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Abstract 

Importance: We show that three common approaches to clinical deficits (cognitive phenotype, 

disease group, disease severity) each offer useful and perhaps complimentary explanations for 

the brain’s underlying functional architecture as affected by psychiatric disease.  

Objective: To understand how different clinical frameworks are represented in the brain’s 

functional connectome. 

Design: We use an openly available dataset to create predictive models based on multiple 

connectomes built from task-based functional MRI data. We use these models to predict 

individual traits corresponding to multiple cognitive constructs across disease category. We also 

show that these same connectomes statistically differ depending on disease category and 

symptom burden.  

Setting: This was a population-based study with data collected in UCLA.  

Participants: Healthy adults were recruited by community advertisements from the Los Angeles 

area. Participants with adult ADHD, bipolar disorder, and schizophrenia were recruited using a 

patient-oriented strategy involving outreach to local clinics and online portals (separate from the 

methods used to recruit healthy volunteers) 
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INTRODUCTION 

 

Each patient is uniquely complex. Effective clinical care requires a framework that reduces this 

complexity to trends that a clinician can reliably identify and pair with treatments. Depending on 

their clinical framework, a clinician might assess specific facets of a patient’s cognitive 

phenotype like working memory or executive function; might ask about a pattern of symptoms 

and try to diagnose a patient within a disease group; or might assess a patient’s overall disease 

severity and decide whether they require inpatient treatment. Each of these three frameworks—

phenotype, disease group, and disease severity—can help guide a clinical evaluation, but which 

is most appropriate to understand a patient’s deficit? 

 

Clinicians have long used symptom-based groups in diagnosis and treatment, however the rise of 

pharmacotherapy and neurobiology outstripped the precision of symptoms, which can have 

diverse etiologies (Barron, 2019; Barron et al., 2018). Group-level brain imaging studies have 

shown that the same neural centers (Goodkind et al., 2015; Vanasse et al., 2018) are implicated 

in a range of psychiatric diseases, recapitulating genetic studies that undermine the biologic 

validity of symptom-based groupings. Disease severity is also symptom-based and represents a 

clinical endpoints in treatment trials.  

 

Cognitive phenotypes that probe discrete neural systems commonly implicated in disease states 

promise greater validity (Insel, Sahakian, Voon, Nye, & Brown, 2012; Insel et al., 2010). This 

strategy assumes that clinically-relevant deficits can be identified as a deviation from a central, 

healthy tendency. Concepts of “health” and “disease” have begun to be seen as statistical 
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consequences of group-level studies, but not reflective of biology. A wide range of brain 

imaging,  behavioral, and genomic studies have shown pervasive phenotypic variability and 

overlapping distributions at the population level (Cross-Disorder Group of the Psychiatric 

Genomics Consortium, 2013; Holmes & Patrick, 2018). The clinical question, then, is how to 

best account for individual and population-level variability and define “deficits” in such a way 

that they can be identified and alleviated? 

 

We choose to evaluate clinically relevant phenotypes. We performed a series of predictive and 

explanatory analyses of the brain’s functional connectome (Shen et al., 2017). Functional 

connectomes have been shown to be unique to an individual (Finn et al., 2015), stable over a 

lifespan (Horien, Shen, Scheinost, & Constable, 2019), and predictive of clinical and cognitive 

traits in novel subjects (Dubois, Galdi, Paul, & Adolphs, 2018; Rosenberg et al., 2016). Though 

connectomes are typically based on resting-state fMRI, task-based fMRI has been shown to 

improve the prediction of individual cognitive traits and more clearly delineate brain-behavior 

relationships (Greene, Gao, Scheinost, & Constable, 2018). 

 

To this end, we use connectome-based predictive modeling (CPM) to identify patterns of 

functional connectivity during a series of fMRI tasks that predict individual differences in 

cognitive phenotype. We show that models based on these networks involve edges from all over 

the brain, generalize to previously unseen individuals independent of diagnosis, and define 

overlapping phenotypic distributions. Notwithstanding these results, a mass multivariate analysis 

of the same task-based functional connectomes demonstrates differences in disease group and 

disease severity. Together, these analyses demonstrate that the brain’s functional architecture 
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does not reorganize with mental illness, but that variance within the similar spatially defined, 

highly complex brain networks account for cognitive phenotype, disease group, and disease 

severity.  

