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Abstract:

Cellular plasticity describes the ability of cells to transition from one set of phenotypes to
another. In the context of cancer therapeutics, plasticity refers to transient fluctuations in the
molecular state of tumor cells, driving the formation of rare cells primed to survive drug
treatment and ultimately reprogram into a stably resistant fate. However, the biological
processes governing this cellular plasticity remain unknown. We used CRISPR/Cas9 genetic
screens to reveal genes that affect cell fate decisions by altering cellular plasticity across a
range of functional categories. We found that cellular plasticity and cell fate decision making can
be decoupled in that factors can affect cell fate decisions in both plasticity-dependent and
independent manners. We discovered a novel mode of altering resistance based on cellular
plasticity that, contrary to known mechanisms, pushes cells towards a more differentiated state.
We further confirmed our prediction that manipulating cellular plasticity before the addition of the
main therapy would result in changes in therapy resistance more than concurrent
administration. Together, our results indicate that identifying pathways modulating cellular
plasticity has the potential to alter cell fate decisions and may provide a new avenue for treating
drug resistance.

Introduction

Plasticity is often used to describe the ability of cells to transition from one phenotype to
another, at times enabling cells to adapt and survive in the face of a variety of stimuli and
challenges, for instance, in regeneration, wound healing, and the induction of pluripotency.
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Plasticity itself can typically be decomposed into a stimulus-independent and subsequent
stimulus-dependent phase. The first phase typically consists of individual, often rare, cells within
the population being “primed” for the cell fate transition. Then, upon the stimulus, these primed
cells are selectively reprogrammed to adopt the new phenotype. Thus, a major question in
single cell biology has been determining the molecular differences specific to these rare primed
cells before a stimulus and connecting the molecular profile of these primed cells to their
ultimate fate after the stimulus reprograms them. Recently, a number of studies have developed
the link between cellular priming and cell fate that underlies plasticity in a number of contexts .
However, to date, little is known about the pathways that can manipulate the fluctuations that
drive this cellular priming and whether that can affect their subsequent fates, leaving their
molecular basis and potential for therapeutic application largely unrealized.

Therapy resistance in melanoma is an excellent example of cellular plasticity *'°. Therapies
such as vemurafenib designed to inhibit particular oncogenic targets can often kill most of the
tumor cells, but a few remaining cells can continue to proliferate, ultimately repopulating the
tumor. While the mechanisms underlying this therapy resistance can sometimes be the result of
a genetic mutation, many recent studies, both in melanoma and other cancers, suggest that
cellular plasticity may also dictate which cells are able to survive drug treatment, with rare
primed cells being reprogrammed by the addition of drug into a stably resistant state """, In
melanoma, this rare primed cellular state, which we have also previously referred to as the
pre-resistant cellular state, is often marked by transiently high expression of several resistance
marker genes, such as EGFR, NGFR and AXL (Fig. 1A, top). Once these cells are exposed to
drug, they are reprogrammed into a new cellular fate in which the transient primed phenotype is
converted to a stably drug-resistant phenotype characterized by massive changes in signaling
and gene expression profiles. This paradigm of resistance has a number of critical differences
from the more conventional model of mutational causes of drug resistance—notably, while
genetic mutations largely arise through spontaneous, stochastic processes, non-genetic
fluctuations that drive the primed cellular states can in principle occur due to the changes in
activity of specific biological pathways. Targeting these pathways specifically could have the
potential to enhance or inhibit the formation of cells in the primed state independent of the
addition of drug. We were thus interested in dissecting the molecular regulators of cellular
priming and how those might consequently affect the ultimate drug-resistant fates that cells can
adopt.

With the advent of CRISPR/Cas9 technology, it is now possible to perform genetic screens to
identify regulators of various molecular processes. For most cell fate transitions, including
therapy resistance, virtually all screens have been designed to detect changes to the ultimate
cellular fate only—i.e., changes in the final number of resistant cells, typically measured as a
proliferation phenotype %%, However, an important aspect of plasticity is the process of
stimulus-independent priming of rare cells in the population, which in this context is represented
by the transient fluctuations in single cells that ultimately reprogram into a stably resistant cell
fate '*. This priming processes may in principle have distinct regulatory mechanisms to that of
the acquisition of resistance as a whole, presenting an opportunity to leverage screening
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techniques to specifically identify factors affecting cellular priming before the addition of drug.
These factors may then also affect the overall degree of drug resistance, but potentially through
new, previously undiscovered mechanisms that allow for new therapeutic targets that affect
drug resistance in ways not revealed by classical resistance screens (Fig. 1A, bottom).

We here describe the results of genetic screens designed to capture modulators of single cell
state variability that subsequently affect cell fate decisions. Specifically, in the context of
melanoma, we performed pooled CRISPR/Cas9 genetic screens to discover modulators of the
primed rare cell state that drives drug resistance. This new type of screen pointed to several
new factors that affect the frequency of primed cells in melanoma populations, and ultimately,
their resistance to targeted therapies. The transcriptome profiles induced by knocking out these
factors revealed a novel mechanism that can increase or reduce drug resistance by increasing
or decreasing the activity of differentiation pathways, respectively, as opposed to the more
typical increased drug resistance induced by decreased differentiation. Drugs targeting these
new mechanisms display a variety of synergistic effects when coupled with therapy, which can
be dependent on the relative timing of drug application. Together, our results indicate that
modulating cellular plasticity can alter cell fate decisions and may provide a new avenue for
treating drug resistance.

Results

CRISPR/Cas9 genetic screens identify factors that affect primed
cellular states

We wanted to identify factors that affected the fluctuations in cellular state that lead to single
cells being primed to be drug resistant. We took advantage of a clonal melanoma cell line
(WM989 A6-G3) that we have extensively characterized as exhibiting resistance behavior in cell
culture that is broadly comparable to that displayed in patients *?"%, Phenomenologically, in
cell culture, we observe that upon addition of a roughly cytostatic dose of the BRAFY*E inhibitor
vemurafenib (1uM), the vast majority of cells die or stop growing, but around 1 in 2,000-3,000
cells continues to proliferate, ultimately forming a resistant colony after 2-3 weeks in culture in
vemurafenib. We have previously demonstrated that prior to the application of drug, there is a
rare subpopulation of cells (pre-resistant cells) that express high levels of a number of markers,
and that these “primed” cells are far more likely to become resistant than other cells . In order
to identify modulators of the fluctuations that lead to the formation of this subpopulation of
primed cells, we designed a large scale loss-of-function pooled CRISPR genetic screen (which
we dubbed the “priming screen”) comprised of ~13,000 single guide RNAs (sgRNAs) targeting
functionally relevant domains of ~2,000 proteins, with roughly six distinct single guide RNAs per
domain (1402 transcription factor targets, 481 kinase targets, 176 epigenetic targets; each
single guide RNA targets an important functional domain, see Supplemental Tables 1-3) 2%,
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To conduct the screen, we stably integrated Streptococcus pyogenes Cas9 (spCas9) into the
WM989-A6-G3 cell line, creating the clonal line WM989-A6-G3-Cas9-5a3.

To screen for factors affecting cellular priming, we transduced this pooled library of single guide
RNAs into this melanoma cell line. In order to ensure adequate sampling of the frequency of
rare pre-resistant cells in the population, we expanded each cell in the culture to around
50,000-250,000 cells per each single guide RNA, resulting in a total screen size of roughly a
billion cells. We then used a combination of magnetic sorting and flow cytometry to isolate cells
that were positive for both EGFR and NGFR expression, both of which are markers of the
primed cell subpopulation. We then sequenced the single guide RNAs in this sorted
subpopulation to determine which single guide RNAs were over- or under-represented as
compared to the unsorted total population. Here, over-representation suggests that knockout of
the gene leads to an increased frequency of NGFR"®H/EGFR"®" cells and vice versa (Fig. 1B).
To select “hits” from the screen, we designed a series of criteria to identify and rank targets into
confidence tiers (see methods for a detailed description of the selection criteria).

Our screen isolated several factors that affected priming for resistance. We obtained a set of 61
high confidence targets that affected the frequency of NGFR™CY/EGFR"'®" cells in our screen
(Fig. 1C, Supplemental Table 4). Of these, 25 increased the frequency of NGFR"'®"/EGFR"¢H
cells, while the remaining 36 decreased the frequency. Beyond known factors in melanoma
biology such as SOX70 and MITF %3%-%2 we identified several new factors not previously known
to affect resistance to BRAFY®°E inhibition. These include DOT1L, which encodes an H3K79
methyltransferase associated with melanoma oncogenesis **, and BRD2, which encodes a
protein that is a member of the BET family, often overexpressed in human melanoma **. We
assessed the robustness and generality of our results through a secondary targeted screen in
which 25 of the 34 high confidence targets tested replicated in the original WM989-A5-G3-Cas9
line. Furthermore, 20 of those 34 also replicated their effects in another melanoma line
(451Lu-Cas9) (Supplemental Fig. 2, Supplemental Table 4). Together, these hits represented
potential candidates for modulating therapy resistance by affecting cellular priming.

Changes in drug resistance can occur by priming-dependent and
independent mechanisms

Our priming screen was designed to isolate candidates that affected the frequency of cells that
were in the primed cellular state before the addition of drug. Conceptually, it is also possible that
there may be a distinct set of factors that can affect the overall rate of resistance without
affecting the frequency of primed cells. It is useful here to separate the notion of priming, which
we use to refer to the cellular state associated with high levels of expression of resistance (i.e.,
NGFR"®" cells), from the notion of pre-resistance, which is the set of cellular states that, upon
adding drug, will eventually develop into a stably resistant colony. The former definition is
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dependent on the state of the cell, whereas the latter is dependent on the drug: for instance, if
one added a lower concentration of drug that allowed for more resistant colonies to form, the
initial primed states would remain unchanged, but the number of pre-resistant cells would
change because more cells became resistant. In this framework, then, one could imagine that
any particular factor could increase resistance either by increasing the frequency of primed cells
(Fig. 2B, middle) or by allowing more cells that are partially primed to continue to grow upon
addition of drug and become resistant; i.e., lowering the putative threshold (Fig. 2A, bottom) (or
both).

We wanted to measure the degree to which the factors we identified could affect both priming
and resistance via these two different mechanisms. First, because our first screen was designed
to identify factors affecting priming, we also ran another genetic screen (as well as a secondary
targeted screen with another melanoma cell line) with the ultimate readout being number of
resistant colonies; i.e., a conventional survival screen (“resistance screen”) (Supplemental Figs.
3-4, Supplemental Table 4). We identified 20 high confidence factors that, when knocked out,
increased the number of resistant cells and 4 that reduced the number of resistant cells. These
included factors involved in signaling pathways like MAPK (CSK) %, Wnt/B-catenin (KDM2A) *¢,
and Hippo (LATS2) %",

The priming and resistance screens were designed to probe distinct biological behavior, and so
we predicted that of the factors identified, some would affect the frequency of priming and some
would affect the putative “threshold” that must be surpassed for the acquisition of resistance
(and some may affect both). To systematically evaluate whether such differences existed, we
directly looked on a knockout-by-knockout basis for changes in the frequency of primed cells (by
NGFR immunofluorescence) in 83 different targets from both the priming and the resistance
screens, and further looked for changes in resistance (by measuring the number of resistant
colonies produced) in 35 of those (Fig. 2B, Supp. Fig. 5). We found that these individual
knockouts exhibited a range of changes in both the frequency of NGFR"'" cells and the number
of resistant colonies formed. Firstly, many hits from the priming screen (15/21 tested by both
immunofluorescence and resistant colony formation) showed the predicted increase and
decrease in both frequency of priming and concomitant changes to the number of resistant
colonies (e.g. LATS2, BRDZ2, respectively; Fig. 2C). This result demonstrates that hits that led to
changes in the frequency of cells expressing NGFR were associated with changes in priming
and, consequently, resistance.

