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Abstract

Background: Time consuming computational assembly and quantification of gene
expression and splicing analysis from RNA-seq data vary considerably. Recent fast non-
alignment tools such as Kallisto and Salmon overcome these problems, but these tools require
a high quality, comprehensive reference transcripts dataset (RTD), which are rarely available
in plants.

Results: A high-quality, non-redundant barley gene RTD and database (Barley Reference
Transcripts — BaRTv1.0) has been generated. BaRTv1.0, was constructed from a range of
tissues, cultivars and abiotic treatments and transcripts assembled and aligned to the barley
cv. Morex reference genome (Mascher et al., 2017). Full-length cDNAs from the barley
variety Haruna nijo (Matsumoto et al., 2011) determined transcript coverage, and high-
resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five
different organs and tissue. These methods were used as benchmarks to select an optimal
barley RTD. BaRTv1.0-Quantification of Alternatively Spliced Isoforms (QUASI) was also
made to overcome inaccurate quantification due to variation in 5’ and 3° UTR ends of
transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of RNA-seq
data of five barley organs/tissues. This analysis identified 20,972 significant differentially
expressed genes, 2,791 differentially alternatively spliced genes and 2,768 transcripts with
differential transcript usage.

Conclusion: A high confidence barley reference transcript dataset consisting of 60,444 genes
with 177,240 transcripts has been generated. Compared to current barley transcripts,
BaRTv1.0 transcripts are generally longer, have less fragmentation and improved gene
models that are well supported by splice junction reads. Precise transcript quantification

using BaRTv1.0 allows routine analysis of gene expression and AS.
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Background

Barley is an important cereal crop grown across a geographical range that extends from the
Arctic Circle to the hot and dry regions of North Africa, the near east and equatorial
highlands. Adaptation of barley to very different growing conditions reflects important
characteristics of genomic and transcriptomic diversity that leads to the success of the crop at
different latitudes (Ashoub et al., 2018; Dawson et al., 2015; Russell et al., 2016). Changes in
gene expression during development and in response to daily and seasonal environmental
challenges and stresses drive re-programming of the barley transcriptome (Janiak et al., 2018;
Ren et al., 2018; Kintlova et al., 2017; Calixto et al., 2016; IBSC, 2012). Transcriptomes
consist of complex populations of transcripts produced through the co-ordinated transcription
and post-transcriptional processing of precursor messenger RNAs (pre-mRNAs). Alternative
splicing (AS) of pre-mRNA transcripts is the main source of different transcript isoforms that
are generated through regulated differential selection of alternative splice sites on the pre-
MRNA and up to 60-70% intron-containing plant genes undergo AS (Marquez et al., 2012;
Mastrangelo et al., 2012; Staiger and Brown, 2013; Carvalho et al., 2013; Chamala et al.,
2015; Filichkin et al., 2015; Capovilla et al., 2015; Calixto et al., 2016; Laloum et al., 2018;
Szakonyi & Duque, 2018). The two main functions of AS are to increase protein diversity
and regulate expression levels of specific transcripts by producing AS isoforms that are
degraded by nonsense mediated decay (NMD) (Nilsen and Gravely, 2010; Kalyna et al.,
2012; Reddy et al., 2013; Staiger and Brown, 2013; Lee and Rio, 2015). Extensive AS has
been reported in barley (IBSC, 2012; Panahi et al., 2015; Calixto et al., 2016; Zhang et al.,
2016a; Zhang et al., 2016b) and allelic diversity further contributes to the landscape of AS
transcript variation among genotypes through elimination and formation of splice sites and

splicing signals (Shirasu et al., 1999; Guo et al., 2014; Liu et al., 2015).
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Although RNA-seq is the current method of choice to analyse gene expression, major
problems exist in the computational assembly and quantification of transcript abundance
from short read data with widely used programs. Such assemblies are typically inaccurate
because first, they generate a large proportion of mis-assembled transcripts and second, they
fail to assemble thousands of real transcripts present in the sample dataset (Pertea et al., 2015;
Hayer et al., 2015). In contrast, non-alignment tools such as Kallisto and Salmon (Patro et
al., 2017; Bray et al., 2016) provide rapid and accurate quantification of transcript/gene
expression from RNA-seq data. However, they require high quality, comprehensive transcript
references, which are rarely available in plants (Brown et al., 2017). In barley, RNA-seq data
from eight different barley organs and tissues from the variety Morex, a six-rowed North
American cultivar, was used to support annotation of the first barley genome sequence
(ISBC, 2012). The subsequent release of the barley pseudogenome, estimated to contain 98%
of the predicted barley genome content, has 42,000 high-confidence and 40,000 low-
confidence genes and ca. 344,000 transcripts (Mascher et al., 2017). However, detailed
analysis of individual gene models in the pseudogenome shows that the current annotation
contains a high frequency of chimeric and fragmented transcripts that are likely to negatively
impact downstream genome-wide analyses of differential expression and AS. In Arabidopsis,
a diverse, comprehensive and accurate Reference Transcript Dataset (AtRTD2), was
constructed from short read RNA-seq data by assembling transcripts with the assembly
functions of Cufflinks and Stringtie, followed by multiple stringent quality control filters.
These filters removed poorly assembled transcripts (e.g. with unsupported splice junctions),
transcript fragments and redundant transcripts, all of which affected the accuracy of transcript
quantification by Salmon/Kallisto (Zhang et al., 2015; Zhang et al., 2017a). AtRTD?2 has
been used for genome-wide differential expression/differential AS to identify novel

regulators of the cold response and splicing factors that regulate AS in innate immunity and
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root development (Zhang et al., 2017b; Calixto et al., 2018; Bazin et al., 2018; Calixto et al.,
2019).

Here, we describe the development of a first barley reference transcript dataset and
database (Barley Reference Transcripts — BaRTv1.0) consisting of 60,444 genes and 177,240
non-redundant transcripts. To create BaRTv1.0, we used 11 different RNA-seq experimental
datasets representing 808 samples and 19.3 billion reads that were derived from a range of
tissues, cultivars and treatments. We used high-resolution RT-PCR results to optimise
parameters for transcript assembly and to validate differential AS in five different barley
organs and tissues. We further compared the BaRTv1.0 transcripts to 22,651 Haruna nijo full-
length (fI) cDNAs (Matsumoto et al., 2011) to assess the completeness and representation of
the reference transcript dataset. As in Arabidopsis, we also generated a version of the RTD
specifically for quantification of alternatively spliced isoforms (BaRTv1.0-QUASI) for
accurate expression and AS analysis, which overcomes inaccurate quantification due to
variation in the 5’ and 3° UTR (Zhang et al., 2017a; Soneson et al., 2019). Finally, we used
BaRTv1.0-QUASI to explore RNA-seq data derived from five diverse barley organs/tissues
identifying 20,972 differentially expressed genes and 2,791 differentially alternatively spliced

genes amongst the samples.

