BUB1B and BARD1 were cell cycle genes64; XRCC1, RAD51, ERCC1, NBN, ERCC2, 315 

MLH1, BRCA2, PMS2, RPA1 and PALB2 were DNA repair genes65; lastly, YAP1, CDKN2A, 316 

GNL3, ZC3H13, JUN, LARP7, KMT2C, HMGB1, GSTP1 and GRB2 were RNA-binding 317 

proteins (RBPs) (Figure 8C and Table S26)66.  318 

 319 

Figure 8D shows a circos plot of the 48 (33%) OncoOmics essential genes that are hallmarks of 320 

cancer. The top 10 genes with the greatest number of interactions with the hallmarks of cancer 321 

were TP53, CTNNB1, PTEN, KRAS, AKT1, RAC1, EGFR, ABL1, RB1 and NOTCH1. 322 

Suppression of growth was promoted by AKT1, CTNNB1, PTEN, RB1 and TP53; escaping 323 

immune response to cancer was promoted by CTNNB1, EGFR and RAC1, and suppressed by 324 

ABLI, PTEN and TP53; cell replicative immortality was promoted by CTNNB1, KRAS and 325 

NOTCH1, suppressed by PTEN, and promoted/suppressed by TP53; tumor promoting 326 

inflammation was promoted by KRAS and suppressed by TP53; metastasis was promoted by 327 

ABL1, CTNNB1, EGFR, KRAS, RAC1 and RB1, suppressed by PTEN and TP53, and 328 

promoted/suppressed by AKT1; angiogenesis was promoted by ABL1, CTNNB1, EGFR, KRAS, 329 

NOTCH1 and RAC1, suppressed by TP53 and promoted/suppressed by AKT1; genome 330 

instability was promoted by ABL1 and RB1, and suppressed by AKT1, CTNNB1, PTEN, RAC1 331 

and TP53; escaping programmed cell death was promoted by AKT1, CTNNB1, EGFR, 332 

NOTCH1 and RAC1, suppressed by PTEN, and promoted/suppressed by KRAS, RB1 and TP53; 333 

change of cellular energetics was promoted by ABL1, AKT1, CTNNB1, EGFR, KRAS, 334 
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NOTCH1, PTEN, RB1 and TP53; finally, proliferative signaling was promoted by ABL1, AKT1, 335 

CTNNB1, EGFR, KRAS, NOTCH and RAC1 (Table S27).          336 

       337 

Enrichment map of the OncoOmics essential genes in BC. Figure 8E shows the enrichment 338 

map of the 144 OncoOmics essential genes in BC. g:Profiler searches for a collection of gene 339 

sets representing pathways, networks, GO terms and disease phenotypes67. The most significant 340 

GO: biological process with a FDR < 0.001 was positive regulation of macromolecule 341 

metabolic process (Table S28); the most significant GO: molecular function was 342 

phosphatidylinositol 3-kinase activity (Table S29); the most significant Reactome pathway was 343 

generic transcriptor pathway (Table S30)68; additionally, the most significant disease, according 344 

the Human Phenotype Ontology, was breast carcinoma (Table S31)69. Subsequently, g:Profiler 345 

annotations were analyzed with the EnrichmentMap software and visualized using Cytoscape, 346 

in order to generate network interactions of the most relevant GO: biological processes (Figure 347 

S2) and Reactome pathways (Figure 9) related to immune system, tyrosine kinase, cell cycle 348 

and DNA repair pathways52,67.  349 

 350 

Precision medicine. Figure 10 shows the current status of clinical trials for BC, according to 351 

the Open Targets Platform70. There are 111 drugs that are being analyzed in 3151 clinical trials 352 

in 39/230 genes. The top 10 genes with the highest number of clinical trials in process or 353 

completed were TUBB1, ERBB2, ESR1, TOP2A, EGFR, ESR2, VEGFA, CDK4, POLE and 354 

RRM1. The greatest number of clinical trials was in phase 2. Small molecules were the most 355 

analyzed type of drug, followed by antibodies and proteins. Lastly, the target classes with the 356 

greatest number of clinical trials were tyrosine kinases, structural proteins and nuclear hormone 357 

receptors (Table S32).  358 

 359 

Regarding precise guidelines for the application of BC pharmacogenomics in clinical practice, 360 