 

We conclude that three common frameworks for characterizing clinical deficits (cognitive 

phenotype, disease group, and disease severity) offer useful and perhaps complimentary 

explanations for the brain’s underlying functional architecture affected by psychiatric disease.  
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METHODS 

 

The overarching goal was to evaluate whether the brain’s task-based functional connectivity 

could predict performance on cognitive constructs across diagnostic categories. To this end, we 

applied the latest connectome-based predictive modeling (CPM) algorithms to a transdiagnostic 

dataset gathered by the UCLA Consortium for Neuropsychiatric Phenomics (CNP). 

 

 

 

CNP data set. The CNP dataset (Poldrack et al., 2016) is available through the OpenfMRI 

project (http://openfmri.org) (Gorgolewski et al., 2016) and includes structural, resting-state 

functional, and task-based functional neuroimaging (M.R.I.); extensive neuropsychologic 

assessments and neurocognitive tasks; and demographic information including biologic sex, age, 

education, and medication history from healthy controls (n=130) and patients with schizophrenia 
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(n=50), bipolar disorder (n=49), and ADHD (n=43; diagnosis by reference to the Structured 

Clinical Interview for DSM-IV(First, Spitzer, Gibbon, & Williams, 2002)). This dataset has been 

described in detail elsewhere (Poldrack et al., 2016).  

 

CNP Participant Selection. We restricted this larger sample to subjects who had full-brain 

structural images and task-based functional MRI acquisitions during the balloon analog risk task 

(BART), Paired Associative Memory encoding (PAM-E), Paired Associative Memory retrieval 

(PAM-R), Spatial Working Memory Capacity (SCAP), Stop Signal (SS), and Task Switching 

(TS). We excluded 97 subjects (54 controls, 18 schizophrenia, 14 bipolar, and 11 ADHD) 

because the above whole-brain image volumes were unavailable or because they had excessive 

head motion defined a priori as >2mm grand mean frame-to-frame displacement across all 6 

tasks. After these restrictions, we included 175 total subjects (HC=76, SCZ=32, BPAD=35, 

ADHD=32). 

 

Neuropsychological testing and neurocognitive tasks 

All individuals in the CNP dataset completed extensive neuropsychologic and neurocognitive 

testing, which have been thoroughly described in Poldrack (Poldrack et al., 2016). This testing 

took place outside of the MRI scanner. We aimed to predict an individual’s performance within 

five cognitive constructs: working memory, short-term memory, long-term memory, intelligence 

quotient (I.Q.), and executive function. Specific neuropsychologic and neurocognitive measures 

included in each phenotype may be referenced in Supplementary Figure 8. All measures used 

were available for all 175 included subjects.  
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CNP imaging parameters and preprocessing. Details of the image acquisition parameters have 

been published elsewhere. (Poldrack et al., 2016) In brief, all data were acquired on one of two 

3T Siemens Trio scanners at UCLA. Functional MRI data were collected using a T2*-weighted 

echoplanar imaging (EPI) sequence with the following parameters: slice thickness=4mm, 34 

slices, TR=2s, TE=30ms, flip angle=90°, matrix 64×64, FOV=192mm, oblique slice orientation. 

High-resolution anatomical MPRAGE data were also collected with the following parameters: 

TR=1.9s, TE=2.26ms, FOV=250mm, matrix=256×256, sagittal plane, slice thickness = 1 mm, 

176 slices. From this dataset, we used the six task-based fMRI experiments described above.  

 

All subsequent preprocessing was performed using image analysis tools available in BioImage 

Suite (Joshi et al., n.d.) and included standard preprocessing procedures (Finn et al., 2015), 

including removal of motion-related components of the signal; regression of mean time courses 

in white matter, cerebrospinal fluid, and gray matter; removal of the linear trend; and low-pass 

filtering(Greene et al., 2018). Mean frame-to- frame displacement yielded nine motion values per 

subject; these were used for subject exclusion and motion analyses. All subsequent analyses and 

visualizations were performed in BioImage Suite (Joshi et al., n.d.), Matlab (Mathworks), and 

Python.  