Results

Transcript assembly and splice site determination

To maximise transcript diversity in the barley RTD assembly we selected barley Illumina
short read datasets that covered different barley varieties, a range of organs and tissues at
different developmental stages and plants/seedlings grown under different abiotic stresses.
The datasets represent 11 different RNA-seq experiments, containing 808 samples and 19.3

billion reads (Supplementary Table S1). Most samples consisted of paired-end reads that
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were between 90 and 150 bp in length and produced from Illumina HiSeq 2000 or Illumina
HiSeq 2500 runs. Exceptions were the dataset from Golden Promise anthers and meiocytes,
which contained over 2 billion paired end 35-76 bp reads and the internode dataset which
contained unpaired 100bp reads (Supplementary Table S1). The raw RNA-seq data of all
samples were quality controlled, trimmed and adapters removed using FastQC and
Trimmomatic (Figure 1; Supplementary Table S1). Reads were mapped to the reference
genome sequence of barley cv. ‘Morex’ (Hv_IBSC_PGSB_v2) (Mascher et al., 2017) using
STAR (Spliced Transcripts Alignment to a Reference) software (Dobin et al., 2013; Dobin
and Gingeras, 2016) (Figure 1). To improve mapping accuracy and filter out poorly
supported splice junctions from the sequence reads, while also considering the variability of
expression levels in the different samples, we performed a three-pass STAR mapping. This
was based on a two-pass alignment method to increase splice junction alignment rate and
sensitivity by performing a high-stringency first pass with STAR, which was then used as
annotation for a second STAR pass at a lower stringency alignment (Veeneman et al., 2016).
We also performed a less stringent third pass with STAR to capture further splice junction
read number evidence from the range of barley datasets that included different cultivars and
landraces, which will show sequence variation among reads and affect their mapping. The
third pass did not allow any additional splice junctions to be generated that were not already
present after the second pass. The advantage of the third pass was to allow more reads to map
to the splice junction and increase support for rarer splice site selections and increase
transcript diversity. (See materials and Methods). The number of uniquely mapped reads after
the three STAR passes ranged from 73% to 85% (data not shown) across the 11 samples.
This iterative alignment and filtering process using STAR produced a robust splice junction
reference dataset of 224,654 splice junctions that was used to support the identification of

multiple transcripts per gene.
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Figure 1. BaRTv1.0 assembly and validation pipeline. Steps in construction and validation of

BaRTv1.0 and programs used in each step (right hand side).

Optimisation of cv. Morex Guided Reference Transcript Assemblies

Transcriptomes for each of the 808 samples were assembled using StringTie (Pertea et
al., 2015) and different parameter combinations tested to optimise the quality and number of
transcripts (Figure 2; Supplementary Table S2). Throughout this process the quality of the
Morex reference-based transcript assemblies were benchmarked against data from a high-
resolution (HR) RT-PCR panel of 86 primer sets (Simpson et al., 2008) to accurately analyse
the proportion of alternatively spliced products in a subset of the cv. Morex experimental
samples (Developing inflorescences INF1 and INF2, leaf shoots from seedlings - LEA,
embryo - EMB, internode - NOD — see Materials and Methods). The primer list is available at

https://ics.hutton.ac.uk/barleyrtd/primer_list.hntml (Supplementary Table S3). At each stage
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the spliced proportions from HR RT-PCR were compared to the spliced proportions of the
same AS event(s) derived from the Transcripts Per Million (TPM) counts extracted from the
RNA-seq data analysis (Simpson et al., 2008; Zhang et al., 2017a) using an automated
method (see Figure 1; Materials and Methods for description and

https://github.com/PauloFlores/RNA-Seq-validation for script).

Each StringTie assembly was further compared to the 22,651 Haruna nijo full-length
(f) cDNAs (Matsumoto et al., 2011) to assess both the completeness and representation. Of
these, 17, 619 (81.2%) fl cDNAs had at least 90% coverage and 90% sequence identity with
transcripts in the RTD using BLASTn (Altschul et al., 1990) (Supplementary Figure 2).
These fl cDNAs were used to quantify coverage in the optimisation of assemblies with

StringTie (Figure 2; Supplementary Table S2).
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Figure 2. Benchmarking of 38 different StringTie Morex reference-based assemblies. The
four plots show different benchmark tests to assess the parameters used in the StringTie
assemblies. A) Transcript number; B) the number of HR RT-PCR products that match
transcripts; C) correlation of the proportions of transcripts in 86 AS events derived from HR
RT-PCR and the RNA-seq data using the different assemblies as reference for transcript
quantification by Salmon; and D) the number of Haruna nijo fl cDNAs that match RTD
transcripts. Each plot point represents the result of a StringTie assembly using different
parameters (Supplementary Table S2). The broken circled plot points at assembly 4, an
assembly using STAR defaults (without splice junction filtering) and StringTie defaults. The
solid circled plot point at assembly 34 represents the selected optimised StringTie parameters
used to produce BaRTv1.0 (see also Materials and Methods; Supplementary Figure 3;
Supplementary Table S2).
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Among the different StringTie parameters tested, the read coverage (“-c” parameter)
was found to be important and a value of 2.5 was selected as the optimum. A lower read
coverage value induced fragmentation, greatly increasing the number of genes, fewer
matching RT-PCR products, poorer correlation with the HR RT-PCR data and reduced
matching to the Haruna nijo fl cDNAs (Figure 2, for example assemblies 9-16;
Supplementary Table S2), while a value of 3 led to a lower number of genes and transcripts
being defined (Figure 2, for example assemblies 26-30; Supplementary Table S2). The
isoform-fraction (“-f” parameter) was optimal at 0, maximising the number of transcripts,
while still maintaining a strong correlation with HR RT-PCR data and high numbers of
matching Haruna nijo fl cDNAs (Figure 2, assemblies 17, 19-38; Supplementary Table S2).
A minimum locus gap separation value (“-g” parameter) of 50 bp was selected as an optimum
value. Values greater than 50 bp led to the prediction of fewer transcripts and poorer
correlation with the HR RT-PCR data, although there was a small improvement in the
coverage of the Haruna nijo fl cDNAs. Increasing the gap separation to 500 bp forced distinct
genes to merge resulting in longer transcripts, poorer similarity with Haruna nijo fl cONAs
and very poor correlation with the HR RT-PCR data due to the creation of chimeric genes
(Figure 2; in assembly 3). The improvement in the assemblies with the optimised StringTie
parameters is illustrated by comparison to the assembly produced using StringTie default
parameters (Figure 2). The optimised assembly had an 14% increase in splice product
detection in the HR RT-PCR analysis (220 versus 189 RT-PCR products) and increased
Pearson correlation values from 0.60 to 0.79 between the RNA-seq data and HR RT-PCR
data. It also recovered 634 more complete Haruna nijo fl cDONAs compared to the StringTie

assembly run in default mode.
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Construction of BaRTv1.0

