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Abstract

Importance: We show that three common approaches to clinical deficits (cognitive phenotype,
disease group, disease severity) each offer useful and perhaps complimentary explanations for
the brain’s underlying functional architecture as affected by psychiatric disease.

Objective: To understand how different clinical frameworks are represented in the brain’s
functional connectome.

Design: We use an openly available dataset to create predictive models based on multiple
connectomes built from task-based functional MRI data. We use these models to predict
individual traits corresponding to multiple cognitive constructs across disease category. We also
show that these same connectomes statistically differ depending on disease category and
symptom burden.

Setting: Thiswas a population-based study with data collected in UCLA.

Participants: Healthy adults were recruited by community advertisements from the Los Angeles
area. Participants with adult ADHD, bipolar disorder, and schizophrenia were recruited using a
patient-oriented strategy involving outreach to local clinics and online portals (separate from the

methods used to recruit healthy volunteers)
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INTRODUCTION

Each patient is uniquely complex. Effective clinical care requires aframework that reduces this
complexity to trends that a clinician can reliably identify and pair with treatments. Depending on
their clinical framework, a clinician might assess specific facets of a patient’s cognitive
phenotype like working memory or executive function; might ask about a pattern of symptoms
and try to diagnose a patient within adisease group; or might assess a patient’s overall disease
severity and decide whether they require inpatient treatment. Each of these three frameworks—
phenotype, disease group, and disease severity—can help guide a clinical evaluation, but which

IS most appropriate to understand a patient’s deficit?

Clinicians have long used symptom-based groups in diagnosis and treatment, however the rise of
pharmacotherapy and neurobiology outstripped the precision of symptoms, which can have
diverse etiologies (Barron, 2019; Barron et al., 2018). Group-level brain imaging studies have
shown that the same neural centers (Goodkind et al., 2015; Vanasse et al., 2018) are implicated
in arange of psychiatric diseases, recapitulating genetic studies that undermine the biologic
validity of symptom-based groupings. Disease severity is also symptom-based and represents a

clinical endpointsin treatment trials.

Cognitive phenotypes that probe discrete neural systems commonly implicated in disease states
promise greater validity (Insel, Sahakian, Voon, Nye, & Brown, 2012; Insd et a., 2010). This
strategy assumes that clinically-relevant deficits can be identified as a deviation from a central,

healthy tendency. Concepts of “health” and “disease’ have begun to be seen as statistical
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consequences of group-level studies, but not reflective of biology. A wide range of brain
imaging, behavioral, and genomic studies have shown pervasive phenotypic variability and
overlapping distributions at the population level (Cross-Disorder Group of the Psychiatric
Genomics Consortium, 2013; Holmes & Patrick, 2018). The clinical question, then, ishow to
best account for individual and population-level variability and define “deficits’ in such away

that they can beidentified and alleviated?

We choose to evaluate clinically relevant phenotypes. We performed a series of predictive and
explanatory analyses of the brain’s functional connectome (Shen et al., 2017). Functional
connectomes have been shown to be uniqueto an individual (Finn et al., 2015), stable over a
lifespan (Horien, Shen, Scheinost, & Constable, 2019), and predictive of clinical and cognitive
traitsin novel subjects (Dubois, Galdi, Paul, & Adolphs, 2018; Rosenberg et al., 2016). Though
connectomes are typically based on resting-state fMRI, task-based fMRI has been shown to
improve the prediction of individual cognitive traits and more clearly delineate brain-behavior

relationships (Greene, Gao, Scheinost, & Constable, 2018).

To this end, we use connectome-based predictive modeing (CPM) to identify patterns of
functional connectivity during a series of fMRI tasks that predict individual differencesin
cognitive phenotype. We show that models based on these networks involve edges from all over
the brain, generalize to previously unseen individuals independent of diagnosis, and define
overlapping phenotypic distributions. Notwithstanding these results, a mass multivariate analysis
of the same task-based functional connectomes demonstrates differences in disease group and

disease severity. Together, these analyses demonstrate that the brain’s functional architecture
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does not reorganize with mental illness, but that variance within the similar spatially defined,
highly complex brain networks account for cognitive phenotype, disease group, and disease

severity.

