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Abstract

(170 wor ds maxi mum)

The availability of high-quality RNA-sequencing and genotyping data of post-mortem
brain collections from consortia such as CommonMind Consortium (CMC) and the
Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium
enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate
cerebral cortical eQTL from 1433 samples available from four cohorts (identifying
>4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from
261 samples (identifying 874,836 significant eQTL for >10,000 genes), and provide
the results as a community resource. We find substantially improved power in the
meta-analysis over individual cohort analyses, particularly in comparison to the
Genotype-Tissue Expression (GTEX) Project eQTL. In addition, we observed
differences in eQTL patterns between cerebral and cerebellar brain regions. We
provide these brain eQTL as a common resource for use across the community in
research programs. As a proof of principle for their utility, we apply a colocalization
analysis to identify genes underlying the GWAS association peaks for schizophrenia
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and identify a potentially novel gene colocalization with IncRNA RP11-677M14.2
(posterior probability of colocalization 0.975).

Introduction

Defining the landscape of genetic regulation of gene expression in a tissue-specific
manner is useful for understanding both normal gene regulation and how variation in
gene expression can alter disease risk. In the latter case, a variety of approaches now
leverage the association between genetic variants and gene expression changes,
including colocalization analysis'™’, transcriptome-wide association studies
(TWAS)®?, and gene regulatory network inference'®°.

There has been a relative lack of expression quantitative trait loci (eQTL) studies from
the brain. Because of the more accessible nature of tissues such as blood or
lymphoblastoid cell lines (LCLs), much of the large-scale identification of expression
quantitative trait loci (eQTL) has occurred in these tissues'’2°. For most other tissues,
obtaining samples for RNA sequencing (RNA-seq) requires invasive biopsy, and brain
tissues are typically only available in post-mortem brain samples. One effort, the
Genotype-Tissue Expression (GTEXx) project???, has profiled a broad range of tissues
(42 distinct) for eQTL discovery, however, samples sizes in brain have been small
(typically 100-150). Recently, efforts to understand gene expression changes in
neuropsychiatric®? and neurodegenerative diseases?®>* have generated brain RNA-
seq from disease and normal tissue, as well as genomewide genotypes. These analyses
have found little evidence for widespread disease-specific eQTL, as well as high
cross-cohort overlap?*®*, meaning that most eQTL detected are disease-condition
independent. This makes it possible to perform meta-analysis despite differences in
disease ascertainment of the samples, to generate a well-powered brain eQTL resource
for use in downstream research.

Here we generate a public eQTL resource from cerebral cortical tissue using 1433
samples from 4 cohorts from the CommonMind Consortium (CMC)**?* and
Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD)
Consortium®*®, as well as eQTL for cerebellum using 261 samples from AMP-AD.
We show that eQTL discovered in GTEX, which consists of control individuals
(without disease) only, are replicated in this larger brain eQTL resource. We further
show widespread differences in regulation between cerebral cortex and cerebellum.
To demonstrate one example of the utility of these data, we apply a colocalization
analysis, which seeks to identify expression traits whose eQTL association pattern
appears to co-occur at the same loci as the clinical trait association, to identify
putative genes underlying the GWAS association peaks for schizophrenia®.

Results

We generated eQTL from the publicly available AMP-AD (ROSMAP?#3* (Data
Citation 1), Mayo RNAseq”®***’ (Data Citation 2)) and CMC (MSSM-Penn-Pitt?*
(Data Citation 3), HBCC (Data Citation 4)) cohorts with available genotypes and
RNA-seq data, using a common analysis pipeline (Supplementary Table 1)
(https://www.synapse.org/#!Synapse:syn17015233). Analyses proceeded separately
by cohort. Briefly, the RNA-seq data were normalized for gene length and GC content
prior to adjustment for clinical confounders, processing batch information, and hidden
confounders using Surrogate Variable Analysis (SVA)®. Genes having at least 1
count per million (CPM) in at least 50% of samples were retained for downstream
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analysis (Supplementary Table 2). Genotypes were imputed to the Haplotype
Reference Consortium (HRC) reference panel®. eQTL were generated adjusting for
diagnosis (AD, control, other for AMP-AD cohorts and schizophrenia, control,
bipolar/other for CMC cohorts) and principal components of ancestry separately for
ROSMAP, Mayo temporal cortex (TCX), Mayo cerebellum (CER), MSSM-Penn-Pitt,
and HBCC. For HBCC, which had a small number of samples derived from infant and
adolescents, we excluded samples with age-of-death less than 18, to limit
heterogeneity due to differences between the mature and developing brain.