PharmGKB details 154 clinical annotations in 70/230 (30%) genes (Table S33)41–44; the CGI 361 
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details 76 clinical annotations in 26/230 (11%) genes (Table S34)71; and PCA details 648 362 

clinical annotations in 14/230 (6%) genes (Table S35)72. 363 

 364 

Additionally, Figure S3 shows a drug-gene interaction matrix conformed by 109 clinical 365 

annotations in phase 4, according to the OTP; 9 clinical annotations in levels 1A, 2A and 2B, 366 

according to PharmGKB; 9 clinical annotations approved by the US Food and Drug 367 

Administration (FDA), according to CGI; and 648 clinical annotations, according to PCA. 368 

 369 

 370 

DISCUSSION 371 

 372 

In this study we proposed a compendium of OncoOmics approaches that analyze genetic 373 

alterations, protein expression, signaling pathways, PPi networks, enrichment maps, gene 374 

ontology and dependency maps in three gene sets. The first gene set was taken from our 375 

previous study where we developed a Consensus Strategy that was proved to be highly efficient 376 

in the recognition of BC pathogenic genes28. The second gene set was taken from several studies 377 

of PCA, which provides a panoramic view of the oncogenic processes that contributes to BC 378 

progression3,12,30–36. The third gene set was taken from the CGI and PharmGKB. On the one 379 

hand, the CGI flags genomic biomarkers of drug response with different levels of clinical 380 

relevance38. On the other hand, PharmGKB collects clinical annotations applied in BC patients 381 

and taken from the NCCN, ESMO, CPNDS, DPWG and CPIC guidelines41–44. Finally, the 382 

compendium of these 230 potential essential genes in BC was analyzed through four different 383 

OncoOmics approaches.  384 

 385 

The first OncoOmics approach consisted in the analysis of genetic alterations using the PCA 386 

data45,46. The frequency of genetic alterations in the CS (average = 1.2), PCA (1.3) and 387 

PharmGKB/CGI (1.1) gene sets were higher than the non-cancer gene set (0.4) and the 388 

previously known BC driver genes (0.8). This means that these 230 genes had a greater number 389 
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of genetic alterations and might be strongly associated with BC (Figure 1A). The most common 390 

genetic alterations in a cohort of 994 individuals were mRNA upregulation, CNV amplification 391 

and missense mutations. Molecular subtypes with the greatest number of genetic alterations 392 

were basal-like, Her2-enriched, luminal B, normal-like and luminal A, whereas tumor stages 393 

with the greatest number of genetic alterations were T2, T3, T1 and T4 (Figures 1B-F). Genes 394 

with the greatest number of genetic alterations per subtype were PIK3CA in luminal A, CCND1 395 

in luminal B, TP53 in basal-like and normal-like, and ERBB2 in Her2-enriched (Figure 2A), 396 

whereas PIK3CA was the most altered gene in stage T1, TP53 in stages T2 and T3, and ERBB2 397 

in stage T4 (Figure 2B).  398 

 399 

After a thorough analysis of genetic alterations in the 230 genes, the first OncoOmics approach 400 

was generated by an OncoPrint conformed by the top 73 genes with the greatest number of 401 

genetic alterations and with a frequency of alterations greater than the average (> 86) (Figure 402 

3A). The top 10 most altered genes were PIK3CA, TP53, MDM4, CCND1, NBN, MED1, 403 

CREBBP, PALB2, ERBB2 and SPOP3,12,30–36.  404 

 405 

Subsequently, the enrichment analysis of signaling pathways was carried on taking into account 406 

all genetic alterations in the 230 genes using David Bioinformatics Resource and KEGG47,50. 407 

The signaling pathways with the greatest number of genetic alterations per intrinsic molecular 408 

subtype were Jak-STAT in luminal A, Wnt in luminal B, p53 in basal-like, ERBB in Her2-409 

enriched and Hippo in normal-like (Figure 4B); and per tumor stage were Wnt in stages T1, T2 410 

and T3, and thyroid hormone in stage T4 (Figure 4D).  411 

 412 

Regarding the previously mentioned signaling pathways, Jak-STAT is involved in the control of 413 

processes, such as stem cell maintenance, hematopoiesis and inflammatory response. However, 414 

the mechanism underlying inappropriate Jak-STAT pathway activation is not well-known in 415 