We conclude that three common frameworks for characterizing clinical deficits (cognitive
phenotype, disease group, and disease severity) offer useful and perhaps complimentary

explanations for the brain’s underlying functional architecture affected by psychiatric disease.
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METHODS

The overarching goal was to evaluate whether the brain’ s task-based functional connectivity
could predict performance on cognitive constructs across diagnostic categories. To this end, we

applied the latest connectome-based predictive modeling (CPM) algorithms to a transdiagnostic

dataset gathered by the UCLA Consortium for Neuropsychiatric Phenomics (CNP).
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Figure 1. Overview of processing pipeline. (A) We used 6 fMRI tasks and 5 categories of phenotypic measures from the Neuropsychiatric
Phenomics Consortium dataset (see Methods and Supplementary Materials). (B) We preprocessed and divided fMRI volumes using the Shen 268
node atlas. We then created a cross-correlation matrix of inter-node connectivity, hereafter described as edges. (C) We separated the behavioral
and (D) fMRI data into train and test groups. We performed a principle components analysis to summarize one behavioral construct score per
subject; we used the training data’s PCA coefficients to transform the behavioral test data into component space. (D) Across training subjects, we
correlated each edge to phenotypic scores and restricted subsequent analyses to only significantly correlated edges (see Supplementary
Materials for different statistical thresholds). (E) We used a ridge regression algorithm to train a predictive model wherein edges from all 6 fMRI
tasks predict a phenotypic score. We applied this model to predict phenotypic score for each individual in the test group. (F) We used multiple
types of illustrations to visualize the model structure. Here, we illustrate weighted edges from a cerebellar node as (from top-to-bottom): a node-
and-edge plot wherein weighted edges are shown with their respective nodes and node size represents degree (or how many edges were
weighted per node); a circle plot wherein cerebellar edges are connected to corresponding networks; and surface degree plots wherein node
color indicates the node degree (darker colors are higher degree). Model performance measures are described in Methods.

CNP data set. The CNP dataset (Poldrack et al., 2016) is available through the OpenfMRI

project (http://openfmiri.org) (Gorgolewski et al., 2016) and includes structural, resting-state
functional, and task-based functional neuroimaging (M.R.l.); extensive neuropsychologic
assessments and neurocognitive tasks; and demographic information including biologic sex, age,

education, and medication history from healthy controls (n=130) and patients with schizophrenia
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(n=50), bipolar disorder (n=49), and ADHD (n=43; diagnosis by reference to the Structured
Clinical Interview for DSM-IV (First, Spitzer, Gibbon, & Williams, 2002)). This dataset has been

described in detail elsewhere (Poldrack et al., 2016).

CNP Participant Selection. We restricted this larger sample to subjects who had full-brain
structural images and task-based functional MRI acquisitions during the balloon analog risk task
(BART), Paired Associative Memory encoding (PAM-E), Paired Associative Memory retrieval
(PAM-R), Spatial Working Memory Capacity (SCAP), Stop Signal (SS), and Task Switching
(TS). We excluded 97 subjects (54 controls, 18 schizophrenia, 14 bipolar, and 11 ADHD)
because the above whole-brain image volumes were unavailable or because they had excessive
head motion defined a priori as >2mm grand mean frame-to-frame displacement across all 6
tasks. After these restrictions, we included 175 total subjects (HC=76, SCZ=32, BPAD=35,

ADHD=32).

