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Summary

Cerebral cortex and cerebellum are thought to interact bidirectionally during movement,
motor planning, Pavlovian conditioning, and cognitive function. The pontine nuclei (PN),
which consist of the basal pontine nuclei and the reticulotegmental nucleus, constitute
the principal hub that convey descending signals from higher brain areas into the
cerebellum. The PN receive a massive input from layer 5 of nearly the entire ipsilateral
cerebral cortex, and they are thought to serve as a relatively simple relay of this
information to both the cerebellar cortex and cerebellar nuclei. Although PN neurons
occupy an important anatomical position, little is known about their firing properties
during natural movement, feedback effects on cortical activity, or functional role in
behavior. Here, we use electrophysiological recordings along with optogenetic and
pharmacogenetic perturbations to reveal three key aspects of PN function. First, during
the execution of a cortically-dependent reach-to-grab behavior, many PN neurons
respond to the movement or to non-motor events, such as the cue signaling trial start.
Some neurons respond to both motor and non-motor events, suggesting that the PN do
not simply relay separate channels of information into cerebellum, but perform
multimodal integration. Second, motor cortical neurons that receive feedback from the
ponto-cerebellar system have distinct functional properties during behavior. Third,
perturbations of PN function impair performance of reaching, disrupt limb kinematics,
and alter the functional responses of motor cortical neurons during movement. Taken
together, these results demonstrate that the PN are a rich integrative hub that are
essential for dexterous motor control.

Introduction

The integration of ascending signals from the periphery with descending signals from
higher brain regions is a widespread motif in the central nervous system. The
cerebellum, for instance, receives information from nearly every sensory modality, and
ascending pathways carrying vestibular (Barmack, 2003), cutaneous (Bower and
Woolston, 1983), proprioceptive (Bosco and Poppele, 2001), and visual (Stone and
Lisberger, 1990) stimuli have been studied in detail. These sensory inputs often overlap
with inputs from the pontine nuclei (PN) carrying descending information from higher
brain areas such as cerebral cortex (Huang et al., 2013). This cerebellar integration of
descending motor commands with delayed sensory feedback may enable estimation of
the state of the arm, cancellation of the sensory consequences of self-generated
movements, and correction for motor errors (Wolpert et al., 1998). Although the
descending inputs are widespread and likely critical for cerebellar computation, they are
understood more poorly than the ascending pathways.

The pontine nuclei (PN), which include the basal pontine nuclei and reticulotegmental
nucleus, are the principal route through which descending signals from cerebral cortex
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are conveyed to the cerebellum (Brodal and Jansen, 1946; Brodal and Bjaalie, 1992;
Cajal, 1898; Mihailoff et al., 1985). The PN receive massive input from layer 5 of nearly
the entire ipsilateral cortex (Leergaard et al., 2004; Legg et al., 1989), as well as
descending inputs from the superior colliculus and other structures (Mihailoff et al.,
1989). Conversely, ascending pathways such as the medial lemniscus system contribute
only a minor input to the PN (Kosinski et al., 1988). The sole output target of the PN is
the cerebellum. PN axons mostly terminate in the lateral and intermediate cerebellar
cortex (Biswas et al., 2019; Huang et al., 2013), but some also project to the cerebellar
nuclei (Mihailoff, 1993). The pontine nuclei have been estimated to be the source of over
half of the mossy fiber inputs to the cerebellum.

While the PN are a major hub in the brain (Gao et al., 2018), physiological recordings
from the PN during awake behavior have been challenging, due to the difficulty of
targeting deep brain structures. Single-unit recordings from the PN in nonhuman
primates have revealed responses during arm and eye movements (Matsunami, 1987;
Tziridis et al., 2009). During eyeblink conditioning in rabbits, neurons have responses
locked to the acoustic tone or resembling the time course of the learned eyeblink, and
these eyeblink-related responses are attenuated by cooling of the interpositus nucleus
(Clark et al., 1997). In rats, individual neurons have also been found to respond both to
acoustic tones and light flashes (Campolattaro et al., 2011), and studies in anesthetized
animals have revealed that inputs from different cortical areas may converge onto
individual PN neurons (Potter et al., 1978; Ruegg and Wiesendanger, 1975). To date,
however, few recordings have been obtained from the PN during the execution of
cortically-dependent, voluntary movement.

Although damage to the PN in humans results in motor impairments (Schmahmann et
al., 2004), selective PN lesions in animal models have been difficult, as such lesions
tend to also damage the corticospinal and medial lemniscus tracts, which run directly
through the middle of the nuclei. Nonetheless, the effects of PN lesions have been
studied, and the most prominent impairments have involved visual sensorimotor
behaviors (Stein and Glickstein, 1992) and gap crossing (Jenkinson and Glickstein,
2000). Similarly, pointing to a moving visual target was also disrupted (Levesque et al.,
1986). Recently, hints of the role of the PN in movement execution were found in a
joystick task with semi-acute perturbations (Wagner et al., 2019). Therefore, it is still
unclear what specific role the PN play in the execution of cortically-dependent voluntary
movements.