BC73. The Wnt signaling pathway actively functions in embryonic development and helps in 416 

homeostasis in mature tissues by regulating cell survival, migration, proliferation and polarity74. 417 
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The p53 tumor suppressor is the most frequently mutated gene in human cancer75, and acting as 418 

a transcription factor, the p53 signaling pathway plays a critical role in growth-inhibition, 419 

apoptosis, cell migration and angiogenesis76. The ERBB signaling pathway members form cell-420 

surface receptors with extracellular domains yielding ligand-binding specificity77. Downstream 421 

signaling proceeds via tyrosine phosphorylation mediating signal transduction events that 422 

control cell survival, migration and proliferation. However, aberrant ERBB activation can 423 

increase transcriptional expression78. The Hippo pathway plays important roles in immune 424 

response, stem cell function and tumor suppression. However, alterations in this pathway are 425 

involved in the BC tumorigenesis and metastasis79. Lastly, the thyroid hormone signaling 426 

pathway is an important regulator of growth and metabolism. Nevertheless, deregulation of the 427 

T3 hormone levels could promote abnormal responsiveness of mammary epithelial cells 428 

developing BC80. 429 

  430 

The second OncoOmics approach consisted in the PPi network analysis and its validation with 431 

the OncoPPi BC network. According to Li et al. and Ivanov et al.54,81, PPi with therapeutic 432 

significance can be revealed by the integration of cancer genes into networks. PPi regulates 433 

essential oncogenic signals to cell proliferation and survival, and thus, represents potential 434 

targets for drug development and drug discovery. Regarding our networking analysis, the final 435 

interaction network consisted in 258 nodes with an average of degree centrality of 48.8 and an 436 

average of consensus scoring of 0.80328; the sub-network integrated by 198 of 230 nodes had 437 

52.7 of degree centrality and 0.812 of consensus scoring; finally, the sub-network integrated by 438 

65 of 73 genes with the greatest number of genetic alterations had 61.7 of degree centrality and 439 

0.833 of consensus scoring. Hence, a sub-network of genes with greatest number of genetic 440 

alterations presented a greater degree centrality and consensus scoring, suggesting that there is 441 

strong correlation between these genes and BC. Additionally, the oncogenomics validation 442 

showed a significant correlation between our String PPi network (Figure 5A) and the OncoPPi 443 

BC network (Figure 5B), identifying 16 nodes strongly associated with BC28. The second 444 

OncoOmics approach was made up with the top 40 genes with the highest degree centrality and 445 
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consensus scoring, such as TP53, ESR1, CCND1, ERBB2, PTEN, CDKN1B, ATM, AKT1, 446 

STAT3, CDH1 and EGFR.  447 

 448 

The third OncoOmics approach was related to the BC proteome. More than 500 proteins have 449 

been identified as strongly involved in oncogenesis. Loss of expression, overexpression or 450 

expression of dysfunctional proteins contribute to uncontrolled tumor growth, causing 451 

chromosomal rearrangements, gene amplification and ungoverned methylation59. Regarding our 452 

230 proteins, 43 showed significant high and low expression (p < 0.001), according to TCGA. 453 

The top ten proteins with the highest expression levels were ERBB2, SERPINE2, CDH2, 454 

CCND1, EGFR, ERCC1, IRS1, NOTCH1, ERBB3 and INPP4B, whereas the top ten proteins 455 

with the lowest expression levels were CDH1, ATM, JAK2, MAPK1, AKT1, AKT3, MAPK14, 456 

ABL1, CTNNB1 and IRF1. On the other hand, the HPA has analyzed 202 of 230 proteins, where 457 

FOXA1, TOP2A, CDK2, CYP2D6, NCOR1 and RRM1 were involved in oncogenic processes, 458 

and RAC1, GJB2, MED1, PIK3CA, PIK3R3, FGFR2, HCFC2, MAP2K4, NQO2 and RAC3 459 

were involved in tumor suppression processes. Lastly, genes with unfavorable prognosis in BC 460 

were RAD51, PERP and MORC4 (Figure 6)55,56. The compendium of all these 60 proteins with 461 

significant high and low expression made up the third OncoOmics approach. 462 

 463 

The fourth OncoOmics approach was related to the BC dependency map. According to 464 

Tsherniak et al., the mutations that trigger the growth of cancer cells also confer specific 465 

vulnerabilities that normal cells lack, and these dependencies are compelling therapeutic 466 

targets82. The cancer dependency map identifies essential genes in proliferation and survival of 467 

well-annotated cell lines through systematic loss-of-function screens18–21. On the one hand, 468 