Neuropsychological testing and neur ocognitive tasks

All individualsin the CNP dataset completed extensive neuropsychologic and neurocognitive
testing, which have been thoroughly described in Poldrack (Poldrack et al., 2016). This testing
took place outside of the MRI scanner. We aimed to predict an individual’s performance within
five cognitive constructs: working memory, short-term memory, long-term memory, intelligence
guotient (1.Q.), and executive function. Specific neuropsychologic and neurocognitive measures
included in each phenotype may be referenced in Supplementary Figure 8. All measures used

were availablefor all 175 included subjects.
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CNP imaging parameters and preprocessing. Details of the image acquisition parameters have
been published elsewhere. (Poldrack et al., 2016) In brief, all data were acquired on one of two
3T Siemens Trio scanners at UCLA. Functional MRI data were collected using a T2*-weighted
echoplanar imaging (EPI) sequence with the following parameters: dlice thickness=4mm, 34
dices, TR=2s, TE=30ms, flip angle=90°, matrix 64x64, FOV=192mm, oblique slice orientation.
High-resolution anatomical MPRAGE data were also collected with the following parameters:
TR=1.9s, TE=2.26ms, FOV=250mm, matrix=256x256, sagittal plane, dlice thickness =1 mm,

176 dlices. From this dataset, we used the six task-based fMRI experiments described above.

All subsequent preprocessing was performed using image analysis tools available in Biolmage
Suite (Joshi et al., n.d.) and included standard preprocessing procedures (Finn et al., 2015),
including removal of motion-related components of the signal; regression of mean time courses
in white matter, cerebrospinal fluid, and gray matter; removal of the linear trend; and low-pass
filtering(Greene et al., 2018). Mean frame-to- frame displacement yielded nine motion values per
subject; these were used for subject exclusion and motion analyses. All subsequent analyses and

visualizations were performed in Biolmage Suite (Joshi et a., n.d.), Matlab (Mathworks), and

Python.

Functional par cellation and network definition. We used the Shen 268-node atlas to parcellate
the fMRI datainto functionally coherent nodes (Shen, Tokoglu, Papademetris, & Constable,
2013). The Shen 268-node atlas is derived from an independent data set using a group-wise
spectral clustering algorithm. The mean time courses of each node pair were correlated and

correlation coefficients were Fisher transformed, generating six 268 x 268 connectivity matrices
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per subject for each fMRI task (see Figure 1.B); therefore, accounting redundant connections,

each individual had atotal of 214,668 edges.

The same spectral clustering algorithm was used to assign these 268 nodes to 8 networks (Finn et
al., 2015; Shen et al., 2017), and the subcortical-cerebellar network was split into networks 8-10
(Nobleet al., 2017). These networks are named based on their approxi mate correspondence to
previously defined resting-state networks, and are numbered for convenience according to the
following scheme: 1. Medial frontal, 2. Frontoparietal, 3. Default mode, 4. Motor, 5. Visual A, 6.

Visual B, 7. Visual association, 8. Cingulo-Opercular, 9. Subcortical, 10. Cerebellum.

Principal Components Analysis. Given that a single behavioral measurement incompletely
approximates a behavioral construct and has substantial noise dueto individual variability and
test (administration) variability, we summarized across multiple individual measures within each
construct using principal components analysis to create what we consider a phenotypic measure.
A similar strategy has been successfully employed to create a phenotypic measure of intelligence
across individual measures of crystallized ability, processing speed, visuospatial ability and
memory (Dubois et a., 2018). To maintain separate train and test groups, for each iteration, each
PCA was limited to training datasets and these PCA coefficients were subsequently applied to

the test dataset (see Figure 1.C).