However, while the general trend indicated such a pattern, knockouts of many genes varied
widely in the degree to which this relationship held (Fig. 2B). For instance, knockout of EP300
resulted in a ~two-fold increase in the number of NGFR"'®" cells but only a small increase in the
number of resistant colonies, while knockout of CSK resulted in only a small increase in the
number of NGFR"'®" but had at least a six-fold increase in the number of resistant colonies (Fig.
2B-C). (Importantly, the number of colonies for the CSK knockout is an underestimate due to
difficulties in accurately counting colonies in highly-confluent plates, see Supplemental Fig. 5C
for zoomed image of colonies, and is most likely why CSK was a dominant hit in our resistance
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screen.) Conceptually, hits like CSK could operate by lowering the putative threshold of priming
that cells need to surpass in order to progress to acquire resistance without changing the
degree of priming in individual cells, thus leading to more resistant colonies without affecting
priming. Another possibility is that knocking out CSK does change priming, but in a way that is
not reflected in our measurements, that is, in a change in NGFR expression. While our results
cannot conclusive exclude this latter possibility, some of our results argue in favor of changes to
the threshold. For instance, the CSK knockout cell line showed an increase in the number of
resistant colonies but also an increase in the number of resistant cells that do not form colonies
(Fig. 2C, Supplemental Fig. 5C). This suggested that, in addition to the usual pre-resistant cells
that form colonies, an additional set of cells in the CSK knockout line were now enabled to
survive drug. This suggests that the “threshold” for cells to survive drug may have changed; i.e.,
the mapping between the degree of priming and the ultimate resistant fate has been altered by
the removal of CSK.

Notably, of the factors identified by the resistance screen, only 5 were also identified in our
priming screen (Fig. 2D). In principle, if it were possible to run the resistance screen to
saturation—i.e., isolate all possible factors affecting resistance—then the resistance screen
should be able to find all priming factors that affect resistance. However, in practice, the number
of cells required make it very difficult to run these screens to true saturation, and thus it is
possible that dominant hits that change resistance alone (e.g. CSK) comprised so many cells in
the pooled resistance screen that other hits associated with changes in priming became difficult
to detect. This possibility highlights the potential of screens targeting priming to reveal novel
categories of hits that may otherwise elude detection.

Changes in the frequency of primed cellular states lead to
differences in tumor growth in vivo

We found that the factors we identified that modulate cellular priming can further lead to
differences in overall resistance to BRAFV%E inhibition in cell lines, but we still wondered
whether these same factors can affect resistance in an in vivo setting, in which complex
microenvironmental factors may also affect therapy resistance *. We thus tested whether
knocking out three of the factors isolated from our cellular priming screen affected resistance in
vivo: DOT1L and LATS2, which increased the frequency of NGFR"CH/EGFR"" cells in vitro,
and BRD2, which decreased the frequency of NGFR"'®"/EGFR"'°" cells in vitro (all three also
exhibited corresponding differences in resistance to BRAF %% inhibition in vitro).

After knocking out these targets in WM989-A6-G3-Cas9-5a3, we injected the cells into
NOD/SCID mice (n=12 mice per knockout) and allowed tumors to develop. We quantified the
tumor volume in each mouse over time, comparing tumors that developed in mice injected with
similar cells (WM989-A6-G3-Cas9-5a3) but without any gene knocked out (Fig. 3). Overall, we
observed patterns consistent with our in vitro results: at the treatment endpoint (see methods)
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DOT1L knockout tumors treated with a BRAFY®%°F inhibitor produced tumors that were roughly
3.5 times larger than controls (p = 0.010), and LATSZ2 knockout cell lines produced tumors that
were 1.6 times larger than controls (p = 0.062). On the other hand, the mice that received
melanoma cells with the BRD2 knockout had tumors that were approximately half as big as
controls (p = 0.045). (In the absence of drug, both knockout and control melanoma cells showed
roughly similar growth dynamics (Fig. 3, bottom)). Overall, our results demonstrate that the
factors isolated by our cellular priming screen also affect the response of tumors to BRAFY6%°E
inhibition in vivo.

Relative timing of targeting variability can affect drug resistance

The fact that many of the factors we identified had different effects on priming vs. full acquisition
of resistance as measured by resistant colony formation suggested that these factors may work
by different mechanisms, and that these mechanisms may potentially interact or override each
other in complex ways dependent on relative timing. For instance, a factor that affects
specifically priming could affect the number of cells in the pre-resistant state, but once cells are
subjected to before BRAF®**€ inhibition and begin reprogramming towards stable resistance,
the factor may no longer have any effect. In such a case, inhibiting this factor before the adding
the BRAFY*E inhibitor would be critical.

To test for such a possibility, we used the DOT1L inhibitor pimenostat *° (which increases the
number of colonies resistant to vemurafenib over a range of doses; Supplemental Fig. 7A) to
see if timing of DOT1L inhibition would affect the formation of resistant colonies. In addition to
the standard vemurafenib treatment, we both pre-treated with the DOT1L inhibitor for seven
days before adding vemurafenib and co-treated with the DOT 1L inhibitor concurrently with
vemurafenib (we tested both pre-treatment followed by vemurafenib alone and pre-treatment
followed by concurrent treatment) (Fig. 4A). We found that pre-inhibition of DOT1L resulted in
three-fold more colonies than with BRAFVE inhibition alone, but that co-treatment with the
DOT1L and BRAF**Finhibitors led to no change in the number of resistant colonies (Fig. 4B),
suggesting that DOT1L inhibition is altering the distribution of states of the cells, and
consequently the number of cells that develop resistance to BRAFY®°°F inhibition. Our results
demonstrate that the relative timing of inhibition of cellular priming vis a vis mainline therapy can
have a profound effect on resistance.

Knockout of novel genes that increase the frequency of primed
cell states also increase cellular differentiation

Our screens revealed a large number of factors affecting priming that act across a range of
biological processes, including a variety of signaling pathways and transcriptional regulatory
mechanisms. Interestingly, a priori, no particular pathway appeared to dominate the set of
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identified factors; however it is possible that seemingly unrelated genes nevertheless affect
priming through common biological processes.

To look for such commonalities, we used RNA sequencing to measure genome-wide transcript
abundance levels for 266 knockout cell lines targeting 80 different proteins taken from both the
priming and resistance screens (each targeted with 2-3 separate single guide RNAs; see
supplementary table 4), reasoning that if two genes participated in a particular biological
process, then the transcriptomes associated with knocking them out may exhibit similar patterns
of differential expression.

Initially, we clustered the transcriptome profiles from the different cell lines, including only genes
differentially expressed in at least one sample (Supplemental Fig. 10A). We found that while the
transcriptomes induced by some gene knockouts were clearly distinct (such as MITF, SOX10
and KDM1A), many others appeared to show only relatively small differences from the parental
cell line, despite the fact that our validation results showed that these knockouts exhibited clear
effects on the resistance potential of the population. We thus reasoned that while the sets of
genes whose expression change in our knockouts may be non-overlapping, these genes could
still belong to similar categories of biological processes; i.e., different knockouts may all affect
different genes all within a common pathway, for instance differentiation. Thus, using the
transcriptome of each knockout, we performed a gene set enrichment analysis (GSEA, see
methods) and obtained an enrichment score for a number of biological processes from the
Gene Ontology terms database (Fig. 5A) *'. Using these enrichment scores, the knockout lines
clustered in a more obvious pattern. Notable clusters include cluster 5, containing the canonical
melanocyte master regulators MITF and SOX10, and cluster 1, containing DOT1L, LATS2,
RUNX3 and GATA4.

Interestingly, knocking out MITF and SOX10 increases drug resistance, as does knocking out
most members of cluster 1, but the transcriptome profiles of these two clusters appeared to be
roughly opposite of each other. We inspected the GO gene sets in Group E, which appeared
maximally different between MITF/SOX10 and cluster 5, and found that these gene sets
included several related to differentiation, including sets for melanocyte differentiation and
neural crest differentiation (Fig. 5B). The knockout of MITF and SOX10 appeared to decrease
the expression of these genes, matching the general consensus that drug resistance is typically
driven by dedifferentiation 8. In that context, the finding that most elements of cluster 1
increased resistance by further promoting differentiation was unexpected (Fig. 5C), suggesting
a possible novel mechanism by which one could affect drug resistance; the latter has further
support from our findings using the DOT1L inhibitor (Fig. 4). This axis of differentiation was
coordinated across several gene sets, as revealed by principal components analysis of the
expression heat map (Supplemental Fig. 10B). (Note that the role of MITF in therapy resistance
is complex in general *?).

Clusters of targets that lead to different degrees of differentiation also seem to correspond to
distinct phenotypic profiles, meaning the resultant changes in the frequency of NGFR"'®" cells
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and number of resistant colonies. For instance, the transcriptomes of the knockouts in cluster 1
seem to mimic many aspects of the transcriptomes of NGFR"'®" EGFR"¢",
NGFR"CH/EGFR"®" and even vemurafenib resistant melanoma cells (e.g. high expression of
genes involved in cell-matrix adhesion, angiogenesis, and cell migration; Fig. 5A,B). Knockout
of these targets showed a strong correspondence between the frequency of NGFR"'" cells and
the number of colonies that developed under BRAF inhibition, suggesting that the
increase/decrease in the frequency of pre-resistant cells was the cause of increased/decreased
resistance (Fig. 5D). Often, this relationship was relatively proportional, as was the case for the
knockout of LATS2, JUNB, FOSL1, and CBFB. For MITF and SOX10 (cluster 5), however, the
relationship between the frequency of NGFR"®" cells and the number of resistant colonies was
much weaker, with very large changes in the latter but not the former. Accordingly, our
transcriptomic analysis suggests that these knockouts lead to changes in gene expression that
are distinct from those of NGFR"CH/EGFR"" cells.

The transcriptome analysis also revealed different categories of knockouts that resulted in a
reduction (as opposed to increase) of the number of resistant colonies. Some resistance
reducing knockouts (BRD8 and PRKAA1) clustered with DOT1L, while another (BRD2)
clustered with MITF/SOX10. It is possible that these factors work in inverse ways to reduce drug
resistance by either affecting differentiation or dedifferentiation. Meanwhile, the majority of
resistance reducing knockouts appeared to cluster separately into distinct clusters, generally
through changes in the expression of a distinct set of genes. For one cluster (cluster 2), the set
of genes whose expression was affected included several associated with metabolism (e.g.
biosynthesis of amino acids and Acyl Co-A metabolism), suggesting that modulation of
metabolic processes may be a means of reducing drug resistance (Supplemental Table 6). The
other clusters did not show any coherent set of biological processes affected (e.g. SRC, IRF7,
PKNZ2, among others), rendering that particular pathway or set of pathways rather mysterious.

Discussion

We have here demonstrated, using high-throughput genetic screening, that there are genetic
factors that can alter cellular plasticity in cancer cells, thereby affecting their resistance to
targeted therapeutics. We identified a variety of new factors that appear to work through new
pathways that can affect therapy resistance in novel, time-dependent ways. These factors
revealed new possible vulnerabilities that a conventional genetic screen targeting resistance did
not uncover, thus demonstrating the potential for screens specifically designed to target single
cell variability to reveal new biological mechanisms that may subsequently emerge as
therapeutic opportunities. Drug screens targeting gene expression “noise” have also shown
similar therapeutic potential *°.

While we isolated several new factors that specifically affected cellular variability, it is important
to note that no single factor we isolated resulted in a change in cellular variability that was
stronger than all the rest; i.e., no factor emerged as the “smoking gun”. This may be the result of
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the fact that our screen did not target all potential regulators. Alternatively, it may be that the
biology of cellular variability is intrinsically multifactorial, with the coherent activity of many
factors being required for cells to ultimately enter the highly deviated cellular state responsible
for phenotypes like drug resistance '°. Larger scale screens may help reveal a more complete
picture of the origins of rare cell behavior; however, the limitations imposed by the rarity of the
pre-resistant cellular phenotype make this rather difficult. The raw numbers of cells required to
properly sample these rare cell behaviors in a pooled genetic screening format remains a major
technical challenge for the field of rare cell biology.

Indeed, it is the very difficulty of performing these screens at full depth that provides motivation
for screening for variability rather than simply screening for resistance. If one is primarily
interested in factors affecting resistance, then in principle such a screen, if carried to saturation,
would reveal all such factors, including those that exert such an effect via modulation of cellular
variability. However, the degree of overlap in the factors identified between our variability screen
and our conventional resistance screen was relatively small. This lack of overlap suggests that
distinct biological processes may dominate the results of these differently designed screens.
That of course in turn raises the question of why one might want to perform variability screens at
all, given that the phenotype of interest is resistance. Our results on timing of variability
inhibition suggest that while the mechanisms governing rare cell variability may not appear as
potent as those revealed by conventional resistance screens, the fact that they represent
distinct mechanisms means that they may present an opportunity to be used in tandem. It is
also possible that these mechanisms may be more dominant in other, more clinically relevant
contexts.