In order to study the contribution of the PN to skilled behavior, we wanted to use a task
requiring brain regions that provide descending input to the PN. We have previously
shown that the motor cortex is required for a task in which mice reach and grasp a pellet
of food following an acoustic cue; we therefore used this task to interrogate PN function
(Guo et al., 2015) (Fig. 1A). We found that the activity of PN neurons was modulated
both by movement and by non-motor events, and that disruption of PN function
degraded task performance and altered cortical activity patterns.

Results

Firing properties of PN neurons during a dexterous, cortically-dependent
behavior.
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Although the PN are the major source of descending input to cerebellum, little is known
about the activity of PN neurons during behavior. Because the regions of the PN
receiving motor cortical input are small and deep in the brain, we targeted our recordings
using a combination of high-density electrophysiology and optogenetic stimulation of
corticopontine fibers. We performed the experiments in Sim1-Cre X Ai32 mice, which
express ChR2 in layer 5 pyramidal tract neurons projecting to the PN. During the
recording session, we slowly lowered a 960-site, 384-channel Neuropixels probe (Jun et
al., 2017) coated in fluorescent dye towards the PN. As the probe approached its target,
we stimulated forelimb motor cortex with an optical fiber coupled to a 473 nm laser using
a one-second, 10 Hz pulse train. This resulted in bursts of spiking activity in the target
zones, verifying that the probe was in a region of the pontine nuclei receiving motor
cortical input (Fig. 1B-C). The cortically-evoked depth profile was later compared with
histology to further verify the targeting.

We recorded the activity of 129 PN neurons, which exhibited a wide variety of patterns
during the task (Fig. 1D-F). Some cells had firing rate increases or decreases locked to
the acoustic cue (e.g. example neuron 1 in Fig. 1D; n = 25), others to the reaching
movement (neuron 2; n = 38), and others to both (neuron 3; n = 36). Furthermore, for
each of these classes, some neurons were tagged by cortical stimulation (e.g. neurons 2
and 3 in Fig. 1D; n = 30 total tagged neurons), and others were not (fig. 1F). The
existence of PN neurons that receive input from motor cortex and respond both to the
cue and during movement suggests that the PN are not simply a relay that delivers
unprocessed cortical signals to the cerebellum; rather, it is a hub that integrates different
modalities of cortical information.

Some neurons exhibited cue-locked firing rate increases that were sustained for several
seconds after the cue. In some cases, the offset of these responses coincided with the
movement of the hand back to the perch (Supplementary Fig. 1A), but in other cases,
they continued for several seconds after the end of the movement (Supplementary Fig.
1B).

In rodents, there appear to be few local inhibitory neurons within the pontine nuclei.
Inhibitory inputs to the PN have been identified in the zona incerta, anterior pretectal
nucleus, and reticular formation (Border et al., 1986), but it is unclear whether these
circuits can be recruited by descending cortical signals to suppress PN spiking. In order
to identify possible cortically-driven feedforward inhibition onto PN neurons, we delivered
a two-second, 40 Hz sinusoidal laser stimulus to cortex. Some neurons (n = 26)
maintained elevated firing rates during this long stimulation, but others showed a
sustained decrease (n = 12; Fig. 1G). This suggests that motor cortex is capable not
only of exciting PN neurons through direct pyramidal tract projections, but also
suppressing them through polysynaptic inhibitory routes.

Motor cortical neurons receiving ponto-cerebellar feedback have distinct
functional profiles.

The PN not only receive input from cortex, but also provides feedback through the
cerebellum and thalamus. In order to examine ponto-cerebellar feedback to cortex, we
induced expression of ChR2 in PN neurons by injecting AAV-FLEX-rev-ChR2-tdTomato
into Slc17a7-Cre mice (Huang et al., 2013) and implanting an optical fiber over the PN.
We then trained the mice to perform the reach-to-grab task and recorded from
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ensembles of motor cortical neurons (n = 749) during the behavior. To identify cortical
neurons receiving feedback from the ponto-cerebellar system, we stimulated PN
neurons with 473 nm light using a laser coupled to the implanted fiber (10-40 Hz sine
wave, 2 s, 8-20mW). PN stimulation evoked transient spiking responses in many
neurons (Fig. 2A-B; n = 211). We then examined the firing patterns of PN-tagged and
non-PN-tagged cortical neurons during the reaching behavior, by comparing pre- and
post-lift spike counts (see Methods). While both tagged and non-tagged neurons
exhibited lift-locked increases and decreases, firing rate increases were much more
common among tagged neurons (Fig. 2B-C; chi-square test, p = 5e-23). Furthermore,
among the cells with firing rate increases, the tagged neurons increased their activity
earlier than the non-tagged neurons (Fig. 2D). This suggests that cortical neurons
receiving input from the ponto-cerebellar pathway may play a role in movement initiation,
rather than being engaged only for feedback corrections of ongoing movements.

Pharmacological inactivation of the PN impairs dexterous reach-to-grab.