We then performed a meta-analysis using the eQTL from cortical brain regions from
the individual cohorts (dorsolateral prefrontal cortex (DLPFC) from ROSMAP,
MSSM-Penn-Pitt, and HBCC and TCX from Mayo). The meta-analysis identifies
substantially more eQTL than the individual cohorts (Table 1, Fig. 1). There is a
strong relationship between the sample size in the individual cohorts and meta-
analysis and the number of significant eQTL and genes with eQTL (Fig. 1b, 1c).
Notably, the meta-analysis identified significant eQTL (at FDR < 0.05) in >1000
genes for which no eQTL were observed in any individual cohort. Notably, we find
significant eQTL for 18,295 (18,433 when considering markers with minor allele
frequency (MAF) down to 1%) of the 19,392 genes included in the analysis.

We then compared our cortical eQTL to GTEx (v7)*, which is the most
comprehensive brain eQTL database available in terms of number of available brain
tissues (Table 1, Table 2). Due to the substantially larger power in these data, we find
> 3.8 million eQTL not identified in GTEX cortical regions (Anterior Cingulate
Cortex, Cortex or Frontal Cortex) and we find eQTL for >11,000 genes with no eQTL
in these cortical regions in GTEx. We first evaluated the replication within our cortical
and cerebellar eQTL of the region specific eQTL identified in GTEX. The cortical
eQTL generated through the current analyses strongly replicate the eQTL available
through GTEX, not only for cortical regions, but for all brain regions including
cervical spinal cord (Table 2). Interestingly, the replication in these cortical eQTL of
eQTL derived from the two GTEX cerebellar brain regions (cerebellum and cerebellar
hemisphere) is consistently lower than for other brain regions represented in GTEX.
However, replication of GTEX cerebellar eQTL is high when compared to the
cerebellar eQTL generated in this analysis from the Mayo Clinic CER samples. We
also performed the reverse comparison, by examining the replication of our eQTL in
those region-specific eQTL identified in GTEX. Unsurprisingly, the replication levels
were substantially lower, due to the lower power in the GTEX analyses.

Additionally, we compared our eQTL to a publically available fetal brain eQTL
resource* and found good replication of these eQTL as well (estimated replication
rate y = 0.909 for the cortical meta-analysis, and mt; = 0.861 for cerebellum), though
somewhat lower than the replication observed in the GTEX cohorts, which are
comprised of adult-derived samples.

Finally, as a proof of concept, we performed a colocalization analysis between our
eQTL meta-analysis and the Psychiatric Genomics Consortium (PGC) v2
schizophrenia GWAS summary statistics®. Seventeen genes showed posterior
probability of colocalization using coloc’ (PP(H,)) >0.7 (Table 3), with 3 showing
PP(H4) > 0.95 (FURIN, ZNF823, RP11-677M14.2). FURIN, having previously
identified as a candidate through colocalization® has recently been shown to reduce
brain-derived neurotrophic factor (BDNF) maturation and secretion when inhibited by
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miR-338-3p*!. ZNF823 has been identified in previous colocalization analyses**,

RP11-677M14.2, a IncRNA located inside NRGN, while not previously identified
through colocalization analysis, has been shown to be down-regulated in the amygdala
of schizophrenia patients**. Noteably, NRGN does not appear to show eQTL
colocalization (PP(H,) = 0.006), instead showing strong evidence for the eQTL and
GWAS associations occurring independently (PP(Hs) = 0.994).

Discussion

Using resources generated in the AMP-AD and CMC consortia, we have generated a
well-powered brain eQTL resource for use by the scientific community.
Unsurprisingly, we see a strong relationship between the number of significant eQTL,
as well as genes with significant eQTL, and sample size using analyses from the
individual cohorts and meta-analysis of those cohorts. This result has previously been
shown for lower sample sizes?’. We also show higher replication of GTEx eQTL in
the meta-analysis relative to the individual cohorts.