Having established optimal assembly parameters, to construct the RTD, transcripts
were merged to create a single set of non-redundant transcripts. The dataset was filtered to
remove poorly expressed transcripts (< 0.3 TPM) and then merged with the genome-mapped
Haruna nijo full-length cDNAs (Figure 1). Finally, we used TransDecoder (Haas et al., 2013)
to predict protein coding regions and BLASTp (Altschul et al., 1990) to filter out transcripts
equal to or less than 300 bps long (8,767 transcripts) and showing less than 70% protein
coverage and identity with the Poaceae reference protein dataset (Figure 1), which removed
all but 25 transcripts of less than 300 bp (Supplementary Figure 4). After merging and
filtering, we retained 224,654 unique splice junctions, 60,444 genes and 177,240 transcripts
to establish the non-redundant reference transcript dataset named BaRTv1.0 (Table 1).

Previous studies in Arabidopsis and human RNA-seq analysis showed that variation
in the 5” and 3’ ends of assembled transcript isoforms of the same gene affected accuracy of
transcript quantification (Zhang et al., 2017a; Soneson et al., 2019). This was overcome by
padding shorter 5* and 3’ ends to the 5’ and 3’ ends of the longest gene transcript (Zhang et
al., 2017). We similarly modified BaRTv1.0 to produce transcripts of each gene with the
same 5’ and 3’ ends to generate BaRTv1.0-QUASI specifically for transcript and AS
quantification. Both datasets are available for download from

https://ics.hutton.ac.uk/barleyrtd/downloads.html. In addition, a website was created to

visualise individual BaRT transcripts, access transcript sequences, and allow for BLAST
searching and comparison with existing HORVU transcripts (Mascher et al., 2017)

https://ics.hutton.ac.uk/barleyrtd/index.html.

BaRTv1.0 represents an improved barley transcript dataset

12


https://ics.hutton.ac.uk/barleyrtd/index.html
https://ics.hutton.ac.uk/barleyrtd/index.html
https://doi.org/10.1101/638106
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/638106; this version posted May 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

The barley cv. Morex pseudo-molecule sequences were accompanied by a set of ca.
344 k HORVU transcripts (Mascher et al., 2017), nearly double the number in BaRTv1.0.
Close inspection of the HORVU transcripts identified short, fragmented and redundant
transcripts. The quality control filters used in the construction of BaRTv1.0 aimed to reduce
the number of transcript fragments and redundancy as these negatively impact the accuracy
of transcript quantification (Zhang et al., 2017a). The BaRTv1.0 and HORVU datasets were
directly compared with the numbers of complete Haruna nijo fl cDNAs and correlating the
proportions of AS transcript variants measured by HR RT-PCR with those derived from the
RNA-seq analysis (Supplementary Table S4). The BaRTv1.0 transcript dataset identified
more of the experimentally determined HR RT-PCR products (220 versus 191) and has
higher Pearson and Spearman correlations with quantification of the AS events when
compared to the HORVU dataset (Table 1). For the AS events detected in BaRTv1.0 and
HORVU, we plotted the percentage spliced in (PSI) values (proportion of total transcripts
that include exon sequence in the transcript) from HR RT-PCR and RNA-seq for each of the
three biological replicates from five different barley organ and tissue samples (giving 1992
and 1642 data points respectively) (Figure 3A and B). Pearson correlations and Spearman
ranked order correlations with the HR RT-PCR data increased between HORVU (0.769 and
0.768), BaRTv1.0 (0.793 and 0.795) and BaRTv1.0-QUASI (0.828 and 0.83) (Table 1;
Supplementary Table S4). We conclude that BaRTv1.0 (and the derived BaRTv1.0-QUASI)
RTD is a comprehensive, non-redundant dataset suitable for differential gene expression and

AS analyses.
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Table 1 Transcriptome dataset comparisons with HR RT-PCR and Haruna nijo fl

cDNAs

Transcriptome Version 100% BaRTv1.0 100% BaRTv1.0-QUASI| HORVU
# HR RT-PCR products 220 220 191
Pearson Correlation 0.793 0.828 0.769
Spearman Ranked Correlaton 0.795 0.830 0.768
# Complete HN flcDNAs 17,619 17,695 17,099
# Genes 60,444 60,444 81,683
# Transcripts 177,240 177,240 334,126

HR RT-PCR PSI

0.00 0.20 0.40 060 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

BaRTv1.0 PSI HORVU PSI BaRTv1.0 - QUASI

Figure 3. Correlation of alternative splicing from HR RT-PCR and RNA-seq. PSIs were
calculated from relative fluorescence units from HR RT-PCR and transcript abundances
(TPM) from RNA-seq data quantified with Salmon using the A) BaRTv1.0, B) HORVU and
C) BaRTv1.0-QUASI transcript datasets as reference. The 86 primer pairs designed to cv.
Morex genes covered 220 AS events in BaRTv1.0 (three biological replicates of 5 different
barley organs/tissues) giving 1,992 data points and 81 primer pairs covered 191 AS events
giving 1,642 points for HORVU.
BaRTv1.0 genes and transcripts

We next explored the characteristics of BaRTv1.0 genes and transcripts. A total of
57% of the BaRTv1.0 genes contained introns and had on average ~7.7 exons per gene
(Table 2). Around 60% of the multi-exon genes had multiple transcripts supporting the
occurrence of widespread AS in barley. Each transcript isoform within the dataset is unique

based on splice site usage (containing at least one unique splice site). Analysis of the 177,240
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predicted transcripts in BaRTv1.0 showed the expected distribution of canonical splice site
dinucleotides. Of the 224,654 splice junctions examined, 98.2% of the introns spliced out
have the expected GT..AG splice site dinucleotides, 1.7% had GC-AG dinucleotide borders,
and 0.1% showed the U12- intron-dependent splicing AT-AC dinucleotide splice sites. Half
of these splice junctions were observed in all the RNA-seq datasets tested but, 1.3% were
unique to a single dataset, indicating unique tissue or condition specific splicing

(Supplementary Table S5).