We have demonstrated that the PN contain rich signals related to the cortically-
dependent reach-to-grab behavior. What impact do these signals have on the execution
of this task? In order to address this question, we studied the effect of pharmacologically
inactivating the PN outputs. We induced expression of the modified human M4
muscarinic receptor hM4D (Roth, 2016), which reduces neural activity when it binds
clozapine-N-oxide (CNO), in the PN. Following this injection, we trained the mice to
perform the reach-to-grab behavior, and to perform the task in blocks of three sessions,
with systemic injection of saline on the first and third days, and of CNO on the second
day (Fig. 3A). Expression of the hM4D receptor in PN neurons receiving motor cortical
input was verified after the experiment with histology (Fig. 3B). Following
pharmacological inactivation of the PN, the mice were not grossly ataxic, but reached to
the pellet with relatively normal hand trajectories (Fig. 3C-D). However, the success rate
for the first reach was severely impaired, decreasing from 67% to 45% (Fig. 3E, right,
black curve; Supplementary Fig. 2A-B). A similar drop in success rate occurred for
subsequent reaches, when the animal attempted to correct for the failed first reach (Fig.
3E, right, gray curve; Supplementary Fig. 2A-B). This decrease in success following
CNO injection was not observed in control animals which did not express the hM4D
receptor (Fig. 3E, right). Most animals also exhibited an increase in reaction time
(Supplementary Fig. 2A-B) and a small increase in hand spread (Supplementary Fig.
2D) following PN inactivation. The decrease in success rate under PN inactivation likely
reflects impairment in the fine coordination of the fingers which we were unable to detect
by hand tracking, rather than proximal deficits. Thus, PN perturbation does not appear to
produce ataxia or impair movement initiation, but rather has a specific effect on the
skillful performance of a cortically-dependent reaching behavior.

Optogenetic perturbation of the PN perturbs hand kinematics, impairs reach-to-
grab performance, and alters firing patterns of motor cortical neurons during
behavior.

Although pharmacogenetic inactivation allowed us to perform a loss-of-function test of
the role of the PN, this experiment had several limitations. First, because the effect of
the drug is not rapidly reversible, it is possible the animals were able to partially
compensate for drug-induced deficits over the course of the session. Second, because
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the control and CNO sessions were performed on different days, it was not possible to
record the activity of the same motor cortical neurons under the two conditions. Third, it
is possible that inactivation is less effective at disrupting movement than an artificial
increase in PN activity. In order to address these limitations, we performed rapid,
reversible perturbation of the PN with ChR2 stimulation while recording from motor
cortex. We interleaved trials with both the start cue and a 2 s, 10-40 Hz sinusoidal laser
stimulation with control trials in which only the cue was given (Fig. 4A). In contrast with
the pharmacogenetic results, we observed robust kinematic effects of optogenetic
perturbation. In many sessions, the animals consistently overreached the target in the
forward direction during PN perturbation (Videos 1-2, Fig. 4B). The position of the hand
at grab shifted and became more variable on perturbation trials (Fig. 4C-D). Laser
stimulation reduced the success rate for the first reach (Fig. 4E, left), and this drop in
success tended to occur because the animal overreached the target (Fig. 4E, right).
Thus, PN perturbation induces hypermetric reaches and impairs successful grasping;
this could reflect either a change in motor commands descending to the spinal cord from
the cerebellum, or altered feedback from the cerebellum to motor cortex.

If the perturbation acts in part through feedback to cortex, then lift-aligned motor cortical
firing patterns should differ on control and laser trials. Some neurons exhibited a firing
rate increase at the onset of the laser, but a similar firing pattern to the control trials
during reaching (Fig. 4F, left). Others, however, had different firing patterns during or
following the movement (Fig. 4F, right, center). In order to quantify the differences
between firing patterns on control and laser trials across the population, we split the
neural population according to whether there was an increase in firing rate aligned to the
start of the laser, as in Fig. 2. Then, we examined the difference in lift-aligned firing rate
Z-scores between laser and control. For PN-tagged neurons, firing rates were elevated
before lift on laser trials; this would have been expected based on the phasic laser-
onset-aligned responses shown in Fig. 2A. These tagged neurons also exhibited a later
response, which began late in the movement and was sustained until over two seconds
after lift (Fig. 4G, left). On the other hand, non-PN-tagged neurons did not show a
difference, in average, between control and laser trials (Fig. 4G, right). The hypermetric
reaches observed on laser trials may have been driven, in part, by the elevated activity
of PN-tagged neurons near the end of the reach (Fig. 4G, left).

Discussion

In this study, we have explored the activity patterns in PN neurons during a cortically-
dependent reach-to-grasp task. Individual PN neurons receiving motor cortical input
could respond not only during the movement, but also to non-motor events. Feedforward
inhibition onto PN neurons could be recruited by cortical stimulation. Perturbation of the
PN impaired performance, induced hypermetric reaching, and modified movement-
locked activity in motor cortex. We also observed that the subset of motor cortical
neurons tagged by PN stimulation tended to fire earlier relative to movement onset than
those that were not tagged. Taken together, these results establish the PN as a critical
hub linking motor cortex and the cerebellum and supporting the execution of skilled
movement.