 

Functional parcellation and network definition. We used the Shen 268-node atlas to parcellate 

the fMRI data into functionally coherent nodes (Shen, Tokoglu, Papademetris, & Constable, 

2013). The Shen 268-node atlas is derived from an independent data set using a group-wise 

spectral clustering algorithm. The mean time courses of each node pair were correlated and 

correlation coefficients were Fisher transformed, generating six 268 × 268 connectivity matrices 
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per subject for each fMRI task (see Figure 1.B); therefore, accounting redundant connections, 

each individual had a total of 214,668 edges. 

 

The same spectral clustering algorithm was used to assign these 268 nodes to 8 networks (Finn et 

al., 2015; Shen et al., 2017), and the subcortical-cerebellar network was split into networks 8–10 

(Noble et al., 2017). These networks are named based on their approximate correspondence to 

previously defined resting-state networks, and are numbered for convenience according to the 

following scheme: 1. Medial frontal, 2. Frontoparietal, 3. Default mode, 4. Motor, 5. Visual A, 6. 

Visual B, 7. Visual association, 8. Cingulo-Opercular, 9. Subcortical, 10. Cerebellum.  

 

Principal Components Analysis. Given that a single behavioral measurement incompletely 

approximates a behavioral construct and has substantial noise due to individual variability and 

test (administration) variability, we summarized across multiple individual measures within each 

construct using principal components analysis to create what we consider a phenotypic measure. 

A similar strategy has been successfully employed to create a phenotypic measure of intelligence 

across individual measures of crystallized ability, processing speed, visuospatial ability and 

memory (Dubois et al., 2018). To maintain separate train and test groups, for each iteration, each 

PCA was limited to training datasets and these PCA coefficients were subsequently applied to 

the test dataset (see Figure 1.C). 

 

CPM Ridge Regression. In ordinary least-squares (OLS) regression, a greater number of 

independent variables compared to the number of observations leads to an ill-posed problem and 

overfitting. To solve this ill-posed problem, regularization on regression coefficients can be 
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applied to shrink the coefficients. Ridge regression shrinks the regression coefficients by 

imposing a L2-norm penalty on their size. Compared with OLS regression, the coefficients from 

ridge regression minimize a penalized residual sum of squares, 

β�ridge � argmin
�

	∑ ��� 
 �� 
 ∑ ������

��� �� � � ∑ ����

���
	
��� �  (1) 

where λ is the complexity parameter that controls the shrinkage strength: � � 0 gives rise to the 

unregularized OLS, while increasing λ shrinks the coefficients towards zero. If we write the 

criterion in equation (1) in matrix form, RSS�λ� � �� 
 ���
�� 
 ��� � λ�
�, the ridge 

regression solutions can be solved by 

β���
�� � ��
� � λ�����
�, 

where I is the p × p identity matrix. Compared with the solution for OLS, ����� � ��
�����
�, 

adding a positive constant to the diagonal of �
� before inversion makes the problem 

nonsingular, even if �
� is not of full rank.  

 

Based on ridge regression, we modified the original CPM framework(Shen et al., 2017) to better 

suit the high-dimensional nature of connectivity data. In particular, we were ab (Figure 1). 

Specifically, due to the positive semi-definite nature of a functional connectivity matrix, the 

edges are not independent. Ridge regression is more robust than OLS in this case. 

 

Instead of summing selected edges and fitting a one-dimensional OLS model, we directly fit a 

ridge regression model using the selected edges from all the tasks and apply the model to novel 

subjects in the cross-validation framework. λ parameter in the ridge regression is chosen by 10-
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fold cross-validation using only the training subjects. The largest λ value that has a mean squared 

error (MSE) within one standard error of the minimum MSE is chosen.  