Table 2 Characteristics of barley genes and transcripts in BaRTv1.0

Number of genes 60,444
Number of predicted transcripts 177,240
Single exon genes 25,719 (43%)
Multi exon genes 34,725 (57%)
Single transcript genes 39,534 (65%)
Single exon transcripts 27,754 (16%)
Multi-Exon transcripts 149,486 (84%)
Number of Multi-exonic genes with alternative transcript variants 20,910 (60%)
Mean number of transcripts per gene 2.93
Number of distinct exons 466,247
Mean number of distinct exons per gene 7.7
Mean transcript locus size (first to last exon) 5,633
Mean exon size (bp) 573

We then used the SUPPA software version 2.3 (Alamancos et al, 2015) to determine
different splicing events and their frequency in our transcript dataset. We identified all the
expected major forms of AS, including alternative 5’ and 3’ splice site selection (Alt 5’ss; Alt
3’ss), exon skipping (ES) and intron retention (IR). Frequencies of the different AS events

were consistent with studies in other plant species (Alt 5° — 23.6%; Alt 3’ — 28.0%; ES —
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9.7% and IR — 37.9% - Table 3) (Marquez et al., 2012; Reddy et al, 2013; Chamala et al.,
2015). Of the alternative 3’ splice site events, 2,743 were of the NAGNAG type where two
alternative 3’ splice sites are found 3 nt apart. Alternative NAGNAG 3’ splice sites can be of
functional importance and are commonly found in human and plant genomes in coding
sequences where they can add or remove a single amino acid and may be subject to

regulation (Schindler et al., 2008; Busch and Hertel 2012; Shi et al., 2014).

Table 3. Frequencies of different alternative splicing events in BaRTv1.0

Type of event # %
Alternative 3' 44,590 28.0%
Alternative 5' 37,626 23.6%
Retained intron 60,327 37.9%
Skipped exon 15,387 9.7%
Mutually exclusive exons 1,311 0.8%

159,241 100.0%

Differential expression and differential alternative splicing in different barley
organs/tissues

The major motivation for developing BaRTv1.0 was to exploit the fast, alignment-free
transcript quantification software, Salmon, which requires an RTD to quantify transcript
isoform abundances using k-mer indexing and counting (Patro et al., 2017). We used RNA-
seq data from three biological repeats of five organs/tissues of Morex to quantify transcripts
with Salmon and BaRTv1.0-QUASI. Differential expression (DE) at both gene and transcript
levels, differential AS (DAS) genes and differential transcript usage (DTU) were analysed
using the recently developed 3D RNA-seq App (Calixto et al., 2018, 2019; Guo et al,
personal communication). We removed poorly expressed transcripts from the dataset by
stringent filtering (transcripts with > 1 counts per million in at least 4 of the 15 samples were

retained). A gene/transcript was significantly DE if it had an adjusted p-value of <0.01 and
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logz fold change of > 1. To identify significant DAS genes, consistency of expression changes
(log- fold change) between the gene and its transcripts was determined along with the change
in splice ratio (A Percent Spliced — APS). A DAS gene had at least one transcript which
differed significantly from the gene and with an adjusted p-value of <0.01 and had at least a
0.1 (10%) change in APS. Across the five organs and tissues, we detected expression of
60,807 transcripts from 25,940 genes. 20,972 genes were significantly DE across all tissues
and 2,791 genes showed significant DAS (Figure 4A&D; Supplementary Table S6). The
overlap between DE and DAS genes (those genes regulated by both transcription and AS)
was 2,199 such that 592 genes were DAS-only and regulated only at the level of AS with no
change in overall gene expression. We also identified 4,151 transcripts with significant DTU
which underpins the differential AS. DTU transcripts behave differently from other
transcripts of DAS genes and were identified by testing the expression changes of every
transcript against the weighted average of all the other transcripts of the gene (Calixto et al.,
2018). DTU transcripts differ significantly from the gene level and show a APS of >0.1 with
an adjusted p-value of <0.01. Pair-wise comparison of the number of up and down DE genes
between each of the tissues showed that the two most related tissues (different developmental
stages of inflorescence) had the fewest genes that were differentially expressed between them
(ca. 700) but also had the highest number of DE genes when compared to other organs/tissues
(ca. 14.5k between INF2 and NOD) (Figure 4B). There were ca. 10-fold fewer genes showing
differential AS and pair-wise comparisons, which again showed that the two inflorescence
tissues had the fewest numbers of DAS genes between them and INF2 compared to NOD,
EMB and LEA had the highest numbers of DAS genes (Figure 4C). These results suggest that
barley inflorescence transcriptomes differ substantially from shoot leaf, internode and

embryos.
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Hierarchical clustering of gene expression profiles of the 20,971 DE genes (DE-only

and DE+DAS genes) across the organs/tissues identified clusters of genes that were co-

ordinately and differentially expressed in each of the organs and tissues (Figure 4D). Cluster

1 (n=2,435) contained genes that were most highly expressed in the embryo, cluster 3

(n=2,477) and 6 (n=2,714) in the internode, cluster 5 (n=2,498) and 8 (n=4,906) in

inflorescences and cluster 4 (n=1,880) and 9 (n=1,316) in leaf (Figure 4D; Supplementary

Table S6). Hierarchical clustering also identified 2,768 transcripts differentially expressed

DTU that showed some specificity of expression in each of the sampled tissues (Figure 4E;

Supplementary Table S6). Cluster 1 (n=292) contains DTUs that are up-regulated in the

embryo, Cluster 4, 5 and 6 (total n=885) in the internode and cluster 7 (total n=355) in shoot

leaf. Cluster 3 (n=225) showed a cluster of DTU transcripts at the early stage of inflorescence

development, cluster 8 (n=296) at both stages of inflorescence development and cluster 9

(n=559) at the later stage of inflorescence development. Thus, extensive differential gene and

transcript expression and differential alternative splicing was revealed among the different

samples using BaRTv1.0.
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Figure 4. Differential gene and alternative splicing analysis in five barley organs. A. Numbers
of expressed genes, differentially expressed genes (DE) and differential AS (DAS) across all
5 barley organs/tissues. B. Number of up- and down-regulated DE genes between pairs of
different organs. Dark blue (up-regulated genes); light blue (down-regulated genes). C.
Number of DAS genes between pairs of different organs. D. Heatmap and hierarchical
clustering of 20,972 DE. E. Heatmap and hierarchical clustering of 2,768 DTU transcripts.
The z-score scale in D and E represents mean-subtracted normalised log-transformed TPMs.