Previous work has suggested that different modalities of information remain segregated
in the pons (Schwarz and Thier, 1995), and that multimodal integration occurs within the
cerebellar cortex, including at the level of granule cells (Huang et al., 2013). However,

we observed many PN neurons that responded both to the cue and to movement onset,
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consistent with a previous report of multimodal visual-acoustic responses. Several of
these neurons were shown by optogenetic tagging to receive descending input from
forelimb motor cortex. This motor cortical input could drive the movement-locked firing
rate changes, but the source of cue modulation remains unclear. Thus, the PN are not a
simple relay of unimodal descending signals, but integrate signals of multiple modalities.
In highly-trained animals performing a self-paced forelimb task, Wagner et al. (2019)
observed similar activity patterns in motor cortex and cerebellar granule cells, which
might suggest that the PN relay relatively unprocessed signals. The multi-modal
integration we observe in the PN might not have been engaged in their task. The logic of
multi-modal integration in the PN and how it is engaged in different behaviors remains
an important open question.

We have also shown that some PN neurons receive feedforward inhibition driven by
forelimb motor cortex. Although inhibitory input to the PN has been demonstrated
anatomically (Border et al., 1986), our results show that this inhibition can be recruited
by descending cortical input. What is the functional significance of PN inhibition, and
when is it engaged? One intriguing possibility is that cortical output is gated off during
motor preparation (Kaufman et al., 2014) or the execution of non-cortically-dependent
behaviors (Miri et al., 2017).

At the outset of the study, we expected perturbations of the PN to produce a severely
ataxic phenotype, similar to those that occur in cerebellar disease . Surprisingly,
however, under both pharmacogenetic and optogenetic perturbation, animals were able
to produce relatively normal hand trajectories. Optogenetic perturbation of the PN did
increase the spread of the hand position at the end point (Fig. 4D), but its most obvious
effect was hypermetria: an overreach of the target in the forward direction (Fig. 4B-C).
Intriguingly, this kinematic effect was observed only late in the reach, while the early
portion of the reach trajectory was normal. Previous work has suggested that optimal
feedback control of the arm acts to accurately target the end point of the movement,
rather than reflecting the planning of the full trajectory (Todorov and Jordan, 2002). If this
were the case, then the late divergence of hand trajectories on control and laser trials
could be due to our disruption of a cerebellar state estimate used by motor cortex to
control the movement end point.

Perturbation of the PN could influence behavior either through routes that descend from
the cerebellum to the spinal cord through the red nucleus and reticular formation, or
through feedback effects on motor cortex. Because control and perturbation trials were
interleaved in the optogenetics experiments, we were able to compare activity patterns
during movement for the same neurons on both trial types. For cortical neurons tagged
by PN stimulation, firing rates were elevated late in the movement on laser trials. This
suggests that perturbation of the PN changes motor commands in motor cortex, and that
such changes may be partially responsible for the hypermetric reaching on laser trials.
We cannot exclude the possibility, however, that perturbation-induced changes in
cerebellar output that proceed to the spinal cord without feeding back to motor cortex
also contribute to the observed hypermetria.

Our study showed that the PN are critical for skillful performance of a dexterous
movement. Since the PN receive input from nearly all of cortex, however, they are likely
involved in a wide range of non-motor behaviors, as well, and their contribution to more
cognitive functions remains a key open question.
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Methods

Transgenic mouse lines

Slc17a7-Cre mice were generated by the Janelia Research Campus Gene Targeting
and Transgenics Facility, and Pde1c-Cre cryopreserved sperm (line IT106) were
obtained from GENSAT (Chip Gerfen; National Institutes of Health, Poolesville, MD) and
rederived by the Janelia Research Campus Gene Targeting and Transgenics Facility.
Pde1c-Cre (n = 3) and Sic17a7-Cre (n = 5) lines both express Cre recombinase in PN
but exhibit different expression patterns elsewhere in the brain. To control for off-target
effects, we assessed behavioral phenotypes of both lines. We observed no qualitative
behavioral differences between the two mouse lines, and thus used them
interchangeably. For the optogenetic perturbations, we used Slc17a7-Cre mice (n = 7).
For the electrophysiological recordings in the PN, we obtained mice (n = 6) expressing
ChR2 in pyramidal tract neurons by crossing the Cre driver line (Tg(Sim1-Cre)KJ18Gsat,
The Jackson Laboratory) to a Cre-dependent ChR2 reporter mouse, Ai32 (Rosa-CAG-
LSL-ChR2(H134R)-EYFP-WPRE, The Jackson Laboratory).