In our validation studies, for several factors, we measured the effects of knocking out those
factors on both the number of NGFR™®" cells (which serves as a proxy for the primed cellular
state) and the number of resistant colonies upon adding vemurafenib . Interestingly, different
knockouts affected both of these validation metrics differently, with some (e.g. LATS2) both
increasing the frequency of NGFR"" cells as well as concomitantly increasing the number of
resistant cells, and some (e.g. CSK) dramatically increasing the frequency of resistant cells
without a proportional change in the frequency of NGFR™®" cells. One possible way to
conceptualize these distinct phenotypic outcomes is that the former category of knockout affects
primarily cellular priming, i.e., the cellular state, while the latter affects the mapping between
these primed states and their fates upon addition of vemurafenib. In one simple model, one
could imagine a distribution of cellular states in the initial population and a threshold whereby
cells above the threshold survive the drug and those below the threshold do not (Fig. 6). In this
model, some knockouts may alter the distribution of cells in the initial population, thus rendering
a different proportion of them above or below the threshold, or may alter the threshold itself, or
potentially some combination of both. It is wise to caution against this simple interpretation,
however. First, we note that NGFR expression is just a marker for the pre-resistant state, and it
may be that factors may affect the frequency of pre-resistant cells without showing any effect on
NGFR expression, thus giving the false appearance of a change in the mapping. (Arguing
against this, however, is the fact that the transcriptomes of knockouts such as DOT1L that
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increase the frequency of NGFR and resistance appear to be similar to the profile of NGFR¢"
cells themselves; Fig. 5A). Further molecular profiling of individual cells from these knockouts
may help reveal the ways in which the molecular state of these cells changes. Secondly, it is
also likely that the categorization of fates as “resistant” or “dead” is dramatically oversimplified,
and that there may be a number of different types of resistant cells (anecdotally, we have
noticed that the resistant cells in some of our knockout lines do appear morphologically different
from those formed in the unperturbed cell line). Such results suggest that there is a mapping
from a continuum of initial cellular states to multiple, canalized, or even potentially continuous
cellular fates. An important future direction is to characterize this mapping and its regulation.

Here, we have focused on cellular variability in the context of drug resistance in cancer.
However, we have observed similar rare-cell variability in primary melanocytes ', raising the
possibility that the same variability may play a role in normal biological processes as well. It is
thus possible that the factors we have isolated may play a role in regulating variability in these
normal biological contexts, and it remains to be seen whether such factors act primarily in
melanocytes or act more generally across different cell types in various tissues. Indeed, we
believe variability will emerge as a key aspect of cellular plasticity in general, and that framing
plasticity as a mapping between variable cellular states and ultimate phenotypic fates may
prove a fruitful conceptual framework.
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Material and Methods

Cell Culture

We obtained patient-derived melanoma cells (WM989 and 451Lu, female and male,
respectively) from the lab of Meenhard Herlyn. For WM989 we derived a single cell subclone
(A6-G3) in our lab ™. We grew these cells at 37°C in Tu2% media (78% MCDB, 20% Leibovitz's
L-15 media, 2% FBS, and 1.68mM CaCl2). We authenticated all cell lines via Human STR
profiling. We periodically tested all cell lines for mycoplasma infections.

Plasmid Construction and single guide RNA Cloning

All the Cas9 positive melanoma cell lines in this study were derived by lentiviral transduction
with a Cas9 expression vector (EFS-Cas9-P2A-Puro, Addgene: 108100). All the single guide
RNAs were cloned into a lentiviral expression vector LRG2.1(Addgene: #108098), which
contains an optimized single guide RNA backbone. The annealed single guide RNA oligos were
T4 ligated to the BsmB1-digested LRG2.1 vector. To improve U6 promoter transcription
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efficiency, an additional 5’ G nucleotide was added to all single guide RNA oligo designs that did
not already start with a 5’ G.

Construction of Domain-Focused single guide RNA Pooled Library

Gene lists of transcription factors (TF), kinases, and epigenetic regulators in the human genome
were manually curated based on the presence of DNA binding domain(s), kinase domains, and
epigenetic enzymatic/reader domains. The protein domain sequence information was retrieved
from NCBI Conserved Domains Database. Approximately 6 independent single guide RNAs
were designed against individual DNA binding domains (Supplementary tables 1-3).?~%° The
design principle of single guide RNA was based on previous reports and the single guide RNAs
with the predicted high off-target effect were excluded (Hsu et al. 2013). For the initial pooled
CRISPR screens, all of the single guide RNAs oligos including positive and negative control
single guide RNAs were synthesized in a pooled format (Twist Bioscience) and then amplified
by PCR. PCR amplified products were cloned into BsmB1-digested LRG2.1 vector using Gibson
Assembly kit (NEB#E2611). For the targeted pooled validation screens, individual single guide
RNAs were synthesized, cloned, and verified via Sanger sequencing in a 96-well array platform
(Supplementary table 5). Individual single guide RNAs were pooled together in an equal molar
ratio. To verify the identity and relative representation of single guide RNAs in the pooled
plasmids, a deep-sequencing analysis was performed on a MiSeq instrument (lllumina) and
confirmed that 100% of the designed single guide RNAs were cloned in the LRG2.1 vector and
the abundance of >95% of individual single guide RNA constructs was within 5-fold of the mean
(data not shown).

Lentivirus preparation

We produced lentivirus containing single guide RNAs using HEK293T cells cultured in DMEM
supplemented with 10% Fetal Bovine Serum and 1% penicillin/streptomycin. When the cells
reached 90-100% confluency, we mixed the single guide RNA vectors with the packaging vector
psPAX2 and envelope vector pVSV-G in a 4:3:2 ratio in OPTI-MEM (ThermoFisher Scientific:
#31985070) and polyethylenimine (PEI, Polysciences: #23966). We collected viral supernatants
for up to 72 hours twice daily.

Transduction of spCas9

We introduced the stable expression of spCas9 via spinfection of lentivirus along with Sug/ml
polybrene for 25 minutes at 1750 rpm. We exchanged the media ~6 hours post-transduction
and selected for cells expressing spCas9 via puromycin selection (1-2ug/ml, 1 week). For
WM989-A6-G3, we generated two cell lines, WM989-A6-G3-Cas9 and
WM9O89-A6-G3-Cas9-5a3, the later being a single cell isolate of the bulk Cas9-expressing
population. We verified that this cell line was capable of editing the genome and that it still
contained pre-resistant cells marked by the expression of drug-resistance markers
(Supplemental Fig. 11). Following the same methodology, we generated a 451Lu-Cas9 cell line
from 451Lu cells.

Transduction of lentivirus containing single guide RNAs
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For transfection of melanoma cells, we infected cells with lentivirus and 5ug/ml polybrene for 25
minutes at 1750 rpm. We exchanged the media ~6 hours post-transfection. We quantified the
percent of the population transfected by measuring the number of GFP-positive cells at day 5
post-transfection. For the screens, we aimed to transfect 30% of the population. For all other
experiments, we aimed to transfect >95% of the population.

Initial pooled CRISPR screens

We worked with three main pooled single guide RNA libraries in WM989-A6-G3-Cas9-5a3 cells.
These libraries targeted ~2,000 different kinases, transcription factors, and proteins involved in
epigenetic regulation. In total, the libraries contained ~13,000 different single guide RNAs
including non-targeting and cell-viability editing controls (Supplementary tables 1-3). We aimed
to transfect > 1,000 cells per single guide RNA and isolated ~1,000 cells per single guide RNA
about a week post-transfection and prior to any selection. These baselines allowed us to
validate the efficiency of our screen by single guide RNA enrichment/depletion of non-targeting
controls and of controls that affect cell viability (Supplemental Fig. 1). Additionally, these
baselines helped us identify single guide RNAs with lethal effects in our cells. Given that we
were interested in rare cell phenotypes that exist in 1:2000 cells or less, throughout our screens
we significantly expanded the population of cells to 50,000-250,000 cells per single guide RNA,
often surpassing a billion cells per screen. This scale allowed us to observe the rare cell
phenotypes dozens-to-hundreds of times in each of our controls (and in each of our single guide
RNAs).

The priming screen aimed to identify perturbations that altered the frequency of
NGFR"®H/EGFR"®" cells. To this end, one month after we transfected and expanded the cells,
we isolated the NGFR"CH/EGFR"®" cells via magnetic cell sorting (MACS) followed by
fluorescence-activated cell sorting (FACS) (see below). We also collected an additional ~1,000
cells per single guide RNA, without any selection, for comparison. Then, we isolated DNA from
the cells and built sequencing libraries (see below) to quantify the representation of each single
guide RNA in the NGFR"®"/EGFR"'®" population and compare it to the unsorted baseline.

In the resistance screen we aimed to identify proteins important for the development of
resistance to vemurafenib. Here, we treated the cells as above, except that instead of isolating
NGFR"CH/EGFR"®! cells we grew cells resistant to vemurafenib (see below) by exposing the
cells to vemurafenib for three weeks. As above, we isolated DNA from the resulting population
of cells and built sequencing libraries to quantify the representation of each single guide RNA.
The raw output of all screens was reads per single guide RNA.

To select hits in our screens, we first normalized the output of our screens to reads per million,
and then calculated the fold change in single guide RNA representation between different
samples. For our priming screen, we focused on the fold change in single guide RNA
representation between NGFR"®H/EGFR"®" cells and the bulk population of melanoma cells.
For the resistance screen, we focused on the fold change in single guide RNA representation
between cells treated for three weeks with 1uM vemurafenib (a BRAF'®E inhibitor) and cells
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never exposed to the drug. After normalizing the change in single guide RNA representation of
each single guide RNA by the median change across all single guide RNAs, we organized our
hits into tiers (one through four) based on the percent of single guide RNAs against the target
exhibiting at least a two-fold change in representation. We considered high confidence hits
those targets where (1) = 75% (Tier 1) or 2 66% (Tier 2) of its single guide RNAs showed at
least a two-fold enrichment/depletion throughout the screen, and (2) no two single guide RNAs
showed a significant change (two-fold change) in opposing directions (i.e. one single guide RNA
is significantly enriched in the selected population while another one is significantly depleted).
Other targets that showed a two-fold enrichment/depletion throughout the screen, but in less
than 66% of its single guide RNAs were considered lower confidence hits (Tier 3 and Tier 4).
Note that we excluded from analysis any single guide RNA with less than 10 raw reads in all
samples.

Secondary, targeted pooled CRISPR screen

To validate the replicability and generality of our hits, we designed a pool of single guide RNAs
for targeted screening that targeted proteins that either emerged as hits in our initial screens or
did not pass our hit-selection criteria but changed the frequency of NGFR"CH/EGFR"" cells or
the frequency of cells resistant to vemurafenib (Supplemental Table 5). In this pool, we included
~3 single guide RNAs per protein target, and carried out the screen in WM989-A6-G3-Cas9-5a3
cells as well as in another BRAF %€ melanoma cell line, 451Lu-Cas9. As before, we conducted
a priming screen where we isolated NGFR"CH/EGFR"®" cells as well as a resistance screen
where we exposed cells to 1uM vemurafenib for three weeks. Here too, we first normalized the
output of our screens to reads per million, and then calculated the fold change in single guide
RNA representation between different samples. Unlike on our initial screens, here we
normalized the change in single guide RNA representation to the median change in
representation of the ten non-targeting single guide RNAs controls included in the screen.

Tumor growth assays in patient-derived xenografts

All animal experiments were approved by the Institutional Animal Care and Use Committee
(IACUC) (IACUC #112503X_0) and were performed in an Association for the Assessment and
Accreditation of Laboratory Animal Care (AAALAC) accredited facility. WM989-A6-G3-Cas9-5a3
human melanoma cells (1 x 10° cells) suspended in 100 ul of PBS were subcutaneously
injected into 8-week-old NOD/SCID mice (Charles River Laboratories, Wilmington, MA). When
resulting tumors reached 150 mm?®, mice were fed either AIN-76A chow (untreated group,
placebo) or AIN-76A chow containing 417 mg/kg PLX4720 (treated group). Tumor sizes were
measured every 3-4 days using digital calipers, and tumor volumes were calculated using the
following formula: volume = 0.5 x (length x width?). Mice were euthanized when tumors reached
~1,500mm? or upon development of skin necrosis.

To assess growth differences between knockouts and control tumors, we first quantified for
each mouse the change in tumor size from the initial time point to the time point in question as a
log2 fold change in tumor volume. We determined statistical significance of the differences
observed between a knockout and controls at each therapy timepoint with a one-tailed t-test.
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For each knockout cell line, we then calculated the mean tumor volume and standard error of
the mean, which we report in Fig. 3. Note that within a given knockout-to-control comparison
within each of the treatment arms we defined the endpoint as the last point in time at which at
least 50% of the mice in each group (knockout and control cell line) were still alive.