Validation of differential AS from RNA-seq with HR RT-PCR and RNA-seq

To validate differential AS observed for individual genes among the different organs/tissues,
we compared the RNA-seq quantifications of the 86 AS genes and 220 transcripts used in
HR-RT-PCR. HR RT-PCR data showed over two-thirds of these transcripts had a significant
differential AS (p = <0.001; >5% change) across the five samples (Supplementary Table S7).
Given the RNA samples used in both the HR RT-PCR and RNA-seq was the same, we were
able to directly compare differential AS observed at the individual gene level. For example,
primer pairs Hv110 (HORVU5Hr1G027080; BART1 0-u34104) and Hv118
(HORVU1Hr1G078110; BART1 0-u5387) assay AS events that generate two alternative
transcripts in BaRTv1.0. The AS transcripts are the result of alternative 5’ splice sites, 5 nt
(Figure 5A) and 4 nt (Figure 5B) apart respectively. In each case selection of the distal 5’
splice sites produce the full-length CDS and use of the proximal 5 splice site will result in a
frame-shift and premature termination codons. Primer pair Hv173 (HORVU7Hr1G062930;
BART1_0-u52907) assays alternative selection of two 3 splice sites 33 nt apart (Figure 5C)
and Hv217 (HORVU7Hr1G071060; BART1 0-u52404) assays retention of intron 1 (Figure
5D). Each of these examples show the pattern of AS across the tissues are essentially
equivalent between HR RT-PCR and RNA-seq (Figure 5) and overall, we observed
remarkable consistency. Thus, there is good agreement between the differential alternative

splicing analysis from the RNA-seq data and the experimental verification with HR RT-PCR.
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These data provide strong support for the value of using BaRTv1.0 and BaRTv1.0-QUASI as

reference datasets for accurate expression and AS analysis.
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Figure 5. Comparison of alternative splicing in different barley tissues with HR RT-PCR and
RNA-seq data. Splicing proportions of four different genes in 5 different barley tissues are
presented. A. Hv110; HORVU5Hr1G027080, B. Hv118; HORVU1Hr1G078110, C. Hv173;
HORVU7Hr1G062930, D. Hv217; HORVU7Hr1G071060. Schematic transcript/AS models
are presented above histograms of PSls derived from HR-RT-PCR (black) and RNA-seq
(white) with standard error bars across three biological repeats. White boxes - exons, lines -
introns; chevrons — splicing events; grey boxes region between alternative splice sites; thick
intron line represents an intron retention.

Complex patterns of AS
A principal aim of establishing BaRTv1.0 was to achieve higher accuracy of

differential expression and AS analysis in barley RNA-seq datasets by improved transcript
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quantification. While the overall number of Morex transcripts in the HORVU collection (ca.
344Kk) was approximately halved in BaRTv1.0 (ca. 177Kk) (Table 1), some genes have multiple
transcripts due to combinations of complex AS events. To examine the accuracy of such
assembled transcripts we validated AS events in BART1 _0-u51812, which codes for a WW
domain-containing protein. BART1_0-u51812 contains 44 different transcript isoforms in the
BaRTv1.0 dataset due to unique combinations of different AS events (Figure 6A). We
analysed two regions that showed complex AS: between exons 2 and 3 and between exons 6
and 7 by HR RT-PCR (Figure 6). HR RT-PCR analysis identified fully spliced (FS), two
alternative 5’ splice sites and retention of intron 2 as the main AS events between exons 2
and 3. In addition, four minor HR RT-PCR products were also identified and these were
characterised as two further alternative 5’ splice sites and two alternative exons from the
BaRTv1.0 transcripts (Figure 6B). Between exons 6 and 7, the main AS events are fully
spliced, retention of intron 6, inclusion of an alternative exon and an alternative 5’ splice site
(Figure 6C). HR RT-PCR across exons 6-7 (primer pair Hv79 in exons 6 and 8) accurately
identified these AS events (Figure 6C). These AS events were also quantified using transcript
abundances from the RNA-seq data using BaRTv1.0_QUASI and showed good agreement
with the HR RT-PCR results with Pearson correlations of 0.92 for the Hv78 regions and 0.73
for the Hv79 region. These examples support the accuracy of alternative transcripts found in
BaRTv1.0 and that transcripts with complex combinations of AS events can be quantified in

RNA-seq data with confidence.
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BaRTv1_0-u51812; HORVU7Hr1G044850 - WW containing protein
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Figure 6. Alternative splicing in a WW domain containing protein gene (BART1_0-u51812).
A. BART1 _0-u51812 transcript models represented in the BaRTv1.0 database. B. AS events
involving intron 2 validated by HR-RT-PCR. C. AS events between exon 6 and 8 validated
by HR-RT-PCR. Electropherogram output from the ABI13730 shows the HR RT-PCR
products (x-axis RT-PCR products (bp); y-axis relative fluorescence units). The products
expected from RNA-seq are indicated as FS — Fully spliced, AE - Alternative exon, Alt 5’ss -
Alternative 5 splice site, IR-intron retention and Unspl.-Unspliced. * in B. indicates minor
alternative transcripts identified in HR RT-PCR and in RNA-seq. + in C. indicates an
uncharacterised alternative transcript identified in HR RT-PCR.
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Discussion

Comprehensive reference transcript datasets are required for accurate quantification of
transcripts for expression analysis using RNA-seq. Quantification at the transcript level
improves gene level expression estimates and allows robust and routine analysis of
alternative splicing. Here we describe the BaRTv1.0 transcript dataset or transcriptome for
barley, produced by merging and filtering transcripts assembled from extensive RNA-seq
data and its utility in differential expression and differential alternative splicing. The
transcripts were assembled against cv. Morex and this reference transcript dataset is therefore
a Morex assembly. BaRTv1.0 achieves a balance between maximising transcript diversity —
all 177,240 transcripts have at least one unique splice site with strong junction support — and
reducing the numbers of mis-assembled transcripts, transcript fragments and redundant
transcripts. This barley transcript dataset represents the first stage of an evolving resource
which will continue to improve and expand as more complete barley genomes are released
and by incorporation of new Illumina short read data along with single molecule sequencing
(Pacific Biosciences or Oxford Nanopore Technology) datasets when they become available.
Long-read data will confirm transcript features proposed by the short-read assemblies by
defining the exact combinations of different AS events and 5’ and 3’ ends and may identify
rare transcripts. The transcript and splice junction data generated here will be valuable in
improving the barley genome annotation. Finally, the BaRTv1.0 transcript dataset will enable
accurate gene and transcript level expression and AS analysis increasing our understanding of
the full impact of AS and how transcriptional and AS regulation of expression interact to
determine barley development, responses to environment and ultimately important crop
phenotypes such as yield, disease resistance and stress tolerance.