Stereotaxic surgeries

Mice (2-5 months old) were anesthetized with 2% isoflurane and placed on a heating
pad in a stereotactic frame (Kopf Instruments, Tujunga, CA). A portion of the scalp was
removed, the skull was cleaned, and a custom-made headpost was affixed with UV-
curing cement (OptiBond, Kerr) or dental acrylic (RelyX Unicem, 3M). For viral injections
into the PN, craniotomies were made using a dental drill over the PN (3.90 mm posterior
to bregma, 0.4 mm lateral). Injections were bilateral for the pharmacogenetic
experiments, and on the left (contra-limb) side for optogenetics experiments. Injection
pipettes were made from glass capillaries pulled on a Sutter P-2000 (Novato, CA).
Viruses were loaded using a Narishige pneumatic injector (Tokyo, Japan) and injected
into the PN at 5.8, 5.6, 5.4, and 5.2 mm below dural surface. Injection volumes were 100
nl each. After each injection, at least two minutes elapsed before proceeding to next
depth, and the pipette was withdrawn five minutes after final injection. For the
pharmacogenetics experiments, Slc17a7-Cre animals were injected with AAV-2/1-flex-
hM4D-GFP or AAV-2/1-flex-hM4D-mCherry. For the ChR2 PN stimulation experiments,
Slc17a7-Cre animals were injected with AAV-2/1-CAG-flex-ChR2-TdTomato and
implanted with tapered Optogenix fibers in the left PN (Lecce, Italy; NA 0.39, Emission
length ~2mm, core diameter 200um, core+cladding 225um). For the PN optogenetic
perturbation experiments, a craniotomy targeting forelimb motor cortex (bregma +0.5,
left 1.7 mm) was sealed with silicone elastomer (Kwik-Sil, WPI). Following surgery,
injections of ketoprofen (5 mg/Kg) and buprenorphine (0.1 mg/Kg; Henry Schein Animal
Health, Melville, NY) were administered subcutaneously. If animals exhibited signs of
pain or distress following surgery, additional doses of either ketoprofen or buprenorphine
were administered, as directed by veterinary staff. All procedures were performed in
accordance with protocols approved by the Institutional Animal Care and Use Committee
(IACUC) of the Janelia Research Campus.

Reach-to-grab task

As described previously, mice undergoing behavioral training were food restricted to 80-
90% of original body weight by limiting food intake to 2-3 g/day. Otherwise, mice had ad
libitum food. Animals were monitored daily by veterinary staff, according to IACUC
guidelines. During training, animals learned to reach for pellets of food with the right paw
following a 200 ms, 5 kHz acoustic cue, as described previously. Two high-speed
cameras (Point Grey Flea3) with manual iris and focus lenses (Tokina 6-15 mm /1.4, or
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Tamron 13VM1040ASIR 10-40mm, f/1.4) were placed in front and to the right of the
animal. A custom-made infrared LED light source was mounted behind each cameras.
Video was recorded using BIAS acquisition software (IO Rodeo, available at
https://bitbucket.org/iorodeo/bias). The cameras, acoustic cue and table, and laser were
controlled using Wavesurfer software (Adam Taylor, Janelia Scientific Computing;
http://wavesurfer.janelia.org/) and a custom Arduino controller (Peter Polidoro, Janelia
Experimental Technology).

Video analysis

The position of the hand was tracked using the APT software package
(https://github.com/kristinbranson/APT), developed by the Branson Lab at Janelia, as
described previously. The position of the hand was manually annotated for training
frames, a tracker was created using the cascaded pose regression algorithm, and the
tracker was applied to all movies in each dataset. The three-dimensional position of the
hand was triangulated by performing a stereo calibration of the pair of cameras using the
Caltech Camera Calibration Toolbox for Matlab
(http://www.vision.caltech.edu/bouguetj/calib_doc/). The timing of behavioral waypoints,
including lift and grab, was estimated with the Janelia Automatic Animal Behavior
Annotator (https://github.com/kristinbranson/JAABA), as described previously. Lift was
defined as initial separation between paw and perch. Hand-open was defined as fingers
beginning to separate from palm. Grab was defined as paw moving downwards as digits
closed. Supination was defined as wrist rotation >90° upwards. At-mouth was defined as
the frame in which the paw was within 1 pixel of mouth. Chew was defined as
mastication of pellet visible in mouth. Each behavior classifier inputs a short sequence of
frames from both the front- and side-view videos, and outputs a prediction of whether the
mouse is performing the given behavior or not in the center frame (note that a different
classifier is trained for each behavior and each mouse). The classifier used Histogram of
Oriented Gradient (HOG) and Histogram of Optical Flow (HOF) features, general-
purpose features that represent the directions and magnitudes of edge and motion
vectors. Following the initial classification, post-processing was performed in which the
per-frame classification results were smoothed by filling short gaps, and spurious short
detection bouts were removed. We further filtered the detected events by considering
only event sequences in which a lift, hand-open, and grab were detected in order. Using
the JAABA interface, the user manually checked for and corrected classifier errors and
retrained the classifier, if necessary. Trials were regarded as “single-grab successes” if
the first lift-hand-open-grab sequence resulted in the animal grabbing the pellet, bringing
it to the mouth, and chewing. Trials were regarded as “multi-grab successes” if the
animal missed on the first attempt, but subsequently grabbed the pellet, brought it to the
mouth, and chewed.