DETEMER2 analyzed the genome-scale RNAi loss-of-function screens. The top 10 genes with 469 

the greatest number of significant dependency scores in BC cell lines were RPL5, SF3B1, 470 

RPA1, RRM1, BUB1B, RPA3, RAD51, PPP2R1A, CHD4 and POLE. On the other hand, 471 

CERES analyzed the genome-scale CRISPR-Cas9 loss-of-function screens. The top 10 genes 472 

with the greatest number of significant dependencies in BC cell lines were RPA1, RRM1, 473 
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TOP2A, BUB1B, CTCF, POLE, SF3B1, RPL5, CCND1 and SOD2 (Figure 7A). Additionally, 474 

the fourth OncoOmics approach was made up of genes with significant dependencies in BC cell 475 

lines and all cancer cell lines. PLCG1, CDK4, KRAS, SPOP, CTNNB1, EGFR, AKT1, JAK2, 476 

MDM4, FGFR1, IRS1, BCL2, RELA, GATA3, PIK3CA, PIK3RE, PIK3CB, FOXA1, ERBB3, 477 

FGFR2, ESR1 and ERBB2 were strongly selective genes, whereas CDH4, TOP2A, GNL3, 478 

RBBP8, TOP3A, SMARCB1, UROD, RPL5, RAD51, PDPK1, CCNK, SF3B1, CDC42, ERCC2, 479 

BUB1B, CTCF, MAX, CCND1, BARD1, RAC1, RPA3, SMARCE1, PPP2R1A, POLE, RPA1 and 480 

GRB2 were common essential genes, and SOD2, CDK2, ATR, RRM1 and MED1 were both 481 

(Figure 7E).  482 

 483 

Subsequently, the compendium of the most relevant genes per OncoOmics approach reveals the 484 

144 OncoOmics essential genes in BC (Figure 8A). RAC1, AKT1, CCND1, PIK3CA and ERBB2 485 

were relevant genes in all OncoOmics approaches; CDH1, MAPK14, TP53, MAPK1, SRC and 486 

RAC3 were relevant genes in the OncoPrint, networking and protein expression analyses; 487 

PLCG1 and GJB2 were relevant genes in the OncoPrint, networking and DepMap analyses; 488 

MED1, TOP2A and GATA3 were relevant genes in the DepMap, OncoPrint and protein 489 

expression analyses; and BCL2, CTNNB1, EGFR and CDK2 were relevant in the DepMap, 490 

networking and protein expression analyses. Lastly, the top 10 genes with the greatest number 491 

of interactions with the hallmarks of cancer were TP53, CTNNB1, PTEN, KRAS, AKT1, RAC1, 492 

EGFR, ABL1, RB1 and NOTCH1 (Figure 8D). 493 

 494 

According to Reimand et al., g:Profiler lets us know the enrichment map of the 144 OncoOmics 495 

essential genes in BC83. The most significant GO: biological process was the positive regulation 496 

of macromolecule metabolic process, the GO: molecular function was phosphatidylinositol 3-497 

kinase activity, the Reactome pathway was generic transcriptor pathway, and the most 498 

significant Human Phenotype Ontology term was breast carcinoma69. Subsequently, the most 499 

relevant network interactions of the GO: biological process and the Reactome pathways were 500 
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related to immune system, tyrosine kinase, cell cycle and DNA repair terms (Figures 9 and 501 

S2)52,67. 502 

 503 

There is currently great enthusiasm about immunotherapeutic strategies to treat BC. The first 504 

approval of an immune checkpoint blockade agent for treatment of BC came in March 2019 505 

when the anti-PD-L1 antibody atezolizumab was approved to be used in combination with nab-506 

paclitaxel for patients with triple-negative BC84. 17 OncoOmics essential genes were associated 507 

with immunotherapy62. Kinases have been recognized as highly tractable targets for BC 508 

treatment due to their druggability and critical roles they play in regulating cellular migration, 509 

differentiation, growth and survival85. 17 OncoOmics essential genes in BC were kinome 510 

genes63. The cell cycle comprises a series of tightly controlled events that drive cell division and 511 

the DNA replication86. 12 OncoOmics essential genes in BC were involved in cell cycle64. DNA 512 

repair constitutes several signaling pathways working in concert to eliminate DNA lesions and 513 

maintain genome stability. Defective components in DNA repair machinery are an underlying 514 

cause for the development of BC87. 19 OncoOmics essential genes in BC were involved in the 515 