CPM Ridge Regression. In ordinary least-squares (OLS) regression, a greater number of
independent variables compared to the number of observations leads to an ill-posed problem and

overfitting. To solve thisill-posed problem, regularization on regression coefficients can be
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applied to shrink the coefficients. Ridge regression shrinks the regression coefficients by
imposing a L2-norm penalty on their size. Compared with OLS regression, the coefficients from

ridge regression minimize a penalized residual sum of squares,

~ridge

B = arg;nin {Z?}ﬂ(}’i —Bo — ?=1xijﬁj)2 t AZ;}=1ﬁfz} (1)

where A isthe complexity parameter that controls the shrinkage strength: A = 0 givesriseto the
unregularized OLS, while increasing 4 shrinks the coefficients towards zero. If we write the
criterion in equation (1) in matrix form, RSS(A) = (y — XB)T(y — XB) + ABTB, theridge
regression solutions can be solved by

pridgee = (XX + AD Xy,
where | isthe p xp identity matrix. Compared with the solution for OLS, B = (XTX)~1XTy,
adding a positive constant to the diagonal of XTX before inversion makes the problem

nonsingular, even if XTX isnot of full rank.

Based on ridge regression, we modified the original CPM framework(Shen et al., 2017) to better
suit the high-dimensional nature of connectivity data. In particular, we were ab (Figure 1).
Specifically, due to the positive semi-definite nature of a functional connectivity matrix, the

edges are not independent. Ridge regression is more robust than OLS in this case.

Instead of summing selected edges and fitting a one-dimensional OLS model, we directly fit a
ridge regression model using the selected edges from all the tasks and apply the model to novel

subjectsin the cross-validation framework. A parameter in the ridge regression is chosen by 10-
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fold cross-validation using only the training subjects. The largest A value that has a mean squared

error (M SE) within one standard error of the minimum M SE is chosen.

Mass Multivariate Analysis, Theoretical Overview

In this section we recap a number of variance analysis techniques. Let's assume u, and u, are
means of two groups g, and g,.A t-test aimsto find if both means coming from same
distribution of meanslike N (u, ¢%). A univariate analysis of variance (ANOVA) aimsto address
whether groups g,,9-, --.g,,With means u,, u,, .., i, wherem > 2 come from same distribution
N (u,a?). In this paper we focus on a multivariate equivalent of at-test which is multivariate
analysis of variance (MANOVA). A MANOVA isamulti-variate equivalent of t-test where we
have vectors of means and the goal isto find out if they are sampled from a same distribution:

/,71, ﬁ; -, ;fn ~ N (u,2) Therefore, aMANOVA gives the probability of sampling these vectors
from NV (u, 2). In other words, aMANOVA runs an overall test if vectors of means for different

groups for asingle variable are same or not. In abinary example, for variable x;, MANOV A

testsif groups x;=1 and x;=0 have same mean vectors [, ti,, i3] corresponding to outcome

variables (y4, Y2, V3)-

Hypothesis Testingin MANOVA (Carey:1998) [supplementary]

We define the within group observed covariance matrix by X, = izsi.

Let's assume.X,,,; isamatrix that X[i, j] indicates the mean for i-th group on the j-th variable

then estimation for X based on these m meansis:
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X-XX-X)T
n .
m—1

b:

Similar to ANOVA we expect E(Z,2;1) = 1.
Let's assume each group has a normal distribution with covariance matrix X and the average
between the groups is also the same estimation. An alternative hypothesis addresses the

covariance matrix on sampling distribution of means coming from anormal distribution with
mean p and covariance matrix n(2, + %2) =nX, + 2.

Then we have the following equations:

E(Z,Z50) = (nZ, + 5)I7'=5,5 +1

Exactly analogous to ANOVA, diagonal values of the results are greater than or equal to 1. There

3
are different ways of analyzing this ratio including but not limited to Pillai's trace (z A ),
i=1

—q1 1+4;
Hotelling-Lawley's trace (3;_, 4;), and Wilk's lambda (3;_, 4;) where Y'3_, 4; indicates i —th

eigenvalue of theratio.

To correct for multiple comparisons, we used a network based statistic (NBS) with 1000
iterations. Edges were considered significant if they appear in a cluster larger than anull
distribution of clusters, as defined in the permutation testing. In other words significant edges are

more likely to provoke nearest neighbors to be significant.