Electrophysiological recordings from the PN

On the day prior to recording, a craniotomy was made over the PN (A/P: -3.5-4.0mm,
M/L: 0.2-0.5mm, D/V: 5.5-6.0mm) in Sim1-Cre X Ai32 mice (n = 6) and sealed with
silicone elastomer (Kwik-Sil, WPI). On the recording day, the animal was head-fixed, a
fiber coupled to a 473 nm laser (LuxX 473-80, Omicron Laserage) was placed over
forelimb motor cortex, and a 384-channel Neuropixels 3A probe
(https://www.neuropixels.org/) coated in a fluorescent dye (CM-Dil, Dil, DiO,
Thermofisher Scientific; JF-669, Tocris) was slowly lowered into the brain. As the probe
approached the PN, layer 5 motor cortical neurons were activated with a 10 Hz train of 5
ms pulses (2-10 mW), and the depth profile of evoked spiking was examined online.
When it was determined that the bottom ~1 mm of the probe was in the PN, the
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craniotomy and recording probe were sealed with Kwik-Sil, and after 15 min the reaching
task was initiated. Neuropixels data and timestamps for the camera and laser were
acquired with a custom FPGA-based system. Electrophysiological data were spike
sorted using JRClust (James Jun, https://github.com/JaneliaSciComp/JRCLUST). For
offline assessment of the depth profile of evoked spiking, the data for each channel were
blanked from 0-6 ms following pulse onset to remove the optical artifact, high-pass
filtered with a cutoff of 650 Hz, full-wave rectified, averaged over all pulses, and
smoothed over time with a 0 = 333 ps Gaussian kernel. Next, the data were spatially
smoothed across the probe using a o = 30 um Gaussian kernel, and the depth profile
averaged between a temporal offset of 6-10 ms from pulse onset was plotted (Fig. 1B,
red curve). Units on the bottom 1 mm of the probe were included for analysis; this is the
region that the histology and depth profiles suggested to be in the PN. In order to
determine whether each neuron responded to the cue, lift, and laser pulse, we counted
the spikes occurring immediately before and after each event. The windows used were (-
100, 0) and (0, 100) ms for cue and for lift, and (-20, 0) and (0, 20) ms for laser. We then
compared the pre- and post-event spike counts using a sign rank test (two-sided for lift
and cue, and one-sided for laser), and corrected for multiple comparisons across
neurons in each event type using the Benjamini-Hochberg procedure (Fig. 1E-F).
Neurons were regarded as modulated by the event if the corrected p-value q < .05.
Firing rates were visualized by smoothing the cue-aligned spike trains usinga o = 50 ms
Gaussian kernel, Z-scoring based on the mean and standard deviation of the firing rate
from cue - 1000 ms to cue - 200 ms, and averaging across trials (Fig. 1E.) For the long
laser stimuli (Fig. 1G), spike counts were again compared between the 2 s laser-on
period and the 2 s pre-laser period using a two-sided sign rank test. Firing rates were
classified as changing during the laser if q < .05.

Pharmacogenetic manipulations

Selective expression of the hM4D DREADD receptor was induced in the PN by injecting
AAV-2/1-flex-hM4D-GFP or AAV-2/1-flex-hM4D-mCherry into the PN of Slc17a7-Cre (n
= 5) or Pde1c-Cre (n = 3) mice, as described above. Following this injection, mice were
trained to perform the reach-to-grab task until they achieved success rates of ~50-80%.
Then, they were subjected to multiple three-day testing sequences (Fig. 3A). On the first
day (“pre-CNQ”), they were given a systemic injection of 0.9% saline immediately before
being head-fixed and performing the task. On the second day, CNO (6 ug/g) was
administered before the task, and on the third day, saline was given again. This three-
day sequence was repeated several times for each mouse once behavior had stabilized.
The same procedure was applied to control mice (n = 4) that did not express the hM4D
receptor.