DNA repair system65. RBPs are key players in post-transcriptional events88,89. Three recent 516 

reports using high-throughput bioinformatics profiling of thousands of tumors now reveal a 517 

consistent pattern of alterations in RBPs expression levels across different cancer types90–92. 518 

Lastly, 11 OncoOmics essential genes were RBPs (Figure 8C)66. 519 

 520 

Precision medicine provides BC patients with the most appropriate diagnostics and targeted 521 

therapies based on the omics profile and other predictive and prognostic tests. Additionally, it is 522 

relevant to know the composition of their breast tissue, tumor microenvironment, comorbid 523 

conditions and lifestyle93. 524 

 525 

The OTP is an available resource for the integration of genetics, omics and chemical data to aid 526 

systematic drug target identification and prioritization70. Currently, there are 111 drugs that are 527 

being analyzed in 3151 clinical trials in 39 of the 230 genes. Most of clinical trials are in phase 528 
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2; most of the analyzed drugs are small molecules; and most of target classes belong to tyrosine 529 

kinases. Finally, the top ten genes with the greatest number of clinical trials in process or 530 

completed are TUBB1, ERBB2, ESR1, TOP2A, EGFR, ESR2, VEGFA, CDK4, POLE and 531 

RRM170 (Figure 10). 532 

 533 

PharmGKB collects the precise guidelines for the application of pharmacogenomics in clinical 534 

practice41–44. This database details 154 clinical annotations associated with 70 genes in BC. The 535 

CGI is a platform that annotates clinical evidence and tumor variants that constitute state-of-art 536 

biomarkers of drug response. The CGI details 76 clinical annotations associated with 26 genes 537 

in BC71. According to TCGA, PCA details 648 clinical annotations associated with 14 genes in 538 

BC72. Lastly, the drug-gene interaction matrix is a compendium of the most relevant clinical 539 

annotations made up of 32 genes and 51 drugs in order to facilitate the treatment of patients 540 

with BC (Figure S3). 541 

 542 

In conclusion, since BC is a complex and heterogeneous disease, the study of different 543 

OncoOmics approaches is an effective way to reveal essential genes to better understand the 544 

molecular landscape of processes behind oncogenesis, and to develop better therapeutic 545 

treatments focused on pharmacogenomics and precision medicine.  546 

 547 

 548 

METHODS 549 

 550 

OncoPrint of genetic alterations according to the Pan-Cancer Atlas. PCA has reported the 551 

clinical data of 1084 individuals with BC and it can be visualized in the Genomic Data 552 

Commons of the National Cancer Institute (https://gdc.cancer.gov/) and in the cBioPortal 553 

(http://www.cbioportal.org/)45,46. The clinical annotations were age, pTNM classification, tumor 554 

type, tumor stage and race/ethnicity. 555 

 556 
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Additionally, PCA has reported genetic alterations (mRNA upregulation, mRNA 557 

downregulation, CNV amplification, CVN deep deletion, missense mutation, truncating 558 

mutation, inframe mutation and fusion gene) in 994 individuals. Putative mutations were 559 

analyzed through exome sequencing, CNVs through the Genomic Identification of Significant 560 

Targets in Cancer (GISTIC 2.0)94,95, and mRNA expression through RNA Seq V2. We analyzed 561 

five gene sets in order to compare the average frequency of genetic alterations among them. The 562 

first gene set (n = 177) was integrated by the non-cancer genes96. We calculated the OncoScore 563 

of non-cancer genes, taking out all genes from our study. The second gene set (n = 119) was the 564 

BC driver genes, according to The Network of Cancer Genes61. The third gene set (n = 84) was 565 

taken from our previous study where we developed a Consensus Strategy of prioritized genes 566 

related to BC pathogenesis28. The fourth gene set (n = 85) was made up of genes associated with 567 

BC development, according to several PCA studies30,31,57. The fifth gene set (n = 91) consisted 568 

of BC biomarkers and druggable enzymes taken from PharmGKB and the CGI (Table S2)37,38,40. 569 