Mass Multivariate Analys's, Disease Group Differences
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To assess for statistically significant differences in connectomes based on symptom-based
disease categories, we performed a mass multi-variate analysis on separate disease groups, as
defined by the DSM-1V (First et al., 2002) by the UCLA group (Poldrack et al., 2016). These

groups were healthy controls, schizophrenia, bipolar disorder, and ADHD.

Figure 4 illustrates group differences among all four disease groups with surface plots. We use
this as amask for the next experiments. First we break down it into all six possible bi-groups and
plot edge-wise connections only those span on theinitial mask. Our results show only 368 edges
remaining significant after NBS correction. Last row show heat maps in network level. Indeed,
we aggregate edges based on their membership to 10 different networks and seeif thereis
meaningful connections between them. We used normalization based on network size since each

network consisting of different number of nodes.

Mass Multivariate Analysis, Disease Severity within Medication Class
To assess for statistically significant differences in connectomes based on disease severity, we
performed a mass multivariate analysis on each medication class as a function of symptomatic

remission. (Note that atwo group MANOV A will give the same results as Hotelling's T2.)

We grouped patients based on whether they were prescribed an antipsychotic (n=46), mood
stabilizer (n=24), or antidepressant (n=31; See Supplementary Figure 10). Given the limited
sample size, we combined mood stabilizers and antidepressants to create two medication class:

psychotic and affective disorder medications.
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We defined remission based on standard symptom-based criteria. For affective medications, we
defined remission as a Hamilton 28-item Depression scale (HAMD-28) of <10 (Hamilton, 1960).
For psychosis medications, we defined remission (Alonso, Ciudad, Casado, & Gilaberte, 2008)
as a Scale for Assessment of Positive Symptoms (SAPS), ratings of mild or less (<2) for
delusions, hallucinations, positive formal thought disorder, and bizarre behavior considered
individually. For the Scale for Assessment of Negative Symptoms (SANS), ratings of mild or
less (<2) for affective flattening, avolition-apathy, anhedonia-asociality, alogia considered

individually.

Statistical Analyses.

Cross-validation and per for mance measur es. We used two types of cross-validation methods:
10-fold cross validation (see Figure 2) and leave-one-group out (i.e. one clinical group; see

Figure 3).

In the 10-fold cross-validation, the sample was randomly divided into 10, approximately equal-
sized groups, on each fold, the model was trained on 9 groups and tested on the excluded 10th
group. This process was repeated iteratively, with each group excluded once. Unless otherwise
specified (cf. the Supplementary Materials), for each 10-fold analysis, we create random
divisions from the dataset over 1,000 iterations. CPM was performed with arange of edge
selection thresholds from 0.001 to 0.05, which did not substantially change modd performance

(see Supplementary Figure 8). Model performance was evaluated by the cross-validated R?,

e (i — }A’)Z

Ry, =122 70
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RZ, can be negative (Scheinost et al., 2019) and negative values were set to 0. In this paper,
JVRZ, isreported asit is comparable to, but less biased than, the normally used Pearson

correlation value when using cross-validation. /R2,, is averaged over the cross validation folds.

Because the leave-one-group out analyses exhausted all possible combinations of groups, we did
not iterate these analyses. Because a separate model was trained and evaluated for each subject
group, we used a Pearson correlation between actual and predicted cognitive phenotype for each

test group to evaluate model performance.

Node Contribution to Ridge Regression M odel. Because each ridge regression model
represents alinear combination across (in some cases) thousands of edges (see Supplementary
Figures), we are unable to fully illustrate edge contribution in both a mathematically complete
and cognitively interpretable way. To best summarize which edges the ridge regression
algorithm weighted most, we created two types of illustrations: 1) a brain surface plot showing
each edge that was significantly correlated with the behavioral constructs in the training group
(Weighted node contribution = Edgelweight* sd(Edgelweight across all subjects), where sd
stands for the standard deviation across iterations; 2) a circle plot wherein network edges are

plotted between the networks with which they interact.