Notably, we find significant eQTL for nearly every gene in our analysis, which
include all but very lowly expressed genes (less than 1 cpm in more than 50% of
samples). The wide discovery of eQTL is potentially beneficial for analyses utilizing
these results, such as colocalization analysis or TWAS imputation, because more
genes with significant eQTL means more genes can be evaluated with these
approaches. Because we have discovered eQTL for most genes, further increasing
sample size will not substantially increase the number of genes with significant eQTL,
however it is likely that the number of significant eQTL associations within each gene
would continue to increase, along with the accuracy of estimated effect sizes. This
will result in a more accurate landscape of regulatory association, which will improve
the ability to fine-map causal regions, and colocalize eQTL signal with clinical traits
of interest. Thus, it will be valuable to continue to update this meta-analysis with
additional data from these consortia and other resources as they become available, and
continue to improve this resource as future data permits. Future work may also focus
on using well-powered analysis to study the landscape of causal variation and co-
variation in gene regulation.

We found distinct eQTL patterns across cerebral cortical and cerebellar brain regions
in our resource. Specifically, comparison of eQTL from our resource with those from
GTEx shows high replication for the majority of brain regions. However, cerebellar
regions show consistently lower replication with the cerebral cortical eQTL generated
here. In contrast, the cerebellar eQTL generated from the Mayo Clinic study replicate
GTEx cerebellar eQTL at a substantially higher rate, suggesting a different pattern of
regulatory variation affecting expression in cerebellum versus other brain regions.
Indeed, epigenomic analyses show substantial differences between cerebellar and
cerebral cortical regions™*®, particularly in methylation patterns, which could drive
different eQTL association patterns. This is further corroborated by the observation of
substantial coexpression differences between cerebellar and other brain regions™.
These effects could be due to differences in cell type composition, with cerebellar
regions consisting of substantially more neurons than other brain regions™. This is
supported by a gene enrichment analysis of genes showing cerebellum-specific eQTL
patterns, which showed that most of the top gene sets were related to axon and neuron
generation and differentiation (Supplementary Table 3). One recent report suggests
that there are also widespread differences in histone modifications within cell types
derived from cerebellar and cortical regions®*, though this effect had not been noted in
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other studies. In particular, Ma et al®* observed that both neuronal and non-neuronal

cell types show differing histone modifications across tissue of origin. Further work is
necessary to confirm this finding and to develop models to deconvolve the cell-type
specific regulatory effects in different brain regions®>*, however our analysis
demonstrates that this meta-analysis is representative of eQTL across the majority of
brain regions, with the exception of cerebellum. Future meta-analytic analyses may
also cast a wider net in terms of brain regions included.

The replication of fetal eQTL, while significant, is somewhat lower than the
replication of adult eQTL represented in GTEX. This may be due to multiple factors.
The fetal eQTL analysis was generated from brain homogenate, rather than dissected
brain regions, though the lower replication likely also reflects broad transcriptional
differences between developing and mature brain®. These transcriptional differences
may also explain why we find substantially more eQTL than a recently published,
similarly sized eQTL analysis which uses samples from across developmental and
adult timepoints®®, and why this meta-analysis shows higher replication of GTEx
eQTL.

Finally, the lack of widespread disease-specific eQTL observed in schizophrenia
(CMC)* and Alzheimer’s (ROSMAP)*, as well as a strong overlap among eQTL
derived from samples from individuals with these diseases, as well as normal
individuals from these and other cohorts such as GTEx****, suggests that disease-
specific eQTL, if they exist, are likely few in number and/or small in effect size. Thus,
the heterogeneous samples derived from different disease-based cohorts can be meta-
analyzed to create a general-purpose brain eQTL resource representing adult gene
regulation, despite comprising samples with different disease backgrounds, along with
normal controls. Therefore, these eQTL will be useful both within and outside these
specific disease contexts. For example, since these eQTL are not disease specific they
may be used to understand healthy gene expression regulation in the brain, as well as
to infer colocalization of eQTL signatures with disease risk for any disease whose
tissue etiology is from the brain, since these signatures are reflective of normal brain
regulation. It should be stated that while many eQTL are not disease specific, i.e. they
are identified under various central nervous system (CNS) disease diagnoses and in
control brains, theg/ may still contribute to common CNS diseases as previously
demonstrated®=3#2%* \While we have demonstrated a proof-of-concept
colocalization analysis with a previously published schizophrenia GWAS, these eQTL
are a broadly useful resource for studying neuropsychiatric and neurodegenerative
disorders, as well as for understanding the landscape of gene regulation in brain.