BaRTv1.0 represents 60,444 genes, which is considerably fewer than the 81,683

genes reported in the current barley genome (Mascher et al., 2017) where residual gene
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fragmentation has likely inflated the number of annotated genes. This number of genes is still
higher than expected and may decrease with further improvements in genome annotation.
However, the arrangement of BaRTv1.0 transcripts have identified mis-annotated chimeric
genes in the barley reference genome, helping to improve gene resolution. BaRTv1.0 was
established using RNA-seq data containing approximately 19 billion reads from a range of
different biological samples (organs, tissues, treatments and genotypes) and was assembled
initially against the Morex genome. The sequence depth and rigorous filtering and validation
allowed us to establish a diverse set of high-quality, robust and experimentally supported
transcripts.

A key function of the BaRTv1.0 transcript dataset is improved accuracy of transcript
abundance. Variation in the 5” and 3’ ends of transcripts of the same gene was shown
previously to affect transcript quantification in Arabidopsis (Zhang et al., 2017a) and similar
results for 3’ end variation have been found in human RNA-seq analysis (Soneson et al.,
2019). Extending the sequences of shorter transcripts with genomic sequences such that all
transcripts of a gene had the same 5’ and 3’ ends improved the accuracy of transcript
quantification compared to experimental data (Zhang et al., 2017a). We also found an
improvement in the quantification of transcripts and splicing proportions by applying the
same approach to produce the BaRTv1.0-QUASI version, specifically for quantification of
alternatively spliced isoforms (Table 1). The continued development of reference transcript
datasets for other lines and cultivars will be essential for accurate gene expression and AS
analysis. One significant application will be to enable genome-wide association studies using
gene expression data to identify eQTLs and transcript abundance/splicing ratios to identify
splicing QTLs (Thatcher et al., 2014).

To demonstrate the value of the new RTD for gene expression studies and AS

analysis, we used BaRTv1.0-QUASI to quantify transcripts in the five developmental organs
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and tissues RNA-seq datasets that we had used previously for HR RT-PCR optimisation and
validation. We observed extensive differences in gene expression and AS among the five
divergent samples. Clustered co-expression patterns clearly showed that the different organs
and tissues have distinct transcriptomes reflecting major differences in both transcription and
AS, as recently demonstrated in the cold response in Arabidopsis (Calixto et al., 2018). The
abundance of individual BaRT transcripts in these five organs/tissues, and in the eleven other
organs and tissues used to annotate the barley genome (Mascher et al., 2017) are displayed in

a barley reference transcript database website https://ics.hutton.ac.uk/barleyrtd/index.html.

Barley is adapted to a wide range of environments and is grown for many purposes.
As a result, different cultivars/genotypes will have unigue transcriptome profiles that will
respond differently to varying developmental or environmental conditions and challenges.
BaRTv1.0 enables rapid and robust analysis of gene expression and AS in a wide range of
experimental scenarios. BaRTv1.0 is based on cv. Morex but used RNA-seq data from a
wide-range of cultivars and lines. We anticipate significant and incremental improvements in
subsequent BaRT iterations by adding new short and long-read RNA-seq datasets but
understand the need to capture the diversity of different transcripts which will occur among
different cultivars and landraces. Sequence variation among different lines will generate
quantitative variation in expression and alternative splicing (Gan et al., 2011). Therefore,
using the methods presented here, RTDs for other widely used cultivars can be generated. For
example, construction of RTDs for Golden Promise (used for genetic transformation studies)
(Mrizova et al., 2014), Bowman (the background cultivar for a collection of near isogenic
lines) (Dahleen et al., 2005) and Barke (a cultivar more relevant to modern European
cultivated barley) (Pham et al., 2019) would all have specific utility. Ultimately, transcript
data from a wide range of genotypes will stimulate the move towards the development of a

reference pan-transcriptome to parallel the generation of the barley pan-genome sequence.
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Conclusions

A comprehensive, non-redundant barley reference transcript dataset called BaRTv1.0 has
been generated, which enables fast, precise transcript abundances. Downstream analysis of
transcript abundances in five barley organs/tissues, identified significant differential
expression of many genes and transcripts. BaRTv1.0 is part of a unique pipeline that
facilitates the robust routine analysis of barley gene expression and AS. The reference
transcripts have broader opportunities to develop unique expression markers, support
proteomic resources for barley and enable transcript/co-expression/regulatory networks. The
pipeline developed here has relevance to the development of other crop reference transcript

datasets.

Materials and Methods
An experimental and bioinformatics workflow showing the assembly, filtering and validation

approach taken is shown in Figure 1.

Selected RNA-seq datasets and data processing.

A total of 11 large RNA-seq datasets consisting of 808 samples including replicates, were
selected to assemble a barley transcriptome (Supplementary Table S1). Eight publicly
available datasets were downloaded from NCBI - Sequence Read Archive database

(https://www.ncbi.nlm.nih.gov/sra/) and the 3 remaining datasets are currently unpublished.