Immunostains

For NGFR stain of fixed cells, after fixation and permeabilization, we washed the cells for 10 min
with 0.1% BSA-PBS, and then stained the cells for 10 min with 1:500 anti-NGFR APC-labelled
clone ME20.4 (Biolegend, 345107). After two final washes with PBS we kept the cells in PBS.
For EGFR and NGFR stains of live cells, we incubated melanoma cells in suspension for 1 hour
at 4C with 1:200 mouse anti-EGFR antibody, clone 225 (Millipore, MABF120) in 0.1% BSA PBS.
We then washed twice with 0.1% PBS-BSA and then incubated for 30 minutes at 4C with 1:500
donkey anti-mouse IgG-Alexa Cy3 (Jackson Laboratories, 715-545-150). We washed the cells
again (twice) with 0.1% BSA-PBA and incubated for 10 minutes with 1:500 anti-NGFR
APC-labelled clone ME20.4 (Biolegend, 345107). We again washed the cells twice with 0.1%
BSA-PBS and finally re-suspended them in 1%BSA-PBS.

Isolation of NGFR"®H/EGFR"'®" cells (MACS + FACS)

To enrich for NGFR"®"/EGFR"" cells we first immunostained melanoma cells as detailed
above. Then, we used a Manual Separator for Magnetic Cell Isolation (MACS, with LS columns
and Anti-APC microbeads). In short, following the manufacturer’s instructions, we incubated
cells and microbeads at 4C for 15 min, then washed and pelleted the cells via centrifugation.
After resuspending the cells, we passed them through LS magnetic columns. After enriching for
NGFR"®" cells, we proceeded to select only the cells expressing both NGFR and EGFR via
Fluorescent-Activated Cell Sorting (FACS, MoFlo Astrios EQ).

Growth of resistant colonies

To grow melanoma cells resistant to BRAFV“F inhibition, we exposed melanoma cells to 1uM
vemurafenib (PLX4032, Selleckchem S1267) for 2-3 weeks. For the BRAFY*°€ and MEK
co-inhibition assays, we also used dabrafenib at 500nM and 100nM (GSK2118436,
Selleckchem S2807), trametinib at 5nM and 1nM (GSK1120212, Selleckchem S2673), and
cobimetinib at 10nM and 1nM (GDC-0973, Selleckchem S8041).

Inhibition of DOT1L via small molecule inhibitor
For all assays involving pharmacological inhibition of DOT1L we used pinometostat at
concentrations ranging from 1uM to 5uM (EPZ5676, Selleckchem S.7062).

MiSeq library construction and sequencing

In order to quantify the single guide RNA representation following selection in our screen we
sequenced the single guide RNAs as per *. In short, we isolated genomic DNA using the
Quick-DNA Midiprep Plus Kit (Zymo Research: #D4075) per manufacturer specifications. We
then PCR-amplified the single guide RNAs using Phusion Flash High Fidelity Master Mix
Polymerase (Thermo Scientific: #F-548L) and primers that incorporate a barcode and a
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sequencing adaptor to the amplicon. Our amplification strategy consisted of an initial round of
parallel PCRs (23-29 cycles of up to 200 parallel reactions per sample. We then pooled the
PCR reactions and purified them using the NucleoSpin® Gel and PCR Clean-up kit
(Macherey-Nagel: #740609.250). We continued with eight PCR cycles using Phusion Flash
High Fidelity Master Mix Polymerase, followed by column purification with the QlAquick PCR
Purification Kit (QIAGEN: #28106). We quantified the single guide RNA libraries with the DNA
1000 Kit (Agilent: #5067-1504) on a 2100 Bioanalyzer Instrument (Agilent: #G2939BA). We
pooled the barcoded single guide RNA libraries and sequenced via 150-cycle paired-end
sequencing (MiSeq Reagent Kit v3, lllumina: #MS-102-3001). We then mapped the resulting
sequences to our reference single guide RNA library and proceeded to select hits.

Cell fixation and permeabilization
For our imaging assays we fixed cells for 10 min with 4% formaldehyde and permeabilized them
with 70% ethanol overnight.

Colony formation assays

For each condition tested, we first plated cells in duplicate (~10-50,000 cells per well of a 6-well
plate). We fixed and permeabilized one of the duplicates to use as a baseline and exposed the
second duplicate to the test condition. At the endpoint, we fixed and permeabilized the second

duplicate.

Image analysis of NGFR immunostains

We developed a custom MATLAB pipeline for counting cells and quantifying
immunofluorescence signal of DAPI-stained and NGFR-stained cells
(https://bitbucket.org/arjunrajlaboratory/rajlabscreentools/src/default/). The software stitches
together a large tiled image, then uses DAPI to identify cells. Using the nuclear area, it then
looks at a set of pixels near the nucleus to quantify fluorescence intensity of the NGFR staining.
After quantifying the expression level of NGFR following knockout of select screen targets and
of non-targeting controls, we quantified the minimum expression level needed to be considered
an NGFR"'®" cell. First, we selected the top one percent highest expressors of NGFR in each of
our non-targeting negative controls. Then, within that top one percent we obtained the median
expression level of the lowest expressor across all controls, and used that as a threshold to
quantify the frequency of NGFR"" cells in each of our knockout samples. Then, we calculated
the change in frequency of NGFR™®" cells in each test condition compared to controls and
obtained a median fold change and standard deviation across all samples with knockout of one
same protein (~3 different biological samples per protein). In total, we targeted ~86 different
proteins across ~258 different knockout biological samples.

Image analysis of colony formation

We developed a custom MATLAB pipeline for counting cells and colonies in tiled images of
DAPI-stained cells (https://bitbucket.org/arjunrajlaboratory/colonycounting_v2/src/default/). First,
the software stitches the individual image tiles into one large image by automatically (or with
user input) determining the amount of overlap between each individual image. Then, the
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software identifies the location of each cell in the stitched image by searching for local maxima.
We then manually identify the colony boundaries and quantify the number of colonies in each
sample. We then calculate the frequency of resistant colonies by dividing the number of
colonies by the total number of cells present in culture prior to BRAF*®E inhibition. Finally, we
scale the frequency of colonies to colonies per 10,000 cells and calculate the change in
frequency between each sample and the median change across controls.

RNA-sequencing and identification of differential expression

We sequenced mRNA in bulk from WM989-A6-G3 and WM989-A6-G3-Cas9 populations as per
Shaffer et. al. In addition to quantifying the transcriptome of EGFR"'"cells, NGFR"®",
NGFR"CH/EGFR"®" cells and vemurafenib-resistant cells, we quantified the transcriptional
changes following the knockout of many tier 1 and tier 2 hits from both the priming and
resistance screens. In addition to hits from our screens, we also quantified the transcriptome of
targets that were not tier 1 or tier 2 hits, but show a change in the frequency of
NGFR"CH/EGFR"®" cells or of cells resistant to vemurafenib. In total, we targeted ~83 different
proteins, each in triplicate (using different single guide RNAs) for a total of 280+ RNA
sequencing samples. For each sample, we isolated mRNA and built sequencing libraries using
the NEBNext Poly(A) mRNA Magnetic Isolation Module and NEBNext Ultra RNA Library Prep
Kit for lllumina per manufacturer instructions. We then sequenced the libraries via paired-end
sequencing (36x2 cycles) on a NextSeq 500. We aligned reads to hg19 and quantified reads
per gene using STAR and HTSeq. We then used DEseq2 to identify differentially expressed
genes.

Gene set enrichment analysis

To identify “biological signatures” enriched or depleted following the knockout of a given target
we used the GSEA software (http://software.broadinstitute.org/gsea/index.jsp). We focused in
the Biological Process ontology of the Gene Ontology gene sets (http://geneontology.org) to
obtain enrichment scores.

Grouping of targets based on transcriptomic analysis

To group targets into classes based on their transcriptional effects, we clustered all RNA-seq
samples (hierarchical clustering via pheatmap in R) based on the change in expression (as
obtained by DEseq?2) of any gene differentially expressed (two-fold change over control, with an
adjusted p value < 0.05) in at least one of the 83+ knockouts. We also grouped targets via
pheatmap based on the enrichment scores obtained via GSEA. To identify the axes that
account for the variability between each knockout we also performed principal component
analysis based on the gene set enrichment scores of each knockout. Note that in the
aforementioned analysis we included the transcriptomes of pre-resistant cells (marked by the
expression of EGFR alone, NGFR alone, and NGFR and EGFR in combination) and of cells
resistant to vemurafenib.

Software and data availability
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All data and code used for the analysis can be found at
https://www.dropbox.com/sh/t08558cl4mepfm6/AABBVbITPSNNPoMC9NTro-9a?dI=0

The software used for colony growth image analysis can be found at:
https://bitbucket.org/arjunrajlaboratory/colonycounting_v2/src/default/ . The software used for
analysis of immunofluorescence images can be found at:
https://bitbucket.org/arjunrajlaboratory/rajlabscreentools/src/default/

Main Figure legends

Figure 1. Pooled CRISPR screen design to identify modulators of cellular priming in the
context of drug resistance to targeted therapies in melanoma

A. (top) In melanoma, the initial molecular profile of a cell (primed vs. un-primed) within an
otherwise homogeneous population, indicated by green vs. gray coloring of cell, dictates the
ultimate fate of the cell (e.g. proliferation vs. death) when exposed to therapy. Changing the
number of cells in a given state (A, middle) can alter the number of resistant colonies that form
upon addition of the BRAFY®E inhibitor vemurafenib.

B. We designed a pooled CRISPR screen to detect modulators of the cellular priming that leads
to drug resistance. After transducing a library of single guide RNAs and expanding the
population, we isolated cells with high expression of both NGFR and EGFR, then sequenced
the single guide RNAs to determine which gene knockouts alter the frequency of these cells.
Changes in the frequency of a given single guide RNA in this population (e.g. targets A and C)
indicate that these targets may affect the frequency of NGFR""/EGFR"'®" cells in the
population, and thus may affect frequency of cellular priming.

C. After transducing a population of melanoma cells and isolating NGFR"C"/EGFR"'" cells (see
Fig. 1B), we quantified the frequency of each single guide RNA in the resulting population. Our
screening scheme utilized three separate pooled single guide RNA libraries, one targeting
epigenetic domains (top left), another targeting kinases (bottom left), and a final one targeting
transcription factors (right). We organized the targets within each single guide RNA library by
biological process. (While a given target could fall into several categories, each target is
assigned to a single group and plotted only once.) Each dot represents a single guide RNA,
grouped by gene target (5-6 single guide RNAs per target), with the log, fold change
representing the number of times the single guide RNA was detected in the sorted population
versus an unsorted population of melanoma cells transduced with the same library. For display
purposes, all single guide RNAs with fold changes beyond the axis limits were placed at the
edge of the axis as indicated. For targets considered “hits” by our rubric (see methods), we
labeled the single guide RNA dot by the color assigned to that biological process. Dots at the
bottom of each pane correspond to non-targeting controls (single guide RNAs not targeting any
loci in the genome) and cell viability controls (e.g. proteins required for cell survival and
proliferation, but not specifically associated with rare-cell behavior). Supplemental Fig. 1
provides details on the effect of these editing controls.

Figure 2. Effects of modulators of cellular priming on resistant colony formation
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A. In melanoma, the frequency of primed cells in the population dictates the degree of
resistance to BRAF"®%F inhibition. Changes to the mapping between cellular priming and a cell’s
response to the drug can alter the number of resistant colonies that form upon addition of the
BRAFY®%E inhibitor vemurafenib.

B. Relationship between the frequency of NGFR"'®" cells (x-axis) and the number of resistant
colonies (y-axis). We plot the frequency of NGFR"'®" cells as the mean log, fold change over
three replicates in the number of NGFR™®" cells following knockout of the gene indicated,
normalized by cells with non-targeting sgRNAs. (For variability of the effect size across
replicates of a given target, see Supplemental Fig. 5). We quantified the log, fold change in the
number of resistant colonies in the knockout cell line as compared to the non-targeting control
cell lines. Orange points are targets identified as high confidence hits (Tier 1 and Tier 2) in the
cellular priming screen; blue are those identified as high confidence hits in the resistance
screen; purple are those identified as high confidence hits in both screens; gray, those that may
have shown an effect in either or both screens, but were not classified as high confidence hits in
either screen.

C. To validate the phenotypic effect of targets identified by our genetic screens, we knocked out
83 of the targets and quantified both the frequency of NGFR"'" cells by immunofluorescence
using anti-NGFR antibodies (top) and the number of resistant colonies (bottom) that form upon
BRAFY®E jnhibition. Here we show example validation of BRD2 and LATS2 knockouts (hits in
the cellular priming screen) and of CSK knockouts (hit in the resistance screen only). The
schematic represents the effect of the knockout in the priming screen on the frequency of
NGFRMCHYEGFR"'®H cells.