 

Mass Multivariate Analysis, Theoretical Overview 

In this section we recap a number of variance analysis techniques. Let's assume  � and  � are 

means of two groups !� and !�.A t-test aims to find if both means coming from same 

distribution of means like "� , $��. A univariate analysis of variance (ANOVA) aims to address 

whether groups !�,!�, ..,!�with means  �,  �, . . ,  � where & ' 2 come from same distribution 

"� , $��. In this paper we focus on a multivariate equivalent of a t-test which is multivariate 

analysis of variance (MANOVA). A MANOVA is a multi-variate equivalent of t-test where we 

have vectors of means and the goal is to find out if they are sampled from a same distribution: 

 �� ,  �� , ) ,  �� * "� , +� Therefore, a MANOVA gives the probability of sampling these vectors 

from "� , +�. In other words, a MANOVA runs an overall test if vectors of means for different 

groups for a single variable are same or not. In a binary example, for variable �� , MANOVA 

tests if groups ��=1 and ��=0 have same mean vectors , �,  �,  �- corresponding to outcome 

variables ���, ��, ���.  
 

Hypothesis Testing in MANOVA (Carey:1998) [supplementary] 

We define the within group observed covariance matrix by .� � �

�
∑/�. 

Let's assume X��� is a matrix that X,0, 1- indicates the mean for 0-th group on the 1-th variable 

then estimation for + based on these & means is: 
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+̂ � � 3 �4 
 4��4 
 4��
& 
 1 . 

Similar to ANOVA we expect 6�+̂ �+̂ ���� 7 8. 

Let's assume each group has a normal distribution with covariance matrix + and the average 

between the groups is also the same estimation. An alternative hypothesis addresses the 

covariance matrix on sampling distribution of means coming from a normal distribution with 

mean   and covariance matrix 3�+� � �

�
+� � 3+� � +. 

Then we have the following equations: 

 

6�+̂ �+̂ ���� � �3+� � +�+��=+�+ � 8 

 

Exactly analogous to ANOVA, diagonal values of the results are greater than or equal to 1. There 

are different ways of analyzing this ratio including but not limited to Pillai's trace (9 ��

����

�

���

), 

Hotelling-Lawley's trace (∑ ���
��� ), and Wilk's lambda (∑ ���

��� ) where ∑ ���
���  indicates 0 
th 

eigenvalue of the ratio.  

 

To correct for multiple comparisons, we used a network based statistic (NBS) with 1000 

iterations. Edges were considered significant if they appear in a cluster larger than a null 

distribution of clusters, as defined in the permutation testing. In other words significant edges are 

more likely to provoke nearest neighbors to be significant.  

 

Mass Multivariate Analysis, Disease Group Differences 
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To assess for statistically significant differences in connectomes based on symptom-based 

disease categories, we performed a mass multi-variate analysis on separate disease groups, as 

defined by the DSM-IV (First et al., 2002) by the UCLA group (Poldrack et al., 2016). These 

groups were healthy controls, schizophrenia, bipolar disorder, and ADHD.  

 

Figure 4 illustrates group differences among all four disease groups with surface plots. We use 

this as a mask for the next experiments. First we break down it into all six possible bi-groups and 

plot edge-wise connections only those span on the initial mask. Our results show only 368 edges 

remaining significant after NBS correction. Last row show heat maps in network level. Indeed, 

we aggregate edges based on their membership to 10 different networks and see if there is 

meaningful connections between them. We used normalization based on network size since each 

network consisting of different number of nodes.  

 

Mass Multivariate Analysis, Disease Severity within Medication Class 

To assess for statistically significant differences in connectomes based on disease severity, we 

performed a mass multivariate analysis on each medication class as a function of symptomatic 

remission.  (Note that a two group MANOVA will give the same results as Hotelling’s T2.)  

 

We grouped patients based on whether they were prescribed an antipsychotic (n=46), mood 

stabilizer (n=24), or antidepressant (n=31; See Supplementary Figure 10). Given the limited 

sample size, we combined mood stabilizers and antidepressants to create two medication class: 

psychotic and affective disorder medications. 
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We defined remission based on standard symptom-based criteria. For affective medications, we 

defined remission as a Hamilton 28-item Depression scale (HAMD-28) of ≤10 (Hamilton, 1960). 