All datasets were produced using Illumina platforms and were selected based on being the
most recent datasets with the longest read length available (mostly >90 bp and paired-end
reads) with a quality of q >=20. All raw data were processed using Trimmomatic-0.30
(Bolger et al., 2014) using default settings to preserve a minimum Phred score of Q20 over 60

bp. One of the samples (NOD1) was over-represented with respect to read numbers due to a
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repeat run being necessary, and was therefore subsampled to 60 million reads. Read quality
before and after trimming was performed using FastQC (fastqc_v0.11.5)

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Transcriptome assembly

Alignment

Transcript assembly was performed using a data pipeline that initially used STAR (version
2.5; Dobin et al., 2013) to align reads from each of the 808 samples individually to the latest
barley cv. Morex reference genome (version 160404 barley pseudomolecules_parts_masked
/Hv_IBSC_PGSB_v2) (Mascher et al., 2017). Many alignment programmes use a two-step
approach to identify exon junctions and then use the junctions to guide the final alignment
(Engstrom et al., 2013). A three-step STAR alignment approach was developed to improve
alignment accuracy and identification of splice junctions and to take into consideration the
sequence variation in reads from different cultivars and lines used and to capture splice
junctions from tissue/conditions samples where the amount of material or sequencing depth
were limited or where genotypes were represented by small numbers of samples. In the first
pass, reads were mapped to the genome allowing a single mismatch and only those with an
overhang minimum of 10 bp on each side of the splice junction were taken forward. This step
identified 1,057,650 splice junctions, many of which were supported by only a single read.
These splice junctions were filtered based on their read support requiring 5 or more uniquely
mapped reads or 10 or more reads if multi-mapped reads were present; the remaining 206,688
splice junctions were used as annotation for the second pass. In the second pass the alignment
was relaxed to allow 2 mismatches in the splice junction region with an overhang minimum
of 7 bp. This step identified 1,088,440 splice junctions and these were further filtered to

select splice junctions on the basis of three sets of criteria: a) splice junctions with 3 or more
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uniquely mapped reads (5 or more reads if multi-mapped reads are present) in at least 2
samples; b) splice junctions with 2 or more uniquely mapped reads in at least 5 samples or c)
splice junctions supported by 1 or more uniquely mapped reads in at least 10 samples and
allowing for 2% mismatches in the alignment of reads outside the splice junction. In the final
pass, the 323,619 filtered splice junctions from the previous step were used as annotation and
no new splice junctions were allowed. In this step, the read mismatch rate was relaxed to 3%
to allow more reads to map. In all three passes, only canonical splice junctions (GT..AG,
GC..AG and AT..AC) and concordant alignments were kept.

Transcript assembly

After STAR alignment, each sample was run individually using StringTie (version 1.3.3b)
(Pertea et al., 2015). Different combinations of StringTie parameters were extensively tested
and the parameters that produced the best assembly were retained (see Results). Evaluation of
each assembly was performed based on comparison with HR RT-PCR data consisting of 86
genes and 220 alternatively spliced RT-PCR products (see Results). To evaluate the
completeness of the transcripts assembled, 22,651 Haruna nijo fl-cDNAs (Matsumoto et al.,
2011) were aligned using BLASTN (blastn, version ncbi-blast-2.2.28+; Altschul SF et al,
1990) to each RNA-seq transcriptome assembly generated. All fl-cDNAs with > 90%
coverage and > 90% identity were identified and the total number was considered a measure
of completeness. Optimal StringTie parameters were coverage (-c 2.5); gap between readings
triggering a new bundle (-g 50); isoform fraction was set at -f 0, gene abundance estimation
was set as output ( -A), minimum anchor length for junctions 5 (-a); minimum junction

coverage 0.1 (-j) and fraction of bundle allowed to be covered by multi-hit reads 1 (-M).

Removal of low abundance transcripts
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Salmon is a software tool that utilises a defined set of reference sequences to perform a rapid,
alignment-free estimation of isoform abundances by using k-mer indexing and counting. It
uses an accelerated expectation-maximization algorithm for quantifying isoform abundance,
which is given in transcripts per million (TPM). All 808 individual StringTie assemblies were
merged with StringTie-merge, after all 808 read samples were aligned to the merged
reference transcriptome with Salmon (version Salmon-0.8.2) (Patro et al, 2017) to obtain
transcript quantification. All transcripts that were expressed at less than 0.3 TPM, across all

samples, were filtered out.

Assembly merge

All 808 assembly predictions from StringTie were merged using StringTie-merge to create a
unique consensus assembly version. A minimum isoform fraction of 0 (-f) and a minimum
input transcript TPM of 0.1 (-T) was used in StringTie-merge. The consensus transcriptome,
after filtering out the transcripts less than 0.3 TPM, was further merged (gtf format) with the
22,651 Haruna nijo (HN) fl cDNAs (Matsumoto et al., 2011). The HN fl cDNAs were
mapped to the barley cv. Morex genome with the GMAP tool (version 2017-10-30) (Wu &
Watanabe, 2005). Finally, we used TransDecoder (version 5.3.0) (Haas et al., 2013) and
BLASTDp to identify and filter out all transcripts equal to or less than 300 bp (8,831
transcripts) with less than 70% of coverage and identity protein homology with the protein
datasets from 3 reference Poaceae species — Oriza sativa (v7_JGI), Brachypodium distachyon

(Bd21-3 v1.1) and Sorghum bicolor (v3.1.1) (https://genome.jgi.doe.gov/portal/)

(Supplementary Figure 4) to establish BaRTv1.0.

Alternative splicing analysis
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The newly created non-redundant BaRTv1.0 consensus transcriptome was further refined to
allow accurate quantification of AS as described previously, to create a separate dataset
specifically for quantification of AS isoforms (BaRTv1.0 — QUASI) (Zhang et al., 2017a).
All transcripts with shorter 5* and 3° UTR regions were padded out to the 5° and 3’ ends of

the longest transcript of that gene using the cv. Morex genome.

Comparing HR RT-PCR and RNA-seq alternative splicing proportions

To assess the accuracy of BaRTv1.0 to detect changes in AS in the RNA-seq data, we
compared the splicing proportions for AS events from HR RT-PCR with those calculated
from the RNA-seq data using the HORVU transcript set, BaRTv1.0 and BaRTv1.0-QUASI
as transcript references. To establish the correlations, a number of considerations were
required. First, HR RT-PCR data reports exclusively on the events that occur within a gene
bordered by the primers used for the analysis. The RNA-seq data reports on individual
transcripts that may contain multiple AS events or have an alternative transcript start and/or
stop. For this reason, multiple RNA-seq transcripts may represent the same AS product that is
detected by HR RT-PCR. We therefore developed a method

(https://github.com/PauloFlores/RNA-Seg-validation) that determined the size of the

expected PCR product by aligning the primer pairs against each RNA-seq transcript and
determining the predicted length that PCR would produce. The TPM values of all transcripts
that produce the same AS PCR product were added together to give a combined RNA-seq
value for that PCR product. The proportions of the different AS products for both HR-RT-
PCR and RNA-seq were then subsequently calculated and correlated.