D. Effect overlap between hits from the cellular priming and resistance screens. Each target’s
position (dots) represents the number of times (as median log2 fold change) the single guide
RNAs were detected in the NGFRM"/EGFR"'®" population vs. an unsorted population of
melanoma cells (priming screen, x-axis), or in the population of cells resistant to vemurafenib vs.
the population of cells prior to treatment (resistance screen, y-axis). Orange labels correspond
to high confidence targets (Tier 1 and Tier 2) in the cellular priming screen; blue corresponds to
high confidence targets in the resistance screen; purple corresponds to high confidence targets
in both screens. The effects of all targets in both screens are displayed as a density histogram.

Figure 3. Effect of modulators of cellular priming on growth of BRAF'**.resistant tumors
in vivo

A. Tumor volume as a function of time in patient-derived xenografts (NOD/SCID mice) treated
with a BRAFV600E inhibitor (top) or vehicle control (bottom). Here, we inject each mouse with
DOT1L-, LATS2-, or BRD2-knockout WM989-A6-G3-Cas9 cells (orange) or with the same cell
line without a gene knockout (gray). The values plotted represent the mean tumor volume
across mice caryying the same knockout. Error bars represent the standard error of the mean.
*** are timepoints at which the difference in tumor volume between knockout and control groups
reached p < 0.05. Similarly, * represents p = 1 <= 0.05 (see methods). Each group started with n
= 6 mice, and we plotted the mean tumor volume up until both knockout and negative control
groups have at least n = 3 each.
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Figure 4. Effect of targeting cellular priming at different times relative to BRAF'®"F
inhibition

A. To assess the effect of DOT1L inhibition (green arrows, pinometostat at 4uM) at different
times on a cell’s ability to survive BRAF***® inhibition, we first established a baseline number of
colonies that grow when WM989-A6-G3 cells are exposed to 1uM of vemurafenib for three
weeks (leftmost panel). Then, in a separate population, we either inhibited BRAF"*°F and
DOT1L simultaneously (co-treatment), inhibited DOT1L first (seven days) and then BRAF6%E
(three additional weeks; pre-treatment), or inhibited DOT1L before (seven days) and during
three weeks of vemurafenib treatment (pre-treatment and co-treatment).

B. Number of resistant colonies that result from each therapeutic regimen in Fig. 2C as the
mean fold change over baseline (vemurafenib alone) for three replicates normalized to the
number of cells in culture prior to BRAFY®®F inhibition. Error bars indicate the standard error of
the mean over triplicates.

Figure 5. Gene set enrichment analysis of the transcriptional effects induced by the
knockout of select screen targets

A. The heatmap represents biclustering analysis of different knockout cell lines (rows) based on
the Gene Set Enrichment Analysis score of Gene Ontology gene sets (Biological process GO
terms, columns in heatmap). Within the heatmap, red indicates enrichment in the sense that
there are more differentially upregulated genes in knockout vs. control in that gene set than
expected by chance, whereas blue indicates enrichment of downregulated genes (shade
indicates degree of enrichment). Each target knockout (rows) represents transcriptomes of
biological triplicates (unless otherwise stated on Supplemental Table 4). Target labels (rows) in
green indicate genes whose knockout increased the frequency of NGFR"'®H/EGFRY'®H cells in
the screen, while red indicates targets whose knockout increased the number of cells resistant
to vemurafenib, and gray indicates targets that decreased the frequency of either
NGFR"CH/EGFR"®" cells or of cells resistant to vemurafenib. As before, we organized targets
into high confidence hits (Tier 1 and Tier 2) and low confidence hits (Tiers 3 and Tier 4) based
on the percentage of single guide RNAs against a target that showed at least a two-fold change
in the initial screen (see knockout color key).The asterisks next to the label indicate the tier (Tier
1, ***; Tier 2, ***; Tier 3, **; Tier 4, *). Information regarding validation rates of each tier can be
found in the supplemental figures 8 and 9. Based on the dendrogram on the left, we grouped
targets into six clusters. We also clustered gene sets (columns) into groups, labeled by the
letters on top of the heatmap. The white boxes inside the heatmap demark groups of gene sets
specifically upregulated in a given cluster.

B. Select list of gene sets in groups D and E from Figure 5A. For a complete list of gene sets
within each group, see supplementary table 6.

C. Relationship between the expression of genes involved in neural crest differentiation (x-axis)
and the number of colonies resistant to vemurafenib (y-axis) following the knockout of a target.
For each knockout, we plot the expression of neural crest differentiation genes as the
enrichment score obtained through gene set enrichment analysis for the neural crest
differentiation gene set (GO term). We quantified the log,(fold change) in the number of
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resistant colonies in the knockout cell line as compared to the non-targeting control cell lines.
Colors represent the cluster grouping of each knockout based on Figure 5A.

D. Relationship between the frequency of NGFR"'®" cells (x-axis) and the number of resistant
colonies (y-axis). We plot the frequency of NGFR"'®" cells as the median log,(fold change) over
three replicates in the number of NGFR™®" cells following knockout of the indicated gene
normalized by cells with non-targeting single guide RNAs. (For variability of the effect size
across replicates of a given target, see Supplemental Fig. 5.) We quantified the log,(fold
change) in the number of resistant colonies in the knockout cell line as compared to the
non-targeting control cell lines. We color-coded all targets by groupings based on their
transcriptomes (see Fig. 5A) following knockout of the gene indicated.

Figure 6. Model of pre-resistant threshold and cellular priming in the development of
resistance to targeted therapies

Variability in the expression of various markers are associated with an individual cell’s
probability to survive drug treatment. In one simple model, cellular variability occurs along a
single ordinate, which can be conceptualized as the degree of “greenness”. In this model, there
is a threshold (red line, top panel) that divides cells along this axis into those that adapt to the
drug and become resistant vs. those that no longer proliferate when challenged with drug. Here,
there are at least two ways by which one could conceivably alter the number of cells that survive
the drug. In one scenario (middle) the distribution of “greenness” could change, leading to more
cells being above the threshold, leading to more resistant colonies. In another scenario, the
distribution of phenotypes remains unchanged, but the threshold itself moves, also leading to
more resistant colonies. Our results suggest (but do not prove) that both scenarios may play out
to varying degrees as a result of different genes being knocked out.

Supplemental Figure legends

Supplemental Figure 1. Effect of negative and positive control single guide RNAs in the
CRISPR screens. Our pooled CRISPR screen included non-targeting single guide RNAs as
negative controls (gray bars, 50+ single guide RNAs) as well as single guide RNAs affecting cell
viability as positive controls (red bars, 25+ single guide RNAs). We quantified the change in
representation of these single guide RNAs over time and report the log, fold change in
representation from six days after transfection to right before selection (vemurafenib exposure
or selection by NGFR and EGFR expression). We expect positive controls to lose
representation over time more often than negative controls. Our screening scheme utilized three
separate pooled single guide RNA libraries, one targeting kinases (top), another targeting
epigenetic domains (middle), and a final one targeting transcription factors (bottom).

Supplemental Figure 2. Secondary validation of hits across multiple cell lines by
secondary targeted CRISPR screening.
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We assessed the robustness and generality of the effect of hits identified in the priming screen
(WM989-A6-G3-Cas9-5a3, black bars) by carrying out a secondary screen containing single
guide RNAs for 34 of the high confidence hits (Tiers 1 and 2) we identified in the priming screen,
as well as another 52 lower confidence factors from Tiers 3 and 4 (these lower confidence hits
may also have been high confidence hits in the resistance screen). See Supplemental Table 5
for a list of the targets. We carried out this screen in WM989-A6-G3-Cas9 (orange bars) as well
as in another BRAF5E melanoma cell line (451Lu-Cas9, blue). Within each tier, names labeled
in green correspond to targets whose single guide RNAs are enriched in NGFR"C"/EGFR¢"
cells in the initial screen and gray represents targets whose single guide RNAs are
underrepresented in these rare cells. We plotted the median log, fold change in single guide
RNA representation (normalized by non-targeting controls) across three single guide RNAs.
Error bars represent the standard deviation of the fold change across all single guide RNAs for
a given target. Dotted error bars in red extend beyond the limits of the graph. Note that the limits
of the axes vary between tiers. We found that 25 of the 34 high confidence hits showed at least
a two fold change in the frequency of NGFR"®"/EGFR"'°" cells concordant with the effects
detected in the original screening clonal cell line (WM989-A6-G3-Cas9-5a3). In 451Lu-Cas9
cells, 20 of the 34 targets also showed a change in the frequency of NGFR"S"/EGFR"'®" cells,
with 11 of those exhibiting at least a two-fold change. Although quantitatively they were not as
strong as the effects of the Tier 1 and 2 hits, even Tier 3 and 4 hits displayed qualitative
agreement in these secondary screens.

Supplemental Figure 3. Screen for factors modulating number of resistant colonies upon
BRAF"" jnhibition.

A. We performed a pooled CRISPR screen to detect modulators of the number of drug-resistant
cells that grow in the presence of the BRAF®%E inhibitor vemurafenib. After transducing a library
of single guide RNAs and expanding the population, we exposed the cells to the BRAFY¢F
inhibitor vemurafenib (1uM) for 3 weeks, after which we sequenced the single guide RNAs in
the surviving population. Changes in the frequency of detection of a given single guide RNA
indicates that its target may affect the ability of a cell to survive and proliferate upon BRAFY¢%€
inhibition.

B. After transfecting a population of melanoma cells, we exposed them to vemurafenib
(BRAFY®%E inhibitor, 1uM) for three weeks to grow resistant colonies. We then sequenced the
DNA to quantify the single guide RNA representation of each target in the resulting population,
using the same libraries as in Fig. 1. As before, we ranked the targets into tiers based on the
percent of single guide RNAs that exhibited at least a two-fold change in representation
throughout the screen (Tier 1, 2 75%; Tier 2, =2 66%; Tier 3, 2 50%; Tier 4, < 50%), thus
reflecting the degree of confidence we have in the hit (High confidence hits: Tiers 1 and 2; Low
confidence hits: Tiers 3 and 4). In this screen, we identified 24 high confidence factors. For a
more detailed description see the methods section.

Supplemental Figure 4. Secondary validation of hits across multiple cell lines by
secondary targeted CRISPR screening.
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We assessed the robustness and generality of the effect of hits identified in the initial resistance
screen (WM989-A6-G3-Cas9-5a3, black bars) by carrying out a secondary screen containing
single guide RNAs for nine high confidence targets (as well as 77 targets that either affected
vemurafenib resistance but did not pass the thresholds to be called a hit, or affected the
frequency of NGFR"®"/EGFR"'®" cells; Supplemental Table 5 for a list of all the targets). We
carried out this screen in WM989-A6-G3-Cas9 (orange bars) as well as in another BRAFY¢F
melanoma cell line (451Lu-Cas9, blue). Within each tier, names labeled in red correspond to
targets whose single guide RNAs are enriched in cells resistant to vemurafenib in the initial
screen and gray represents targets whose single guide RNAs are underrepresented in these
cells. We plotted the median log, fold change in single guide RNA representation (normalized by
non-targeting controls) across three single guide RNAs. Error bars represent the standard
deviation of the fold change across all single guide RNAs for a given target. Dotted error bars in
red extend beyond the limits of the graph. Note that the limits of the axes vary between tiers. In
WM989-A6-G3-Cas9, we found that seven of the nine targets replicated the effect that we
observed originally. For 451Lu-Cas9, the same seven factors showed similar effects.

Supplemental Figure 5. Validation of effects of hits from priming and resistance screens
by via NGFR immunofluorescence and resistant colony formation.

A. Frequency of NGFR"'®" cells following the knockout of select targets. Each bar represents the
change in the number of NGFR"'®" cells following knockout of the gene indicated over
replicates, each using a different single guide RNA. Error bars represent the standard error of
the mean across the replicates. We carried out each measurement over three replicates, but
excluded samples with low cell density (< 500 cells). The star above or below the bars indicate
targets where, after excluding samples with low cell numbers, n = 1. Tier refers to the degree of
confidence we have in each particular hit, with tier 1 representing highest confidence hits for
which 2 75% of the single guide RNAs passed a threshold of two-fold change in the initial
screens. We performed this analysis for hits from both the priming screen (top) and the
resistance screen (bottom). 21 of 34 high confidence hits from the priming screen showed at
least a 50% increase or decrease in the frequency of NGFR"'®" cells over control. Of the lower
confidence hits (Tier 3 and Tier 4) 21 out of 49 targets increased or decreased the frequency of
NGFR"®" cells by 50% or more.