Statistical thresholds. For the mass multivariate connectomic analyses, we corrected all
statistical analyses for multiple comparisons using the Network-Based Statistic False Discovery

Rate correction (NBS-FDR) at p<0.05.
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Effects of motion. Motion is an important confound for estimates of functional connectivity. In
our analysis, motion was significantly correlated with most individual behavioral measures (see
supplementary materials). We used two accepted methods for accounting for this confound: we
excluded all subjects with >0.2 mean frame-to-frame motion across all tasks (Hsu, Rosenberg,
Scheinost, Constable, & Chun, 2018) and we regressed out motion during the feature-selection
step (see Figure 1) using partial correlation (i.e. as opposed to correlation). All results presented
in the main text were performed using the partial correlation step, however this did not

substantially change model performance (see Supplementary Figure 6).

Code availability. Matlab scripts to run the main CPM analyses can be found at
(https:.//www.nitrc.org/projects/bi oimagesuite/). Biolmage Suite tools used for analysis and
visualization can be accessed at (http://bisweb.yale.edu). Matlab scripts written to perform
additional post-hoc analyses are available from the authors upon request. The median model (i.e.
in terms of performance across 1,000 iterations of the 10-fold analysis) for our connectome-
based predictive model is also available at the Biolmage Suite. Access to the web-stateis

available at: http://bisweb.yal e.edu/ XXX XX

Networ k overlap. To explicitly explore the macroscale brain networks that were predictive of
each behavioral congtruct (i.e. in the 10-fold predictive model) or were significantly different
across disease groups or treatment response in affective or psychotic medications (i.e. in the
mass-multivariate analyses), we assigned each selected (in predictive models) or significantly
different (in mass-multivariate analyses) edge to apair of canonical networks such that edge (i,))

would be assigned to the network that includes node i and the network that includes node j. For
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the 10-fold predictive analysis, an edge was considered “weighted” if it was weighted in all of
the 10 folds and in >95% of the iterations (>950 of 1000 iterations). For the mass multivariate
analysis, an edge was considered “significant” if it passed the statistical threshold described

above,

Network overlap was determined with the hypergeometric cumulative density function, which
returns the probability of drawing up to x of K possible itemsin n drawings without replacement
from an M-item population. Thiswas implemented in Matlab as follows: p=1-hygecdf(x, M, K,
n) where x equals the number of weighted/significant edges, n equals the total number of
weighted/significant edges in the brain, K equals the total number of edges (whether
weighted/significant or not) in the network of interest, and M equals the total number of edges

(whether weighted/significant or not) in the brain.
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RESULTS
Phenotype 10-Fold predictive model performance. Across all behavioral constructs, we were
able to significantly predict performance in a transdiagnostic fashion. The 6 task-based fMRI
connectomes successfully predicted short-term memory, long-term memory, and working
memory and IQ, but did not predict executive function. Successful prediction results are shown
in Figure 2; executive function are shown in Supplementary Materials. It is possible that
executive function prediction failed because we were unable to summarize the variance across
the multiple executive function measures in a single component (see Supplementary Figure 8.E).
Whilein general task contribution to predictive performance across tasks was uniform, we
noticed that for short and long-term memory, the PAM-RET and BART tasks contributed the
most to overall prediction; for I1Q prediction, the PAM-RET task contributed the most (see
Supplementary Figure 7). Across diagnoses, the population distributions overlapped for both

actual and predicted phenotypes (See Figure 2, middle column).

In line with previous CPM results, our models were complex and span the entire brain. We
conducted multiple complementary follow-up analyses to assess the robustness of our results.
We tested the effect of sample size, motion, number of edges, and edge selection statistical

threshold on model performance. These analyses are found in Supplementary Materials.
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Figure 2. 10-fold phenotype
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Phenotype leave one group out predictive model perfor mance. We were able to significantly
predict performance across groups. In 14 of 16 analyses, models trained in al but one group
were able to successfully predict the measure of interest in the left-out group. This was true even
when models were trained only on patients and tested on healthy controls. These results were
robust to the effect of edge selection threshold, which may be found in the Supplementary

Figures.

