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Abstract 
(170 words maximum) 
The availability of high-quality RNA-sequencing and genotyping data of post-mortem 
brain collections from consortia such as CommonMind Consortium (CMC) and the 
Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium 
enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate 
cerebral cortical eQTL from 1433 samples available from four cohorts (identifying 
>4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 
261 samples (identifying 874,836 significant eQTL for >10,000 genes), and provide 
the results as a community resource. We find substantially improved power in the 
meta-analysis over individual cohort analyses, particularly in comparison to the 
Genotype-Tissue Expression (GTEx) Project eQTL. In addition, we observed 
differences in eQTL patterns between cerebral and cerebellar brain regions. We 
provide these brain eQTL as a common resource for use across the community in 
research programs. As a proof of principle for their utility, we apply a colocalization 
analysis to identify genes underlying the GWAS association peaks for schizophrenia 
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and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 
(posterior probability of colocalization 0.975). 
 
Introduction 
Defining the landscape of genetic regulation of gene expression in a tissue-specific 
manner is useful for understanding both normal gene regulation and how variation in 
gene expression can alter disease risk. In the latter case, a variety of approaches now 
leverage the association between genetic variants and gene expression changes, 
including colocalization analysis1–7, transcriptome-wide association studies 
(TWAS)8,9, and gene regulatory network inference10–16.  
 
There has been a relative lack of expression quantitative trait loci (eQTL) studies from 
the brain. Because of the more accessible nature of tissues such as blood or 
lymphoblastoid cell lines (LCLs), much of the large-scale identification of expression 
quantitative trait loci (eQTL) has occurred in these tissues17–20. For most other tissues, 
obtaining samples for RNA sequencing (RNA-seq) requires invasive biopsy, and brain 
tissues are typically only available in post-mortem brain samples. One effort, the 
Genotype-Tissue Expression (GTEx) project21,22, has profiled a broad range of tissues 
(42 distinct) for eQTL discovery, however, samples sizes in brain have been small 
(typically 100-150). Recently, efforts to understand gene expression changes in 
neuropsychiatric23–25 and neurodegenerative diseases26–33 have generated brain RNA-
seq from disease and normal tissue, as well as genomewide genotypes. These analyses 
have found little evidence for widespread disease-specific eQTL, as well as high 
cross-cohort overlap24,34, meaning that most eQTL detected are disease-condition 
independent. This makes it possible to perform meta-analysis despite differences in 
disease ascertainment of the samples, to generate a well-powered brain eQTL resource 
for use in downstream research.  
 
Here we generate a public eQTL resource from cerebral cortical tissue using 1433 
samples from 4 cohorts from the CommonMind Consortium (CMC)23,24 and 
Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) 
Consortium29,30, as well as eQTL for cerebellum using 261 samples from AMP-AD. 
We show that eQTL discovered in GTEx, which consists of control individuals 
(without disease) only, are replicated in this larger brain eQTL resource. We further 
show widespread differences in regulation between cerebral cortex and cerebellum. 
To demonstrate one example of the utility of these data, we apply a colocalization 
analysis, which seeks to identify expression traits whose eQTL association pattern 
appears to co-occur at the same loci as the clinical trait association, to identify 
putative genes underlying the GWAS association peaks for schizophrenia35. 
 
Results 
We generated eQTL from the publicly available AMP-AD (ROSMAP26,27,34 (Data 
Citation 1), Mayo RNAseq28,36,37 (Data Citation 2)) and CMC (MSSM-Penn-Pitt24 
(Data Citation 3), HBCC (Data Citation 4)) cohorts with available genotypes and 
RNA-seq data, using a common analysis pipeline (Supplementary Table 1) 
(https://www.synapse.org/#!Synapse:syn17015233). Analyses proceeded separately 
by cohort. Briefly, the RNA-seq data were normalized for gene length and GC content 
prior to adjustment for clinical confounders, processing batch information, and hidden 
confounders using Surrogate Variable Analysis (SVA)38. Genes having at least 1 
count per million (CPM) in at least 50% of samples were retained for downstream 
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analysis (Supplementary Table 2). Genotypes were imputed to the Haplotype 
Reference Consortium (HRC) reference panel39. eQTL were generated adjusting for 
diagnosis (AD, control, other for AMP-AD cohorts and schizophrenia, control, 
bipolar/other for CMC cohorts) and principal components of ancestry separately for 
ROSMAP, Mayo temporal cortex (TCX), Mayo cerebellum (CER), MSSM-Penn-Pitt, 
and HBCC. For HBCC, which had a small number of samples derived from infant and 
adolescents, we excluded samples with age-of-death less than 18, to limit 
heterogeneity due to differences between the mature and developing brain.   
 