B. Resistance phenotype of melanoma cells following the knockout of hits from the initital
screens. Each bar represents the log, fold change over non-targeting control in the number
colonies able to grow in vemurafenib following knockout of the gene indicated. The number of
colonies for each target is normalized to the number of cells present in culture before BRAF6%F
inhibition, reported as number of colonies per every 10,000 cells in culture prior to treatment
(see methods). As before, the different tiers represent the percent of single guide RNAs against
a given target exhibiting at least a two-fold change throughout the initial (left) priming or (right)
resistance screens. On the left panel, we labeled in green and gray the effect a given target has
in the frequency of NGFR™®"/EGFR"®" cells (based on the initial priming screen). On the right
panel, we labeled in red and gray the effect a given target has in the number of cells that resist
BRAFY®E jnhibition (based on the initial resistance screen). In this plot each bar represents one
experimental replicate. See Supplemental Fig. 6 for replicates.
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C. These images show the effect of CSK knockout on a cell’s ability to develop resistance to
BRAFY®%E inhibition. Here, we plated CSK-knockout WM989-A6-G3-Cas9-5a3 cells and
exposed them to 1uM vemurafenib for three weeks. As before, after the treatment we counted
the number of resulting colonies and compared it to the number of colonies resulting from
WM989-A6-G3-Cas9-5a3 cells without the knockout. Note that the number of resistant cells in
the CSK sample is too large to accurately identify individual colonies. We only counted colonies
we could clearly delineate, and thus, the number of colonies reported is an underestimate.

Supplemental Figure 6. Validation of effects hits by resistant colony formation.
Resistance phenotype of melanoma cells following the knockout of hits from the initial screens.
Each bar represents the log, fold change over non-targeting control in the number of colonies
able to grow following knockout of the gene indicated. The number of colonies for each target is
normalized to the number of cells present in culture before BRAF'®E inhibition, reported as
number of colonies per every 10,000 pre-treatment cells (see methods). As before, the different
tiers represent the percent of single guide RNAs against a given target exhibiting at least a
two-fold change throughout the initial (top) priming or (bottom) resistance screens. On the top
panel, we labeled in green and gray the effect a given target has in the frequency of
NGFRM""EGFR"" cells (based on the initial priming screen). On the bottom panel, we labeled
in red and gray the effect a given target has in the number of cells that resist BRAFY®°E inhibition
(based on the resistance screen). In this plot each bar represents one experimental replicate
(distinct from the one in Supplemental Fig. 5B).

Supplemental Figure 7. Effect of pharmacological inhibition of DOT1L on resistance to
BRAFY®F and MEK inhibition.

A. Resistance phenotype of melanoma cells following pharmacological inhibition of DOT1L. We
pre-treated melanoma cells for seven days with either DMSO, or various concentrations of the
DOT1L inhibitor pinometostat (EPZ5676). Then, we exposed the cells to 1uM vemurafenib for
three weeks.

B. To assess the effect of DOT1L inhibition on cellular proliferation, we the compared the
population size of WM989-A6-G3 cells over time treated with either 4uM of pinometostat
(DOT1L inhibitor) or with DMSO. The population size is estimated by the amount of nucleic
acids present in the population using a CyQuant GR dye. The values represent mean
fluorescence signal over triplicates. Error bars represent standard error of the mean.

C. Resistance phenotype of melanoma cells to BRAFV®°F and MEK inhibitors following
pharmacological inhibition of DOT1L. We pre-treated melanoma cells for seven days with either
DMSO or 4uM of pinometostat. We then exposed the cells to one of two BRAFY* inhibitors
(vemurafenib and dabrafenib, left panels), to one of two MEK inhibitors (cobimetinib and
trametinib, middle panels), or to a combination of a BRAF**® and MEK inhibitor (vemurafenib +
cobimetinib; dabrafenib + trametinib, right panels). White arrows point to a few of the many
colonies that grew under each condition.

Supplemental Figure 8. Percent of targets from the priming screen that validate. To
assess the sensitivity of our screen, we validated the effect observed in the initial priming screen
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for a select group of targets via NGFR immunofluorescence. Here, each dot represents an
individual single guide RNA, and we plot the change in single guide RNA representation
between NGFR"CH/EGFR"®" cells and controls (as measured in the priming screen). We then
organize all sgRNAs into tiers (y-axis, tiers one through four) based on the percent of single
guide RNAs against a target showing at least a two-fold change in representation on
NGFRMC"EGFR"“" cells. In red, we labeled targets that when tested again produced at least a
50% change in the frequency of NGFR"'®" cells. In black, we labeled targets that we tested but
did not validate, and in gray we show targets we did not test. We display the percent of genes
tested and validated at each tier on the right.

Supplemental Figure 9. Percent of targets from the resistance screen that validate.

To assess the sensitivity of our screen, we validated the effect observed in the initial resistance
screen for a select group of targets via colony formation assays. Here, each dot represents an
individual single guide RNA, and we plot the change in single guide RNA representation
between cells resistant to vemurafenib and cells that have never been exposed to the drug (as
measured in the resistance screen). We then organize all single guide RNAs into tiers (y-axis,
tiers one through four) based on the percent of single guide RNAs against a target showing at
least a two-fold change in representation on drug resistant cells. In red, we labeled targets that
when tested again produced at least a 50% change in the frequency colonies resistant to
BRAFY®E inhibition. In black, we labeled targets that we tested but did not validate, and in gray
we show targets we did not test. We display the percent of genes tested and validated at each
tier on the right.

Supplemental Figure 10. Transcriptional effects induced by knockout of select screen
targets.

A. The heatmap represents the biclustering analysis of different screen targets (rows) based on
the change in expression of all genes differentially expressed in at least one knockout
(columns). Within the heatmap, red indicates an increase in expression following the knockout,
while blue indicates a decrease in gene expression (see heatmap color key). Each target (rows)
represents transcriptomes of biological triplicates (unless otherwise stated on Supplemental
Table 4). Target labels (rows) in green indicate genes whose knockout increased the frequency
of NGFRMC"/EGFR"“" cells in the initial screen. In red are those whose knockout increased the
number of cells resistant to vemurafenib, and in gray are those that decreased the frequency of
either NGFRM"/EGFR"'" cell or of cells resistant to vemurafenib. As before, we organized
targets into confidence tiers indicated by the number of asterisks, based on the percent of single
guide RNAs against that target that showed an effect in the initial screen (see knockout color
key).

B. We performed principal component analysis of the transcriptional effects induced by the
knockout of select screen targets. We used as input the gene set enrichment scores from Fig.
5A to identify primary axes that account for the greatest degree of transcriptome variability
across knockout cell lines. The color indicates the effect of the knockout in the initial priming
screen. The size of the dot indicates the degree of confidence we have in each particular hit
based on the percent of the single guide RNAs against a target that passed a threshold of
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two-fold change in the initial priming screen. In black, we labeled melanoma cells where we did
not knockout any targets but either enriched for EGFR"'®" cells, NGFR"'®" cells,
EGFR"®"/NGFR"®" cells, or for cells resistant to vemurafenib.

Supplemental Figure 11. Technical validation of WM989-A6-G3-Cas9-5a3 cell line.

A. WM989-A6-G3-Cas9-5a3 cells expressing NGFR, EGFR, and both NGFR and EGFR are
more likely to survive and proliferate in the presence of vemurafenib ™. Here, we show the
number of colonies that grow upon vemurafenib exposure in a mixed population of
WM989-A6-G3-Cas9-5a3 or in the same population but enriched for EGFR™®" cells, NGFR™¢H
cells, or NGFR"®"/EGFR"“" cells.

B. In this plot, we show the single guide RNA representation (as percent GFP-positive cells) of
controls over time in WM989-A6-G3 cells with or without Cas9 expression. Negative controls
(black) are single guide RNAs aimed at ROSA26, a non-expressing gene in human melanoma.
Positive controls (red) target proteins necessary for cell viability. Only cells expressing both
Cas9 and a positive control single guide RNA should disappear from the population over time.

Supplemental Tables

All tables can be found at:
https://www.dropbox.com/sh/t08558cl4mepfm6/AABBVbITPSNNPoMC9NTro-9a?dI=0
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Figure 1. Pooled CRISPR screen design to identify modulators of cellular priming in the context of drug resistance to targeted therapies in melanoma.

A. (top) In melanoma, the initial molecular profile of a cell (primed vs. un-primed) within an otherwise homogeneous population, indicated by green vs. gray coloring of cells, dictates the ultimate behavior of the cell
when exposed to therapy (e.g. proliferation vs. death). Changing the number of primed cells (A, bottom) can alter the number of resistant colonies that form upon addition of the BRAFY®°E inhibitor vemurafenib.

B. We designed a pooled CRISPR screen to detect modulators of the cellular priming that leads to drug resistance. After transducing a library of single guide RNAs and expanding the population, we isolated cells
with high expression of both NGFR and EGFR, then sequenced the single guide RNAs to determine which gene knockouts alter the frequency of these cells. Changes in the frequency of a given single guide RNA in
this population (e.g. targets A and C) indicate that these targets may affect the frequency of NGFR"'S"/EGFR"S cells in the population, and thus may affect the frequency of cellular priming.

C. After transducing a population of melanoma cells and isolating NGFR"CY/EGFR"'®" cells (see Fig. 1B), we quantified the frequency of each single guide RNA in the resulting population. Our screening scheme
utilized three separate pooled single guide RNA libraries, one targeting epigenetic domains (top left), another targeting kinases (bottom left), and a final one targeting transcription factors (right). We organized the
targets within each single guide RNA library by biological process. (While a given target could fall into several categories, each target is assigned to a single group and plotted only once.) Each dot represents a
single guide RNA, grouped by gene target (5-6 single guide RNAs per target), with the log, fold change representing the number of times the single guide RNA was detected in the sorted population versus an
unsorted population of melanoma cells transduced with the same library. For display purposes, all single guide RNAs with fold changes beyond the axis limits were placed at the edge of the axis as indicated. For
targets considered “hits” by our rubric (see methods), we labeled the single guide RNA dot by the color assigned to that biological process. Dots at the bottom of each pane correspond to non-targeting controls
(single guide RNAs not targeting any loci in the genome) and cell viability controls (e.g. proteins required for cell survival and proliferation, but not specifically associated with rare-cell behavior). Supplemental Fig. 1
provides details on the effect of these editing controls.
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Figure 2. Effects of modulators of cellular priming on resistant colony formation.

A. (top) In melanoma, the frequency of primed cells in the population dictates the degree of resistance to BRAF'®E inhibition. Changes to the mapping between cellular priming and a cell’s
response to the drug (A, bottom) can alter the number of resistant colonies that form upon addition of the BRAFV6°E inhibitor vemurafenib.

B. Relationship between the frequency of NGFR"" cells (x-axis) and the number of resistant colonies (y-axis). We plot the frequency of NGFR"" cells as the mean log, fold change over
three replicates in the number of NGFR"¢H cells following knockout of the gene indicated, normalized by cells with non-targeting sgRNAs. (For variability of the effect size across replicates of
a given target, see Supplemental Fig. 5). We quantified the log, fold change in the number of resistant colonies in the knockout cell line as compared to the non-targeting control cell lines.
Orange points are targets identified as high confidence hits (Tier 1 and Tier 2) in the cellular priming screen; blue are those identified as high confidence hits in the resistance screen; purple
are those identified as high confidence hits in both screens; gray, those that may have shown an effect in either or both screens, but were not classified as high confidence hits in either
screen.

C. To validate the phenotypic effect of targets identified by our genetic screen, we knocked out 83 of the targets and quantified the frequency of NGFR"¢H cells by immunofluorescence using
anti-NGFR antibodies (top). In a subset of those (35 targets) we also quantified the number of resistant colonies (bottom) that form upon BRAFV6%E inhibition. Here we show example
validation of BRD2 and LATS2 knockouts (hits in the cellular priming screen) and well as of CSK knockout (hit in the resistance screen only). The schematic represents the effect of the
knockout in the cellular priming screen on the frequency of NGFRHE"/EGFRe cells.

D. Effect overlap between hits of cellular priming and resistance screens. Each target’s position (dots) represents the number of times (as median log, fold change) the single guide RNAs
were detected in the NGFRM'®"/EGFR"'®" population vs. an unsorted population of melanoma cells (priming screen, x-axis), or in the population of cells resistant to vemurafenib vs. the
population of cells prior to treatment (resistance screen, y-axis). Orange labels correspond to high confidence targets (Tier 1 and Tier 2) in the cellular priming screen; blue corresponds to
high confidence targets in the resistance screen; purple corresponds to high confidence targets in both screens. The effects of all targets in both screens are displayed as a density
histogram.
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Figure 3. Effect of modulators of cellular priming on growth of BRAF'***E-resistant tumors in vivo.