For psychosis medications, we defined remission (Alonso, Ciudad, Casado, & Gilaberte, 2008) 

as a Scale for Assessment of Positive Symptoms (SAPS), ratings of mild or less (≤2) for 

delusions, hallucinations, positive formal thought disorder, and bizarre behavior considered 

individually. For the Scale for Assessment of Negative Symptoms (SANS), ratings of mild or 

less (≤2) for affective flattening, avolition-apathy, anhedonia-asociality, alogia considered 

individually.  

 

Statistical Analyses.  

 

Cross-validation and performance measures. We used two types of cross-validation methods: 

10-fold cross validation (see Figure 2) and leave-one-group out (i.e. one clinical group; see 

Figure 3).  

 

In the 10-fold cross-validation, the sample was randomly divided into 10, approximately equal-

sized groups; on each fold, the model was trained on 9 groups and tested on the excluded 10th 

group. This process was repeated iteratively, with each group excluded once. Unless otherwise 

specified (cf. the Supplementary Materials), for each 10-fold analysis, we create random 

divisions from the dataset over 1,000 iterations.  CPM was performed with a range of edge 

selection thresholds from 0.001 to 0.05, which did not substantially change model performance 

(see Supplementary Figure 8). Model performance was evaluated by the cross-validated R2, 

R !
� � 1 
 ∑ �y� 
 y;��"

���

∑ �y� 
 y<��"
���
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 R !
�  can be negative (Scheinost et al., 2019) and negative values were set to 0. In this paper, 

=R !
�  is reported as it is comparable to, but less biased than, the normally used Pearson 

correlation value when using cross-validation. =R !
�  is averaged over the cross validation folds.  

 

Because the leave-one-group out analyses exhausted all possible combinations of groups, we did 

not iterate these analyses. Because a separate model was trained and evaluated for each subject 

group, we used a Pearson correlation between actual and predicted cognitive phenotype for each 

test group to evaluate model performance. 

 

Node Contribution to Ridge Regression Model. Because each ridge regression model 

represents a linear combination across (in some cases) thousands of edges (see Supplementary 

Figures), we are unable to fully illustrate edge contribution in both a mathematically complete 

and cognitively interpretable way.  To best summarize which edges the ridge regression 

algorithm weighted most, we created two types of illustrations: 1) a brain surface plot showing 

each edge that was significantly correlated with the behavioral constructs in the training group 

(Weighted node contribution = Edge1weight*sd(Edge1weight across all subjects), where sd 

stands for the standard deviation across iterations; 2) a circle plot wherein network edges are 

plotted between the networks with which they interact. 

 

Statistical thresholds. For the mass multivariate connectomic analyses, we corrected all 

statistical analyses for multiple comparisons using the Network-Based Statistic False Discovery 

Rate correction (NBS-FDR) at p<0.05. 
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Effects of motion. Motion is an important confound for estimates of functional connectivity. In 

our analysis, motion was significantly correlated with most individual behavioral measures (see 

supplementary materials). We used two accepted methods for accounting for this confound: we 

excluded all subjects with >0.2 mean frame-to-frame motion across all tasks (Hsu, Rosenberg, 

Scheinost, Constable, & Chun, 2018) and we regressed out motion during the feature-selection 

step (see Figure 1) using partial correlation (i.e. as opposed to correlation). All results presented 

in the main text were performed using the partial correlation step, however this did not 

substantially change model performance (see Supplementary Figure 6).  

 

Code availability. Matlab scripts to run the main CPM analyses can be found at 

(https://www.nitrc.org/projects/bioimagesuite/). BioImage Suite tools used for analysis and 

visualization can be accessed at (http://bisweb.yale.edu). Matlab scripts written to perform 

additional post-hoc analyses are available from the authors upon request. The median model (i.e. 

in terms of performance across 1,000 iterations of the 10-fold analysis) for our connectome-

based predictive model is also available at the BioImage Suite. Access to the web-state is 

available at: http://bisweb.yale.edu/XXXXX 

 

Network overlap. To explicitly explore the macroscale brain networks that were predictive of 

each behavioral construct (i.e. in the 10-fold predictive model) or were significantly different 

across disease groups or treatment response in affective or psychotic medications (i.e. in the 

mass-multivariate analyses), we assigned each selected (in predictive models) or significantly 

different (in mass-multivariate analyses) edge to a pair of canonical networks such that edge (i,j) 

would be assigned to the network that includes node i and the network that includes node j. For 
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the 10-fold predictive analysis, an edge was considered “weighted” if it was weighted in all of 

the 10 folds and in >95% of the iterations (>950 of 1000 iterations). For the mass multivariate 

analysis, an edge was considered “significant” if it passed the statistical threshold described 

above. 