We then performed a meta-analysis using the eQTL from cortical brain regions from 
the individual cohorts (dorsolateral prefrontal cortex (DLPFC) from ROSMAP, 
MSSM-Penn-Pitt, and HBCC and TCX from Mayo). The meta-analysis identifies 
substantially more eQTL than the individual cohorts (Table 1, Fig. 1). There is a 
strong relationship between the sample size in the individual cohorts and meta-
analysis and the number of significant eQTL and genes with eQTL (Fig. 1b, 1c). 
Notably, the meta-analysis identified significant eQTL (at FDR ≤ 0.05) in >1000 
genes for which no eQTL were observed in any individual cohort. Notably, we find 
significant eQTL for 18,295 (18,433 when considering markers with minor allele 
frequency (MAF) down to 1%) of the 19,392 genes included in the analysis. 
 
We then compared our cortical eQTL to GTEx (v7)21, which is the most 
comprehensive brain eQTL database available in terms of number of available brain 
tissues (Table 1, Table 2). Due to the substantially larger power in these data, we find 
> 3.8 million eQTL not identified in GTEx cortical regions (Anterior Cingulate 
Cortex, Cortex or Frontal Cortex) and we find eQTL for >11,000 genes with no eQTL 
in these cortical regions in GTEx. We first evaluated the replication within our cortical 
and cerebellar eQTL of the region specific eQTL identified in GTEx. The cortical 
eQTL generated through the current analyses strongly replicate the eQTL available 
through GTEx, not only for cortical regions, but for all brain regions including 
cervical spinal cord (Table 2). Interestingly, the replication in these cortical eQTL of 
eQTL derived from the two GTEx cerebellar brain regions (cerebellum and cerebellar 
hemisphere) is consistently lower than for other brain regions represented in GTEx. 
However, replication of GTEx cerebellar eQTL is high when compared to the 
cerebellar eQTL generated in this analysis from the Mayo Clinic CER samples. We 
also performed the reverse comparison, by examining the replication of our eQTL in 
those region-specific eQTL identified in GTEx. Unsurprisingly, the replication levels 
were substantially lower, due to the lower power in the GTEx analyses.  
 
Additionally, we compared our eQTL to a publically available fetal brain eQTL 
resource40 and found good replication of these eQTL as well (estimated replication 
rate π1 = 0.909 for the cortical meta-analysis, and π1 = 0.861 for cerebellum), though 
somewhat lower than the replication observed in the GTEx cohorts, which are 
comprised of adult-derived samples. 
 
Finally, as a proof of concept, we performed a colocalization analysis between our 
eQTL meta-analysis and the Psychiatric Genomics Consortium (PGC) v2 
schizophrenia GWAS summary statistics35. Seventeen genes showed posterior 
probability of colocalization using coloc7 (PP(H4)) >0.7 (Table 3), with 3 showing 
PP(H4) > 0.95 (FURIN, ZNF823, RP11-677M14.2). FURIN, having previously 
identified as a candidate through colocalization24 has recently been shown to reduce 
brain-derived neurotrophic factor (BDNF) maturation and secretion when inhibited by 
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miR-338-3p41. ZNF823 has been identified in previous colocalization analyses42,43. 
RP11-677M14.2, a lncRNA located inside NRGN, while not previously identified 
through colocalization analysis, has been shown to be down-regulated in the amygdala 
of schizophrenia patients44. Noteably, NRGN does not appear to show eQTL 
colocalization (PP(H4) = 0.006), instead showing strong evidence for the eQTL and 
GWAS associations occurring independently (PP(H3) = 0.994). 
 
Discussion 
Using resources generated in the AMP-AD and CMC consortia, we have generated a 
well-powered brain eQTL resource for use by the scientific community. 
Unsurprisingly, we see a strong relationship between the number of significant eQTL, 
as well as genes with significant eQTL, and sample size using analyses from the 
individual cohorts and meta-analysis of those cohorts. This result has previously been 
shown for lower sample sizes21. We also show higher replication of GTEx eQTL in 
the meta-analysis relative to the individual cohorts.  
 