Figure 3. Leave one group out phenotype predictive model performance. Each transdiagnostic model was trained on
three of the clinical groups and tested on the clinical group indicated below (i.e. performance for the models tested on
“Healthy” were trained on “SCZ”, “BPAD”, and “ADHD” data). Performance measured as the Pearson correlation between
actual and predicted cognitive measure; ** indicates correlation significant at p<0.01 for one-tail; * indicates p<0.05.

SCZ=schizophrenia; BPAD=bipolar affective disorder.
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Mass Multivariate Analyss, Diagnostic Category Differences.

We found significant differences between each clinical group’s task-based functional
connectomes, indicating that while connectomes were able to predict cognitive performance
across diagnosis, these connectomes had significant differences. Only 368 edges passed our strict
network-based correction for multiple comparison, representing only 0.17% of possible edges.
Surface plots showing group differences among al four disease groups are shown in Figure 4.

The spatial locations of the edges is described in Figure 6.

Figure 4. Mass multivariate analysis of disease group difference in brain network structure across all tasks. (A) Surface illustration of nodes
where edges (network connections) significantly differ across all clinical groups, as measured with Hotelling’s T2. (B) and (C) illustrate significantly
different edges across the two indicated groups. (B) illustrates circle plots that were not thresholded by degree while (C) illustrates network-to-
network edge interactions with the most significant connections. (Network Labels: 1 = medial frontal, 2 = frontoparietal, 3 = default mode, 4 =
motor cortex, 5 = visual A, 6 = visual B, 7 = visual association, 8 = salience, 9 = subcortical, 10 = cerebellum)
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Mass Multivariate Analysis, Disease Severity within Medication Class

We found significant differences between remitters and non-remittersin patients taking
medications for both psychotic and affective disorders, as shown in Figure 5. These differences
persisted even after a conservative correction for multiple corrections (p<0.05 FWER-corrected
viaNBS). The psychotic disorder medication class showed only 405 significant edges (0.019%
of possible edges), while the affective disorder medication class showed 415 (0.019% of possible
edges). Significantly different edges were distributed throughout the brain, however it appears

that the motor and cerebellar networks had the highest density of edges, as further explored

below and in Figure 6.

Figure 5. Mass multivariate analysis of disease severity by pharmacologic class. The top row evaluates all patients (across all
diagnoses) who were prescribed an antipsychotic and illustrates where responders and non-responders (see Methods for
definition) differed in terms of: (left) circle plots of significantly different edges, (middle) surface plots of node degree where
edges (network connections) significantly differed, (right) network-based plots showing how many edges significantly differed by
network hubs. (Network Labels: 1= medial frontal, 2 = frontoparietal, 3 = default mode, 4 = motor cortex, 5 = visual A, 6 = visual
B, 7 = visual association, 8 = salience, 9 = subcortical, 10 = cerebellum)
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Network Profile and Overlap

We found similar network trends across predictive models of behavioral constructs, as shown in
Figure 6. These trends were also similar in the mass multivariate analyses of disease class and
disease severity. Edges within the cerebel lar, fronto-parietal, default mode, subcortical, and
motor networks were more likely (i.e. according to the hypergeometric distribution, see
Methods) to be highly weighted across the 10-fold predictive analyses. In turn edges within these

same areas were more likely to be significantly different than othersin the brain.

Figure 6. Network weightings in predictive (above) and mass multivariate (below) analyses. Layer thickness represents the likelihood that a
particular inter-node (left column) or intra-node (right column) edge was selected by the model, as computed by the hypergeometric distribution.
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DISCUSSION

The unifying goal across our analyses isto evaluate how different frameworks capture the brain
basis of deficits seen in psychiatric disease. Our work suggests that the same macroscale brain
circuitry underlies a given cognitive function across all people, regardless of the diagnoses they
carry, and that apparently distinct behavioral endpoints may be caused by individual differences
within these common circuits. We further show that three common frameworks for
characterizing clinical deficits (phenotype, disease group, and disease severity) each offer useful
and perhaps complimentary explanations for the brain’s underlying functional architecture as

affected by psychiatric disease.