Methods

RNA-seq Re-alignment

For the CMC studies (MSSM-Penn-Pitt, HBCC), RNA-seq reads were aligned to
GRCh37 with STAR v2.4.0g1 *° from the original FASTQ files. Uniquely mapping
reads overlapping genes were counted with featureCounts v1.5.2°" using annotations
from ENSEMBL v75.
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For the AMP-AD studies (ROSMAP, Mayo RNAseq), Picard v2.2.4
(https://broadinstitute.github.io/picard/) was used to generate FASTQ files from the
available BAM files, using the Picard SamToFastq function. Picard SortSam was first
applied to ensure that R1 and R2 reads were correctly ordered in the intermediate
SAM file before converting to FASTQ. The converted FASTQs were aligned to the
GENCODE24 (GRCh38) reference genome using STAR v2.5.1b, with twopassMode
set as Basic. Gene counts were computed for each sample by STAR by setting
quantMode as GeneCounts.

RNA-seq Normalization

To account for differences between samples, studies, experimental batch effects and
unwanted RNA-seqg-specific technical variations, we performed library normalization
and covariate adjustments for each study separately using fixed/mixed effects
modeling. The workflow consisted of following steps:

1. Genefiltering: Out of ~56K aligned and quantified genes only genes showing
at least modest expression were used in this analysis. Genes that were
expressed more than 1 CPM (read Counts Per Million total reads) in at least
50% of samples in each tissue and diagnosis category was retained for
analysis. Additionally, genes with available gene length and percentage GC
content from BioMart December 2016 archive were subselected from the
above list. This resulted in approximately 14K to 16K genes in each study.

2. Calculation of normalized expression values. Sequencing reads were then
normalized in two steps. First, conditional quantile normalization (CQN)*® was
applied to account for variations in gene length and GC content. In the second
step, the confidence of sampling abundance was estimated using a weighted
linear model using voom-limma package in bioconductor®*®. The normalized
observed read counts, along with the corresponding weights, were used in the
following steps.

3. Outlier detection: Based on normalized log2(CPM) of expression values,
outlier samples were detected using principal component analysis (PCA)*-%?
and hierarchical clustering. Samples identified as outliers using both the above
methods were removed from further analysis.

4. Covariate imputation: Before identifying associated covariates, important
missing covariates were imputed. Principally, post-mortem interval (PMI), or
the latency between death and tissue collection, which is frequently an
important covariate for the analysis of gene expression from post-mortem
brain tissue, was imputed for a portion of samples in Mayo RNAseq data for
which true values were unavailable. Genomic predictors of PMI were
estimated using ROSMAP and MSSM (an additional RNA-seq study available
through AMP-AD) samples and were used to impute missing values as
necessary.

5. Covariateidentification: Normalized log2(CPM) counts were then explored to
determine which known covariates (both biological and technical) should be
adjusted. Except for the HBCC study, we used a stepwise (weighted)
fixed/mixed effect regression modeling approach to select the relevant
covariates having a significant association with gene expression. Here,
covariates were sequentially added to the model if they were significantly
associated with any of the top principal components, explaining more than 1%
of variance of expression residuals. For HBCC, we used a model selection
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based on Bayesian information criteria (BIC) to identify the covariates that
improve the model in a greater number of genes than making it worse.
6. SVA adjustments: After identifying the relevant known confounders, hidden-
confounders were identified using the Surrogate Variable Analysis (SVA)®.
We used a similar approach as previously defined® to find the number of
surrogate variables (SVs), which is more conservative than the default method
provided by the SVA package in R®. The basic idea of this approach is that for
an eigenvector decomposition of permuted residuals each eigenvalue should
explain an equal amount of the variation. By the nature of eigenvalues,
however, there will always be at least one that exceeds the expected value.
Thus, from a series of 100 permutations of residuals (white noise) we
identified the number of covariates as shown in Supplementary Table 1. We
applied the “irw” (iterative re-weighting) version of SVA to the normalized
gene expression matrix, along with the covariate model described above to
obtain residual gene expression for eQTL analysis.
7. Covariate adjustments: We performed a variant of fixed/mixed effect linear