Notably, we find significant eQTL for nearly every gene in our analysis, which 
include all but very lowly expressed genes (less than 1 cpm in more than 50% of 
samples). The wide discovery of eQTL is potentially beneficial for analyses utilizing 
these results, such as colocalization analysis or TWAS imputation, because more 
genes with significant eQTL means more genes can be evaluated with these 
approaches. Because we have discovered eQTL for most genes, further increasing 
sample size will not substantially increase the number of genes with significant eQTL, 
however it is likely that the number of significant eQTL associations within each gene 
would continue to increase, along with the accuracy of estimated effect sizes. This 
will result in a more accurate landscape of regulatory association, which will improve 
the ability to fine-map causal regions, and colocalize eQTL signal with clinical traits 
of interest. Thus, it will be valuable to continue to update this meta-analysis with 
additional data from these consortia and other resources as they become available, and 
continue to improve this resource as future data permits. Future work may also focus 
on using well-powered analysis to study the landscape of causal variation and co-
variation in gene regulation. 
 
We found distinct eQTL patterns across cerebral cortical and cerebellar brain regions 
in our resource. Specifically, comparison of eQTL from our resource with those from 
GTEx shows high replication for the majority of brain regions. However, cerebellar 
regions show consistently lower replication with the cerebral cortical eQTL generated 
here. In contrast, the cerebellar eQTL generated from the Mayo Clinic study replicate 
GTEx cerebellar eQTL at a substantially higher rate, suggesting a different pattern of 
regulatory variation affecting expression in cerebellum versus other brain regions. 
Indeed, epigenomic analyses show substantial differences between cerebellar and 
cerebral cortical regions45–48, particularly in methylation patterns, which could drive 
different eQTL association patterns. This is further corroborated by the observation of 
substantial coexpression differences between cerebellar and other brain regions49. 
These effects could be due to differences in cell type composition, with cerebellar 
regions consisting of substantially more neurons than other brain regions50. This is 
supported by a gene enrichment analysis of genes showing cerebellum-specific eQTL 
patterns, which showed that most of the top gene sets were related to axon and neuron 
generation and differentiation (Supplementary Table 3). One recent report suggests 
that there are also widespread differences in histone modifications within cell types 
derived from cerebellar and cortical regions51, though this effect had not been noted in 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/638544doi: bioRxiv preprint 

https://doi.org/10.1101/638544
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

other studies. In particular, Ma et al51 observed that both neuronal and non-neuronal 
cell types show differing histone modifications across tissue of origin. Further work is 
necessary to confirm this finding and to develop models to deconvolve the cell-type 
specific regulatory effects in different brain regions52–54, however our analysis 
demonstrates that this meta-analysis is representative of eQTL across the majority of 
brain regions, with the exception of cerebellum. Future meta-analytic analyses may 
also cast a wider net in terms of brain regions included. 
 
The replication of fetal eQTL, while significant, is somewhat lower than the 
replication of adult eQTL represented in GTEx. This may be due to multiple factors. 
The fetal eQTL analysis was generated from brain homogenate, rather than dissected 
brain regions, though the lower replication likely also reflects broad transcriptional 
differences between developing and mature brain55. These transcriptional differences 
may also explain why we find substantially more eQTL than a recently published, 
similarly sized eQTL analysis which uses samples from across developmental and 
adult timepoints25, and why this meta-analysis shows higher replication of GTEx 
eQTL.  
 
Finally, the lack of widespread disease-specific eQTL observed in schizophrenia 
(CMC)24 and Alzheimer’s (ROSMAP)34, as well as a strong overlap among eQTL 
derived from samples from individuals with these diseases, as well as normal 
individuals from these and other cohorts such as GTEx24,34, suggests that disease-
specific eQTL, if they exist, are likely few in number and/or small in effect size. Thus, 
the heterogeneous samples derived from different disease-based cohorts can be meta-
analyzed to create a general-purpose brain eQTL resource representing adult gene 
regulation, despite comprising samples with different disease backgrounds, along with 
normal controls. Therefore, these eQTL will be useful both within and outside these 
specific disease contexts. For example, since these eQTL are not disease specific they 
may be used to understand healthy gene expression regulation in the brain, as well as 
to infer colocalization of eQTL signatures with disease risk for any disease whose 
tissue etiology is from the brain, since these signatures are reflective of normal brain 
regulation. It should be stated that while many eQTL are not disease specific, i.e. they 
are identified under various central nervous system (CNS) disease diagnoses and in 
control brains, they may still contribute to common CNS diseases as previously 
demonstrated24,31–33,42,43. While we have demonstrated a proof-of-concept 
colocalization analysis with a previously published schizophrenia GWAS, these eQTL 
are a broadly useful resource for studying neuropsychiatric and neurodegenerative 
disorders, as well as for understanding the landscape of gene regulation in brain. 
 