 

Network overlap was determined with the hypergeometric cumulative density function, which 

returns the probability of drawing up to x of K possible items in n drawings without replacement 

from an M-item population. This was implemented in Matlab as follows: p=1-hygecdf(x, M, K, 

n) where x equals the number of weighted/significant edges, n equals the total number of 

weighted/significant edges in the brain, K equals the total number of edges (whether 

weighted/significant or not) in the network of interest, and M equals the total number of edges 

(whether weighted/significant or not) in the brain. 
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RESULTS 

Phenotype 10-Fold predictive model performance. Across all behavioral constructs, we were 

able to significantly predict performance in a transdiagnostic fashion. The 6 task-based fMRI 

connectomes successfully predicted short-term memory, long-term memory, and working 

memory and IQ, but did not predict executive function. Successful prediction results are shown 

in Figure 2; executive function are shown in Supplementary Materials. It is possible that 

executive function prediction failed because we were unable to summarize the variance across 

the multiple executive function measures in a single component (see Supplementary Figure 8.E). 

While in general task contribution to predictive performance across tasks was uniform, we 

noticed that for short and long-term memory, the PAM-RET and BART tasks contributed the 

most to overall prediction; for IQ prediction, the PAM-RET task contributed the most (see 

Supplementary Figure 7). Across diagnoses, the population distributions overlapped for both 

actual and predicted phenotypes (See Figure 2, middle column).  

 

In line with previous CPM results, our models were complex and span the entire brain. We 

conducted multiple complementary follow-up analyses to assess the robustness of our results. 

We tested the effect of sample size, motion, number of edges, and edge selection statistical 

threshold on model performance. These analyses are found in Supplementary Materials.  
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Phenotype leave one group out predictive model performance. We were able to significantly 

predict performance across groups. In 14 of 16 analyses, models trained in all but one group 

were able to successfully predict the measure of interest in the left-out group. This was true even 

when models were trained only on patients and tested on healthy controls. These results were 

robust to the effect of edge selection threshold, which may be found in the Supplementary 

Figures.  
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Mass Multivariate Analysis, Diagnostic Category Differences.  

 

We found significant differences between each clinical group’s task-based functional 

connectomes, indicating that while connectomes were able to predict cognitive performance 

across diagnosis, these connectomes had significant differences. Only 368 edges passed our strict 

network-based correction for multiple comparison, representing only 0.17% of possible edges. 

Surface plots showing group differences among all four disease groups are shown in Figure 4. 

The spatial locations of the edges is described in Figure 6. 
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Mass Multivariate Analysis, Disease Severity within Medication Class  

We found significant differences between remitters and non-remitters in patients taking 

medications for both psychotic and affective disorders, as shown in Figure 5. These differences 

persisted even after a conservative correction for multiple corrections (p<0.05 FWER-corrected 

via NBS). The psychotic disorder medication class showed only 405 significant edges (0.019% 

of possible edges), while the affective disorder medication class showed 415 (0.019% of possible 

edges). Significantly different edges were distributed throughout the brain, however it appears 

that the motor and cerebellar networks had the highest density of edges, as further explored 

below and in Figure 6. 
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Network Profile and Overlap 

We found similar network trends across predictive models of behavioral constructs, as shown in 

Figure 6. These trends were also similar in the mass multivariate analyses of disease class and 

disease severity. Edges within the cerebellar, fronto-parietal, default mode, subcortical, and 

motor networks were more likely (i.e. according to the hypergeometric distribution, see 

Methods) to be highly weighted across the 10-fold predictive analyses. In turn edges within these 

same areas were more likely to be significantly different than others in the brain. 
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DISCUSSION 

 

The unifying goal across our analyses is to evaluate how different frameworks capture the brain 

basis of deficits seen in psychiatric disease. Our work suggests that the same macroscale brain 

circuitry underlies a given cognitive function across all people, regardless of the diagnoses they 

carry, and that apparently distinct behavioral endpoints may be caused by individual differences 

within these common circuits. We further show that three common frameworks for 

characterizing clinical deficits (phenotype, disease group, and disease severity) each offer useful 

and perhaps complimentary explanations for the brain’s underlying functional architecture as 

affected by psychiatric disease. 