Finally, the significant differentiation of the average frequency of genetic alterations among 570 

gene sets was analyzed (p-value < 0.001).    571 

 572 

The OncoOmics approaches were performed in 230 genes conformed by the CS, PCA and 573 

PharmGKB/CGI gene sets. Firstly, we calculated the percentage and ratio of genetic alterations 574 

per intrinsic molecular subtype and tumor stage, and we established a ranking of genes with the 575 

greatest number of different genetic alterations. Subsequently, we performed an OncoPrint of 576 

genes with more genetic alterations than the average. The final list of genes made up the first 577 

OncoOmics approach.   578 

 579 

Pathway enrichment analysis. The enrichment analysis of signaling pathways was performed 580 

using David Bioinformatics Resource to obtain integrated information from KEGG47–50. It was 581 

carried on in the 230 genes, taking into account terms with a significant FDR < 0.01. After that, 582 

genetic alterations that comprise each signaling pathway were analyzed, taking into account the 583 

molecular subtype and tumor stage of individuals from PCA. Circos plots and violin plots were 584 
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designed to visualize all data. Lastly, in order to compare the ratio of genetic alterations among 585 

subtypes and tumor stages, normalization was carried out dividing the number of genetic 586 

alterations by the number of individuals per subtype and tumor stage. Regarding molecular 587 

subtypes, 499 individuals were luminal A, 197 were luminal B, 171 were basal-like, 78 were 588 

Her2-enriched and 36 were normal-like, and regarding tumor stage, 255 were stage T1, 586 589 

were stage T2, 113 were stage T3 and 103 were stage T4.  590 

 591 

Protein-protein interaction network. The PPi network with a highest confidence cutoff of 0.9 592 

and zero node addition was created using the String Database, which takes into account 593 

predicted and known interactions51. The confidence scoring is the approximate probability that a 594 

predicted link exists between two enzymes in the same metabolic map, whereas the degree 595 

centrality of a node means the number of edges the node has to other nodes in a network. The 596 

centrality indexes calculation and network visualization were analyzed through the Cytoscape 597 

software52. Genes with the highest degree centrality, consensus score and sub-networks were 598 

differentiated by colors in the PPi network. On the other hand, OncoPPi 599 

(http://oncoppi.emory.edu/) reports the development of a cancer-focused PPi network, 600 

identifying more than 260 high-confidence cancer-associated PPi53,54. In addition, the OncoPPi 601 

BC network consisted of 16 genes and 18 PPi experimentally analyzed in BC cell lines53,54. The 602 

correlation of the degree centrality by means of Spearman p-value test between our String PPi 603 

network and the OncoPPi BC network allowed for the validation of all the high-confidence BC-604 

focused PPi analyzed in cell lines28. Lastly, genes with the highest degree centrality and 605 

consensus scoring made up the second OncoOmics approach.    606 

 607 

Protein expression analysis. TCGA has reported the protein expression data of 994 individuals 608 

with BC through RPPA and mass spectrometry by the Clinical Proteomic Tumor Analysis 609 

Consortium (CPTAC), and it can be visualized in the cBioPortal45,46. We analyzed the protein 610 

expression of 230 genes (CS, PCA and PharmGKB/CGI gene sets) where Z-scores ≥ 2 mean a 611 

significant high protein expression and Z-scores ≤ -2 mean a significant low protein expression. 612 
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On the other hand, the Human Protein Atlas (https://www.proteinatlas.org/) explains the diverse 613 

molecular signatures of proteomes in the human tissues based on an integrated omics approach 614 

that involves quantitative transcriptomics and tissue microarray-based 615 

immunohistochemistry56,58,59. We compared the protein gene levels (high, medium, low and 616 

non-detected) of our 230 genes between normal and BC tissues. Finally, we analyzed the overall 617 

survival curve of our 230 genes and reveled all biomarkers with significant unfavorable 618 

prognostic (p < 0.001)55,56. All genes with the altered protein expression made up the third 619 