 
 
 
Methods 

RNA-seq Re-alignment 

For the CMC studies (MSSM-Penn-Pitt, HBCC), RNA-seq reads were aligned to 
GRCh37 with STAR v2.4.0g1 56 from the original FASTQ files. Uniquely mapping 
reads overlapping genes were counted with featureCounts v1.5.257 using annotations 
from ENSEMBL v75.  
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For the AMP-AD studies (ROSMAP, Mayo RNAseq), Picard v2.2.4 
(https://broadinstitute.github.io/picard/) was used to generate FASTQ files from the 
available BAM files, using the Picard SamToFastq function. Picard SortSam was first 
applied to ensure that R1 and R2 reads were correctly ordered in the intermediate 
SAM file before converting to FASTQ. The converted FASTQs were aligned to the 
GENCODE24 (GRCh38) reference genome using STAR v2.5.1b, with twopassMode 
set as Basic. Gene counts were computed for each sample by STAR by setting 
quantMode as GeneCounts.  

RNA-seq Normalization 
To account for differences between samples, studies, experimental batch effects and 
unwanted RNA-seq-specific technical variations, we performed library normalization 
and covariate adjustments for each study separately using fixed/mixed effects 
modeling. The workflow consisted of following steps:  

1. Gene filtering: Out of ~56K aligned and quantified genes only genes showing 
at least modest expression were used in this analysis. Genes that were 
expressed more than 1 CPM (read Counts Per Million total reads) in at least 
50% of samples in each tissue and diagnosis category was retained for 
analysis. Additionally, genes with available gene length and percentage GC 
content from BioMart December 2016 archive were subselected from the 
above list. This resulted in approximately 14K to 16K genes in each study. 

2. Calculation of normalized expression values: Sequencing reads were then 
normalized in two steps. First, conditional quantile normalization (CQN)58 was 
applied to account for variations in gene length and GC content. In the second 
step, the confidence of sampling abundance was estimated using a weighted 
linear model using voom-limma package in bioconductor59,60. The normalized 
observed read counts, along with the corresponding weights, were used in the 
following steps. 

3. Outlier detection: Based on normalized log2(CPM) of expression values, 
outlier samples were detected using principal component analysis (PCA)61,62 
and hierarchical clustering. Samples identified as outliers using both the above 
methods were removed from further analysis. 

4. Covariate imputation: Before identifying associated covariates, important 
missing covariates were imputed. Principally, post-mortem interval (PMI), or 
the latency between death and tissue collection, which is frequently an 
important covariate for the analysis of gene expression from post-mortem 
brain tissue, was imputed for a portion of samples in Mayo RNAseq data for 
which true values were unavailable. Genomic predictors of PMI were 
estimated using ROSMAP and MSSM (an additional RNA-seq study available 
through AMP-AD) samples and were used to impute missing values as 
necessary. 

5. Covariate identification: Normalized log2(CPM) counts were then explored to 
determine which known covariates (both biological and technical) should be 
adjusted. Except for the HBCC study, we used a stepwise (weighted) 
fixed/mixed effect regression modeling approach to select the relevant 
covariates having a significant association with gene expression. Here, 
covariates were sequentially added to the model if they were significantly 
associated with any of the top principal components, explaining more than 1% 
of variance of expression residuals. For HBCC, we used a model selection 
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based on Bayesian information criteria (BIC) to identify the covariates that 
improve the model in a greater number of genes than making it worse. 

6. SVA adjustments: After identifying the relevant known confounders, hidden-
confounders were identified using the Surrogate Variable Analysis (SVA)38. 
We used a similar approach as previously defined24 to find the number of 
surrogate variables (SVs), which is more conservative than the default method 
provided by the SVA package in R63. The basic idea of this approach is that for 
an eigenvector decomposition of permuted residuals each eigenvalue should 
explain an equal amount of the variation. By the nature of eigenvalues, 
however, there will always be at least one that exceeds the expected value. 
Thus, from a series of 100 permutations of residuals (white noise) we 
identified the number of covariates as shown in Supplementary Table 1. We 
applied the “irw” (iterative re-weighting) version of SVA to the normalized 
gene expression matrix, along with the covariate model described above to 
obtain residual gene expression for eQTL analysis. 