regression, choosing mixed-effect models when multiple tissues or samples,
were available per individual, as shown here: gene expression ~ Diagnosis +
Sex + covariates + (1|Donor), where each gene in linearly regressed
independently on Diagnosis, identified covariates and donor (individual)
information as random effect. Observation weights (if any) were calculated
using the voom-limma>*® pipeline, which has a net effect of up-weighting
observations with inferred higher precision in the linear model fitting process
to adjust for the mean-variance relationship in RNA-seq data. The Diagnosis
component was then added back to the residuals to generate covariate-adjusted
expression for eQTL analysis.

All these workflows were applied separately for each study. For the AMP-AD studies,

gene locations were lifted over to GRCh37 for comparison with the genotype

imputation panel (described below). For HBCC, samples with age < 18 were excluded

prior to analysis. Supplementary Table 1 shows the covariates and surrogate variables

identified in each study.

AD Diagnosis Harmonization

Prior to RNA-seq normalization, we harmonized the LOAD definition across AMP-
AD studies. AD controls were defined as patients with a low burden of plaques and
tangles, as well as lack of evidence of cognitive impairment. For the ROSMAP study,
we defined AD cases to be individuals with a Braak®* greater than or equal to 4,
CERAD score® less than or equal to 2, and a cognitive diagnosis of probable AD with
no other causes (cogdx=4), and controls to be individuals with Braak less than or
equal to 3, CERAD score greater than or equal to 3, and cognitive diagnosis of ‘no
cognitive impairment’ (cogdx = 1). For the Mayo Clinic study, we defined disease
status based on neuropathology, where individuals with Braak score greater than or
equal to 4 were defined to be AD cases, and individuals with Braak less than or equal
to 3 were defined to be controls. Individuals not meeting “AD case” or “control”
criteria were retained for analysis, and were categorized as “other” for the purposes of
RNA-seq adjustment.

Genotype QC and I mputation
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Genotype QC was performed using PLINK v1.9%. Markers with zero alternate alleles,
genotyping call rate < 0.98, Hardy-Weinberg p-value < 5e-5 were removed, as well as
individuals with genotyping call rate < 0.90. Samples were then imputed to HRC
(Version r1.1 2016)*, as follows: if necessary marker positions were lifted-over to
GRCh37 and aligned to the HRC loci using HRC-1000G-check-bim-v4.2
(http://www.well.ox.ac.uk/~wrayner/tools/), which checks the strand, alleles, position,
reference/alternate allele assignments and frequencies of the markers, removing A/T
& G/C single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) >
0.4, SNPs with differing alleles, SNPs with > 0.2 allele frequency difference between
the genotyped samples and the HRC samples, and SNPs not in reference panel.
Imputation was performed via the Michigan Imputation Server®” using Eagle v2.3% as
the phasing algorithm. Imputation was done separately by cohort and by chip within
cohort, and markers with R? > 0.7 and minor allele frequency (MAF) > 0.01 (within
cohort) were retained for analysis.

Genetic Ancestry Inference

GEMTOOLs® was used to infer ancestry and compute ancestry components
separately by cohort. The number of significant ancestry components were also
estimated by the GEMTOOLSs algorithm. For MSSM-Penn-Pitt and HBCC, which are
multi-ethnic cohorts, only Caucasian samples were retained for eQTL analysis.

eQTL Analysis

eQTL were generated separately in each cohort using MatrixEQTL™ adjusting for
harmonized Diagnosis and inferred Ancestry components using “cis" gene-marker
comparisons: Expression ~ Genotype + Diagnosis + PC; + ... + PC,,, where PCy is the
kK™ ancestry component, using Expression variables which were previously covariate
adjusted as described above. Here we define “cis" as + 1 MB around the gene, and
GRCh37 gene locations were used for consistency with the marker imputation panel.
Meta-analysis was performed via fixed-effect model™ using an adaptation of the
metareg function in the gap package in R. Given that multiple tissues were present, we
also evaluated a random-effect model, but found it to be highly conservative in this
case. In order to assess potential inflation of Type 1 error, we performed 5
permutations of this analysis, starting by permuting gene expression, relative to
genotype and ancestry components, within diagnosis for each cohort, and performing
meta-analysis of the permuted eQTL. We found that Type 1 error was well controlled
(Fig. 1a).