Brain basisof disease. Although patients with mental illness have historically been binned into
symptom-based categories, we present evidence that thisis not the only neurobiologically valid
way of viewing phenotypic variability within and across patients. At least on the four phenotypes
we evaluated (short-term memory, long-term memory, working memory, and executive
function), we show that models built from patients diagnosed with schizophrenia, bipolar
disorder, and ADHD can predict behavioral phenotypes in so-called healthy controls. This
indicates that neural representation underlying a given behavioral phenotype remains the same

notwithstanding disease category or symptom burden.

We also show (in the same dataset) statistically significant differencesin the brain’s functional
organization based on disease group and disease severity. Our disease group mass multivariate

analysis indicated statistically significant differences in similar brain networks identified by our
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phenotype prediction models (see Figure 6). Furthermore, when we collapse across disease group
to form two medication classes, we showed that measures of disease severity also identify
statistically significant differencesin the brain’s functional organization. Therefore, our results
suggest that each framework—phenotype, disease group, and disease severity—has a

neurobiologic correlate.

The ultimate question, then, is which framework is most clinically useful. How can we most ably
define clinical deficitsin such away that they can be identified and alleviated? Data-driven
methods that account for, characterize, and cluster (where necessary) disease-relevant phenotypic
variance increasingly appear to be the way forward; especially in studies that seek to detect some
neurobiologic signal for mental illness. Perhaps here, a comparison can be made to clinical
decision: the question isn’t which disease group a patient fallsinto, but rather how to best predict
which treatment will alleviate a patient’ s symptom pattern (Chekroud et al., 2017; Drysdale et

al., 2017). Although thisisintuitive to clinicians—who hope to modify a patient’ s phenotype or
disease severity, not their disease group—thisis not how researchers have traditionally analyzed

patient data.

Complex Model Reduction. We have struggled to reduce the results across 214,668 edges to
something that is cognitively manageable—at minimum by us, the authors. Thisis an important
insight into biomarker development: useful models of brain-behavior are not necessarily simple
(Rosenberg, Casey, & Holmes, 2018). Just as an overly simplistic model cannot be compensated
for by an increased sample size (underfitting), an overly complex model will not necessarily

generalize (overfitting). Although communicating a complex mode (i.e. in a paper or figure or
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conversation) requires a reduction of complexity, this can appear to come at the cost of learning
something neurobiolgically meaningful. Thereisn’t necessarily a simple answer to any
neurobiologic question. What we're learning about the brain and its functional connectionsis
that it’s complex . The traditional function-location framework appears to be insufficient to

understand clinically-relevant brain-behavior relationships.

Accordingly, we uploaded the complete predictive model (based on the median-performing
iteration, see Figure 2) and have created a freely-accessible instantiation of Bioimage Suite
online wherein readers may access and navigate the entire model [We' Il negotiate this with the

journal].

Cerebellum. Consistent with many previous reports, our predictive and explanatory models
implicate the cerebellum as a network that sub-serves more than motor function. Functional
neuroimaging evidence supports the parcellation of the cerebellum into at least three regions
associated with sensorimotor, cognitive, and limbic functions (Schmahmann & Caplan, 2006)
(Riedd et al., 2015). We report that the cerebellum isinfluential in predicting phenotypic traits
and in explaining symptomatic remission within pharmacologic classes. Likewise, our data
further suggests that even cerebral “motor” areas (including motor, somatosensory, primary
auditory cortices) also support more than motor function. Our results add to the growing
literature that brain regions traditionally defined as“motor” influence phenotypic traits, symptom

profile, and treatment response (cf. Figures 2, 3, 4).
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