7. Covariate adjustments: We performed a variant of fixed/mixed effect linear 
regression, choosing mixed-effect models when multiple tissues or samples, 
were available per individual, as shown here: gene expression ~ Diagnosis + 
Sex + covariates + (1|Donor), where each gene in linearly regressed 
independently on Diagnosis, identified covariates and donor (individual) 
information as random effect. Observation weights (if any) were calculated 
using the voom-limma59,60 pipeline, which has a net effect of up-weighting 
observations with inferred higher precision in the linear model fitting process 
to adjust for the mean-variance relationship in RNA-seq data. The Diagnosis 
component was then added back to the residuals to generate covariate-adjusted 
expression for eQTL analysis.  

All these workflows were applied separately for each study. For the AMP-AD studies, 
gene locations were lifted over to GRCh37 for comparison with the genotype 
imputation panel (described below). For HBCC, samples with age < 18 were excluded 
prior to analysis. Supplementary Table 1 shows the covariates and surrogate variables 
identified in each study. 
 
 
AD Diagnosis Harmonization 

Prior to RNA-seq normalization, we harmonized the LOAD definition across AMP-
AD studies.  AD controls were defined as patients with a low burden of plaques and 
tangles, as well as lack of evidence of cognitive impairment. For the ROSMAP study, 
we defined AD cases to be individuals with a Braak64 greater than or equal to 4, 
CERAD score65 less than or equal to 2, and a cognitive diagnosis of probable AD with 
no other causes (cogdx=4), and controls to be individuals with Braak less than or 
equal to 3, CERAD score greater than or equal to 3, and cognitive diagnosis of ‘no 
cognitive impairment’ (cogdx = 1). For the Mayo Clinic study, we defined disease 
status based on neuropathology, where individuals with Braak score greater than or 
equal to 4 were defined to be AD cases, and individuals with Braak less than or equal 
to 3 were defined to be controls. Individuals not meeting “AD case” or “control” 
criteria were retained for analysis, and were categorized as “other” for the purposes of 
RNA-seq adjustment. 
 

Genotype QC and Imputation 
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Genotype QC was performed using PLINK v1.966. Markers with zero alternate alleles, 
genotyping call rate ≤ 0.98, Hardy-Weinberg p-value < 5e−5 were removed, as well as 
individuals with genotyping call rate < 0.90. Samples were then imputed to HRC 
(Version r1.1 2016)39, as follows: if necessary marker positions were lifted-over to 
GRCh37 and aligned to the HRC loci using HRC-1000G-check-bim-v4.2 
(http://www.well.ox.ac.uk/~wrayner/tools/), which checks the strand, alleles, position, 
reference/alternate allele assignments and frequencies of the markers, removing A/T 
& G/C single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) > 
0.4, SNPs with differing alleles, SNPs with > 0.2 allele frequency difference between 
the genotyped samples and the HRC samples, and SNPs not in reference panel. 
Imputation was performed via the Michigan Imputation Server67 using Eagle v2.368 as 
the phasing algorithm. Imputation was done separately by cohort and by chip within 
cohort, and markers with R2 ≥ 0.7 and minor allele frequency (MAF) ≥ 0.01 (within 
cohort) were retained for analysis. 

Genetic Ancestry Inference 

GEMTOOLs69 was used to infer ancestry and compute ancestry components 
separately by cohort. The number of significant ancestry components were also 
estimated by the GEMTOOLs algorithm. For MSSM-Penn-Pitt and HBCC, which are 
multi-ethnic cohorts, only Caucasian samples were retained for eQTL analysis. 

eQTL Analysis 

eQTL were generated separately in each cohort using MatrixEQTL70 adjusting for 
harmonized Diagnosis and inferred Ancestry components using "cis" gene-marker 
comparisons: Expression ~ Genotype + Diagnosis + PC1 + … + PCn,, where PCk is the 
kth ancestry component, using Expression variables which were previously covariate 
adjusted as described above. Here we define "cis" as ± 1 MB around the gene, and 
GRCh37 gene locations were used for consistency with the marker imputation panel. 
Meta-analysis was performed via fixed-effect model71 using an adaptation of the 
metareg function in the gap package in R. Given that multiple tissues were present, we 
also evaluated a random-effect model, but found it to be highly conservative in this 
case. In order to assess potential inflation of Type 1 error, we performed 5 
permutations of this analysis, starting by permuting gene expression, relative to 
genotype and ancestry components, within diagnosis for each cohort, and performing 
meta-analysis of the permuted eQTL. We found that Type 1 error was well controlled 
(Fig. 1a). 