Tumor volume as a function of time in patient-derived xenografts (NOD/SCID mice) treated with a BRAFV6%E inhibitor (top) or vehicle control (bottom). Here, we injected each mouse
with DOT1L-, LATS2-, or BRD2-knockout WM989-A6-G3-Cas9 cells (orange) or with the same cell line without a gene knockout (gray). The values plotted represent the mean tumor
volume across mice carrying the same knockout. Error bars represent the standard error. *** are time points at which the difference in tumor volume between knockout and control
groups reached p <,0.05. Similarly, * represents p = 0.1 <= 0.05 (see methods). Each group started with n = 6 mice, and we plotted the mean tumor volume up until both knockout
and negative control groups have at least n = 3 mice each.
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Figure 4. Effect of targetting cellular priming at different times relative to BRAF5%E inhibition.

A. To assess the effect of DOT1L inhibition (green arrows, pinometostat at 4uM) at different times on a cell’s ability to survive BRAFV5E inhibition, we first established a baseline number of
colonies that grow when WM989-A6-G3 cells are exposed to 1M of vemurafenib for three weeks (leftmost panel). Then, in a separate population, we either inhibited BRAF'5E and DOT1L
simultaneously (co-treatment), inhibited DOT1L first (seven days) and then BRAF'5%F (three additional weeks; pre-treatment), or inhibited DOT1L before (seven days) and during three weeks of
vemurafenib treatment (pre-treatment and co-treatment).

B. Number of resistant colonies that result from each therapeutic regimen in Fig. 4A as the mean fold change over baseline (vemurafenib alone) for three replicates normalized to the number of
cells in culture prior to BRAFY&®E inhibition. Error bars indicate the standard error of the mean over triplicates.


https://doi.org/10.1101/638809
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638809; this version posted November 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0

Figure 5

A Gene set enrichment analysis of GO Term gene sets (Biological process)
Columns: gene sets

International license.

B Select list of gene sets in:
Group E

Group D

Neural crest cell differentiation

Amino acid biosynthetic process

Regulation of MRNA metabolic process

Fatty Acyl Co-A metabolic process

Nucleotide base excision repair

A B CD E F G H | J
_— 10ckouts Melanocyte differentiation
I\l\’H |‘H”\H|\H‘HH |rll I H‘\ I Neural crest cell migration
| | . U
“ H“m {| “ M “H ‘ X3 1 . Regulation of cell matrix adhesion
Hilg “ I \‘H \” \ ‘ ‘ NGFRMEGFR" cells . )
’\ Il ‘\ 111 | |‘ | U EGFR" cells #2 Regulation of chemotaxis
|| [ [Ih - TADA2B )
- ‘ | ‘ ‘H ‘ EGFR" cells #1 Regulation of MAPK cascade
5 LI \ ||| NGFR cells #1 : -
2 ,‘H |’H‘|H H | - ZEB2 Angiogenesis
E: i \ \‘ H ‘ - DOTIL
N “H \ ‘I Il | I - TLK2 Hippo signaling
LI \HH ‘ H’\ ‘ H‘ - BRD8
|\ \’ H” H‘ Il }\ B | - suva20H1 Cell fate specification
1l W “ \H \ I\I‘ ’\H \ \H vemurafenib resistant cells A .
Il ‘HI ‘\ | ‘ \H H’ HH{ ‘\ vemgrafenib resistant cells B See supplemental table 6 for full list of
- LATS2 11 gene sets
iH | \ \ ‘ ‘ \‘ ‘ - GATA4
HHM\ HHH“ “ Hw HH (Nl N’H \IH\ H |H - PRKAA1
| U g H | ’HI I\ ‘ m - FEZF2 C Relationship between expression of differentiation
H“ ‘ programs and resistance to vemurafenib
H\ H\ || \ I\ I f
(I ‘ I I Decreased Increased
h \“ ‘l .H H\ ” ‘ | ” \‘ | \‘H‘ PRPF4B 10 differentiation ; differentiation
QN e} |
= SOX10 I
o H | \ \ KDM1A 5 A |
|1 ng W | o e
E 2¢€ MITF ! RUNX3
1 H’ i f”‘mu | | ‘H || R | FEZE2
. ] ° ! °
‘ ‘ \} M Il HI\H HH\"\MWH‘ ‘ “ HH‘ il - 23 5 PRKRIR | KMT2D T';P,%é‘
L_L Ll \ | \‘Hl | Il |H HI »l L) H\Hl H‘ O - zPx g9 ! } S2
“\ ‘ | \HH 5 2 JUNB, &g | ADCK3 eBD8
i ‘ \‘ ‘I ‘ i H\ \‘ \Iw H\H -+ DSTYK 23 © | DSTYR. GATA4
\‘I\ \IH\ “I m \‘ H|||h Il HHH \l‘” “"\l’ HWlll ‘ v ||\ \‘ @ © STK11 1 °
\ I \ \ | LR \I’H H{\ LR L 0 11 H I H\H\ CSNkep2 2§ o 4] FosL1
i1 ‘ H\ ‘ « KMT2D 5§ i
\Ill‘\\‘l‘l‘l\‘ﬂ mw “\ \H\‘HHMH [ |H \ Il ‘ll H A\\Hm \“ ] | \HHHH H\l - 38 BRD%A?RK N.SPD&NQ PRKAAT
=2 i
- HH | H‘H i | “ | ‘ ‘ ‘ |\ \‘ ‘\“ | Il |I" H Il |H Hl : g MAP3K1)‘ MAP2K:7 C":i:ﬁ;igsg’;::”
2 I 111 /\ \ HH | H \|| A i H ~+ PRKRIR 1 [ cluster 1 cluster 2 cluster 3
2 i \ H \ ‘ \ \ il \ \ ‘\ . -5 lcluster 4 cluster 5 cluster 6
b gy H 1 ”\u‘ M H u ‘u“w i ! || T RAET 2 0 1 2
E M HH | \} | | i \Hi I Enrichment score of neural crest
||\ I | ‘ (] I “ \w (1 I } 1] - differentiation gene set
[ [T ‘ \H ‘\ I H HI‘H\‘ \|H|1 ‘l‘\w H”H H\‘\H H ”‘Hl HHl\‘\H \'
- \‘| H N “ \}\ H}\ ‘U\ 'HHH \ H’ HHI‘HH "~ HOXB6 D 91 cluster 1 SOX10
| ‘ ‘ I H ‘ H ’ c‘lus}er g SUV420H1
. cluster
- CDK11B o cluster 4 SeRUNX3
\ | = cluster 5 MITF
N | il |” . O ~g| cluster6 hd
3 huh J0et g M £g FEZF2 PRKRIR
3 ‘H \ H i H ‘ H h“ « PKN2 B ES *DOTIL
. |l I . “\ |. “ I uu”\ u\uuw‘ i ||u~ 22 B
=3 K BRD8 TS2
| "H () H” \' f W\h Wl | “ ‘!u (1 B soore] SoiiE,,
g5 b DSTYKUKE
M H\ O L0100 A H‘H I |||| \ \H LY HI'HHI\” [ |H‘ H\I a8 v
o {» i ‘ HHH 1 I ‘\ LM - 5roz sor 85 §TK11 Fostighe #ATA
= | HWH ”{ ‘ [ H\ LI \le -+ BRD2.BD2 ] “ o2P300
% H \ (RN - DYRK1A £20 J_\IFA‘FS;WH
3 M| “ i ”m\u‘ i V\ H\ u‘u - 88 yveLi
pi (i M AN -5 5= BRD2 %ﬁfa TNSP1 RRKAAT
jil ’ \ H \‘ \ |H I’\l I ‘ \ M II H - MAP2K7 * AP2K7 e
H W it ’ il |||‘m ( f‘\ nN”H' N i Wm B S
‘ ‘| ’ ‘ I ‘ ‘ - 4 2 0 2
J | \ III \‘ \l ‘”‘ | HH” ”\ V H " H\ ll‘\ wer Frequency of NGFRH®H cells
’ log, fold ch: |
© ‘ ‘ M H‘V ‘} ‘ " ‘ H “ “‘ ‘ MAPKAPK2 (mean log, fold change control)
ko) ’ll \ “ W Il H\ HH\ - ZFP57
E] \I ’\I H\ I IIH ‘ ’ - MAP3K1
© U \ H I \ \ \HHI \“ Il - KDM2A
‘ i [ (i \ ’\ I H\! ~ VDR
gl } / h ;
i ||H ‘I\ (TBAVHD | \" | i \\ |H -
’ \ | \H HH ‘ ‘ } ‘l ‘ - SIX5
| H LA I HH ‘ | ‘ Hl DEAF1
NFATC2

Heatmap color key

Enrichment Score by Gene Set Enrichment Analysis
(GSEA)

-1 0 1
Knockout color key

-2

/ sgRNAs enriched in | High confidence targets
[ S NGFRICHEGFR'™H | o 5 Tier 1: 275% of the
] cells ZE sgRNA exhibited =
' g © sgRNAs enriched in | £ 6 *** two-fold change in
i @8 cells resistant to 3% the screens
{25  vemurafenib R o~ Tier2:266%
i @ o sgRNAs depleted in E g
[ ST NGFRIPVEGERY™ | '&5 | ow confidence targets
LT cells ORin cells 5 O+ Tier 3: 250%
@ resistant to 22+ Tera =50%
vemurafenib

I These are high confidence targets (tier 1 or tier 2) in

both screens

Figure 5. Gene set enrichment analysis of
the transcriptional effects induced by the
knockout of select screen targets.

A. The heatmap represents biclustering
analysis of different knockout cell lines (rows)
based on the Gene Set Enrichment Analysis
score of Gene Ontology gene sets (Biological
process GO terms, columns in heatmap).
Within the heatmap, red indicates enrichment
in the sense that there are more differentially
upregulated genes in knockout vs. control in
that gene set than expected by chance,
whereas blue indicates enrichment of
downregulated genes (shade indicates degree
of enrichment). Each target knockout (rows)
represents transcriptomes of biological
triplicates (unless otherwise stated on
Supplemental Table 4). Target labels (rows) in
green indicate genes whose knockout
increased the frequency of NGFRMSH/EG-
FRMeH cells in the screen, while red indicates
targets whose knockout increased the number
of cells resistant to vemurafenib, and gray
indicates targets that decreased the frequency
of either NGFRHCH/EGFR"® cells or of cells
resistant to vemurafenib. As before, we
organized targets into high confidence hits
(Tier 1 and Tier 2) and low confidence hits
(Tiers 3 and Tier 4) based on the percentage
of single guide RNAs against a target that
showed at least a two-fold change in the initial
screen (see knockout color key).The asterisks
next to the label indicate the tier (Tier 1, ****;
Tier 2, ***; Tier 3, **; Tier 4, *). Information
regarding validation rates of each tier can be
found in the supplemental figures 8 and 9.
Based on the dendrogram on the left, we
grouped targets into six clusters. We also
clustered gene sets (columns) into groups,
labeled by the letters on top of the heatmap.
The white boxes inside the heatmap demark
groups of gene sets specifically upregulated in
a given cluster.

B. Select list of gene sets in groups D and E
from Fig. 5A. For a complete list of gene sets
within each group, see supplementary table 6.
C. Relationship between the expression of
genes involved in neural crest differentiation
(x-axis) and the number of colonies resistant
to vemurafenib (y-axis) following the knockout
of a target. For each knockout, we plot the
expression of neural crest differentiation genes
as the enrichment score obtained through
gene set enrichment analysis for the neural
crest differentiation gene set (GO term). We
quantified the log,(fold change) in the number
of resistant colonies in the knockout cell line
as compared to the non-targeting control cell
lines. Colors represent the cluster grouping of
each knockout based on Fig. 5A.

D. Relationship between the frequency of
NGFR"eH cells (x-axis) and the number of
resistant colonies (y-axis). We plot the
frequency of NGFRM®" cells as the median
log,(fold change) over three replicates in the
number of NGFR"¢H cells following knockout
of the indicated gene normalized by cells with
non-targeting single guide RNAs. (For
variability of the effect size across replicates of
a given target, see Supplemental Fig. 5.) We
quantified the log,(fold change) in the number
of resistant colonies in the knockout cell line
as compared to the non-targeting control cell
lines. We color-coded all targets by groupings
based on their transcriptomes (see Fig. 5A)
following knockout of the gene indicated.
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Figure 6

The number of primed cells beyond a population’s pre-resistance threshold
determines the number of cells that survive the drug
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Figure 6. Model of pre-resistance threshold and cellular priming in the
development of resistance to targeted therapies.