OncoOmics approach.  620 

 621 

Breast cancer dependency map. The DepMap project (https://depmap.org/portal/) is a 622 

collaboration between the Broad Institute and the Welcome Sanger Institute. Multiple genetic or 623 

epigenetic changes provide cancer cells with specific vulnerabilities that normal cells lack. Even 624 

though the landscape of genetic alterations has been extensively studied to date, we have limited 625 

understanding of the biological impact of these alterations in the development of specific tumor 626 

vulnerabilities, which triggers a limited use of precision medicine in the clinical practice 627 

worldwide. Therefore, the main goal of DepMap is to create a comprehensive preclinical 628 

reference map connecting tumor features with tumor dependencies to accelerate the 629 

development of precision treatments18–21. 630 

 631 

In order to identify essential genes for BC cell proliferation and survival, DepMap performed 632 

systematic loss-of-function screens in a large number of well-annotated BC cell lines 633 

representing the tumor heterogeneity and their molecular subtypes. The DEMETER2 algorithm 634 

was applied to analyze genome-scale RNAi loss-of-function screens in 73 BC cell lines and 711 635 

cancer cell lines, whereas the CERES algorithm was applied to analyze genome-scale CRISPR-636 

Cas9 loss-of-function screens in 28 BC cell lines and 558 cancer cell lines19,21. In addition to 637 

existing cell lines, the Cancer Cell Line Encyclopedia (CCLE) project will greatly expand the 638 

collection of characterized cell lines to improve precision treatments97. 639 

 640 
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Regarding dependency scores, a lower score means that a gene is more likely to be dependent in 641 

a specific cancer cell line. A score of 0 means that a gene is not essential, whereas a score of -1 642 

corresponds to the median of all common essential genes. A strongly selective gene means that 643 

its dependency is at least 100 times more likely to have been sampled from a skewed 644 

distribution than a normal distribution. Lastly, a common essential gene is when in a pan-cancer 645 

screen its gene ranks in the top most depleting genes in at least 90% of cell lines18. All genes 646 

with a dependency score ≤ -1 made up the fourth OncoOmics approach.    647 

 648 

Enrichment map of the OncoOmics essential genes in BC. The pathway enrichment analysis 649 

gives scientists curated interpretation of gene lists generated from genome-scale experiments67. 650 

The OncoOmics essential genes in BC were analyzed by using g:Profiler 651 

(https://biit.cs.ut.ee/gprofiler/) in order to obtain significant annotations (FDR < 0.001) related 652 

to GO terms, pathways, networks and disease phenotypes. Subsequently, g:Profiler annotations 653 

were analyzed with the EnrichmentMap software in order to generate network interactions of 654 

the most relevant GO: biological processes and Reactome pathways, and these networks were 655 

visualized using Cytoscape52,67.  656 

 657 

Precision medicine. We analyzed drug-gene interactions for BC using four selective databases: 658 

1) OTP70, 2) PharmGKB37,40, 3) CGI38, and 4) PCA98. The Open Targets Platform 659 

(https://www.targetvalidation.org) is comprehensive and robust data integration for access to 660 

and visualization of potential drug targets associated with BC. Additionally, this platform shows 661 

all drugs in clinical trials associated with BC genes, detailing its phase, status, type and target 662 

class70. PharmGKB (https://www.pharmgkb.org/) collects complete guidelines for application of 663 

pharmacogenomics in clinical practice, according to several consortiums worldwide41–44. The 664 

CGI (https://www.cancergenomeinterpreter.org/home) flags genomic biomarkers of drug 665 

response with different levels of clinical relevance38. Finally, PCA reveals genetic alterations, 666 

druggable enzymes and clinical annotations in a cohort of 994 individuals3,12,30–36. The clinical 667 
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annotations of these four databases were analyzed in order to create a drug-gene interaction 668 

matrix.    669 

 670 
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Figure legends 994 

 995 

Figure 1. Genetic alterations of the breast cancer cohort according to PCA. (A) Frequency 996 

of genetic alterations per gene set (non-cancer genes, BC driver genes according to the Network 997 

of Cancer Genes, Consensus Strategy, BC genes according to PCA, BC biomarkers according to 998 

the PharmGKB and CGI). (B) Percentage of genetic alterations per type. (C) Ratio of genetic 999 

alterations per intrinsic molecular subtype. (D) Ratio of genetic alterations per tumor stage. (E) 1000 

Percentage of genetic alterations per type and per molecular subtype. (F) Percentage of genetic 1001 

alterations per type and per tumor stage. 1002 

 1003 

Figure 2. Ranking of genes with the highest number of genetic alterations per molecular 1004 

subtype and tumor stage. (A) Frequency of genetic alterations (punctual mutations, copy 1005 

number variants and mRNA expression) per molecular subtype. (B) Frequency of genetic 1006 

alterations per tumor stage. (C) Frequency of punctual mutations per molecular subtype. (D) 1007 