Comparison with GTEx and Fetal eQTL 

Full summary statistics for the GTEx v721 eQTL for all available brain regions were 
obtained from the GTEx Portal (https://gtexportal.org/), and fetal eQTL were obtained 
from Figshare72. Markers and genes present in the external eQTL as well as our 
analysis were retained for comparison. The replication rate was estimated as the π1 
statistic using the qvalue package73 in R as follows: the meta-analysis p-values for 
significant (at FDR 0.05) GTEx were used to estimate the replication rate of GTEx 
eQTL in the meta-analysis. Analogous methods were used to estimate all other 
replication rates. 

Pathway Analysis of Cerebellar eQTL Genes 
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In order to identify whether genes showing cerebellar-specific eQTL patterns showed 
any biological coherence, we performed a pathway analysis as follows. For genes with 
at least 5 significant cerebellar eQTL, we computed the correlation of effect-size 
between cerebellum eQTL and cortical eQTL for the loci that were significant in 
cerebellum. We then selected genes for which the effect-sizes were uncorrelated (p-
value > 0.05) between the two tissues as showing cerebellar-specific eQTL patterns, 
and performed a pathway analysis with GO biological processes, cellular components 
and molecular function using a Fisher’s exact test. Note that due to the (power-
mediated) greater detection of eQTL in cortex, we did not perform the reverse 
comparison.  

Coloc Analysis 

We applied Approximate Bayes Factor colocalization (coloc.abf)7 from the coloc R 
package to the summary statistics from the PGC2 Schizophrenia GWAS35 
downloaded from the PGC website (http://pgc.unc.edu), and the summary statistics 
from the eQTL meta-analysis. Each gene present in the meta-analysis was compared 
to the GWAS in turn, and suggestive and significant GWAS peaks with p-value < 5e-
6 were considered for analysis. 

Code availability 

An R package with all code for the gene expression normalization is available at 
https://github.com/Sage-Bionetworks/ampad-diffexp. All other analyses were 
generated using packages publically available from their respective authors.  
 
Data Records 
eQTL results for the ROSMAP, Mayo TCX, Mayo CER and cortical meta-analysis 
are found in Data Citation 5, Data Citation 6, Data Citation 7 and Data Citation 8, 
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Figures 
 

 
 
Figure Legends 
Figure 1: eQTL meta-analysis discovers more eQTL than individual cohorts. (A) Quantile-

quantile plot of eQTL from individual cohorts as well as the meta-analysis of the true (black) 

and permuted (light blue) data. Number of significant eQTL (B) or genes with significant eQTL 

(C) as a function of cohort size. 
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Tables 
 
Table 1: eQTL results from individual cohorts and meta-analysis. 

Cohort 
Cis 

eQTL* 
Unique 
Genes 

eQTL (Genes) not 
Present in GTEx** 

Meta-eQTL 
(Genes) not found 

in Cohort 

Genes w/o eQTL in 
CMC, ROSMAP, 
HBCC or Mayo 

TCX 

ROSMAP 2,472,838 13,543 2,205,025 (7,829) 2,103,711 (5,079) 

Mayo TCX 712,401 8,838 480,507 (4,439) 3,485,381 (9,591) 

CMC 1,322,680 12,641 1,062,830 (7,206) 2,948,886 (5,897) 

HBCC 577,512 9,112 379,732 (4,645) 3,614,448 (9,337) 

Meta-
Analysis*** 4,142,776 18,295 3,800,208 (11,395) 1,042 

*     MAF ≥ 0.02 and FDR ≤ 0.05 
**   GTEx (v7) Anterior Cingulate Cortex, Cortex or Frontal Cortex 
*** Additional 36,352 (138) eQTL (Genes) with 0.01 ≤ MAF < 0.02     
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Table 2: Replication rates between GTEx and publicly available eQTL from these 
analyses. 