Optogenetic perturbations and electrophysiological recordings from motor cortex
Selective expression of ChR2 was induced in the PN by injecting Sic17a7-Cre mice (n =
7) with AAV-2/1-CAG-flex-ChR2-TdTomato in the left PN and implanting a tapered
optical fiber over the injection site, as described above. Animals were trained on the
reach-to-grab task, and a craniotomy over forelimb motor cortex (bregma +0.5 mm, left
1.7 mm) was performed before the first day of recording. During the recording session,
an optical coupler attached to a 473 nm laser (LuxX 473-80, Omicron Laserage) was
attached to the connection on the top of the skull leading to the tapered fiber. A four-
shank, 64-channel probe (Janelia Experimental Technology) was lowered to
approximately 900 um below the surface of forelimb motor cortex. The 16 recording sites
on each shank had a range of 0 to 320 ym from the tip of the shank. During the
experiment, three types of trials were administered: (1) control trials, in which a cue was
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given and the table rotated to provide the food pellet, (2) laser-only trials, in which a 2 s,
10Hz or 40Hz sinusoidal laser stimulus was given with no cue, and (3) laser-cue trials, in
which the laser was given either synchronously with the cue, or 200 ms before the cue.
The laser power at the tip of the coupler was measured at 8-20 mW, but there was likely
a significant power drop between the coupler and the fiber in the brain. Lift-aligned hand
trajectories in the forward direction were compared by visualizing the control and laser
trajectories (Fig. 4B, right), and by computing the two-sided t-statistic for control and
laser position at each time lag (Fig. 4B, left). The position of the hand at the time of grab
was extracted for control and laser plots and compared by plotting (Fig. 4C), and by
computing the spread, defined to be the sum of the standard deviations for each of the
three spatial dimensions, for control and laser trials (Fig. 4D, left). Success rates for Fig.
4D-E refer to success on the first grab attempt. In order to assess whether cortical
neurons were modulated during movement and by PN stimulation, we compared paired
spike counts for each trial immediately before and after lift or laser onset using a sign-
rank test (two-sided for lift, one-sided for laser). The pre- and post-lift windows were (-
1000, -500) and (-50, 450), and the pre- and post-laser windows were (-150, 0) and (0,
150) ms. A Benjamini-Hochberg correction for multiple comparisons was applied, and
neurons were classified as modulated by the lift or laser if the corrected p-value q < .05
(Fig. 2D). For assessing the laser-aligned responses, we included both laser-only trials
and laser-cue trials in which no lift occured in the post-laser window; using laser-only
trials alone did not qualitatively change the results. Lift-aligned firing rates were
visualized by smoothing the spike trains with a o = 50 ms Gaussian kernel, Z-scoring
based on the mean and standard deviation of the firing rate within a window of (-1000, -
400) ms of lift, and averaging across trials (Fig. 2B, 4G.)

Author contributions and acknowledgements

J.G. performed behavioral experiments and cortical recordings and analyzed behavior
data. B.S. analyzed electrophysiology and behavior data and generated the figures. J.C.
performed Neuropixels recordings in the PN. M.M. analyzed electrophysiology and
behavior data. A.G. performed preliminary slice experiments and analyzed behavior
data. F.P. developed and fabricated the optical fibers for PN stimulation. K.B. developed
video analysis tools and analyzed behavior data. B.S., M.M., and A.H. wrote the paper
with input from all authors. A.H. supervised the project. We thank Giilsen Sirmeli, Diana
Burk, and Cheng-Chu Huang for help with pilot experiments, Adam Taylor for
Wavesurfer software, Tim Harris and the Neuropixels Consortium for probe
development, James Jun for spike sorting software, and Steve Edgley, Amy Bastian,
Stephen Scott, Daniel Wolpert, and Brett Mensh for discussions.

Figure captions

Figure 1: Firing properties of PN neurons during a cortically-dependent reach-to-grab
task. (A) Behavioral task and reach kinematics. Upper: mice were head-fixed and trained
to reach to and grasp a pellet of food following an acoustic cue. Lower: example hand
trajectories aligned to the cue. The green dots indicate lift, when the animal initiates the
reach-to-grab sequence. (B) Strategy for recording from motor-cortex-recipient neurons
in the pontine nuclei. An optical fiber was placed over the forelimb motor cortex of mice
expressing ChR2 in pyramidal tract neurons (Sim1-Cre X Ai32). A 384-channel
Neuropixels probe was lowered into the pontine nuclei as a laser pulse train was
delivered to cortex. The depth profile of evoked multi-unit activity (red trace) revealed a
zone of corticorecipient sites at the bottom of the probe. The grayscale histological
section shows the location of the bottom of the probe in the pontine nuclei. (C) Raw data
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from six channels near the bottom of the probe showing activity evoked by motor cortex
stimulation. (D) Spike rasters and firing rates for example neurons in the task. The timing
of lift is indicated by the green dots. The panels on the right show each unit’s response
to cortical stimulation. (E) Firing rate Z-scores for each neuron, sorted according to
whether the cell responded to the cue, the lift, or both. Cyan ticks indicate which neurons
were tagged by stimulation of motor cortex. (F) Venn diagram indicating the number of
neurons responding to different combinations of the cue, lift, and cortical stimulation. (G)
Response of PN neurons to a two-second stimulation of motor cortex. Upper: firing rate
Z-scores for each neuron, aligned to laser onset. Blue ticks indicate neurons with a
sustained increase, and red ticks indicate neurons with a decrease. Lower: laser-aligned
spike rasters and firing rate for an example neuron suppressed by motor cortical
stimulation.