Frequency of punctual mutations per tumor stage. (E) Frequency of CNV amplifications per 1008 

molecular subtype. (F) Frequency of CNV amplifications per tumor stage. (G) Frequency of 1009 

CNV deep deletions per molecular subtype. (H) Frequency of CNV deep deletions per tumor 1010 

stage. (I) Frequency of mRNA upregulation per molecular subtype. (J) Frequency of mRNA 1011 

upregulation per tumor stage. (K) Frequency of mRNA downregulation per molecular subtype. 1012 

(L) Frequency of mRNA downregulation per tumor stage.  1013 

 1014 

Figure 3. OncoPrint of genetic alterations according to the Pan-Cancer Atlas. (A) 1015 

OncoPrint of genes with more genetic alterations than the average (>86) per molecular subtype. 1016 

(B) Circos plot between molecular subtypes and the highest number of genetic alterations 1017 

(fusion genes, mRNA downregulation plus CNV deep deletion, mRNA upregulation plus CNV 1018 

amplification and driver mutations). (C) Circos plot between tumor stages and the highest 1019 

number of genetic alterations.  1020 

 1021 
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Figure 4. Pathway enrichment analysis per molecular subtype and tumor stage. (A) Circos 1022 

plot between molecular subtypes and the most altered genetic pathways. (B) Violin plots 1023 

showing the frequency of the most altered signaling pathways per molecular subtype. (C) Circos 1024 

plot between tumor stages and the most altered genetic pathways. (D) Violin plots showing the 1025 

frequency of the most altered signaling pathways per tumor stage. 1026 

 1027 

Figure 5. Breast cancer integrated network. (A) Network composed of BC driver genes and 1028 

genes of our study (PCA gene set, consensus strategy gene set and PharmGKB gene set. (B) 1029 

Significant correlation (p < 0.05) of degree centrality and consensus score between the OncoPPi 1030 

BC network and or BC integrated network. 1031 

 1032 

Figure 6. Analysis of protein expression. (A) Ranking of genes with the highest number of 1033 

protein alterations (high and low expression with Z-score ≥ 2) according to The Cancer Genome 1034 

Atlas. (B) Comparison of protein expression levels between BC tissue and normal tissue 1035 

according to The Human Protein Atlas. (C) Overall survival of genes with prognosis 1036 

unfavorable (p < 0.001) in BC according to The Human Protein Atlas.  1037 

 1038 

Figure 7.  Analysis of dependencies in BC cell lines. (A) Dependency score of BC gene sets 1039 

using RNAi DIMETER2 and CRISPR-Cas9 CERES algorithms in BC cell lines. (B) 1040 

Dependency score of BC gene sets per molecular subtypes. (C) Violin plots of dependencies per 1041 

molecular subtypes. All significant dependencies < -1 are in black. (D) Venn diagram of genes 1042 

with at least one dependency < -1 in cell lines belonging to each molecular subtype. (E) Venn 1043 

diagram of strongly selective and common essential genes in all cancer cell lines. 1044 

 1045 

Figure 8. The OncoOmics essential genes of breast cancer. (A) Venn diagram of the most 1046 

relevant genes per genomics approach (PCA genetic alterations, networking, protein expression 1047 

and DepMap). (B) Percentage of oncogenes, tumor suppressor genes, tier 1 genes, BC driver 1048 

genes and driver genes in other cancer types. (C) Venn diagram of the most relevant genes 1049 
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related with cancer immunotherapy, kinome, cell cycle, DNA repair and RNA-binding proteins. 1050 

(D) Circos plot of the hallmarks of cancer genes. (E) Most significant g:Profiler features of the 1051 

most relevant genes according to the gene ontology biological processes, Reactome pathways, 1052 

wikipathways and the human phenotype ontology. 1053 

 1054 

Figure 9. Pathway enrichment analysis of the most relevant genes using g:Profiler and 1055 

EnrichmentMap. Most significant Reactome pathways related to immune system, tyrosine 1056 

kinases, cell cycle, DNA repair and genetic transcription.  1057 

 1058 

Figure 10. A panoramic view of clinical trial features in breast cancer. 1059 

 1060 

 1061 

 1062 

 1063 
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