GTEx Brain 

Region # eQTL 

Replication (π1) of GTEx eQTL Replication (π1) of AMP-AD eQTL in GTEx 

Meta-

Analysis ROSMAP 
Mayo 

TCX 
Mayo 

CER 
Meta-

Analysis ROSMAP 
Mayo 

TCX 
Mayo 

CER 
Amygdala 158,270 0.974 0.987 0.986 0.916 0.356 0.421 0.701 0.555 
Anterior 

Cingulate 

Cortex (BA24) 291,898 0.976 0.971 0.962 0.903 0.445 0.516 0.772 0.592 
Caudate Basal 

Ganglia 435,939 0.966 0.961 0.935 0.881 0.488 0.544 0.781 0.636 
Cerebellar 

Hemisphere 575,583 0.896 0.897 0.781 0.962 0.458 0.509 0.719 0.831 
Cerebellum 819,435 0.893 0.890 0.711 0.936 0.526 0.577 0.761 0.863 
Cortex 478,903 0.980 0.973 0.941 0.892 0.547 0.604 0.834 0.659 
Frontal Cortex 

(BA9) 342,988 0.974 0.967 0.963 0.897 0.489 0.547 0.792 0.632 
Hippocampus 221,876 0.967 0.970 0.937 0.905 0.404 0.462 0.710 0.570 
Hypothalamus 227,808 0.974 0.966 0.960 0.913 0.392 0.436 0.719 0.580 
Nucleus 

Accumbens 

Basal Ganglia 376,390 0.958 0.952 0.781 0.894 0.453 0.514 0.761 0.622 
Putamen Basal 

Ganglia 293,880 0.966 0.974 0.930 0.890 0.433 0.493 0.764 0.591 
Spinal Cord 

Cervical (c-1) 175,702 0.940 0.952 0.918 0.862 0.330 0.394 0.640 0.514 
Substantia 

Nigra 120,582 0.964 0.951 0.960 0.928 0.297 0.372 0.635 0.479 
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Table 3: Top colocalized genes as inferred between meta-analysis eQTL and the 
PGC2 schizophrenia GWAS. 

Gene 

Peak Location 

NSNPs 

Min(p-value) 
Best Causal 
SNP 

Posterior 
Probability of 
Colocalization 

Additional 
Candidates 
at this 
Locus* Chr Start End GWAS eQTL 

RERE 1 7412645 9877280 4905 2.72E-09 2.28E-21 rs301792 0.730  
PTPRU 1 28563084 30653243 4099 1.28E-09 4.42E-10 rs1498232 0.890  
FOXN2 2 47542228 49606348 5437 1.66E-06 8.85E-45 rs79073127 0.782  
C3orf49 3 62805378 64834213 4906 2.58E-08 1.10E-13 rs832187 0.820 Yes 
THOC7 3 62819766 64848612 4886 2.58E-08 2.21E-39 rs832190 0.943 Yes 
TBC1D19 4 25578209 27755954 4432 7.44E-07 7.85E-07 rs6825268 0.900  
CLCN3 4 169533866 171644821 4956 1.02E-08 1.91E-09 rs10520163 0.768  
PPP1R18 6 29644275 31655438 1055 1.16E-19 5.52E-07 rs2523607 0.827 Yes 
LINC00222 6 108073451 110091064 3600 3.37E-08 1.63E-07 rs9398171 0.852  
FAM85B 8 8089567 9084121 3725 2.03E-08 5.63E-31 rs2980439 0.948 Yes 
ENDOG 9 130581300 132584048 3294 1.92E-06 6.90E-62 rs6478854 0.721 Yes 
RP11-677M14.2 11 123614560 125616016 5253 3.68E-12 1.50E-09 rs55661361 0.975  
FURIN 15 90414642 92426654 4767 2.30E-12 1.29E-20 rs4702 0.999  
CNOT1 16 57553885 59662867 5364 1.15E-08 1.16E-06 rs12325245 0.862  
ELAC2 17 11896953 13921426 5651 2.84E-06 3.90E-106 rs1044564 0.856  
ZNF823 19 10832190 12840037 3844 1.57E-06 5.38E-10 rs3095917 0.961  
PTK6 20 61160251 62960229 4527 4.03E-08 1.09E-26 rs427230 0.897  

* At Posterior Probability of Colocalization ≥ 0.5 
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