Figure 2: Motor cortical neurons receiving feedback from the ponto-cerebellar system
have distinct functional properties during reaching. (A) Identification of cortical neurons
tagged by PN stimulation. Upper: experimental schematic. Animals expressing ChR2 in
the PN were implanted with an optical fiber for optogenetic stimulation. A silicon probe
was inserted into forelimb motor cortex to record neural activity during the task. At the
beginning of the session, PN neurons were stimulated with 473 nm light. Lower: raw
data example showing cortical spiking locked to the onset of PN stimulation. Each trace
is a single trial. (B) Movement-locked neural activity for PN-tagged (n = 228) and non-
PN-tagged (n = 521) cortical neurons; n = 32 sessions, n = 7 mice, and n = 749 total
recorded neurons. Left: firing rate heatmaps aligned to movement onset (lift) for PN-
tagged neurons. Many neurons had increased activity around lift, and a few had
decreased activity. Right: firing rate heatmaps for non-PN-tagged neurons.
Approximately equal numbers of neurons had firing rate increases and decreases
around lift. (C) Table showing the percentages of tagged and non-tagged neurons with
increases, decreases, or no change in activity around lift. (D) PN-tagged neurons have
distinct properties during movement. Upper: average firing rate Z-scores for tagged and
non-tagged neurons with firing rate increases around lift. The average activity for the
tagged group increased earlier than the activity for the non-tagged group. Lower:
distribution of the timing of firing rate peaks for tagged and non-tagged neurons. PN-
tagged neurons had earlier firing rate peaks than non-tagged neurons.

Figure 3: Pharmacogenetic inactivation of the pontine nuclei disrupts prehension
success rate. (A) Experimental design. (B) Histology of hM4D expression from a trained
Pde1c-Cre mouse. Image of PN neurons expressing hM4D, labeled in red, and forelimb
motor cortical axons, labeled in green. Magnified view of boxed region shows residence
of hM4D-expressing neurons in forelimb M1 terminal field. (C) Hand trajectories during
the pre-CNO, CNO, and post-CNO sessions for the mouse in (B). Insets show close-ups
of hand position at grab. (D) Forward, right, and upward hand trajectories for all sessions
of each type from the same mouse. (E) Left: success rates for single-grab and multi-grab
reaches (when the animal attempted again after an initial failure) for all mice expressing
the hM4D receptor (n = 8 mice; n = 90 sessions). Right: success rates for control mice
without the hM4D receptor (n = 4 mice; n = 24 sessions). Error bars are 95% confidence
intervals.

Figure 4: Optogenetic perturbation of the PN alters motor cortical activity and induces
hypermetric reaches. (A) Experimental schematic. Mice expressing ChR2 in the PN
were implanted with a fiber to allow stimulation of PN neurons while population activity
was recorded in motor cortex. On control trials, the cue was delivered, and the mouse
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reached to the target. On laser trials, a 2 s PN stimulation was delivered, aligned to the
cue. Data are from the same sessions as for Fig. 2. (B) Hypermetric reaching under PN
stimulation. Left, t-statistic indicating difference between the forward position of the hand
in laser and control trials. Each row corresponds to one session. Blue indicates that the
hand was farther forward on laser trials; yellow indicates that it was farther back. Right,
average hand trajectories in the forward direction on control and laser trials for three
example datasets. Error bars indicate standard error of the mean. (C) Three-dimensional
position of the hand at the time of grab on control and laser trials for each of the three
example datasets in (B). Each point corresponds to a single trial. (D) Left: spread of the
hand (sum of the standard deviations in each direction) on control and laser trials. Each
point is one session. Blue points indicate a difference in success rate on the first grab (q
< .05, chi-square test). Right: difference in spread between laser and control versus the
distance between mean hand position at grab for laser and control. (E) Left, success on
first grab attempt for laser versus control trials. Right, difference in forward hand position
(lift +100 to +300 ms) between laser and control versus success rate difference between
laser and control. (F) Spike rasters and firing rates on laser and control trials for three
example neurons. Black dots indicate the start of laser stimulation. (G) Left, difference in
peri-lift firing rate z-scores between control and laser trials for neurons tagged by PN
stimulation. Error bars show standard error of the mean across neurons, and the shaded
gray region corresponds to the window of lift -100 to +300 ms shown in Fig. 4B. Right,
difference in firing rate z-scores for non-tagged neurons.

Supplementary figure 1: Long-duration responses in PN neurons. (A) A PN neuron that
exhibits a cue-locked response and maintains an elevated firing rate while the hand is in
an upward position. The grayscale heatmap indicates upward hand position, magenta
ticks are spike times, and green dots are lift times. (B) Another example neuron, as in
(A). This neuron maintains an elevated firing rate for the entire four-second window.

Supplementary figure 2: Characterization of behavioral effects of pharmacogenetic
inactivation of the PN. (A) Table showing success rates, reaction times, and lift-to-grab
duration for each mouse. (B) Scatterplots of the data in (A) for the CNO vs pre-CNO
sessions. (C) Three-dimensional hand position at grab for each mouse in the CNO (red)
and pre-CNO (gray) sessions. (D) Left, spread in hand position at grab (sum of standard
deviations for each spatial dimension) for CNO vs pre-CNO sessions. Right, change in
spread between CNO and pre-CNO sessions versus shift in mean position.

Video 1: Behavior on a control (cue-only) trial for an animal with ChR2 and an optical
fiber in the PN.

Video 2: Behavior on a laser + cue trial for the animal from video 1. The animal keeps
overreaching the target as long as the laser is on.
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