Comparison with GTEx and Fetal eQTL

Full summary statistics for the GTEx v7%* eQTL for all available brain regions were
obtained from the GTEX Portal (https://gtexportal.org/), and fetal eQTL were obtained
from Figshare’®. Markers and genes present in the external eQTL as well as our
analysis were retained for comparison. The replication rate was estimated as the m;
statistic using the qvalue package” in R as follows: the meta-analysis p-values for
significant (at FDR 0.05) GTEx were used to estimate the replication rate of GTEX
eQTL in the meta-analysis. Analogous methods were used to estimate all other
replication rates.

Pathway Analysis of Cerebelar eQTL Genes
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In order to identify whether genes showing cerebellar-specific eQTL patterns showed
any biological coherence, we performed a pathway analysis as follows. For genes with
at least 5 significant cerebellar eQTL, we computed the correlation of effect-size
between cerebellum eQTL and cortical eQTL for the loci that were significant in
cerebellum. We then selected genes for which the effect-sizes were uncorrelated (p-
value > 0.05) between the two tissues as showing cerebellar-specific eQTL patterns,
and performed a pathway analysis with GO biological processes, cellular components
and molecular function using a Fisher’s exact test. Note that due to the (power-
mediated) greater detection of eQTL in cortex, we did not perform the reverse
comparison.

Coloc Analysis

We applied Approximate Bayes Factor colocalization (coloc.abf)7 from the coloc R
package to the summary statistics from the PGC2 Schizophrenia GWAS®
downloaded from the PGC website (http://pgc.unc.edu), and the summary statistics
from the eQTL meta-analysis. Each gene present in the meta-analysis was compared
to the GWAS in turn, and suggestive and significant GWAS peaks with p-value < 5e-
6 were considered for analysis.

Code availability

An R package with all code for the gene expression normalization is available at
https://github.com/Sage-Bionetworks/ampad-diffexp. All other analyses were
generated using packages publically available from their respective authors.

Data Records

eQTL results for the ROSMAP, Mayo TCX, Mayo CER and cortical meta-analysis
are found in Data Citation 5, Data Citation 6, Data Citation 7 and Data Citation 8,
respectively, in the AMP-AD Knowledge Portal. These results include SNP (location,
rsid, alleles, and allele frequency) and gene (location, gene symbol, strand and
biotype) information, as well as estimated effect size (beta), statistic (z), p-value,
FDR, and expression-increasing allele.
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Figure Legends

Sample Size

Sample Size

Figure 1: eQTL meta-analysis discovers more eQTL than individual cohorts. (A) Quantile-
quantile plot of eQTL from individual cohorts as well as the meta-analysis of the true (black)
and permuted (light blue) data. Number of significant eQTL (B) or genes with significant eQTL

(C) as a function of cohort size.
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Tables

Table 1: eQTL results from individual cohorts and meta-analysis.

Genesw/o eQTL in
Meta-eQTL CMC, ROSMAP,
Cis Unique eQTL (Genes) not (Genes) not found HBCC or Mayo
Cohort eQTL* Genes Present in GTEx** in Cohort TCX
ROSMAP 2,472,838 13,543 2,205,025 (7,829) 2,103,711 (5,079)
Mayo TCX 712,401 8,838 480,507 (4,439) 3,485,381 (9,591)
CMC 1,322,680 12,641 1,062,830 (7,206) 2,948,886 (5,897)
HBCC 577,512 9,112 379,732 (4,645) 3,614,448 (9,337)
M eta-
Analysis*** 4,142,776 18,295 3,800,208 (11,395) 1,042

* MAF >0.02 and FDR <0.05
**  GTEX (v7) Anterior Cingulate Cortex, Cortex or Frontal Cortex
*** Additional 36,352 (138) eQTL (Genes) with 0.01 < MAF < 0.02
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Table 2: Replication rates between GTEx and publicly available eQTL from these

analyses.