Firstly, the method mapped the HR RT-PCR primers to the transcriptome using
BLAST (blastn-short command; version ncbi-blast-2.2.28+; Altschul et al, 1990). All

transcripts with perfect identity and coverage for both reverse and forward primers at one
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gene transcript location were selected (http://ics.hutton.ac.uk/barleyrtd/primer_list.ntml).

Secondly, the distance was calculated between the pairs of primers for each selected
transcript, and thirdly, transcripts with equal product length associated with the same pair of
primers were clustered together. Fourthly, five reference samples from the sample dataset,
each with 3 biological replicates to give 15 datasets (IBSC, 2012) were individually
quantified by Salmon (version Salmon-0.8.2; Patro et al, 2017). The five reference samples
consisted of 4-day old embryos dissected from germinating grains (EMB), young developing
inflorescences (5 mm) (INF1), developing inflorescences (1-1.5 cm) (INF2), developing
tillers at 6 leaf stage, third internode (NOD) and shoots from seedlings (LEA). The levels of
expression (in TPM) from Salmon were summed for transcripts with the same RT-PCR
product lengths. For each pair of primers and allowing for a difference of £6 bp (to allow for
inaccuracies in HR RT-PCR size calling), products of the same length between HR RT-PCR
and RNA-seq were identified. Finally, based on the calculated values of RNA-seq levels of
expression and the calculated values of HR RT-PCR for each RT-PCR product, the
proportions of the alternative transcripts were calculated
(transcriptTPM/Summed_transcriptsTPM compared to RT-PCR productRFU/Summed_RT-
PCRproductRFU) and the Pearson’s and Spearman’s correlation co-efficient was calculated

(see Supplementary Figure 5 for a pipeline summary).

Percent spliced in values and identification of alternative splicing type.

SUPPA version 2.3 (Alamancos et al., 2015) determined AS events and calculated the
relative inclusion values of AS events. Outputs from Salmon were fed into SUPPA to
quantify AS events across the tissue sample datasets and generate percentage spliced in (PSI)

values.
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Generation of the BaRTv1.0 database

A database and website front-end were constructed to allow easy access to BaRTv1.0
transcripts and expression analyses using the LAMP configuration (Linux, Apache, mySQL,
and Perl). Additional annotation was added to the transcripts by homology searching against
the predicted peptides from rice (rice pseudo-peptides v 6.0; Ouyang et al., 2007) and from
Arabidopsis thaliana (TAIR pseudo-peptides v 10, The Arabidopsis Information Resource)
using BLASTX at an e-value cutoff of less than 1e-50 (Altschul et al., 1990). The website

https://ics.hutton.ac.uk/barleyrtd/index.html allows users to interrogate data through an entry

point via three methods: (i) a BLAST search of the reference barley assembly or the predicted
transcripts; (ii) a keyword search of the derived rice and Arabidopsis thaliana BLAST
annotation, and; (iii) a direct string search using the transcript, gene, or contig identifiers. To
distinguish this new set of predicted genes and transcripts from previously published
‘MLOC _’ and HORVU identifiers, they have subsequently been assigned a prefix of
‘BART1_0-u00000’ for the unpadded or ‘BART1_0-p00000° for the padded QUASI version,
with 00000 representing the individual transcript number.

The RNA-seq TPM values for the developmental stages of barley (Morex cultivar)
(Mascher et al 2017) at the replicate and stage are shown in both graphic and tabular formats
for each gene. The exon structures of the transcripts for each gene are shown in graphical
form, and links to the transcripts themselves provides access to the transcript sequences in
FASTA format. Each transcript has also been compared to the published set of predicted

genes (HORVUSs) in order to provide backwards compatibility.

High resolution RT-PCR
The RNA from five of sixteen developmental stages of barley cv.Morex was used for HR

RT-PCR validation (Mascher et al., 2017). This consisted of three biological replicates of leaf
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tissue (LEA) sampled from seedlings at 17 days after planting (dap); the third stem internode
(NOD) dissected at 42 dap; whole developing inflorescence tissue sampled at 30 dap (INF1)
and 50 dap (INF2) and embryonic tissue (including mesocotyl and seminal roots; EMB)
dissected after 4 days. High resolution RT-PCR was performed essentially as described
previously (Simpson et al., 2008). A panel of 86 primer pairs covering 220 RT-PCR products
(Supplementary Table S3), were designed to barley genes that showed evidence of AS and
more than 100 RNA-seq reads for each primer pair to support transcription, with the
exception of 14 primer pairs numbered between primers #14 and 51. These primers were
designed to genes already under study and consisted of splicing factor genes, clock response
genes and Rubisco activase (Supplementary Table S3). Primers were designed to amplify
products between 100 and 700 bp to capture the different splicing events. The 5’ upstream
primer was 5’ labelled with 6-Carboxyfluorescein (6-FAM). Total RNA (5 pg) was used for
first-strand cDNA synthesis by reverse transcription with oligo(dT)18 using Ready-To-Go
You-Prime First-Strand Beads (GE Healthcare) in a final volume of 20 pL. RT-PCR was
performed as described (Simpson et al., 2008) and the resultant RT-PCR products
representing AS transcripts were detected on an ABI3730 DNA Analyzer (Thermo Fisher
Scientific) along with GeneScan 500 LIZ size standard (Applied Biosystems). RT-PCR
products were accurately sized and peak areas calculated (Relative Fluorescence Units —

RFUs) using GeneMapper (ABI) software.

Statistical analysis

HR RT-PCR ANOVA

Pairwise significance of the variation between the developmental tissues was assessed by
analysis of variance (ANOVA). Each peak of each primer was analysed separately with three

replicate values for each treatment combination. Response was measured as the percentage
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contribution of a particular isoform to the total transcripts measured, and ANOVA was
carried out after an angular (arcsin) transformation was used to transform values from [0, 1]
to [-/2 ,+ m/2] to give the data a normal distribution (Sokal and Rohlf, 1995). Fisher's Least
Significant Difference (LSD) test was performed for the pairwise comparisons between the
different tissues tested at a p- value <0.001. In the subsequent analysis, we focussed on those
transcripts which showed a significant increase or decrease with a 5% difference between the
means of the different plant tissues. This level of difference was selected because we
previously determined that when comparing variation in technical reps in the AS RT-PCR
system, the majority of transcripts showed a standard error of the mean of <3% (Simpson et

al., 2008; Kim et al., 2009).
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