Variability in the expression of various markers is associated with an individual cell’s
probability to survive drug treatment. In one simple model, cellular variability occurs
along a single ordinate, which can be conceptualized as the degree of “greenness”.
In this model, there is a threshold (red line, top panel) that divides cells along this
axis into those that adapt to the drug and become resistant vs. those that no longer
proliferate when challenged with drug. Here, there are at least two ways by which
one could conceivably alter the number of cells that survive the drug. In one
scenario (middle) the distribution of “greenness” could change, leading to more cells
being above the threshold, leading to more resistant colonies. In another scenario,
the distribution of phenotypes remains unchanged, but the threshold itself moves,
also leading to more resistant colonies. Our results suggest (but do not prove) that
both scenarios may play out to varying degrees as a result of different genes being
knocked out.
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Supplemental Figure 1

A Change in sgRNA representation of negative and positive controls
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Supplemental Figure 1. Effect of negative and positive control single guide RNAs in the CRISPR screens. Our pooled CRISPR screen included non-targeting single
guide RNAs as negative controls (gray bars, 50+ single guide RNAs) as well as single guide RNAs affecting cell viability as positive controls (red bars, 25+ single guide RNAs).
We quantified the change in representation of these single guide RNAs over time and report the log, fold change in representation from six days after transfection to right
before selection (vemurafenib exposure or selection by NGFR and EGFR expression). We expect positive controls to lose representation over time more often than negative
controls. Our screening scheme utilized three separate pooled single guide RNA libraries, one targeting kinases (top), another targeting epigenetic domains (middle), and a
final one targeting transcription factors (bottom).
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Supplemental Figure 2. Secondary validation of hits across multiple cell lines by secondary targeted CRISPR screening. We assessed the robustness and generality of the effect of hits
identified in the priming screen (WM989-A6-G3-Cas9-5a3, black bars) by carrying out a secondary screen containing single guide RNAs for 34 of the high confidence hits (Tiers 1 and 2) we identified
in the priming screen, as well as another 52 lower confidence factors from Tiers 3 and 4 (these lower confidence hits may also have been high confidence hits in the resistance screen). See
Supplemental Table 5 for a list of the targets. We carried out this screen in WM989-A6-G3-Cas9 (orange bars) as well as in another BRAF6°F melanoma cell line (451Lu-Cas9, blue). Within each
tier, names labeled in green correspond to targets whose single guide RNAs are enriched in NGFRGH/EGFRSH cells in the initial screen and gray represents targets whose single guide RNAs are
underrepresented in these rare cells. We plotted the median log, fold change in single guide RNA representation (normalized by non-targeting controls) across three single guide RNAs. Error bars
represent the standard deviation of the fold change across all single guide RNAs for a given target. Dotted error bars in red extend beyond the limits of the graph. Note that the limits of the axes vary
between tiers. We found that 25 of the 34 high confidence hits showed at least a two fold change in the frequency of NGFR"'®"/EGFR"¢H cells concordant with the effects detected in the original
screening clonal cell line (WM989-A6-G3-Cas9-5a3). In 451Lu-Cas9 cells, 20 of the 34 targets also showed a change in the frequency of NGFRMH/EGFRHSH cells, with 11 of those exhibiting at least
a two-fold change. Although quantitatively they were not as strong as the effects of the Tier 1 and 2 hits, even Tier 3 and 4 hits displayed qualitative agreement in these secondary screens.
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Supplemental Figure 5. Validation of effects of hits from priming and resistance screens by via NGFR immunofluores-
cence and resistant colony formation.

A. Frequency of NGFR"¢H cells following the knockout of select targets. Each bar represents the change in the number of
NGFR"'e" cells following knockout of the gene indicated over replicates, each using a different single guide RNA. Error bars
represent the standard error of the mean across the replicates. We carried out each measurement over three replicates, but
excluded samples with low cell density (< 500 cells). The star above or below the bars indicate targets where, after excluding
samples with low cell numbers, n = 1. Tier refers to the degree of confidence we have in each particular hit, with tier 1
representing highest confidence hits for which = 75% of the single guide RNAs passed a threshold of two-fold change in the
initial screens. We performed this analysis for hits from both the priming screen (top) and the resistance screen (bottom). 21 of
34 high confidence hits from the priming screen showed at least a 50% increase or decrease in the frequency of NGFR"H cells
over control. Of the lower confidence hits (Tier 3 and Tier 4) 21 out of 49 targets increased or decreased the frequency of
NGFR"" cells by 50% or more.

B. Resistance phenotype of melanoma cells following the knockout of hits from the initital screens. Each bar represents the log,
fold change over non-targeting control in the number colonies able to grow in vemurafenib following knockout of the gene
indicated. The number of colonies for each target is normalized to the number of cells present in culture before BRAFV6%&
inhibition, reported as number of colonies per every 10,000 cells in culture prior to treatment (see methods). As before, the
different tiers represent the percent of single guide RNAs against a given target exhibiting at least a two-fold change throughout
the initial (left) priming or (right) resistance screens. On the left panel, we label in green and gray the effect a given target has in
the frequency of NGFRMCY/EGFR"®" cells (based on the initial priming screen). On the right panel, we label in red and gray the
effect a given target has in the number of cells that resist BRAF'6%E inhibition (based on the initial resistance screen). In this
plot, each bar represents one experimental replicate. See Supplemental Fig. 6 for replicates.

C. These images show the effect of CSK knockout on a cell’s ability to develop resistance to BRAFY6% inhibition. Here, we
plated CSK-knockout WM989-A6-G3-Cas9-5a3 cells and exposed them to 1uM vemurafenib for three weeks. As before, after
the treatment we counted the number of resulting colonies and compared it to the number of colonies resulting from
WM989-A6-G3-Cas9-5a3 cells without the knockout. Note that the number of resistant cells in the CSK sample is too large to
accurately identify individual colonies. We only counted colonies we could clearly delineate, and thus, the number of colonies
reported is an underestimate.
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Supy | Figure 6. Validation of effects of hits by resistant colony formation.

Resistance phenotype of melanoma cells following the knockout of hits from the initial screens.
Each bar represents the log, fold change over non-targeting controls in the number of colonies
able to grow following knockout of the gene indicated. The number of colonies for each target is
normalized to the number of cells present in culture before BRAFYS%E inhibition, reported as
number of colonies per every 10,000 pre-treatment cells (see methods). As before, the different
tiers represent the percent of single guide RNAs against a given target exhibiting at least a
two-fold change throughout the (top) priming or (bottom) resistance screens. On the top panel, we
labeled in green and gray the effect a given target has in the frequency of NGFRMIGH/EGFRMEH
cells (based on the priming screen). On the bottom panel, we labeled in red and gray the effect a
given target has in the number of cells that resist BRAF'5% inhibition (based on the resistance
screen). In this plot, each bar represents one experimental replicate (distinct from the one in
Supplemental Fig. 5B).
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Supplemental Figure 7. Effect of pharmacological inhibition of
DOTIL on resistance to BRAF'®*t and MEK inhibition.

A. Resistance phenotype of melanoma cells following pharmacological
inhibition of DOT1L. We pre-treated melanoma cells for seven days with
either DMSO, or various concentrations of the DOT1L inhibitor
pinometostat (EPZ5676). Then, we exposed the cells to 1uM
vemurafenib for three weeks.

B. To assess the effect of DOT1L inhibition on cellular proliferation, we
compared the population size of WM989-A6-G3 cells over time treated
with either 4uM of pinometostat (DOT1L inhibitor) or with DMSO. The
population size is estimated by the amount of nucleic acids present in the
population using a CyQuant GR dye. The values represent mean
fluorescence signal over triplicates. Error bars represent standard error
of the mean.

C. Resistance phenotype of melanoma cells to BRAF'6°¢ and MEK
inhibitors following pharmacological inhibition of DOT1L. We pre-treated
melanoma cells for seven days with either DMSO or 4uM of pinometo-
stat. We then exposed the cells to one of two BRAFV6E inhibitors
(vemurafenib and dabrafenib, left panels), to one of two MEK inhibitors
(cobimetinib and trametinib, middle panels), or to a combination of a
BRAFV6%& and MEK inhibitor (vemurafenib + cobimetinib; dabrafenib +
trametinib, right panels). White arrows point to a few of the many
colonies that grew under each condition.
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(7 days)

DOT1L inhibition
EPZ5676 (4uM)
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Supplemental Figure 8. Percent of targets from the priming screen that validate. To assess the sensitivity of our screen, we validated the effect observed in the initial priming
screen for a select group of targets via NGFR immunofluorescence. Here, each dot represents an individual single guide RNA, and we plot the change in single guide RNA representa-
tion between NGFRMCHEGFR¢ cells and controls (as measured in the initial priming screen). We then organize all sgRNAs into tiers (y-axis, tiers one through four) based on the
percent of single guide RNAs against a target showing at least a two-fold change in representation on NGFR"SH/EGFRM®H cells. In red, we labeled targets that when tested again
produced at least a 50% change in the frequency of NGFR"® cells. In black, we labeled targets that we tested but did not validate, and in gray we show targets we did not test. We
displayed the percent of genes tested and validated at each tier on the right.
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Supplemental Figure 9. Percent of targets from the resistance screen that validate. To assess the sensitivity of our screen, we validated the effect observed in the initial
resistance screen for a select group of targets via colony formation assays. Here, each dot represents an individual single guide RNA, and we plot the change in single guide
RNA representation between cells resistant to vemurafenib and cells that have never been exposed to the drug (as measured in the initial resistance screen). We then
organize all single guide RNAs into tiers (y-axis, tiers one through four) based on the percent of single guide RNAs against a target showing at least a two-fold change in
representation on drug resistant cells. In red, we labeled targets that when tested again produced at least a 50% change in the frequency colonies resistant to BRAFY6?°E
inhibition. In black, we labeled targets that we tested but did not validate, and in gray we show targets we did not test. We displayed the percent of genes tested and validated
at each tier on the right.
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Supplemental Figure 10
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Supplemental Figure 10. Transcriptional effects induced by knockout of select screen targets.

A. The heatmap represents the biclustering analysis of different screen targets (rows) based on the change in expression of
all genes differentially expressed in at least one knockout (columns). Within the heatmap, red indicates an increase in
expression following the knockout, while blue indicates a decrease in gene expression (see heatmap color key). Each target
(rows) represents transcriptomes of biological triplicates (unless otherwise stated on Supplemental Table 4). Target labels
(rows) in green indicate genes whose knockout increased the frequency of NGFRMH/EGFR"eH cells in the screens. In red are
those whose knockout increased the number of cells resistant to vemurafenib, and in gray are those that decreased the
frequency of either NGFRMCY/EGFR"'® cell or of cells resistant to vemurafenib. As before, we organized targets into
confidence tiers indicated by the number of asterisks, based on the percent of single guide RNAs against that target that
showed an effect in the screen (see knockout color key).

B. We performed principal component analysis of the transcriptional effects induced by the knockout of select screen targets.
We used as input the gene set enrichment scores from Fig. 5A to identify primary axes that account for the greatest degree of
transcriptome variability across knockout cell lines. The color indicates the effect of the knockout in the initial priming screen.
The size of the dot indicates the degree of confidence we have in each particular hit based on the percent of the single guide
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Supplemental Figure 11
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Supplemental Figure 11. Technical validation of WM989-A6-G3-Cas9-5a3 cell line.

+ cas9
WM989-A6-G3-Cas9 5a3 cells

- cas9
WM989-A6-G3 cells

(% GFP*cells)

(% GFP*cells)

negative control sgRNAs sgRNAs affecting cell viability

90 1

60

30

days days days
post-transfection post-transfection post-transfection
5 9 14 21 28 36 43 5 9 14 21 28 36 43 5 9 14 21 28 36 43
IIIIIII III..-_ III.--_
ROSA26 KO CDK9 KO RPA2 KO
ROSA26 KO CDK9 KO RPA2 KO

A. WM989-A6-G3-Cas9-5a3 cells expressing NGFR, EGFR, and both NGFR and EGFR are more likely to survive and proliferate in the presence of vemurafenib (Shaffer et al. 2017).
Here, we show the number of colonies that grow upon vemurafenib exposure in a mixed population of WM989-A6-G3-Cas9-5a3 or in the same population but enriched for EGFRGH

cells, NGFR"®H cells, or NGFRMH/EGFR"®H cells.

B. In this plot, we show the single guide RNA representation (as percent GFP-positive cells) of controls over time in WM989-A6-G3 cells with or without Cas9 expression. Negative
controls (black) are single guide RNAs aimed at ROSA26, a non-expressing gene in human melanoma. Positive controls (red) target proteins necessary for cell viability. Only cells
expressing both Cas9 and a positive control single guide RNA should disappear from the population over time.
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