 

Brain basis of disease. Although patients with mental illness have historically been binned into 

symptom-based categories, we present evidence that this is not the only neurobiologically valid 

way of viewing phenotypic variability within and across patients. At least on the four phenotypes 

we evaluated (short-term memory, long-term memory, working memory, and executive 

function), we show that models built from patients diagnosed with schizophrenia, bipolar 

disorder, and ADHD can predict behavioral phenotypes in so-called healthy controls. This 

indicates that neural representation underlying a given behavioral phenotype remains the same 

notwithstanding disease category or symptom burden.  

 

We also show (in the same dataset) statistically significant differences in the brain’s functional 

organization based on disease group and disease severity. Our disease group mass multivariate 

analysis indicated statistically significant differences in similar brain networks identified by our 
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phenotype prediction models (see Figure 6). Furthermore, when we collapse across disease group 

to form two medication classes, we showed that measures of disease severity also identify 

statistically significant differences in the brain’s functional organization. Therefore, our results 

suggest that each framework—phenotype, disease group, and disease severity—has a 

neurobiologic correlate. 

 

The ultimate question, then, is which framework is most clinically useful. How can we most ably 

define clinical deficits in such a way that they can be identified and alleviated? Data-driven 

methods that account for, characterize, and cluster (where necessary) disease-relevant phenotypic 

variance increasingly appear to be the way forward; especially in studies that seek to detect some 

neurobiologic signal for mental illness. Perhaps here, a comparison can be made to clinical 

decision: the question isn’t which disease group a patient falls into, but rather how to best predict 

which treatment will alleviate a patient’s symptom pattern (Chekroud et al., 2017; Drysdale et 

al., 2017). Although this is intuitive to clinicians—who hope to modify a patient’s phenotype or 

disease severity, not their disease group—this is not how researchers have traditionally analyzed 

patient data. 

 

Complex Model Reduction. We have struggled to reduce the results across 214,668 edges to 

something that is cognitively manageable—at minimum by us, the authors. This is an important 

insight into biomarker development: useful models of brain-behavior are not necessarily simple 

(Rosenberg, Casey, & Holmes, 2018). Just as an overly simplistic model cannot be compensated 

for by an increased sample size (underfitting), an overly complex model will not necessarily 

generalize (overfitting). Although communicating a complex model (i.e. in a paper or figure or 
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conversation) requires a reduction of complexity, this can appear to come at the cost of learning 

something neurobiolgically meaningful. There isn’t necessarily a simple answer to any 

neurobiologic question. What we’re learning about the brain and its functional connections is 

that it’s complex . The traditional function-location framework appears to be insufficient to 

understand clinically-relevant brain-behavior relationships. 

 

Accordingly, we uploaded the complete predictive model (based on the median-performing 

iteration, see Figure 2) and have created a freely-accessible instantiation of Bioimage Suite 

online wherein readers may access and navigate the entire model [We’ll negotiate this with the 

journal]. 

 

Cerebellum. Consistent with many previous reports, our predictive and explanatory models 

implicate the cerebellum as a network that sub-serves more than motor function. Functional 

neuroimaging evidence supports the parcellation of the cerebellum into at least three regions 

associated with sensorimotor, cognitive, and limbic functions (Schmahmann & Caplan, 2006) 

(Riedel et al., 2015). We report that the cerebellum is influential in predicting phenotypic traits 

and in explaining symptomatic remission within pharmacologic classes. Likewise, our data 

further suggests that even cerebral “motor” areas (including motor, somatosensory, primary 

auditory cortices) also support more than motor function. Our results add to the growing 

literature that brain regions traditionally defined as “motor” influence phenotypic traits, symptom 

profile, and treatment response (cf. Figures 2, 3, 4).  
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