Replication (m;) of GTEx eQTL Replication (m;) of AMP-AD eQTL in GTEx
GTEx Brain Meta- Mayo Mayo Meta- Mayo | Mayo
Region #eQTL Analysis | ROSMAP TCX CER Analysis ROSMAP TCX CER
Amygdala 158,270 0.974 0.987 0.986 0.916 0.356 0.421 0.701 | 0.555
Anterior
Cingulate
Cortex (BA24) 291,898 0.976 0.971 0.962 0.903 0.445 0.516 0.772 | 0.592
Caudate Basal
Ganglia 435,939 0.966 0.961 0.935 0.881 0.488 0.544 0.781 | 0.636
Cerebellar
Hemisphere 575,583 0.896 0.897 0.781 0.962 0.458 0.509 0.719 | 0.831
Cerebellum 819,435 0.893 0.890 0.711 0.936 0.526 0.577 0.761 0.863
Cortex 478,903 0.980 0.973 0.941 0.892 0.547 0.604 0.834 | 0.659
Frontal Cortex
(BA9) 342,988 0.974 0.967 0.963 0.897 0.489 0.547 0.792 | 0.632
Hippocampus 221,876 0.967 0.970 0.937 0.905 0.404 0.462 0.710 | 0.570
Hypothalamus 227,808 0.974 0.966 0.960 0.913 0.392 0.436 0.719 | 0.580
Nucleus
Accumbens
Basal Ganglia 376,390 0.958 0.952 0.781 0.894 0.453 0.514 0.761 0.622
Putamen Basal
Ganglia 293,880 0.966 0.974 0.930 0.890 0.433 0.493 0.764 | 0.591
Spinal Cord
Cervical (c-1) 175,702 0.940 0.952 0.918 0.862 0.330 0.394 0.640 | 0.514
Substantia
Nigra 120,582 0.964 0.951 0.960 0.928 0.297 0.372 0.635 0.479
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Table 3: Top colocalized genes as inferred between meta-analysis eQTL and the
PGC2 schizophrenia GWAS.

Additional
Peak Location Min(p-value) Posterior Candidates
Best Causal | Probability of | at this

Gene Chr | Start End Nsnes | GWAS eQTL SNP Colocalization | Locus*
RERE 1 7412645 9877280 4905 2.72E-09 2.28E-21 rs301792 0.730

PTPRU 1 28563084 30653243 4099 | 1.28E-09 | 4.42E-10 151498232 0.890

FOXN2 2 47542228 49606348 5437 | 1.66E-06 | 8.85E-45 rs79073127 | 0.782

C3orf49 3 62805378 64834213 4906 | 2.58E-08 | 1.10E-13 15832187 0.820 Yes
THOC7 3 62819766 64848612 4886 | 2.58E-08 | 2.21E-39 15832190 0.943 Yes
TBC1D19 4 25578209 27755954 4432 | 7.44E-07 | 7.85E-07 156825268 0.900

CLCN3 4 169533866 | 171644821 | 4956 | 1.02E-08 | 1.91E-09 rs10520163 | 0.768

PPP1R18 6 29644275 31655438 1055 1.16E-19 5.52E-07 rs2523607 0.827 Yes
LINC00222 6 108073451 | 110091064 | 3600 | 3.37E-08 | 1.63E-07 rs9398171 0.852

FAM85B 8 8089567 9084121 3725 | 2.03E-08 | 5.63E-31 152980439 0.948 Yes
ENDOG 9 130581300 | 132584048 | 3294 | 1.92E-06 | 6.90E-62 rs6478854 0.721 Yes
RP11-677M14.2 | 11 123614560 125616016 5253 3.68E-12 1.50E-09 rs55661361 | 0.975

FURIN 15 90414642 92426654 4767 2.30E-12 1.29E-20 rs4702 0.999

CNOT1 16 57553885 59662867 5364 | 1.15E-08 | 1.16E-06 rs12325245 | 0.862

ELAC2 17 11896953 13921426 5651 | 2.84E-06 | 3.90E-106 | rs1044564 0.856

ZNF823 19 10832190 12840037 3844 | 1.57E-06 | 5.38E-10 rs3095917 0.961

PTK6 20 61160251 62960229 4527 | 4.03E-08 | 1.09E-26 15427230 0.897

* At Posterior Probability of Colocalization > 0.5
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